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ABSTRACT 

Chardonnay wines impart a unique complex aroma characterized by its buttery, 

yellow stone fruit, melon, bready and woody notes. Among the terms used in the sensory 

analysis of these wines, this study investigated hazelnut-like attributes. Multi-dimensional 

gas-chromatography coupled to olfactometry identified five pyrroles reminiscent of hazelnut: 

1-ethylpyrrole-2-carboxaldehyde, 1H-pyrrole, 2-acetyl-1H-pyrrole (first identification in 

wine), 1-methylpyrrole-2-carboxaldehyde, and 1H-pyrrole-2-carboxaldehyde. Quantitative 

analyses demonstrated their significantly higher abundance in Chardonnay wines. However, 

they proved irrelevant in sensory terms, given the low amounts measured in wine compared 

to their olfactory detection threshold. Nevertheless, the presence of methanethiol-derivatives 

from these pyrroles was investigated in wine. 1-Methylpyrrole-2-methanethiol and 1- 

ethylpyrrole-2-methanethiol were identified and exhibited hazelnut-like aroma. These 

compounds, which have not been observed in natural products to date, are potent volatile 

compounds with detection thresholds of 0.7 and 1.4 ng/L in model wine. These findings open 

up promising perspectives concerning the interpretation of the typical aromatic nuances of 

some Chardonnay wines. 

KEYWORDS 

Aroma, Chardonnay wine, typicality, hazelnut-like notes, pyrrole, pyrrolemethanethiols 
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INTRODUCTION 

When tasters smell a glass of wine, they first describe their emotions and try to 

associate the perception with their sensory memories. Beyond the fermentative or aging notes 

resulting from winemaking, some aromas are related to grape variety. Thus, the ability of a 

blind taster to recognize a variety is strongly associated with the specificity of these odors. 

Whereas many varieties can be easily identified by the sensory properties of the wines they 

provide, only a few of them have been elucidated from a chemical point of view. For 

instance, the catty-like and grapefruit-like notes of Sauvignon Blanc wines are associated 

with polyfunctional thiols.
1,2

 The specific notes of Muscat
3
 and Gewürztraminer

4,5
 are linked 

to monoterpenes while the kerosene-like notes of Riesling are due to the emergence of 1,1,6- 

trimethyl-1,2-dihydronaphthalene.
6
 All these compounds have a varietal origin and their 

concentrations in wine can be modulated by maturation conditions and grape growing 

region.
7

Chardonnay is the world’s most planted white grape variety and the wines it produces 

are easily recognizable by experts.
8
 Several authors have reported the most widely 

encountered nuances of this variety as “tropical/green fruits”, “butter/caramel”, “honey”, 

“ash”, “woody”, and “citrus”.
9
 The characterization of volatile compounds has mainly 

evidenced the contribution of non-varietal markers such as diketones, acetate esters,
8,10,11 

ethyl esters,
8,11

 fusel alcohols,
10

 volatile phenols,
8,12,13

 and lactones.
10,12

 Compounds coming 

from grape have also been identified but their concentrations were similar to those obtained 

in other grape varieties
14

 so that they cannot be considered as responsible for the aromatic 

typicality of Chardonnay wines.  

Nevertheless, the finest Chardonnay wines present a complex bouquet described by 

experts as having “hazelnut”, “flint”, “oatmeal” and “grilled bread” nuances.
15,16

 This aspect
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has received little attention and, to our knowledge, only one scientific article by Sauvageot 

and Vivier
17

 has associated hazelnut notes with Chardonnay wines. This character is to be 

differentiated from the nutty, curry-like off-flavors generally associated with the presence of 

sotolon in prematurely aged dry white wines.
18,19

 Historically, the Chardonnay wines of 

Burgundy, which have been regarded as models by most of Chardonnay producers 

worldwide, have been aged on lees in oak barrels, thereby limiting the organoleptic 

occurrence of sotolon.
19

 Malolactic fermentation, a frequent practice on Chardonnay wines 

and in particular in Burgundy, enhances these hazelnut notes and advantageously reveals the 

typicality of these wines.
17

 However, despite the recurrent citation of hazelnut (fresh and 

roasted) descriptor in Chardonnay wines, there has been no specific investigation on it and 

still no chemical explanation for it. While comprehensive two-dimensional gas 

chromatography (GCxGC) can provide untargeted insights into the quantitative variability of 

certain compounds and relate them to the grape variety, 
20

 GC-Olfactometry (GC-O) is 

usually used to detect the odorous volatile compounds reminiscent of a specific character 

perceived by tasters in wines. 
21

Thus, the present work aimed at identifying the molecular determinants reminiscent of 

the characteristic hazelnut notes in Chardonnay wines through a sensory-guided approach. 

After having confirmed the relevance of the hazelnut attribute, various analytical techniques 

such as GC-O and multi-dimensional gas chromatography - mass spectrometry (MDGC-MS) 

were implemented to search for compounds exhibiting this aroma. Their sensory properties 

were also assessed. 

MATERIAL AND METHODS 
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living cells SADY CFU/g, Zymaflore X5) was provided by Biolaffort 80 

(Bordeaux, France). 81 

Samples. Selected wines listed in Table 1 were used for sensory and analytical 82 

studies, and sequential distillation. Oak wood dust scraped off a Quercus petraea stave was 83 

provided by Seguin-Moreau cooperage (Merpins, France). The stave was previously air-dried 84 

for two years and toasted according to the cooperage process. The species has been identified 85 

using the method described by Marchal et al..
22

 The oak wood was macerated (20 g/L) during86 

96 h in wine model media (12% EtOH (v/v); 5 g/L tartaric acid; pH adjusted at 3.4 with 87 

NaOH). 88 

Sensory Analyses. Sensory analyses were carried out as described by Martin and de 89 

Revel.
23

 Samples (about 50 mL) were poured into black INAO wine glasses (NF V09-110,90 

1971) labeled with random three-digit codes and covered with half of a plastic Petri dish. 91 

Evaluations were performed in a dedicated room (ISO 8589:2007) equipped with individual 92 

booths to prevent communication between assessors, under normal daylight and at room 93 
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Chemicals. Dichloromethane (99.99%) was supplied by Fisher Scientific (Illkirch, 

France), Lichrolut EN SPE cartridges, absolute ethanol (99.9%) and methanol HPLC grade 

by Merck (Semoy, France). Ultrapure water (Milli-Q, resistivity = 18.2 MΩ cm, Millipore, 

Saint-Quentin-en-Yvelines, France) was used. Anhydrous sodium sulfate, octan-3-ol, 2- 

acetyl-1H-pyrrole, 1H-pyrrole, 1-methylpyrrole-2-carboxaldehyde, (Z) and (E) oak lactones 

and L-cysteine were purchased from Sigma Aldrich (Steinheim, Germany). 1H-Pyrrole-2- 

carboxaldehyde was provided by Acros Organics (Geel, Belgium), and 1-ethylpyrrole-2- 

carboxaldehyde by Fluorochem (Derbyshire, United-Kingdom). 1-Methylpyrrole-2- 

methanethiol (CAS: 59303-06-9) and 1-ethylpyrrole-2-methanethiol (CAS: 1420967-06-1) 

were provided by Amber MolTech (Chester, PA, USA). Those compounds constitute 

reference standards (> 97% purity). Dry active Saccharomyces cerevisiae yeast (8% moisture 
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temperature. In all cases, wine glasses were simultaneously presented to each judge in 

random order. 

Sensory Profiling. Five wine consultants having a good knowledge of the diversity 

and the typicality of Chardonnay wines short listed four wines out of thirty one, as 

representative single Chardonnay grape variety. The aroma profiling of these four wines of 

various vintages and origins were assayed. The panel was composed of 24 experienced tasters 

(researchers in wine science, teachers, and enologists) and was not trained specifically for 

this study. However, the tasters have followed a general training in wine tasting and are in 

particular trained to recognize and describe wine aromas in a naturalist way by comparison 

with fruits, flowers, spices or other natural products. These 24 panelists were asked to 

provide the descriptors corresponding to their orthonasal appreciation of the four Chardonnay 

wines. Then, descriptors were clustered on the basis of the same aromatic family.
24

 The main 

odorant attributes cited were collected and grouped together in a contingency table displaying 

the frequency of citation for each term.  

Determination of Olfactory Thresholds. The olfactory detection threshold 

corresponds to the lowest concentration perceived by 50% of tasters. Olfactory thresholds of 

the pyrroles were determined by presenting a three-alternative forced choice in model wine 

(12% EtOH (v/v); 5 g/L tartaric acid; pH adjusted at 3.4 with NaOH) or white wine 

(MUS31). The panel of 24 experienced tasters was used. Among the three glasses, one 

contained a supplemented sample with stepwise increasing concentrations (factor 2) of the 

compound to be evaluated. Best estimate individual thresholds were obtained by calculating 

the geometric mean between the last concentration missed and the first concentration 

detected. Perception threshold was defined by mean evaluation of the geometric mean of the 

best individual estimates.  
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− 1)/2, where p = proportion of correct responses for each concentration and P = proportion125 

corrected by the chance effect, 1/3 for 3-AFC). Sigma Plot 8 (SYSTAT) software was used 126 

for graphic resolution and nonlinear regression by ANOVA transform (SYSTAT, San Jose, 127 

CA, USA).
25

128 

Preparation of Representative Extract by Sequential Vacuum Distillation.  129 

Ten wines were used for this experiment: four typical Chardonnay wines (already selected for 130 

the sensory profiling), two Chardonnay wines presenting low typicality and four non-131 

Chardonnay wines (Sauvignon Blanc, Semillon, Viognier, and Riesling wines). Five hundred 132 

milliliters of each wine were poured into a flask of a rotary evaporator steeped in a bath at 133 

room temperature. Volatiles were trapped with a condenser containing glycol recirculating 134 

through a cooled system down to -2 °C. Sequential distillation parameters were determined 135 

after assays combining vacuum levels and durations in a window from 1 to 90 min and 120 to 136 

5 mbar, respectively. Final diagram was set as follows: 70 mbar for 1 h (Fraction F1), 50 137 

mbar for 15 min (Fraction F2), and 30 mbar for 5 min (Fraction F3). Each distillate collected 138 

from the receiving flask was diluted with ultrapure water according to the alcohol by volume 139 

content measured (F1 generally 70%, F2 around 50% and F3 around 30% (v/v) to reach 12% 140 

EtOH (v/v). Thus, 30 fractions were obtained and randomly presented to five wine experts. 141 

The tasters were not informed of the origin of the fractions and were asked to shortly describe 142 
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The perception threshold of 1-methylpyrrole-2-methanethiol and 1-ethylpyrrole-2- 

methanethiol was determined by using an adaptation of the ASTM-E1432 method (AFNOR 

2002). The panel was composed of 44 tasters (24 experienced panelists and 20 students of 

Diplôme National d’Œnologue) that had never smelled the pyrrolemethanethiols prior to this 

experiment. The concentration/response function is a psychometric function and fits a 

sigmoid curve (y = 1/ (1 + e(−λx))). Detection probability was corrected by using the chance 

factor (one-third for 3-AFC: proportion corrected by the chance effect, 1/3 for 3-AFC = (3·p 
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their main olfactory characteristics. An attribute was associated to a fraction when it was 

cited by at least three experts. The most interesting fractions, i.e. the fractions presenting the 

attributes frequently described in typical wines, were selected for GC analysis. Liquid/liquid 

extraction was applied to these selected fractions (3 times with 5 mL dichloromethane, 

stirring 5 min each time). The organic phases were combined and dried on anhydrous sodium 

sulfate. The supernatant was transferred by use of Pasteur pipette to a concentration tube to 

be evaporated to 0.25 mL under nitrogen flow. 

Single Dimension Gas Chromatography – Olfactometry Analysis. GC-O analysis 

was carried out on a Hewlett-Packard 5890 gas chromatograph (Agilent Technologies, Palo 

Alto, CA, USA) equipped with a split/splitless injector (230 °C; purge time, 1 min; purge 

flow, 50 mL/min), a flame ionization detector (FID), and a sniffing port (ODO-1 from SGE, 

Ringwood, Australia). Separation was achieved on a Carbowax-type capillary column (BP 

20, 50 m length, 0.22 mm i.d., 0.25 µm film thickness, SGE, Pflugerville, Texas, USA). One 

µL of the distillate extract was injected. Hydrogen 5.0 was used as carrier gas at constant 

pressure set at 100 kPa. The initial GC oven temperature was set at 45 °C for 1 min, before 

rising to 230 °C at 3 °C/min, and was then maintained at 230 °C for 20 min.  

Data from GC-O aromagrams was processed with Acquisniff® software.
26

 Three 

panelists experienced in sensory analysis sniffed every extract by 4 experimental sessions of 

15 min interrupted by 15 min rest (full run done in 2 sessions – 3 replicates by operator). The 

olfaction started 5 min after the beginning of the GC run with nose humidification (20 

mL/min) provided all along. Odorant sensory information (odorous zone descriptors, relative 

intensities and durations) were monitored by recording the voice of the sniffer as start and 

stop signals. The three panelists, who are accustomed to making GC-O, were asked to give a 

qualitative description when an odorant was perceived. Use of Acquisniff® software allowed 

individual aromagrams to be compiled from sessions performed by different operators. An 
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OZ was considered as perceived when at least two out of three operators detected it at the 

sniffing port. 

Multidimensional Gas Chromatography coupled with Olfactometry and Mass 

Spectrometry (MDGC-O-MS) . Multidimensional separations were achieved on a system 

consisting of two independent gas chromatographs (Agilent 6890; Agilent Technologies, 

Santa Clara, USA) interconnected by means of a thermoregulated transfer line kept at 230 °C 

(West 4400, West Instruments, Gurnee, IL, USA). Two µL of F1 extract were injected in a 

split/splitless injector (230 °C; purge time, 1 min; purge flow, 50 mL/min). The 1D 

separation device was a HP 6890 chromatograph (Agilent Technologies, Santa Clara, USA) 

equipped with a polar BP20 (30 m length, 0.25 mm i.d., 0.5 µm film thickness, SGE, USA). 

Helium N55 was used as carrier gas at a constant flow of 1.2 mL/min. On the 2D, a ramp 

pressure program was set in to ensure constant flow in the 2D column (224 kPa for 1 min, 

then increased by 1.4 kPa/min to 310 kPa, and maintained at this pressure for 30 min). Initial 

temperature of the 1D-GC oven was set at 45 °C, increased by 3 °C/min up to 220 °C and 

held for 10 min. The 1D column outlet was connected to the 2D system by means of the multi 

column switching device (MCS, Gerstel, Germany). Ten percent of the flow from the 1D 

column was constantly directed through a deactivated fused silica column to an FID or 

Olfactometric port; the rest was transferred (counter current flow off in the cross piece) and 

trapped at the head of the 2D column by means of a cryogenic trap system (CTS, Gerstel). 

The counter-current flow was switched off during the transfer of the “heart-cut” eluate in the 

2D system. The 2D system was equipped with a non-polar HP5 column (30 m length, 0.32 

mm i.d., 0.5 µm film thickness, Agilent J&W, USA) or BP1 column (30 m length, 0.25 mm 

i.d., 0.5 µm film thickness, SGE, USA). 2D column outflow was split 2:1 between an 

olfactometric detection port (transfer line regulated at 250 °C; ODP2, Gerstel, Germany) and 

the mass spectrometric detector (5973 inert; Agilent Technologies, Santa Clara, USA). The 
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MS transfer line was set at 150 °C, ion source at 230 °C and electron ionization (EI) voltage 

at 70 eV. 

Constitution of Wine and Grape Juice Extracts for Quantitative Assays. 

Extraction was performed in 2015 by solid-phase extraction (SPE) according to the method 

of Culleré et al..
27

 A Lichrolut-EN cartridge (500 mg) containing divinylbenzene copolymer 

was first conditioned (10 mL CH2Cl2 then 5 mL MeOH finally 10 mL 10% EtOH in water). 

Then fifty milliliters of wine or two hundred milliliters of diluted juice (juice/water; 25/75; 

v/v) were spiked with 50 µL octan-3-ol (5 mg/L in EtOH) and poured through the cartridge. 

The solid phase was rinsed with ultrapure water, dried with air and elution was performed 

with 5 mL dichloromethane. The eluate was dried with anhydrous sodium sulfate, the 

supernatant was transferred by use of Pasteur pipette to a concentration tube to be evaporated 

to 500 µL under nitrogen stream (flow close to 100 mL/min) prior to analysis. 

Identification and Quantitation of Pyrroles and Lactones by GC-MS. 

Identification was conducted by assessing on one hand the coincidence of retention time with 

pure standard injected in the same chromatographic conditions and, on the second hand, the 

increase of the peaks corresponding to targeted compounds in the extract spiked with 

standard solutions. Relative ion intensities within the ± 20% authenticated the identification. 

(Z) and (E) oak lactones were quantitated according to the methodology described by Ferreira

et al.
28

 For quantitation of pyrroles, pure analytes were used to determine calibration curves 

and the limits of quantitation (LOQ) and detection (LOD). A stock solution at 5 mg/L in 

ethanol was prepared for every standard and multi-reference standard solutions were 

constituted and diluted stepwise with ethanol to obtain individual concentrations of 250 µg/L, 

25 µg/L and 2.5 µg/L. Wine (50 mL) with trace amounts of pyrroles was supplemented with 

concentrations ranging from 5 to 5 000 ng/L for 1-methylpyrrole-2-carboxaldehyde, 1-
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ethylpyrrole-2-carboxaldehyde, 1H-pyrrole, and 2-acetyl-1H-pyrrole, and from 25 to 25 000 

ng/L in the case of 1H-pyrrole-2-carboxaldehyde.  

Wine spiked with these standards and with Internal Standard (IS: octan-3-ol, 5 µg/L) were 

extracted using SPE technique and analyzed by GC-MS in order of increasing concentration 

(8 points covering the concentration range, analysis conducted in duplicate). The ratio 

between the peak area of every targeted analyte and the peak area of the IS was plotted 

against the spiked concentration. Linear regression using least-squares estimation was 

performed to establish the individual linear equation of the calibration curve (R² ≥ 0.995; 

Table 2; Microsoft® Excel® 2010, Microsoft® Office 2010 Proofing Tools, © 2010 

Microsoft Corporation). Repeatability below 8% and recoveries between 94 and 106% were 

obtained for the five analytes as indicated in Table 2. 

LOQ and LOD were determined by analyzing samples of wine spiked at 5, 10, 20, 

30 and 50 ng/L with standard solutions of each compound. Repeated GC-MS analyses (n = 3) 

were performed and the individual LOQ were expressed as concentrations giving a signal-to- 

noise ratio > 10 at the peak apex (RSD ≤ 20%). The same procedure was used for the LOD 

with signal-to-noise > 3.  

Generation of Methanethiol Derivatives from Pyrrolecarboxaldehydes. 

Generation of Pyrrole-Cysteine Adducts. The procedure was conducted according to 

the method of Schubert
29

 adapted by Huynh-Ba et al..
30

 Ten millimoles of 1-methylpyrrole-2- 

carboxaldehyde and 1-ethylpyrrole-2-carboxaldehyde dissolved in 4 mL HPLC grade ethanol 

were added to 30 mL of an aqueous solution of cysteine (600 mM) and stirred for one hour. 

The resulting precipitate was 0.45 µm-sucked filtered on a cellulose disk (Merck Millipore, 

Molsheim, France), washed with ethanol and freeze-dried. The reaction mixture was then 

suspended in ultrapure water for analysis by ultra-high performance liquid chromatography – 

high resolution mass spectrometry (UHPLC-HRMS) to control the presence of adducts (2-
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cysteine-1-ethylpyrrole-2-carboxyaldehyde and 2-cysteine-1-methylpyrrole-2-242 

carboxyaldehyde).  243 

Liquid Chromatography coupled to High Resolution Mass Spectrometry. 244 

UHPLC system was coupled with an Exactive Orbitrap mass spectrometer equipped with a 245 

heated electrospray ionization (HESI) probe (both from Thermo Fisher Scientific, Bremen, 246 

Germany). Mass acquisitions were carried out for 6 min in negative HRMS ionization mode 247 

at 3 kV. The vaporizer temperature of the source was set at 320 °C, the capillary temperature 248 

at 350 °C, the nitrogen sheath gas at 75, the auxiliary gas at 18, and the sweep gas at 0 249 

(arbitrary units). The capillary voltage, the tube lens voltage offset, and the skimmer voltage 250 

were set at −95, −190, and −46 V, respectively. A mass range of m/z 100−500 was acquired 251 

in full scan MS mode with a mass resolution of 25 000 (m/∆m, fwhm at m/z 200).  252 

Incubation of Pyrrole-cysteine Adducts with Yeast. Dry active S. cerevisiae 253 

yeast (Zymaflore X5, Biolaffort, Bordeaux, France) was hydrated in water with 5 g/L glucose 254 

for 1 h at room temperature. The suspension was then centrifuged and the pellet was 255 

suspended in 0.1 M phosphate buffer and pH set at 6.9 by means of sodium hydroxide 256 

solution. The incubation of yeast with 1 g of the cysteine conjugate precipitate was carried 257 

out under inert atmosphere (flush of N2) at 30 °C (water bath thermoregulated) as 258 

recommended by Huynh-Ba et al.
30

 and stirred for 24 h. Fifty mL of the mixture were259 

sampled and adjusted to pH 4.0 (2 M hydrochloric acid) and liquid/liquid-extracted 3 times 260 

with 5 mL dichloromethane. The extracts were dried over anhydrous sodium sulfate; the 261 

supernatant was transferred by use of Pasteur pipette to a concentration tube prior being 262 

evaporated to 0.5 mL under nitrogen flow stream before analysis by GC-MS and GC-O. The 263 

resulting compounds were identified by GC-MS analysis as follow: 1-methylpyrrole-2-264 

methanethiol (6) at 31.0 min (LRIBP20 1787) [m/z (relative intensity): 127(20)–94(100)-265 

Page 12 of 41
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95(17)-82(9)-67(7)-53(5)] and 1-ethylpyrrole-2-methanethiol (7) at 31.3 min (LRIBP20 1813) 

[m/z (relative intensity) 141(22)–108(100)-80(32)-67(20)-93(14)]. 

Detection of Pyrrolemethanethiol by Gas Chromatography–Tandem Mass 

Spectrometry (GC-MS/MS) . GC-MS/MS separation was performed on a ZB-1MS capillary 

column (60 m length, 0.25 mm i.d., 1 µm, Phenomenex, Le Pecq, France) connected to a BP- 

20 pre-column (polyethylene glycol, 2 m length, 0.22 mm i.d., 0.25 µm, SGE Analytical 

Science, Victoria, Australia). Helium N55 (Linde Gas, Saint-Priest, France) was used as 

carrier gas at a constant flow rate of 1 mL/min. A 1 µL extract was injected into a 

split/splitless programmable temperature injector (valve closure: 1 min, split flow 30 

mL/min) and set as follows: 0.3 min at 200 °C, then raised to 230 °C at 14 °C/min, 

maintained for 1 min, and then raised to 250 °C at 14 °C/min and kept at that temperature for 

10 min. Oven temperature was initially set at 45 °C, held for 1 min, then raised to 176 °C at 3 

°C/min, raised to 250 °C at 50 °C/min, and finally kept at that temperature for 5 min. The MS 

transfer line was maintained at 250 °C. The chromatographic system included a Trace GC 

Ultra gas chromatograph (Thermo Electron SAS, Courtaboeuf, France) coupled to a triple 

quadrupole mass spectrometer TSQ Quantum XLS operated in EI mode. The GC system was 

equipped with a TriplusRSH auto-sampler. 

The Mass Spectrometer source temperature was set at 230 °C, electron energy at 25 

eV, emission current 30 µA, and electron lens set at 100 V. Argon was used as collision gas 

at a pressure of 1 mTorr. Selected reaction monitoring (SRM) conditions and collision energy 

and gas pressure values applied to the precursor ion were dependent on the transition. 

Resolution was set to 0.7 Da full width at half maximum, scan width: m/z 0.7, and scan time: 

0.1 s. Instrument setting, data acquisition, and processing were performed using Xcalibur 

software (version 2.1.0). PFTBA (perfluorotri-n-butylamine) was used for mass calibration. 
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Statistical Analysis. Statistical calculations of homoscedasticity, normality and 

discriminative power of compounds (non-parametric study of variance by Kruskal-Wallis 

test) of the values were performed by using R i386 3.1.3 version (R Core Team (2016). R: A 

language and environment for statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. URL https://www.R-project.org). 

RESULTS AND DISCUSSION 

Evidence of Hazelnut Nuances in Chardonnay Wines and Isolation of Associated 

Compounds by Vacuum Distillation. Before searching for determinants of the “hazelnut- 

like” sensory attribute in Chardonnay wines, the relevance of this descriptor had to be 

confirmed. Thus, four Chardonnay wines from the Burgundy region (St Aubin 1
er

 Cru: 

CHSA5, Chassagne Montrachet: CHCM6, CHCM7, Pernand Vergelesses: CHPV2; Table 1) 

that had previously been selected by wine experts for their typical aromatic character were 

subjected to sensory analysis with a 24-panelist jury who were not informed of the objectives 

of the study. Once sensory analysis had been done, 35 descriptors were collected and listed in 

descending order of the number of citations (Figure 1). Besides the recurrent descriptors such 

as “butter”, “creamy”, “gunflint” and “yellow stone fruit”, the terms “hazelnut”, “almond”, 

“bergamot”, “jasmine”, “honeysuckle” and “verbena” emerged as important descriptors 

(frequency of occurrence > 5; Figure 1). In particular, hazelnut was the 5
th

 most elicited 

descriptor (frequency of occurrence: 17; Figure 1). This confirmed the relevance of the 

hazelnut-like character in the selected typical Chardonnay wines.  

Then, ten wines underwent vacuum distillation: four typical Chardonnay (mentioned 

above), two Chardonnay wines presenting low typicality (no hazelnut note perceived) and 

four non-Chardonnay wines. Once several assays with different vacuum levels and durations 
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had been conducted, a sequential distillation diagram could be designed to give three 

fractions as described in Materials and Methods section. The fractions were randomly 

presented to five wine experts in order to compare their olfactory properties.  

For the four typical Chardonnay wines, the first fraction F1 (70 mbar) was described 

as imparting hazelnut, woody and verbena notes. These aromas were not perceived in the F1 

obtained from non-Chardonnay wines and from Chardonnay with low typicality. The fraction 

F2 (50 mbar) from Chardonnay wines revealed strong butter-like notes and a slight almond 

aroma, particularly for the typical wines. These notes were not perceived in fractions F2 

obtained from non-Chardonnay wines. Finally, the fraction F3 (30 mbar) had more common 

white wine characters (dry apricot, brioche notes) and was not discriminative for Chardonnay 

and non-Chardonnay wines.  

This experiment showed that F1, exhibiting hazelnut aromas in high typical Chardonnay 

wines, was the most distinctive fraction. Although less distinctive, fraction F2, revealing 

almond aroma, was also perceived as specific. So, fractions F1 and F2 of the ten wines were 

selected and submitted to liquid/liquid extraction prior to GC-O analysis.  

Evidence of Hazelnut Odorous Zones by GC-O Analysis of Distillates and 

Identification of Related Compounds by MDGC-O-MS. In order to investigate the 

molecular determinants of the hazelnut-like notes, an inductive approach using GC-O was 

implemented. Liquid/liquid extracts of the above mentioned distillate fractions from the 

Chardonnay wines were subjected to single dimension GC-O analysis (three operators). 

Given their aromatic characteristics, only F1 and F2 fractions of the ten selected wines were 

used. The individual aromagrams were compiled and resulted in an exhaustive aromagram 

exhibiting the consensually perceived odoriferous zones (OZ). The panelists were not 

informed of the nature of the injected sample prior to each experiment. For a given time of 

analysis, more numerous OZ were perceived in the extracts from Chardonnay wines than in 
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distillation enabled the partition of most of the hazelnut reminiscent OZ between F1 and 347 

F2, the OZ “C”, “K”, “L” and “O” were not properly resolved and perceived in both F1 or F2 348 

(Table 3). 349 

Then, MDGC-O-MS analysis with specific heart-cuts was performed on the organic 350 

extracts previously analyzed by GC-O in order to identify the related compounds associated 351 

with the hazelnut odoriferous zones. Thus, at the retention time of the most intense OZ 352 

reminiscent of “roasted hazelnut-like” (OZ “F”) perceived in F1 extract, a cut was performed 353 

between 30 and 33 min (RT 32.5 min, LRIBP20 1617) and the so-eluted compounds were 354 

transferred to a second capillary column. The same odor was perceived at RT 31.1 min at the 355 

outlet of the second capillary (apolar phase BP1, LRIBP1 1026). Considering the MS at the 356 

same retention time, a major peak, which was tentatively identified as ethyl 4-oxopentanoate, 357 

partially overlapped the peak of interest (Figure 2A). After subtracting the m/z associated 358 

with ethyl-4-oxopentanoate, the spectrum matched with the 1-ethylpyrrole-2-carboxaldehyde 359 

(CAS 2167-14-8, (1), Figure 3) in the mass spectral database (NIST, 2004). Injection and co-360 

injection of the pure standard showed the coincidence of RT, odor and ion fragments. 1-361 

Ethylpyrrole-2-carboxaldehyde is also called tea pyrrole because found in Oolong tea and 362 

Hojicha green tea,
32

 but also in lotus flower
32

 and coffee.
33

 Although this compound was363 
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the corresponding Non-Chardonnay wines (80 to 90 OZ monitored for Chardonnay wines 

while below 70 OZ for Sémillon, Viognier, Sauvignon Blanc, or Riesling wine extracts). 

Pairwise comparison of the aromagrams obtained from Chardonnay and Non-Chardonnay 

wine analyses evidenced sixteen hazelnut-like OZ in the Chardonnay wine aromagrams 

(Table 3). Codes were attributed to each odorant zone and their Linear Retention Index (LRI) 

was established according to Van den Dool and Kratz equation.
31

 Fifteen of the sixteen zones 

were detected in fraction F1 and six in fraction F2 (Table 3). Although the sequential 
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tentatively identified in Merlot wine,
20

 to our knowledge this is the first time it has been 

identified in dry white wine. 

The sweet hazelnut-like OZ “G” (1D LRIBP20 1641), at a RT very close to OZ “F” 

(LRIBP20 1617), was also heart-cut and separated by using another set of separative columns 

(1DBP20 - 2DHP5). The second dimension allowed the resolution of a major peak at 50.5 min 

(HP5 column) that was synchronous with the hazelnut-like odor and yielded good spectrum 

purity (Figure 2B). The ion fragments matched with the 1-methylpyrrole-2-carboxaldehyde 

spectrum (CAS 1192-58-1, (2), Figure 3). A solution of pure standard injected and co- 

injected with the wine extract confirmed the identification and could be positioned on the first 

set of column 1DBP20 - 2DBP1 with the LRI assessed LRIBP1 975. This compound was also 

previously tentatively identified in a Brazilian Merlot wine by Welke et al.,
20

 and in a 

Semillon wine by Schmidtke et al.
34

 who both used a GC-comprehensive technique (HS- 

SPME-GC×GC/TOFMS and SPE-GC×GC-MS, respectively).  

Then, considering the olfactory properties of these two pyrroles, the presence of 

compounds belonging to the same family was investigated directly in Chardonnay wine 

extracts. The unsaturated 5-member ring heterocycle cation was characteristic of pyrrole 

moiety in EI source
35

, so the corresponding ions were targeted in the GC-MS chromatograms. 

Thus, the ionization of heterocycle yielded m/z 66, 67, as well as m/z 80, 94 or 108 when N- 

substituted. Screening of the GC-MS chromatograms led to the emergence of a peak at 

LRIBP20 1950 with the main ion fragments m/z 66, 94, 109 and a peak at LRIBP20 1994 with 

m/z 66, 94, 95. The peaks corresponded respectively to the OZ “M” (LRIBP20 1946) and “N” 

(LRIBP20 2010) described as “smoked hazelnut-like” and “hazelnut”, “coffee”. The mass 

spectra were tentatively associated with 2-acetyl-1H-pyrrole (CAS: 1072-83-9, (3), Figure 3) 

and 1H-pyrrole-2-carboxaldehyde (CAS: 1003-29-8, (4), Figure 3), respectively. 

Identification was confirmed by injection of the pure standard solution and co-injection with 
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the extract on polar and apolar columns (LRIBP1 1020 and 990, for compounds (3) and (4), 

respectively). 2-Acetyl-1H-pyrrole was previously identified in rice wine.
36

 It has now been 

identified in grape wine. In dark chocolate, 2-acetyl-1H-pyrrole is believed to play a role in 

praline aroma and be partially formed during conching.
37

 1H-Pyrrole-2-carboxaldehyde was 

recently tentatively identified in Semillon and Chardonnay wines by GC×GC analytical 

approaches.
34,38

1H-Pyrrole (CAS: 109-97-7, (5), Figure 3) was identified with simultaneous m/z 52 

and 67 signals generating a peak at LRIBP20 1505. Validation with the pure standard allowed 

us to associate this compound with “grilled nut” OZ “E” (RIBP20 1508). It was previously 

evidenced in Merlot wine.
20

While these five pyrroles have been evidenced and associated with hazelnut OZ in 

Chardonnay wines extracts, four of them have been also identified in hazelnut extracts: 1- 

methylpyrrole-2-carboxaldehyde (2), 1H-pyrrole (5), 1H-pyrrole-2-carboxaldehyde (4), and 

2-acetyl-1H-pyrrole (3). Some of them have also been proposed as markers of roasting of

hazelnut.
39–42

 Nevertheless, little is known about their sensory impact on hazelnut aroma. In 

this work, no clear identification of compounds associated to the OZs A, B, C, D, H, I, L, O 

and P has been elucidated: low signal and co-elutions are probably the limiting factors for 

identifications of compounds associated. Higher levels of purification and enrichment would 

help achievement of extending the list of compound identified. 

As hazelnut is perceived in typical Chardonnay wines, we set out to analyze and 

compare the individual amounts of these five pyrroles in Chardonnay (n = 14) and Non- 

Chardonnay wines (n = 14). 

Quantitation of Pyrroles in Wine Extracts and Assessment of their Sensory 

Impact. Volatile organic compounds were extracted by using the SPE according to the 

method developed by Culleré et al..
27

 Standard addition of pure compounds in wine prior to
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extraction allowed the determination of the quantitation slopes for every compound 

investigated. GC-MS analysis targeting specific m/z in the dedicated time windows was 

conducted on the SPE extracts (Table 2). 

The N-substituted pyrrole, 1-methylpyrrole-2-carboxaldehyde (2) was quantitated at 

916 ± 213 ng/L in Chardonnay wines, an eight-fold increase compared to Non-Chardonnay 

wines (115 ± 54 ng/L; Figure 3), which was found to be a significant difference in the non- 

parametric Kruskal-Wallis test (p-value < 0.005). Similarly, with an amount measured at 300 

± 94 ng/L for Chardonnay wines, the homologue 1-ethylpyrrole-2-carboxaldehyde (1) was on 

average four times more abundant in Chardonnay wines than in Non-Chardonnay wines (74 ± 

27 ng/L; Figure 3). The Kruskal-Wallis test showed that this difference was significant (p- 

value < 0.001). 2-Acetyl-1H-pyrrole (3) showed the lowest levels of all five pyrroles, with 

average concentrations of 223 ± 46 ng/L in the Chardonnay wines and significantly lower 

levels in Non-Chardonnay wines (60 ± 23 ng/L) (p-value < 0.001 in the Kruskal-Wallis test).  

The average concentrations of 1H-pyrrole-2-carboxaldehyde (4) were assayed at 5,060 ± 

2,423 ng/L in the Chardonnay wines investigated here, which was over five times higher than 

that in Non-Chardonnay wines (1,015 ± 598 ng/L – distribution shown in Figure 3). So, this 

compound, which was previously quantitated at 16,800 ng/L in a Chardonnay wine,
38

 was 

significantly more present in Chardonnay wines (p-value < 0.005). 1H-Pyrrole (5) was found 

at levels of 2,018 ± 610 ng/L in the assessed Chardonnay wines and 1,166 ± 602 ng/L in 

Non-Chardonnay wines, and these differences were not found to be significant (p-value > 

0.05). The large overlap between the concentrations of Chardonnay and Non-Chardonnay 

wines meant that this compound is not discriminant.  

In order to assess the role of those compounds on aroma, their individual detection 

thresholds were estimated in model wine and in a dry white wine. The roasted-like tea pyrrole 

(1) was the most perceivable compound in dry white wine and model wine with values
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around 1 mg/L (Table 4). 1-Methylpyrrole-2-carboxaldehyde was perceived around 20 mg/L 

in wine. The two most abundant pyrroles, (4) and (5), were perceived in wine at 8 and 26 

mg/L, respectively (Table 4). 2-Acetyl-1H-pyrrole (3), the least represented pyrrole, also 

proved to be the least odor-active compound with a perception threshold above 120 mg/L 

(Table 4). Thus, the content/threshold ratio defining the Odor Activity Value (OAV) index 

was below 10
-3

 for all compounds, suggesting that individually these pyrroles have no 

sensory effect on Chardonnay wine aroma. Regarding to their common moiety, synergistic 

effects could occur between these five-membered ring heterocycles.
43

 Nevertheless, the 

addition of a mixture containing compounds (1) to (5) at concentrations similar to those 

observed in wine did not modify the aroma of a white wine. Consequently, despite their 

higher amounts in Chardonnay wines and their almond/hazelnut notes, these pyrroles do not 

have any direct impact on the flavor of the Chardonnay wines studied here. 

Assessment of Enological Parameters. Despite occurring at levels below their 

individual odor threshold and therefore likely not having any impact, pyrroles (1-4) seemed 

to chemically discriminate Chardonnay and Non-Chardonnay wines. Interestingly, Rizzi et 

al. have reported that N-alkyl-2-acylpyrroles can be produced by reaction between α-amino- 

acids and furfural, a volatile aldehyde released by oak wood.
44

 Moreover, a recent study 

dealing with the adsorption of wood volatiles on yeast cell-walls showed the release of 1H- 

pyrrole-2-carboxaldehyde from lees previously macerated in an alcoholic extract of oak 

wood.
45

 Jointly, these observations seemed to indicate that some pyrroles could be released 

by oak wood. Therefore, owing to the more frequent storage in oak barrels of Chardonnay but 

not Non-Chardonnay wines, the presence of pyrroles was assessed in an hydro-alcoholic 

extract of oak wood (Quercus petrae) collected from a barrel stave. After GC-MS analysis, 

pyrroles (2-4) were detected in oak wood extracts while 1-ethylpyrrole-2-carboxaldehyde (1) 

was not observed (data not shown). These results suggested that the presence of pyrroles (2-
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4) in wine could be partly due to their release from oak wood. Moreover, Chardonnay wine s 

are more often fermented and aged in contact with oak than other white wines which supports 

this hypothesis. However, some of the Chardonnay wines investigated contained only traces 

or even no detectable presence of oak wood markers ((E)- and (Z)-oak lactones below LOQ 1 

µg/L, data not shown) and paradoxically had significant levels of pyrroles (682 and 348 ng/L 

detected in CHAUS9 respectively for 1-ethylpyrrole-2-carboxaldehyde and 2-acetyl-1H- 

pyrrole). In particular, the wine CHCHAB11 has been fermented and aged exclusively in 

stainless steel tank and presented the highest amount of 1H-pyrrole-2-carboxaldehyde 

(18,860 ng/L) and significant levels of the other pyrroles. On the other hand, Non- 

Chardonnay wines aged in oak barrels such as SBS21 and MCB29 (containing over 30 and 

70 µg/L of (Z)- and (E)-oak lactones, respectively) exhibited lower contents of 1- 

ethylpyrrole-2-carboxaldehyde, 1-methylpyrrole-2-carboxaldehyde, and 2-acetyl-1H-pyrrole 

when compared to Chardonnay wines (below 162 ng/L, 308 ng/L and 31 ng/L, respectively). 

The same analysis applied on Chardonnay grape juice from the Languedoc region prior to 

any contact with oak wood allowed the detection of 1-methylpyrrole-2-carboxaldehyde and 

1H-pyrrole-2-carboxaldehyde (data not shown). Consequently, the high levels of pyrroles 

observed in non-oaked Chardonnay wines, their low levels in oaked Non-Chardonnay wines 

and their presence in Chardonnay grape juice before contact with oak suggest that pyrroles 

are not only provided by oak wood but also originate from grape juice and wines. Further 

studies are required to clearly establish the relative contribution of the varietal origin and the 

aging conditions on pyrrole levels in wine.  

Investigation of the Presence of Thiol-derived Pyrroles. Furfural and 5- 

methylfurfural are among the most abundant compounds released from oak wood into wine 

during aging, and were found at contents up to 6 mg/L and 0.8 mg/L in oak-aged wines.
46 

Those two heterocyclic compounds never reach their individual odor threshold (ranging from 
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20 to 65 mg/L in wine).
46,47

 However, their transformation products 2-furanmethanethiol and 489 

5-methyl-2-furanmethanethiol have been identified in wine.
48

 These thiol derivatives exhibit 490 

very low odor thresholds (0.4 and 50 ng/L, respectively) and significantly impact wine 491 

aroma, contributing to roasted coffee and toasted notes.
49

 Furthermore, Floch et al.
49

 recently492 

showed that the vanillin transferred to wine during oak aging was partly transformed into 493 

vanillylthiol, lowering the detection threshold from 65 to 3.8 µg/L.
49
 Regarding the common494 

structure of pyrrole carboxaldehydes and the potent reactivity of the aldehyde group, it 495 

appeared relevant to investigate the occurrence of thiol derivatives of pyrroles in Chardonnay 496 

wines. Derivatives of pyrroles (1) and (2) were particularly targeted. As the corresponding 497 

pyrrolemethanethiols had never been observed in natural products and were not easily 498 

available, we first sought to obtain them through a one-pot reaction in order to investigate 499 

their potential presence in wine. Thiol can be generated from an aldehyde via the conjugation 500 

to cysteine and it can be further biotransformed by yeast activity.
30,50

 1-Methylpyrrole-2-501 

carboxaldehyde and 1-ethylpyrrole-2-carboxaldehyde were mixed with cysteine according to 502 

the procedure described by Huynh-Ba et al.
30

 adapted from Schubert.
29

 The resulting503 

conjugates were tentatively characterized by UHPLC–HRMS. The analysis revealed the 504 

presence of one peak associated with the cysteine-methylpyrrole conjugate protonated ion 505 

([M + H]
+
, m/z 213.277 and another peak associated with the cysteine-ethylpyrrole conjugate506 

protonated ion ([M + H]
+
, m/z 227.303).507 

The precipitate was bioprocessed in the presence of yeast for the expected ß-lyase 508 

activity.
30

 GC-MS analysis of the extracted medium allowed the detection of two peaks509 

responding to m/z 127 and 141 for the two expected products (Figure 4). The spectra were 510 

tentatively attributed to 1-methylpyrrole-2-methanethiol (6) at 31.0 min (LRIBP20 1787, 511 

Figure 4A) and 1-ethylpyrrole-2-methanethiol (7) at 31.3 min (LRIBP20 1813, Figure 4B). 512 

Identification was confirmed by the injection of pure standard compounds (6) and (7), 513 
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indicating also that compounds (6) and (7) were actually present in the reaction mixture 

described above. 

GC-O analysis of the extract of the bioprocessed reaction mixture led to the 

perception at the specified LRI of a strong grilled roasted almond-like odor at 38.6 min 

(LRIBP20 1783) and a grilled hazelnut-like odor at 39.4 min (LRIBP20 1813). These two 

odorant zones corresponded to the RT and odor of the OZ “J” and “K” that are specific to F1 

and F2 in Chardonnay wine extracts (Table 3). Moreover, the co-injection of standards (6) 

and (7) by GC-O analysis on a polar capillary (BP20) confirmed the coincidence of the RT 

with OZ “J” and “K”.  

Analysis of the wine fraction by GC-MS using Selected Ion Monitoring Mode (SIM) 

(30-32 min, m/z 127, 94 and 95 for 1-methylpyrrole-2-methanethiol and m/z 141, 108, 80 for 

1-ethylpyrrole-2-methanethiol) evidenced only a noise threshold in the chromatograms and 

did not allow the detection of either of the two compounds. Given the lack of specificity of 

MS detection, a method using specific MS/MS transitions was developed. GC-triple 

quadrupole analysis has been shown to be a powerful technique for the detection and 

quantitation of trace level compounds involved in wine aroma.
51

 The main ions obtained from 

EI ionization were filtered and fragmented and the most responsive transitions were used in 

the method. 

GC-MS/MS analysis of the reaction mixture (Figure 5A) exhibited a peak at 38.40 

min (LRIZB-1 1111) for the transitions 127→94 and 94→53. The analysis of pure standard 

compounds showed that these transitions and retention times were characteristic of (6). After 

injection of several blank samples to ensure the absence of any carry-over effect (data not 

shown), the analysis of a Chardonnay wine extract (CHSA5) showed a peak for each of these 

two transitions at the same retention time (Figure 5B). Similarly, GC-MS/MS chromatograms 

of the reaction mixture (Figure 5A) and the SPE Chardonnay wine extract (Figure 5B) 
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evidenced a peak at 41.6 min (LRIZB-1 1172) for the transitions 141→108 and 108→53. 

These transitions and retention times were characteristic of (7). The relative retention time of 

both pyrrolemethanethiols in the sample and the calibration solution varied less than ± 5%. 

Five identification points were verified: two precursor ions, each with one daughter; relative 

ion intensities less than ± 20%.
52

 Co-injection of the synthetic extract with the wine extract 

generated a single sharp peak for every of the two compounds (at 38.4 min and 41.6 min). 

GC-O analysis revealed the elution of this compound in the OZ “J” and “K”. To our 

knowledge, this is the first identification of pyrrolemethanethiols (6) and (7) in wine and 

more generally in a natural product.  

Olfactory analysis of the pure standards showed that compounds (6) and (7) exhibited 

strong aromas of grilled hazelnut and roasted almond consistent with some notes often 

perceived in typical Chardonnay wines. The olfactory detection thresholds of these two new 

compounds were determined by a panel of 44 tasters. In model wine, the odorant thresholds 

of (6) and (7) were 0.7 ng/L and 1.4 ng/L, respectively (Table 5). These extremely odorant 

compounds were perceived at amounts 10
7
 and 10

6
 lower than the corresponding pyrrole 

carboxaldehydes.  

The discovery of such powerful odoriferous compounds in wine opens up promising 

perspectives. Further investigations will aim at determining the concentrations and the 

sensory role of these two highly odoriferous grilled hazelnut-like compounds in Chardonnay 

wines. The chemical mechanisms involved in the formation and evolution of these 

compounds also need to be elucidated as well as the enological parameters modulating their 

concentrations in wine. Such results would provide new insights into the molecular origin of 

the volatiles contributing to the identity of typical Chardonnay wines in order to improve 

their winemaking and aging techniques. 
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For the first time, the presence of volatile markers sharing a common structure 

associated with Chardonnay wines is proposed. Despite their irrelevant contribution to 

sensory analysis since they are below their sensory threshold, the presence of 1-ethylpyrrole- 

2-carboxaldehyde, 1-methylpyrrole-2-carboxaldehyde, 1H-pyrrole-2-carboxaldehyde and 2- 

acetyl-1H-pyrrole were found at significantly higher concentrations in Chardonnay wines. 

Methanethiol derivatives of 1-ethylpyrrole-2-carboxaldehyde and 1-methylpyrrole-2- 

carboxaldehyde were identified here for the first time and their odorant power drastically 

increases (10
6 

factor) in comparison with the corresponding pyrroles. Their impact on 

Chardonnay wine aroma now needs to be investigated. 
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LRI, Linear Retention Index; LOQ, Limit of Quantitation; LOD, Limit of Detection; IS, 
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Figure 1. Emergence of the 14 most elicited descriptors from sensory analysis of four Chardonnay wines by 
24 panelists (descriptor occurrence frequencies = number of occurrences of descriptor/total number of 
descriptors).  
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Figure 2. (A) MS chromatogram main run (BP1) of Pernand Vergelesses 2011 (CHPV3) wine extract 
analysis obtained from heart cut between 30-33 min on pre-run (BP20). (B) MS chromatogram of main 
run (HP5) of Pernand Vergelesses 2011 (CHPV3) wine extract analysis obtained from heart cut 
between 30.5-32.5 min on pre-run (BP20).  
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Figure 3. Quantitation of 1-ethylpyrrole-2-carboxaldehyde, 1-methylpyrrole-2-carboxaldehyde, 2-
acetyl-1H-pyrrole, 1H-pyrrole-2-carboxaldehyde, and 1H-pyrrole in Chardonnay (n = 14) and non-
chardonnay wines (n = 14). *Significant difference assessed by Kruskal-Wallis test (p value < 0.05). 
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Figure 4. FullScan MS spectra recorded at 38.4 min on 1-methylpyrrole-2-methanethiol (A) and at 
41.6 min on 1-ethylpyrrole-2-methanethiol (B).  
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Figure 5. Comparison of GC-MS/MS chromatograms recorded for pyrrole reaction mixture (left) and a 
Chardonnay wine SPE extract (right). From top to bottom: Total ion chromatogram, chromatograms in 
SRM mode corresponding to transitions for 1-methylpyrrole-2-methanethiol (6) (127 → 94; 94 → 54) 
and 1-ethylpyrrole-2-methanethiol (7) (141 → 108; 108 → 54). NL: normalized intensity level 
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TABLES 

Table 1. Grape Variety, Identification, Origin and Vintage of Wine Samples. 

Num. Grape Variety Identifier Origin Vintage 

1 Chardonnay CHPV1 Pernand Vergelesses 1er cru - France 2007 

2 Chardonnay CHPV2 Pernand Vergelesses 1er cru - France 2011 

3 Chardonnay CHPV3 Pernand Vergelesses - France 2011 

4 Chardonnay CHCM4 Chassagne Montrachet - France 2010 

5 Chardonnay CHSA5 St Aubin 1er Cru - France 2011 

6 Chardonnay CHCM6 Chassagne Montrachet - France 2008 

7 Chardonnay CHCM7 Chassagne Montrachet - France 2011 

8 Chardonnay CHAUS8 Margaret River - Australia 2012 

9 Chardonnay CHAUS9 Victoria – Australia 2007 

10 Chardonnay CHCHAB10 Chablis - France 2009 

11 Chardonnay CHCHAB11 Chablis - France 2007 

12 Chardonnay CHCHAB12 Chablis - France 2011 

13 Chardonnay CHMEUR13 Meursault - France 2011 

14 Chardonnay CHPUL14 Puligny Montrachet - France 2010 

15 Chardonnay CHPUL15 Puligny Montrachet - France 1997 

16 Chardonnay CHBEA16 Beaune 1er Cru - France 1996 

17 Riesling RIES17 Alsace - France 2009 

18 Sauvignon Blanc SB18 Pessac-Léognan - France 2009 

19 Sauvignon Blanc SB19 Pays d'Oc - France 2013 

20 Sauvignon Blanc SB20 Sancerre - France 2012 

21 Sauv. Blanc - Semillon SBS21 Bordeaux - France 2012 

22 Sauv. Blanc - Semillon SBS22 Bordeaux - France 2010 

23 Aligoté Ali23 Bourgogne - France 1998 

24 Aligoté Ali24 Bouzeron - France 2007 

25 Viognier VIOA25 Tumbarumba - Australia 2013 

26 Viognier VIOA26 Trentham- Australia 2010 

27 Viognier VIOR27 Collines Rhodaniennes - France 2010 

28 C.-Sauvignon, Merlot MCB28 Graves - France 2013 

29 C.-Sauvignon, Merlot MCB29 Saint Julien - Medoc - France 2010 

30 Grenache GRE30 Vallée du Rhône - France 2013 

31 Melon B MUS31 Muscadet Sèvre-et-Maine - France 2013 
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Table 2. Validation Data for GC-MS Method. 

Name 

m/z quantifier 

(qualifier) 
R2 slope linear range 

recovery at 

150 ng/L 

LOD 

(ng/L)a 

LOQ 

(ng/L)b 

1H-pyrrole 67 (52; 41) 0.995 130539 103 102 10 25 

1-ethylpyrrole-2-carboxaldehyde 123 (108; 94) 0.998 76472 5.102 101 13 32 

1-methylpyrrole-2-carboxaldehyde 109 (108; 80) 0.996 59540 102 97 12 25 

2-acetyl-1H-pyrrole 94 (109; 66) 0.997 11522 102 94 8 14 

1H-pyrrole-2-carboxaldehyde 95 (94; 66) 0.999 127303 103 106 15 37 
a
 LOD, Limit of Detection; 

b
 LOQ, Limit of Quantitation. 

Page 37 of 41



38 

Table 3. Hazelnut-like Odoriferous Zones Evidenced by GC-Olfactometry in Distillate 

Fractions (Analysis on Carbowax-type Capillary). 

odorant 

zone 
descriptor 

LRIa 

BP20

perception in distillate 
fractions analyzed in GC-Ob 

F1 F2 

A almond, sweet 1378 - + 

B fresh hazelnut 1415 + - 

C dry hazelnut 1438 + + 

D grilled toasted 1467 + - 

E almond, sweet hazelnut 1505 + - 

F roasted hazelnut 1617 + - 

G hazelnut 1641 + - 

H hazelnut 1708 + - 

I almond, flowery 1751 + - 

J roasted almond 1783 - + 

K grilled hazelnut 1813 + + 

L raw hazelnut 1910 + + 

M smoked hazelnut, sweet 1946 + - 

N hazelnut, coffee 2010 + - 

O hazelnut, praline 2078 + + 

P hazelnut, almond, nougat 2250 + - 

a LRI, Linear Retention Index;
 b 

+, perceived; -, not perceived 
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Table 4. Analytical and Sensory Characteristics of Pyrroles Identified in this Study. 

LRIa BP20 LRIa BP1  compound 

threshold (mg/L) 

model 

wine
b
 

white 

wine 

1505 - 1H-pyrrole (5) 21.3 26.1 

1617 1026 
1-ethylpyrrole-2-

carboxaldehyde (1)
0.7 1.2 

1641 975 
1-methylpyrrole-2-

carboxaldehyde (2)
13.6 19.6 

1946 1020 2-acetyl-1H-pyrrole (3) 94.1 126 

2010 990 
1H-pyrrole-2-
carboxaldehyde (4) 

3.2 7.9 

a
LRI, Linear Retention Index; 

b
 Model media, 12% EtOH/H2O (v/v); pH 3.4; 5 g/L tartaric acid.
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Table 5. Analytical and Sensory characteristics of Pyrrolemethanethiols Identified in this 

Study. 

a LRI, Linear a Linear Retention Index; b threshold determined in model media, 12% EtOH/H2O (v/v); pH 3.4; 5

g/L tartaric acid. 

LRI
a
 BP20 LRI

a
 ZB1 compound 

threshold 
(ng/L)b 

1783 1111 1-methylpyrrole-2-methanethiol (6) 0.7

1813 1172 1-ethylpyrrole-2-methanethiol (7) 1.4 
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