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Abstract. We compiled a database of 39 766 data points consisting of flow cytometric and microscopical
measurements of picoheterotroph abundance, including bothBacteriaandArchaea. After gridding with 1°
spacing, the database covers 1.3 % of the ocean surface. There are data covering all ocean basins and depths
except the Southern Hemisphere below 350 m or from April until June. The average picoheterotroph biomass
is 3.9±3.6µg C l−1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean
inventory of about 1.3×1029 picoheterotroph cells. Surprisingly, the abundance in the coastal regions is the
same as at the same depths in the open ocean. Using an average of published open ocean measurements for the
conversion from abundance to carbon biomass of 9.1 fg cell−1, we calculate a picoheterotroph carbon inventory
of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to
biomass. Picoheterotroph biomass is∼2 times higher in the tropics than in the polar oceans.

doi:10.1594/PANGAEA.779142

1 Introduction

Picoheterotrophs are the main degraders of detritus in the
ocean (Azam and Malfatti, 2007). The term picoheterotrophs
was introduced by Le Qúeŕe et al. (2005) to include het-
erotrophicBacteriaandArchaea, and exclude cyanobacteria.
Most picoheterotrophs (>95 %, Cho and Azam, 1988; Turley
and Stutt, 2000) live on dissolved organic matter (DOM) as
suspended/detached organisms, though in the deep sea the
contribution from other energy sources such as reduced ni-
trogen could be significant (Herndl et al., 2005). Attached pi-
coheterotrophs living in and on particulate detritus, although
less abundant, have a higher specific activity (up to 12 % of
picoheterotroph production, Turley and Stutt, 2000). Pico-
heterotrophs that spend part of their time attached to parti-

cles both attach and detach from particles on a timescale of
hours (Kiørboe et al., 2002). They also produce ectoenzymes
that solubilize POC to DOC that can be subsequently used
by detached picoheterotrophs (Thor et al., 2003; Azam and
Malfatti, 2007). Thus, the relative importance of attached pi-
coheterotrophs may be higher still than their contribution to
picoheterotroph production suggests.

Picoheterotrophs have a higher biomass than the metabolic
theory of ecology would predict based on their small size
(Brown et al., 2004). This may be due in part to the fact
that they respire organic matter that is formed as losses at all
trophic levels, i.e. that their trophic status is unrelated to their
size. Furthermore, not all picoheterotrophs show the same
activity, ranging from ghost cells with cell membranes but
no internal structures, dead cells containing nucleic acids but
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Figure 1. Number of grid points with data, as a function of(A) latitude,(B) depth, and(C) time. Red: Southern Hemisphere, black: total.

with compromised cell membranes, low nucleic acid cells
with a lower specific activity and high nucleic acid cells
(Gasol et al., 1999; Longnecker et al., 2006; Ortega-Retuerta
et al., 2008; Moŕan et al., 2011). These dead or less active pi-
coheterotrophs would contribute to a higher picoheterotroph
biomass than the metabolic theory would predict.

Here, we present a database of picoheterotroph abun-
dance and biomass in the global ocean. This is a contribu-
tion towards a world ocean atlas of plankton functional types
(MAREDAT, this special issue), which we hope will help re-
solve some of the important issues on ecosystem functioning
and its representation in models.

2 Data

Table 1 summarises the data that were compiled for this
synthesis. Most of the data were obtained by flow cytome-
try. Cells were stained with nucleic acid stains, and there-
fore include (presumably recently) dead cells with com-
promised cell membranes, but not ghost cells. The data
at BATS were stained with DAPI and counted microscop-
ically, and could therefore include ghost cells. We treat
Bacteria and Archaea as one group. Neither the DAPI
stain used in microscopy nor the nucleic acid stains used
in flow cytometry discriminate the two domains.Archaea
make up about 5 % of picoheterotrophs in the surface, and
typically about 50 % of the population that can be dis-
tinguished by domain-specific rRNA probes below 2000 m
(Robinson et al., 2010 and references therein). In some
cases, cyanobacteria will also have been included, espe-
cially Prochlorococcusnear the surface, which have low red
fluorescence and are therefore difficult to distinguish from
picoheterotrophs. The data are available from PANGAEA
(doi:10.1594/PANGAEA.779142) and the MAREDAT web-
page (http://maremip.uea.ac.uk/.maredat.html).

2.1 Conversion factors

Table 2 gives abundance to carbon conversion factors from
the literature. Picoheterotrophs have been shown to increase
in size during incubation (Lee and Fuhrman, 1987). We
therefore excluded measurements from cultures or incubated
in situ samples. We also excluded conversion factor mea-

surements from coastal waters. These have been shown to
be higher than open ocean samples (Fukuda et al., 1998, Ta-
ble 2), but not enough data are available to define the con-
trolling factors for this increase or how it graduates to the
open ocean value with distance from the coast. We are also
unaware of measurements showing how the carbon content
of picoheterotrophs varies with growth conditions. We there-
fore use a single conversion factor for the whole database.
We calculated the conversion factor at BATS from the geo-
metric mean cell volume and the relationship between cell
volume and carbon content (n= 164) from Gundersen et
al. (2002). We calculated the conversion factor as the average
of the three studies in Table 2. The conservative conversion
factor for incubatedArchaeaof 8.4 fg C cell−1 in Herndl et
al. (2005) is similar to our conversion factor of 9.1 fg cell−1

for picoheterotrophs in the upper ocean, where the popula-
tion is dominated byBacteria.

2.2 Quality control

As a statistical filter for outliers, we applied the Chauvenet
criterion (Glover et al., 2011; Buitenhuis et al., 2012) to the
total carbon data. The data were not normally distributed,
so we log transformed them, excluding 51 zero values. No
high outliers were found by this criterion. The highest pico-
heterotroph biomass in the database is 74µg C l−1, measured
near the coast of Oman.

3 Results

The database contains 39 766 data points. After gridding,
we obtained 9284 points on the World Ocean Atlas grid
(1°×1°×33 vertical layers×12 months), i.e. we obtain a
coverage of vertically integrated and annually averaged
biomass for 1.3 % of the ocean surface. Only 6 % of the
data are from the Southern Hemisphere (58 % of the ocean
surface; Fig. 1a); 24 % are from the tropics (43 % of the
ocean surface), while 15 % are from the polar oceans (5 %
of the ocean surface). Observations from the coast (bottom
depth<225 m) make up 12 % of the data (4.9 % of the ocean
area, 0.13 % of the ocean volume). Observations in the upper
112.5 m make up 57 % of the data (Fig. 1b), while observa-
tions below 950 m make up 13 % of the data. There are no
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Table 1. Data sources.

Cruise Date Area Reference/Investigator

Li89003 Apr 1989 North Atlantic Li et al. (2004)
HOT 1990–2008 Tropical Pacific Campbell et al. (1997); Karl (unpublished data)
BATS 1990–2010 North Atlantic DuRand et al. (2001); Lomas et al. (2010)
Li91001 Apr 1991 North Atlantic Li et al. (2004)
EQPACTT007 Feb–Mar 1992 Equatorial Pacific Landry et al. (1996)
EQPACTT008 Mar–Apr 1992 Equatorial Pacific Binder et al. (1996)
EQPACTT011 Aug–Sep 1992 Equatorial Pacific Landry et al. (1996)
Li92037 Sep 1992 North Atlantic Li et al. (2004)
Li93002 May 1993 North Atlantic Li et al. (2004)
NOAA93 Jul–Aug 1993 North Atlantic Buck et al. (1996)
OLIPAC Nov 1994 Equatorial Pacific Neveux et al. (1999)
ArabianTTN043 Jan 1995 Arabian Sea Campbell et al. (1998)
ArabianTTN045 Mar–Apr 1995 Arabian Sea Campbell et al. (1998)
Delaware95 Apr 1995 North Atlantic Li (unpublished data)
MINOS Jun 1995 Mediterranean Sea Vaulot, Marie, Partensky (unpublished data)
Chile95 Jun 1995 South Pacific Li (unpublished data)
Lopez96 Jun 1995 Sargasso Sea Li (unpublished data)
Li95016 Jul 1995 North Atlantic Li and Harrison (2001)
ArabianTTN049 Jul–Aug 1995 Arabian Sea Olson (unpublished data)
ArabianTTN050 Aug–Sep 1995 Arabian Sea Campbell et al. (1998)
NOAA95 Sep–Oct 1995 Indian Ocean Buck (unpublished data)
ArabianTTN054 Dec 1995 Arabian Sea Campbell et al. (1998)
AZOMP 1995–2009 Labrador Sea Li et al. (2004); Li (2009)
AZMP 1997–2009 North Atlantic Li et al. (2004); Li (2009)
Kiwi6 Oct–Nov 1997 Antarctica Landry (unpublished data)
Kiwi7 Dec 1997 Antarctica Landry (unpublished data)
Almo-1 Dec 1997 Mediterranean Sea Jacquet, Marie (unpublished data)
Almo-2 Jan 1998 Mediterranean Sea Jacquet et al. (2010)
Kiwi8 Jan–Feb 1998 Antarctica Landry (unpublished data)
Kiwi9 Feb–Mar 1998 Antarctica Landry (unpublished data)
PROSOPE99 Sep 1999 Mediterranean Sea Marie et al. (2006)
GLOBEC LTOP Mar 2001–Sep 2003 North Pacific Sherr et al. (2006)
JOIS 2002–2009 Arctic Li et al. (2009)
C3O 2007–2008 Arctic Li et al. (2009)

observations below 350 m in the Southern Hemisphere. Al-
though there are some zero values in the raw database, pre-
sumably because of a detection limit in small samples, there
are no zero values in the gridded dataset. There is some sam-
pling bias towards the growing season, with 72 % of the data
sampled during the spring and summer months (Fig. 1c).

The average abundance is 4.3×108±3.9×108 pi-
coheterotrophs l−1 with a median of 3.1×108 pico-
heterotrophs l−1. The average biomass is 3.9±3.6µg C l−1

(Fig. 2) with a median of 2.8µg C l−1. The biomass de-
creases with depth, from 7.3±4.3µg C l−1 at the surface
to 0.36±0.19µg C l−1 at 2750–4750 m depth (Fig. 3). The
average biomass in the top 225 m is slightly higher in the
northern temperate region (23–67◦ N, 5.5±3.7µg C l−1;
Figs. 2, 3, 4) and tropics (5.5±3.6µg C l−1) than in Antarc-
tica (3.2±1.9µg C l−1), the Arctic (2.4±2.1µg C l−1) and
southern temperate region (3.1±1.9µg C l−1). The differ-
ences between most of these regions are significant (one-way

ANOVA with violated homogeneity of variances, Games
Howell post-hoc test,p<0.001), except for Antarctica, for
which there are only 23 measurements in the upper 225 m,
and which was only significantly different from the tropics
(p= 0.014). There is no significant difference between
abundance in coastal waters and in the upper 225 m of the
open ocean (Fig. 3, t-test,p= 0.86).

If we calculate a total ocean picoheterotroph biomass
based on the average profile with depth (Fig. 3) and multi-
ply by the volume of ocean water at each depth, we calculate
an inventory of 1.1 Pg C, of which 0.28 Pg C is found in the
upper 225 m, 0.51 Pg C below 950 m, and only 0.0079 Pg C
in the coastal ocean. If we calculate the inventory separately
in the top 225 m for the 5 regions mentioned above, the in-
ventory is higher at 0.35 Pg C due to the larger ocean volume
at low latitudes. Since we do not have enough data to calcu-
late regional differences in the deep sea, this would increase
the total ocean picoheterotroph inventory to 1.2 Pg C.
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Table 2. Conversion factors.

fg C cell−1 reference

7.7 (5.5, 9.8) oceanic, Antarctica
Carlson et al. (1999)

12.4±6.3 (n= 6) oceanic, Pacific
Fukuda et al. (1998)

30.2±12.3 (n= 5) coastal, Japan
Fukuda et al. (1998)

7.1 oceanic, Atlantic, BATS
Gundersen et al. (2002)

9.1 average (oceanic only)

Figure 2. Picoheterotroph biomass (µg C l−1) averaged over all
available months.(A) 0–40 m, (B) 40–225 m, (C) 225–950 m,
(D) ≥950 m.

4 Discussion

We could find only few measurements of carbon content of
picoheterotrophs that were measured directly after collec-
tion, i.e. without incubation, from open ocean waters (Ta-
ble 2). The range in these measurements is considerable,
from 5.5 to 23.5 fg C cell−1. Thus, there is a corresponding
uncertainty in our conversion from cell abundance to carbon
biomass.

In addition, a higher conversion factor has been found in
coastal waters (Fukuda et al., 1998). However, it has not been
established how far this higher conversion factor extends be-
tween the coastal bay waters and the open ocean. If we as-
sume the higher conversion factor is valid up to a water depth
to the bottom of 225 m (i.e. the continental shelf), then, based
on the average profile of picoheterotroph biomass (Fig. 3),
increasing the conversion factor from 9.1 to 30.2 fg cell−1

would only add 0.02 Pg C to the global inventory. Thus, at
present the main sources of uncertainty in picoheterotroph
biomass appear to be the open ocean conversion factor and
lack of spatial coverage, and not the increase in the conver-

Figure 3. Picoheterotroph biomass averaged over all available lon-
gitudes, latitudes and months, as a function of depth, (black line)
global average, (blue line) tropical oceans, (green line) temperate
regions, (red line) polar oceans, (purple line) coastal ocean abun-
dance×open ocean conversion factor.

Figure 4. Picoheterotroph biomass (µg C l−1) averaged over all
available longitudes and months in the top 300 m.

sion factor near the coast. All of the open ocean conversion
factors in Table 1 were measured on samples from the upper
250 m, so whether the conversion factor changes with depth
is yet to be resolved.

Whitman et al. (1998) estimated the global ocean pico-
heterotroph inventory at 2.0 Pg C. This higher estimate is
entirely due to their use of a higher conversion factor of
20 fg C cell−1. In fact, the present database gives a 20 %
higher inventory of global picoheterotroph abundance of
1.2×1029 cells based on an averaged depth profile, or 30 %
higher, 1.3×1029 cells, based on regional inventories in the
upper 225 m, but a considerably lower biomass inventory
of 1.1–1.2 Pg C. Despite the uncertainties that we discuss

Earth Syst. Sci. Data, 4, 101–106, 2012 www.earth-syst-sci-data.net/4/101/2012/
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above, we judge that the direct measurements of cellular
carbon contents for open ocean picoheterotrophs that we
have used here are the most precise conversion factors. For
applications where biomass rather than abundance of pi-
coheterotrophs is relevant (most notably in biogeochemical
models), the database that is presented here has the largest
coverage and the best estimates that are available at present.
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