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Abstract

We propose a penalized method to solve the one-way ANOVA problem by col-
lapsing the coefficients of K conditions. We introduce a large class of weights for
which our homotopy algorithm is in O(K log(K)). These weights induce a bal-
anced tree structure and simplify the interpretation of the results. As an example
we consider phenotypic data: given a trait, we reconstruct a balanced tree struc-
ture and assess its agreement with the known phylogeny. Our proposal is easily
extended to more than one dimension for clustering problems.

1 Introduction

With the advent of new high-throughput technologies, it is possible to compare features across a
very large number, K, of conditions. For one feature one typically apply one-way ANOVA to test
for any significant difference between conditions. LargeK leads to multiple-testing and algorithmic
problems since the number of pairwise tests is in O(K2). Furthermore, each test is performed
independently and the resulting structure between the conditions is not necessarily simple and easily
interpretable.

In this work, we propose a penalized version of the one-way ANOVA achieving these goals by
constructing a hierarchical structure on the conditions at a low computational cost. To this purpose,
we use a fusion penalty that collapses the coefficients within the conditions in the same manner as
the fused-Lasso [Tibshirani et al., 2005]. We prove that for a large class of weights no split can
occur along the path of solutions. These weights lead to a balanced tree structure.

An analogous strategy called “Cas-ANOVA” has been investigated in Bondell and Reich [2008] for
multi-factor ANOVA. They propose some weights which, coupled with a two stage strategy like in
the adaptive Lasso [Zou, 2006], enjoys asymptotic consistency for a fixed number of conditions.
Still, it can be shown that these weights do not lead to a tree. Indeed, as soon as the number of
individual by condition is unbalanced, splits can easily occur along the solution path. Moreover, the
optimization procedure of Bondell and Reich is quadratic in K and only provides the solution for a
given λ. We also experienced numerical instability using their weights.

Hocking et al. [2011] proposed a similar penalty in the context of clustering. When there is just one
individual per condition and for fixed weights equal to one, they showed that no split can occur along
the path of solutions and proposed an efficient algorithm: “ClusterPath”. However these weights
typically lead to unbalanced hierarchies. We extend their results to the case of several individuals
per condition – or replicates – and to a larger class of weights that induces a balanced tree structure.

In this short note, we illustrate our weighted penalty in a one-dimensional setup. Since it boils down
to the one-way ANOVA, we call our method “fused-ANOVA”. A straightforward generalization of
this work to a p-dimensional space is to consider successive calls of the one-dimensional fused-
ANOVA for each dimension, as is done in “ClusterPath”.

1



2 The fused-ANOVA Model

We first recall the classical one-way ANOVA setup. Let Yik be the intensity of a continuous random
variable for sample i in condition k, which decomposes as

Yik = βk + εik, εik ∼ N (0, σ2
ik), (1)

where βk is the mean parameter of condition k. We denote by K the total number of conditions, nk
the number of samples in condition k and n =

∑
k nk the total sample size. The estimators β̂k are

usually adjusted using ordinary least squares:

β̂ = arg min
β

{
K∑
k=1

nk∑
i=1

(Yik − βk)
2

}
, (2)

where β = (β1, . . . , βK) is a K dimensional vector that contains the means of the K conditions.
Since we consider the model without an intercept term, there is no identifiability issue in (1) and no
additional constraint is needed to solve (2).

When the number of conditions K is large, it is natural to assume that the underlying number of
different βk is small. To encode this, we use a (generalized) fused-Lasso penalty:

β̂λ = arg min
β


K∑
k=1

nk∑
i=1

(Yik − βk)
2

+ λ
∑
k,`

wkl |βk − β`|

 . (3)

This encourages the absolute differences between βk to be small: the larger the λ, the smaller the
differences will be. The weights wk` may be interpreted as a prior on the differences between the
means of two conditions. An appropriate choice of weights is discussed in the next paragraph.

3 Fast homotopy algorithm for distance decaying weights

The optimization problem (3) can be solved by the homotopy algorithm proposed in Hoefling [2010].
A schematic view of this algorithm is depicted below.

Algorithm 1: Schematic view of the homotopy algorithm for the generalized fused-Lasso

Input: data and weights (Yik, wkl)

Initialization for λ = 0
Initialize βk parameters (equal to the empirical means)
Initialize the list of possible next events (only fusion at this stage)

while all groups are not fused do
Find the next event (having the smallest λ), it can be a split or a fusion
Update βk parameters accordingly
Update the list of possible next events (fusion and split)

end
Output: DAG of fusion and split events and associated values of the parameters

For unspecified weights, split events may occur in Algorithm 1. However, the absence of splits is
highly desirable because if there is no split,

1. the order of the βk always matches the order of the empirical mean of each condition;

2. the recovered structure is a tree which simplifies the interpretation;

3. the total number of iterations is guaranteed to be small and equal to K;

4. we avoid maximum flow problems whose resolution is computationally demanding.
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In the following Theorem, we characterize a large class of weights for which we prove the absence
of splits.
Theorem 1. The path of solutions does not contain splits when weights are chosen such that

wk` = nkn` f(
∣∣Ȳk − Ȳ`∣∣),

where f(·) is a decreasing positive function.

Proof. Schematically, the proof relies on the following lemma, which is itself proven by induction.

Lemma 1. Consider A and B two sets with r elements in R such that A = {a1 > · · · > ar} is
ordered. Also denote by Ω(r) the set of all permutation of {1, . . . , r} and ω̂(B) the permutation of
{1, . . . , r} ordering the elements in the decreasing order. Then

ω̂ (B) = arg min
ω∈Ω(r)

{
r∑
i=1

(ai − bω(i))
2

}
.

From this lemma and using weights as in Theorem 1, it can be shown that the fused-ANOVA loss
(3) preserves the order, i.e. if condition k as a smaller empirical mean than condition ` then for all λ
we have βk ≤ β`. From this, we get that a split cannot occur in the solution path essentially because
it would disrupt the order.

Class of weights. The class of weights in Theorem 1 are natural in the sense that they linearly
increase with the number of samples in each condition and they decrease with the mean distance
between two conditions. Typical choice for f are the Gaussian kernel exp

{
−γx2

}
or the Laplace

kernel exp {−γ|x|} where γ is a tuning parameter. Taking f(x) = 1 with all nk = 1 leads to the
weights proposed by Hocking et al.. Taking f(x) = 1/x leads to an adaptive penalization as in Zou
[2006]. However Cas-ANOVA weights

√
nk + n`/(Ȳk − Ȳ`) do not fall in this category.

Implementation of the algorithm. We implemented both the general and the without split version
of algorithm 1 in C++. For the latter, the complexity of our implementation isO(K logK). We also
provide a fast cross validation (CV) procedure to select λ for both the general and the no split
algorithms. The idea behind this procedure is to take advantage of the DAG structure of the path of
solutions along λ. Rather than computing the CV error for each condition separately, we traverse
each edge of the DAG once and only once and compute simultaneously the error of all conditions
going through this edge. If we consider a perfectly balanced tree and a grid of P values of λ we
achieve O(P log(P )) rather than a O(P 2) complexity.

Figure 1 illustrates the good performance of our implementation. The left panel shows the perfor-
mance of our algorithm compared to the general algorithm 1 for weights matching the assumptions
of Theorem 1. The right panel illustrates the performance of our embedded CV procedure compared
to the naive implementation.
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a) improvements induced by absence of splits b) improvements induced by embedded CV

Figure 1: timings comparison for a) general/without split algorithm and b) naive/embedded CV. We
consider model (1) with a varying number of conditions K, nk = 20, σ2

ik = 1 and βk independently
drawn from U([0, 20]). Experiments are replicated 20 times for averaging.
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4 Distance decaying weights simplifies the interpretation: application to
phylogenetic data

We download the “Animal Ageing Longevity Database”, publicly available at
http://genomics.senescence.info/species/, which provides various features for many animal
species. Here, we consider predicting the birth weight for 40 bird families classified in 15 orders
and regrouping a total of n = 184 individuals. The number of birds per family is not constant. We
then checked whether the recovered classification matches the orders of these families. Recovered
solutions path are plotted in Figure 2 for a) the non-adaptive weighting scheme of Cas-ANOVA1 ; b)
the “default” weights wk` = nkn`; and c) the Laplace weights wk` = nkn` exp γ|Ȳk − Ȳ`|, where
γ has been tuned in order to maximize the adjusted rand index with the phylogenetic classification.
Only choices b) and c) fulfill the assumptions of Theorem 1. On the left panel, the Cas-ANOVA
path includes many splits which make interpretation rather difficult. On the middle panel, default
weights, as expected, provide a tree structure. Still, the structure of this tree is unbalanced and thus
not fully satisfactory in the sense that small groups often fuse with very large ones. Finally, the
right panel shows the tree reconstructed using the Laplace weights. Not only its structure is much
more balanced, but it is also in better agreement with the known phylogenetic classification. The
Laplace weights improved the rand index by 5% compared to ClusterPath.
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Figure 2: Reconstructed phylogenetic trees for various weighting schemes. Families classified in
the same order share the same color.

5 Conclusion

This work provides a fast algorithm to solve a weighted fused Lasso penalty devoted to ANOVA and
clustering problems. For a large class of weights we achieve a K log(K) complexity where K is the
number of conditions in ANOVA or the number of sample in clustering. These weights also lead to
a balanced hierarchical structure on the conditions which is easily interpretable.
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