
HAL Id: hal-01601690
https://hal.science/hal-01601690

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

PMG: Multi-core Metabolite Identification
Mohammad Mahdi Jaghoori, Sung-Shik T.Q. Jongmans, Frank de Boer, Julio

Peironcely, Jean-Loup Faulon, Theo Reijmers, Thomas Hankemeier

To cite this version:
Mohammad Mahdi Jaghoori, Sung-Shik T.Q. Jongmans, Frank de Boer, Julio Peironcely, Jean-Loup
Faulon, et al.. PMG: Multi-core Metabolite Identification. Electronic Notes in Theoretical Computer
Science, 2013, 299, pp.53-60. �10.1016/j.entcs.2013.11.005�. �hal-01601690�

https://hal.science/hal-01601690
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


PMG: Multi-core Metabolite Identification 1

Mohammad Mahdi Jaghooria,b,c,2, Sung-Shik T.Q. Jongmansb,
Frank de Boerb, Julio Peironcelyc, Jean-Loup Faulond,

Theo Reijmersc and Thomas Hankemeierc

a Academic Medical Center (AMC), Amsterdam, The Netherlands

b Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands

c Leiden Academic Center for Drug Research (LACDR), Leiden, The Netherlands

d Institute of Systems and Synthetic Biology (iSSB), Evry, France

Abstract

Distributed computing has been considered for decades as a promising way of speeding up software execution,
resulting in a valuable collection of safe and efficient concurrent algorithms. With the pervasion of multi-core
processors, parallelization has moved to the center of attention with new challenges, especially regarding
scalability to tens or even hundreds of parallel cores. In this paper, we present a scalable multi-core tool
for the metabolomics community. This tool addresses the problem of metabolite identification which is
currently a bottleneck in metabolomics pipeline.

Keywords: multi-core, Java concurrency, fork-join, scalability, metabolomics

1 Introduction

Metabolomics is the study of the intermediate molecules and the final products of

metabolism: the chemical reactions in living organisms. For example, in the early

2000s, Gavaghan et al. showed that one can distinguish white mice from black

mice by chemically analyzing their urine [2]. Metabolomics requires well-designed

and efficient software tools to analyze the data obtained during lab experiments.

Currently, a major bottleneck in the pipeline is metabolite identification: having

determined which particular chemical elements (i.e., atoms) exist in a particular

sample (of cells, body fluids, etc.), it is nontrivial to come up with the structure

of the corresponding chemical compounds (i.e., molecules), especially when dealing

1 This work is supported by eBioGrid and the Netherlands Metabolomics Center, part of the Netherlands
Genomics Initiative/Netherlands Organization for Scientific Research.
2 Email (corresponding author): m.jaghouri@amc.uva.nl

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 299 (2013) 53–60

1571-0661 © 2013 Elsevier B.V. 

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2013.11.005
Open access under CC BY-NC-ND license.

http://www.ebiogrid.nl
http://www.metabolomicscentre.nl
mailto:m.jaghouri@amc.uva.nl
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.11.005
http://dx.doi.org/10.1016/j.entcs.2013.11.005
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


with a so far unknown metabolite. Often, researchers must propose candidate struc-

tures for a metabolite themselves. This requires solving a daunting combinatorial

problem with a potentially huge search space.

In this paper, we describe the Java-based implementation of a multi-core Com-

puter Assisted Structure Elucidation (CASE) tool, called Parallel Molecule Gener-

ator (PMG), for automatic molecular structure generation. PMG is an evolution

of the open-source CASE tool, called Open Molecule Generator (OMG) [8]. A pop-

ular approach to implementing CASE tools is to view the molecular structure as a

graph. The problem of structure elucidation can then be mapped to isomorph-free

exhaustive graph generation [5, Section 4]. In Section 2, we explain the main idea

behind the algorithms involved. In Section 3, we describe two parallel implemen-

tations of PMG using contemporary concurrency tools from Java. These high-level

concurrency tools both make programming less error-prone, and have efficient and

optimized implementations. Based on experimental evidence, we then discuss their

scalability and the resulting speedup in Section 4.

The contribution of the paper has two sides. To metabolomics, we provide

a parallel, scalable, open-source CASE tool. The open-source nature of the tool

allows for further optimizations and addition of many other relevant features. Our

contribution to computer science is an evaluation and comparison of concurrency

tools in Java. We have not seen similar studies before, particularly on the possible

merits of the fork/join framework [7]. Additionally, PMG can be seen as a success

story in developing scalable parallel programs for the multi-core era.

Fig. 1: Molecular structures generated per

second for MolGen, OMG, PMG.

To give a rough indication of

PMG’s performance, in its current

state, given around ten cores, PMG

can compete with and beat the

fastest commercial alternative, Mol-

Gen 3 [4,6], as shown in Figure 1.

MolGen outperforms PMG in the

leftmost and in the middle case.

However, when provided a known

fragment of the structure, 4 such as

in the rightmost case, PMG outper-

forms MolGen.

2 Molecular Structure Generation

Computer Assisted Structure Elucidation refers to software tools that given an

elemental composition (something like C4H5N3O) generate every chemically pos-

sible molecular structure with those atoms. These tools generally use graphs as a

natural representation of molecules, where atoms and bonds—connections between

3 MolGen exists more than 20 years. See http://www.molgen.de.
4 Sometimes, the lab experiments give extra information about small fragments of the whole molecular
structure, which CASE tools should use to prune the search space.

M.M. Jaghoori et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 53–6054

http://www.molgen.de


Listing 1. Implementation of OMG – abstract code.

class SearchTree {
Molecule molecule; // data structure representing the current molecule
void expand() {
List<SearchTree> extended = addOneBond();
for (SearchTree em : extended)
em.expand();

} }

atoms—translate into vertices and edges. Double and triple chemical bonds are

then translated to two and three parallel edges. Furthermore, the maximum degree

of each vertex is set to the valence of its corresponding atom: the maximum number

of bonds the atom can form (e.g., a carbon atom can form at most four bonds).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� ��

	� 	�


� 
�

Fig. 2: A sample search tree.

Essentially, structure generation starts

from a collection of unconnected vertices

(atoms) and iteratively adds edges (bonds)

between them. Thus, the algorithm con-

structs and explores a search tree, similar to

the one in Figure 2, in which every leaf node

represents a completed molecular structure.

After having generated the entire search tree,

the algorithm collects and returns the molec-

ular structures in the leaves as output. How-

ever, as depicted in Figure 2, the naive con-

struction of graphs by incrementally adding

edges can result in duplicate graphs (e.g., in

nodes D1 and D2) and isomorphic graphs

(e.g., in nodes B1 and B2). 5 Structure generation algorithms should filter those

out. Otherwise, we may end up with millions of duplicates. One approach to do

such filtering is called orderly generation: first, we define a total order relation on

edges and graphs. This algorithm adds an edge e to a graph G in the current

node only if e is bigger than or equal to the edges in G. Colbourn and Read [1]

have shown that in this setting, expanding only nodes containing a minimal graph

guarantees generation of all possible graphs without duplicates.

Listing 1 shows an abstract of the sequential structure generation algorithm used

in OMG (which we parallelized—see Section 3). It starts off with a set of atoms

without bonds. In each node of the search tree, OMG uses the method addOneBond

to find all the possibilities for adding one bond to the current molecular structure.

The objects in the returned list serve as new nodes in the search tree, which OMG

subsequently expands in a DFS fashion.

3 Two Implementations of PMG

Generally, there are two approaches to make the source code in Listing 1 parallel.

The first approach is to decide at the beginning of the program on dividing the

5 Isomorphic graphs represent the same molecule, and hence, graph isomorphism provides a sufficiently
strong notion of equality for structure generation algorithms.

M.M. Jaghoori et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 53–60 55



search tree in n parts (assuming n parallel cores). This approach has very low

overhead and is used mainly on grids of multiple computers. It is, however, not

optimal on a multi-core and in particular for this problem because the search tree

is not balanced: some of the parts may be small, leaving the corresponding cores

underutilized. Another approach is to break down the work into millions of small

tasks, avoiding the risk of underutilization. However, if tasks are too small, the

overhead of managing tasks outweighs the actual computation. In our case, the

computation in each node is a proper task size.

Currently, Java offers roughly two high-level frameworks on top of basic Java

threads for writing concurrent programs: the fixed-size (FS) executor service frame-

work [3] and the fork/join (FJ) framework [7]. Because we were not sure about

which of those two frameworks would suit our application best in terms of scal-

ability, we wrote two implementations of PMG: one using the FS executor ser-

vices, referred to as PMGFS, and the other using the FJ framework, referred to

as PMGFJ
6 . We refer to Appendix A for a short primer on executor services and

fork/join concurrency in Java.

Listing 2. Implementation of PMGFS (left) and PMGFJ (right) – abstract code.

class SearchTree implements Runnable {
Molecule molecule;
void run() {
List<SearchTree> extended = addOneBond();
for (SearchTree em : extended)

if (task queue is full) em.run();
else executor.submit(em);

} }

class SearchTree extends RecursiveAction {
Molecule molecule;
void compute() {
List<SearchTree> extended = addOneBond();
for (SearchTree em : extended)
em.fork();

}
}

PMGFS: Fixed-Size-Executor-Service Implementation

At startup on a machine with n cores, PMGFS creates a basic thread pool

executor service with n worker threads. Fixing the number of worker threads to the

number of cores enables the utilization of all available cores while eliminating the

overhead of dynamically adjusting the size of the thread pool. (Having more than

n worker threads results in context switching overhead.)

Listing 2 (left) shows an abstract of the source code for the parallel structure

generation algorithm used in PMGFS. Compared to the sequential source code in

Listing 1, every node in the search tree now corresponds to a potentially parallel

task in PMGFS (SearchTree implements Runnable—see Appendix A). When processing

a node, a worker thread in PMGFS either submits its child nodes to the executor

service as new tasks (making them available for parallel execution by other worker

threads) or processes them directly. This choice depends on the task queue of the

executor service, which holds pending tasks: if sufficiently full (meaning that the

queue contains enough work for other worker threads upon completing their current

tasks), worker threads in PMGFS avoid task submission to reduce contention over

the shared task queue.

6 Available on git://git.code.sf.net/p/pmgcoordination/pmgcoordination.

M.M. Jaghoori et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 53–6056



Fig. 3. Task sizes: (static) threshold vs. dynamically sized.

� � � � � �� �� �� �� ��

�

�

�

�

�

��

��

��

��

��

���	��

��
	��

���	
�

���	
�

�������

��������������

�
�
�
�
�
�
�

Fig. 4. Speedup of PMGFS.

� � � � � �� �� �� �� ��

�

�

�

�

�

��

��

��

��

��

��������������

�
�
�
�
�
�
�

���	��

��
	��

���	
�

�������

Fig. 5. Speedup of PMGFJ.

PMGFJ: Fork/Join-based Implementation

At startup on a machine with n cores, PMGFJ creates an FJ executor service

with roughly n worker threads (due to its internal workings, the FJ framework may

create a few more than n worker threads). Listing 2 (right) shows an abstract of the

source code for the parallel structure generation algorithm used in PMGFJ. Instead

of calling submit on an executor service, PMGFJ calls fork on an FJ task (SearchTree

extends RecursiveAction which extends ForkJoinTask—see Appendix A). Because every

worker thread has its own (more-or-less) private task queue in the FJ framework,

worker threads in PMGFJ do not need to check the fullness of task queues to reduce

contention.

In order to avoid too small tasks, the recommended way to use fork/join is to

use a threshold to stop creating parallel tasks (Figure 3 left). In unbalanced search

trees, the threshold must be dynamically adapted based on the queue size. In our

implementation, we further optimized this technique by keeping the possibility of

spawning new tasks even after the threshold is reached (Figure 3 right). By deciding

on-the-fly whether to spawn a new task or continue sequentially, we are actually

changing the ‘task size’ dynamically (which was discussed up at the beginning of

this section).

M.M. Jaghoori et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 53–60 57



4 Scalability: Experiments and Results

To investigate the scalability of our two implementations of PMG we ran them on a

machine with two Intel Xeon E5-2650L processors, yielding a total of sixteen cores.

We initially carried out three experiments. In every experiment, we ran PMGFS

and PMGFJ for 1 ≤ i ≤ 16 cores (using the taskset command on Linux to restrict

the number of cores) and averaged our results over eight runs for each i: we called

them on a small molecule consisting of twelve carbon atoms and 26 hydrogen atoms

(C12H26) in the first experiment, a medium molecule (C13H28) in the second, and

a big molecule (C14H30) in the third. Figures 4 and 5 shows our experimental

results. The gray baseline represents linear speedup (i.e., optimal scalability).

To make Figure 5 more meaningful, we computed speedup of PMGFJ rela-

tive to two cores instead of one. Otherwise, we would observe considerable more-

than-linear—superlinear—speedup (we still have some superlinear speedup for the

C14H30 runs). Superlinear speedup results from the relatively poor performance

of the FJ framework on few cores, espectially for n = 1, caused by bookkeeping.

As the number of cores (or task size) increases, however, the bookkeeping overhead

becomes negligible. Therefore, computing speedup relative to two cores yields more

meaningful figures.

PMGFS scales worse than PMGFJ; all measurements for PMGFS fall below the

baseline. The improvement between C12H26, C13H28, and C14H30, however, sug-

gests that the scalability of PMGFS improves as the number of tasks or the average

task size increases. To further investigate this trend, we did an additional experi-

ment in which we ran PMGFS on the even bigger molecule C15H32 (on the same

machine with the same configuration for 1 ≤ i ≤ 16 cores using taskset). Again, we

observe an improvement in speedup, albeit less than before. This suggests that the

speedup observed in the C15H32 runs approaches the limit of the inherent scalabil-

ity of PMGFS: for sufficiently large molecules, it gets roughly 80% faster every time

we double the number of cores. Although a decent result, the inherent scalability

of PMGFJ seems to approach optimal speedup. For our application, thus, the FJ

framework outperforms the ES framework.

5 Conclusion

The contribution of this work can be seen from two sides: Computer Science and

Metabolomics. Firstly, we provide the metabolomics community a multi-core, scal-

able, open-source metabolite identification tool. We explained the workings of the

main algorithm involved and described two implementations using different concur-

rency frameworks from Java. Such scalable tools are necessary in the multi-core era

enabling faster execution of the programs by buying newer hardware, just as in the

old times before processor speeds stopped increasing.

Secondly, we provide the computer science community an evaluation and com-

parison of concurrency tools in Java on a nontrivial real-world case. Based on a

number of experiments, we conclude that the recently introduced fork/join frame-

M.M. Jaghoori et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 53–6058



work outperforms older Java technology (as expected). As future work, we are mak-

ing a library that hides the complexity of handling dynamically-sized tasks from the

programmer, thus keeping the simplicity of fork/join programming. Nonetheless, if

this approach is taken up in the default implementation of fork/join, one can benefit

from under-the-hood optimizations.

References

[1] Colbourn, C. and R. Read, Orderly algorithms for graph generation, International Journal of Computer
Mathematics 7 (1979), pp. 167–172.

[2] Gavaghan, C., E. Holmes, E. Lenz, I. Wilson and J. Nicholson, An NMR-based metabonomic approach
to investigate the biochemical consequences of genetic strain differences, FEBS Letters 484 (2000),
pp. 169–174.

[3] Goetz, B., T. Peierls, J. Bloch, J. Bowbeer, D. Holmes and D. Lea, “Java Concurrency in Practice,”
Addison-Wesley, 2006.

[4] Gugisch, R., A. Kerber, A. Kohnert, R. Laue, M. Meringer, C. Rücker and A. Wassermann, MOLGEN
5.0, a molecular structure generator, Bentham Science Publishers Ltd (2012), submitted.

[5] Kaski, P. and P. Österg̊ard, “Classification Algorithms for Codes and Designs,” Algorithms and
Computation in Mathematics, Springer, 2006.

[6] Kerber, A., R. Laue, T. Grüner and M. Meringer, MOLGEN 4.0, MATCH Commun. Math. Comput.
Chem 37 (1998), pp. 205–208.

[7] Lea, D., A Java Fork/Join Framework, in: D. Gannon and P. Mehrotra, editors, Proceedings of JAVA '00,
2000, pp. 36–43.

[8] Peironcely, J., M. Rojas-Cherto, D. Fichera, T. Reijmers, L. Coulier, J.-L. Faulon and T. Hankemeier,
OMG: open molecule generator, J. Cheminformatics 4 (2012), pp. 167–172.

A Appendix: Java Concurrency Tools

Executor Services

Already in its early days, Java had basic support for thread-based concurrency.

However, programming directly with threads is difficult. To ease this, Java 5 ex-

tended this support with new higher-level concurrency utilities in the form of the

java.util.concurrent package: classes and interfaces aimed at simplifying concurrent

(multi-core) programming in Java. This library includes a framework for executor

services, which add a form of asynchronous message passing to Java.

Executor services accept asynchronous method calls, materialized as submis-

sions of conceptual tasks. One can submit any object implementing Java’s Runnable

interface (the task returns nothing) or Callable interface (the task returns a result)

as a task to an executor service. Immediately after such a submission, the execu-

tor service involved returns a Future object to the submitter (i.e., the caller of the

asynchronous method). The submitter can then use this object to poll the com-

pletion of the submitted task (i.e., termination of the called method) or to get the

task’s result (i.e., the method’s return value). Internally, an executor service assigns

to each submitted task a worker thread that subsequently executes that task. To

avoid the overhead of creating a new worker thread for every task, executor services

maintain thread pools. A thread pool may contain a static or dynamic number of

M.M. Jaghoori et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 53–60 59



worker threads. As long as no one has submitted a task to the executor service, the

worker threads in the thread pool are idle. As soon as a task becomes available,

the executor service selects one of the idle worker threads for executing that task.

Once the selected thread completes the task, it becomes idle again and available for

executing the next task.

The number of submitted tasks can exceed the number of worker threads in the

thread pool. To handle those situations, executor services have an internal task

queue. Every submitted task first gets offered to the task queue. Worker threads in

the thread pool obtain new tasks by polling the queue.

Fork/Join Framework

Java 7 extends the executor service framework of Java 5 with high-level and

highly optimized support for fork/join (FJ) algorithms [7], the concurrent variant

of classical divide-and-conquer. Essentially, this extension consists of a special FJ

executor service to which threads can submit special FJ tasks (i.e., extensions of

the abstract ForkJoinTask class instead of implementations of the Runnable/Callable in-

terface). The FJ framework adds a layer of abstraction on top of the ordinary

submission facilities of executor services: instead of “submitting” tasks, threads

“fork” tasks. 7 Likewise, instead of receiving a Future object to await the result of a

task, threads “join” earlier forked tasks.

The internal workings of the FJ executor service differ significantly from the

basic thread pool executor service: the FJ executor service maintains multiple task

queues—conceptually one per worker thread in the thread pool—and applies a work

stealing algorithm to prevent worker threads from idling if their own task queue has

emptied while another queue has not. The combination of private task queues

for worker threads and work stealing should give the FJ framework significantly

better performance than the basic thread pool executor service, at least for those

class of problems that fit the FJ abstraction (i.e., algorithms involving recursive

decomposition of a problem into independent subproblems).

7 Technically, one can still submit tasks to the FJ executor service directly, instead of forking them, but
this is generally not the intended use of the FJ framework.

M.M. Jaghoori et al. / Electronic Notes in Theoretical Computer Science 299 (2013) 53–6060


	Introduction
	Molecular Structure Generation
	Two Implementations of PMG
	Scalability: Experiments and Results
	Conclusion
	References
	Appendix: Java Concurrency Tools

