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Combining growth-promoting genes leads
to positive epistasis in Arabidopsis
thaliana

Hannes Vanhaeren’?', Nathalie Gonzalez'?', Frederik Coppens'?,
Liesbeth De Milde'?, Twiggy Van Daele'2, Mattias Vermeersch'2, Nubia B Eloy'?,
Veronique Storme'?, Dirk Inzé'2*

'Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Ghent,
Belgium; ?Department of Plant Biotechnology and Bioinformatics, Ghent University,
Ghent, Belgium

Abstract Several genes positively influence final leaf size in Arabidopsis when mutated or
overexpressed. The connections between these growth regulators are still poorly understood
although such knowledge would further contribute to understand the processes driving leaf
growth. In this study, we performed a combinatorial screen with 13 transgenic Arabidopsis lines
with an increased leaf size. We found that from 61 analyzed combinations, 39% showed an
additional increase in leaf size and most resulted from a positive epistasis on growth. Similar to
what is found in other organisms in which such an epistasis assay was performed, only few genes
were highly connected in synergistic combinations as we observed a positive epistasis in the
majority of the combinations with samba, BRIT°F or SAUR19°E. Furthermore, positive epistasis was
found with combinations of genes with a similar mode of action, but also with genes which affect
distinct processes, such as cell proliferation and cell expansion.

DOI: 10.7554/eLife.02252.001

Introduction

Since Bateson introduced the term epistasis to describe the phenomenon that some mutations
seemed to be ‘stopping’ or ‘standing above' the effect of other mutations (Bateson, 1909), it
became clear that interactions between multiple genes influence many traits. Epistasis, or interac-
tion between genes, therefore corresponds to any deviation from the expected phenotype, pre-
dicted by combining the effects of individual alleles or mutations (Fisher, 1918; Phillips, 2008).
Only by identifying and understanding the nature of these underlying gene interactions, we will
gain better insights in the regulation of complex traits and be able to dissect the architecture of
biological networks.

In the last decade, numerous studies on the effect of pairwise gene perturbations have been
conducted, primarily in the budding yeast Saccharomyces cerevisiae, to systematically evaluate
epistasis for several characteristics, such as fitness or synthetic lethality (Tong et al., 2004; Jasnos and
Korona, 2007; St Onge et al., 2007; Dixon et al., 2009; Costanzo et al., 2010, 2011). These
genome-scale genetic interactions studies were facilitated by the availability of large collections of
deletion strains and the development of automated platforms to analyze the phenotypes of double
mutants (Scherens and Goffeau, 2004). Since the first large-scale genetic interaction study in yeast
identified 4000 genetic interactions among 1000 genes when analyzing synthetic lethality in double
deletion mutants (Tong et al., 2004), the field advanced considerably. Currently, about 170,000 inter-
actions are known among 5.4 million gene pairs screened to affect fitness (Baryshnikova et al., 2010;
Costanzo et al., 2010). Interestingly, these studies have shown that the majority of the genes are
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elife digest Different individuals of the same species are not usually identical. Humans, for
example, have a range of different values for various traits, such as height and weight, and similar
variations are seen in other animals and plants. Some of this variation can be explained by the
individual animals or plants inheriting different versions of the same gene. Moreover, two or more
genes can sometimes interact to produce a bigger (or smaller) effect on given trait than would be
expected from combining the effects of each gene. This phenomenon is called epistasis.

Leaf size in plants is a trait that is controlled by genes and by the environment. Genes can exert
an effect by influencing how often the cells in the leaves divide and by influencing their expansion.
In Arabidopsis thaliana, a small plant that has been widely studied by plant biologists, numerous
genes influence leaf size. Now, in order to explore epistasis in plants, Vanhaeren, Gonzalez et al.
have crossbred 13 Arabidopsis mutants that had leaves that were larger than those found in
wild-type plants. The resulting offspring each inherited a different pair of mutant genes: one gene
via the male pollen, and the other via the female egg cell. About 39% of the offspring plants had
leaves that were even bigger than those of its parents. Moreover, in most cases the increase in leaf
size was larger than expected.

Vanhaeren, Gonzalez et al. found that three of the 13 genes were responsible for the biggest
increases in leaf size. Also, some of the biggest increases were caused by plants inheriting two
genes that both caused the cells to divide more. Other large increases in leaf size were caused by
interactions between a gene affecting cell division and a gene affecting cell expansion. By
uncovering combinations of plant genes that increase leaf size, it might be possible to develop
agricultural crops with enhanced yields.

DOI: 10.7554/eLife.02252.002

infrequently connected in the genetic interaction network, while a small fraction of genes shows many
interactions (Baryshnikova et al., 2010; Costanzo et al., 2010, 2011).

In higher organisms, large collections of mutants often do not exist and/or the generation of double
mutants is much more labor-intensive and time-consuming. However, in the nematode Caenorhabditis
elegans, in Drosophila cell cultures and in human cell lines, global analysis of genetic interactions have
been performed by making use of RNA interference libraries to generate double mutants (Lehner
et al., 2006; Byrne et al., 2007, Barbie et al., 2009; Horn et al., 2011). In C. elegans, systematic
mapping of interactions between genes functioning in the signaling and the transcriptional networks
that regulate development also revealed high connectivity of a small proportion of genes in the net-
work, while most genes have few interactions (Lehner et al., 2006). In plants, although large collec-
tions of mutants are available for some species such as Arabidopsis (Alonso et al., 2003; http://www.
arabidopsis.org/), large-scale epistasis studies on double mutants are experimentally and practically
virtually impossible to achieve. On a smaller scale, newly identified mutants in Arabidopsis are crossed
with known mutants with similar phenotypes or within the same biological process to test for allelic
interaction or epistasis. For example, genetic interactions among late flowering Arabidopsis mutants
have been studied by generating double mutants (Koornneef et al., 1998). Further, genetic modifier
screens are performed frequently through a random mutagenesis of individuals harboring one mutant
gene to screen for second-site mutations that either enhance or suppress the primary phenotype. An
example in relation to leaf size is the identification of enhancer mutations of da1-1 further increasing
leaf and seed size (Li et al., 2008; Yao et al., 2008; Xu and Li, 2011; Fang et al., 2012). While epis-
tasis can easily be detected for qualitative traits, such as synthetic lethality, which are fairly straightfor-
ward to visually inspect, genetic interactions from quantitative traits, such as organ growth or gene
expression, are more difficult to identify, especially in multicellular organisms (Kroymann and Mitchell-
Olds, 2005; Malmberg et al., 2005; Xu and Jia, 2007, Chapman et al., 2012; Steinhoff et al.,
2012; Huang et al., 2014). Estimating epistasis for quantitative categories of phenotypes implies
calculating how much the phenotype of a double mutant deviates from an expected additive value
based on the effect of the single mutations (Fisher, 1918), therefore requiring accurate measurements
of the phenotype of the single and double mutants. Although enabling the identification of subtle
interactions, these quantitative analyses of gene interactions are not easily amenable to large-scale
studies of complex traits.
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One example of such a complex quantitative trait in higher plants is leaf growth. Leaves are
essential to capture solar radiation and convert it into chemical energy by photosynthesis, there-
fore contributing to a large part of plant biomass production. As for most plant organs, their
determinate growth pattern results in a relatively constant size within a fixed environment. Leaf
growth is mediated by a cell proliferation phase followed by a cell expansion phase that initiates
at the leaf top and proceeds basipetally (Donnelly et al., 1999; Andriankaja et al., 2012). At least
five different parameters contribute to the final leaf size (Gonzalez et al., 2012): the number of
cells incorporated in leaf primordia; the rate of cell division; the developmental window of cell
proliferation; the timing of meristemoid division; and the extent of cell expansion. Several genes
have been described to, when downregulated or ectopically (over)expressed, increase the final
leaf size in Arabidopsis (Gonzalez et al., 2009; Krizek, 2009; Breuninger and Lenhard, 2010) by
affecting one or more processes governing leaf growth. Whereas much research has been done
on single genes affecting leaf size, the interactions between these growth regulators remain unex-
plored. So far, only one case of positive epistasis in Arabidopsis leaf growth has been described
when a dominant-negative point mutation in DA1, encoding an ubiquitin receptor, is combined
with the knock-out of the ENHANCER OF DA1 (EOD)1/BIG BROTHER, coding for an E3 ubiquitin
ligase (Li et al., 2008).

In this study, we performed a combinatorial screen of transgenic Arabidopsis plants producing
larger leaves to identify positive epistatic effects on leaf growth. We aimed to gain further insight
in the links between genes controlling growth and the mechanisms driving leaf development. We
obtained binary combinations by crossing 13 transgenic lines with an increased leaf size and meas-
ured leaf and rosette area of the single and double transgenics. We found that the leaf area of 38%
of all combinations was larger than the sum of those of the single mutants, resulting in positive
epistatic effects, whereas 23% of the combinations were smaller, showing a negative epistatic
effect.

Results

Gene selection and experimental setup

To identify positive epistatic effects on leaf growth, we analyzed pairwise perturbations of 13 genes
positively affecting final leaf size in a gain- or loss-of-function situation (Table 1) by measuring the
individual and total leaf area. We used lines in the Col-0 background, homozygous for a single-locus
insertion of the transgene of interest and shown to have a positive effect on all rosette leaves or a
subset of those (Cho and Cosgrove, 2000, Gonzalez et al., 2010, Spartz et al., 2012). This enhanced
leaf growth can result from the perturbation of genes affecting cell division and/or cell expansion. The
downregulation of SAMBA disturbs the early stage of leaf development, since larger meristems are
formed resulting in larger leaves containing more cells (Eloy et al., 2012). A point mutation in DA1
or the downregulation of its enhancer, EOD1, leads to the production of larger leaves with more cells
due to an extended cell proliferation phase (Li et al., 2008). Similarly, in plants overexpressing
ANGUSTIFOLIA3 (AN3), AINTEGUMENTA (ANT), ARABIDOPSIS VACUOLAR-PYROPHOSPHATASE
(AVP1), GROWTH-REGULATING FACTORS5 (GRF5) under the control of the constitutive 35S promoter
or BRASSINOSTEROID INSENSITIVE 1 (BRI1) under the control of its own promoter, larger leaves
containing more cells are formed because of an extension of the cell proliferation phase (Wang et al.,
2001; Horiguchi et al., 2005; Li et al., 2005). On the other hand, an increased cell proliferation at the
edge of the leaf and a prolonged period of meristemoid division are observed when the miRNA JAW
is overexpressed and the PEAPOD (PPD) genes are downregulated (Palatnik et al., 2003; White,
2006). When GIBBERELLIN 20-OXIDASE 1 (GA200X1) is overexpressed, an increase in cell number
and cell size leads to the formation of larger leaves (Huang et al., 1998; Gonzalez et al., 2010).
Finally, in plants overexpressing EXPANSIN 10 (EXP10) and SMALL AUXIN UP-REGULATED RNA 19
(SAUR19) fused to a GFP tag, bigger leaves containing larger cells are produced (Cho and Cosgrove,
2000; Spartz et al., 2012). Several of these leaf growth-promoting genes are involved in hormonal
pathways, confirming the importance of plant hormones in the regulation of growth processes: BRI1
encodes a brassinosteroid receptor, GA200X1 catalyzes rate-limiting steps in late gibberellic acid
(GA) biosynthesis, ANT has been suggested to be involved in auxin signal transduction and both AVP1
and SAUR19 in auxin transport (Huang et al., 1998; Mizukami and Fischer, 2000; Wang et al., 2001;
Li et al., 2005; Spartz et al., 2012). To obtain pairwise perturbations, our strategy was to cross the

Vanhaeren et al. eLife 2014;3:02252. DOI: 10.7554/eLife.02252 30of 19


http://dx.doi.org/10.7554/eLife.02252

Plant biology

€00°¢SCco418/%SSL01 -10d

‘uondUNy JO SSO| 14 ‘Uoissaidxe-1ano 130

(zL0Z "[e 39 z31eds) uoisuedxa ||80 30 306L4NVS 0l08LOG1V 614NVS 61 VNY AN NIXNY TIVIAS

uolsuedxs
(zLoz “[e 3@ £oj3) pue uoIsIAIp |83 401 equies 0leceDLLY VANVS AN

ooz uolsinp 0CLYLOYLIY

“[e 30 zo|ezUOD 9002 ‘OHYM) plowsisusi 401 pdd-we  puegl/y1OY1Y add aodvid
(€00z "[e 39 yiurejed) UOISIAIP [[8D 30 g-mef ELLECOVIV MV 61E VNYIW /MY -yiw
(§00Z “[e 32 1yonbLioH) UOISIAIP |90 30 305449 096€L9€1Y EERD) SYOLOV4 ONILYINDIY HIMOYD

ooz "|e 3o uolsuedxs
2z9jezuoD ‘8661 “|e 39 Bueny) pue uoIsIAIP ||8D 30 30LXO0CVD (ra%<143404 LXO0ZVO L 3SVAIXO 0Z NIT13434941D
(0002 ‘on016s0) pue oy)) uoisuedxs ||9D E[e) 300LdX3 0£L92911V 0ldx3 0l NISNVdX3
(8ooz “1e 12 17) UOISIAIP [[8D 401 ¢-lpos 0€SE9DELV 4d/a03 43IHLOY¥E D18/1-1vA 40 43DNVHN3I
(8ooz “1e 32 17) UOISIAIP []9D 401 l-lep 0/261911V lvad lva

(oLoz e 3
z9jezuon 'L00Z “Ie 32 buem) UOISIAIP [18D E[6) 301149 0076EDY 1V L1dg L IAILISNISNI AIOY3LSONISSVId
(s00z “Ie 32 17) UOISIAIP |90 30 30ldAV 069SLOL1V LdAV ASVIVHISOHdOYAdA SISdOdIGVEVY
(000Z “43ydst4 pue jwenzi) UOISIAIP [18D 30 30LNV 0S.LE9D71V 1INV VLINIWNOILINIV
(500Z “[e 32 1yonbLioH) UOISINIP |90 E[e) 30ENV 0v98C9OS1V ENV EVIIO4ILSNONY
adualesay pa3owo.d uoneqiniiad aweu aur dj ausn loquis aweu auapn
ssacoud Jejnjj@) auap

e LI F E Research article

suoneuiquod Aieuiq ay1 4o} pasn solusbsuely pue siole|nbal yimoun) °| ajqer

4 of 19

Vanhaeren et al. eLife 2014;3:02252. DOI: 10.7554/eLife.02252


http://dx.doi.org/10.7554/eLife.02252
http://dx.doi.org/10.7554/eLife.02252.003

e LI FE Research article

Plant biology

homozygous transgenic lines and to analyze the heterozygous progeny. We produced 102 heterozygous
combinations, consisting of 78 paired combinations and 24 back-crosses with the wild type (WT) used
as controls (Figure 1—figure supplement 1). Because the homozygous line can be used as pollen donor
or receptor, care was taken that the crosses with the wild-type plants, producing the heterozygous con-
trol line, maintained the same directionality. For example, a cross between ami-ppd (?) and SAURT9°¢
(3) was compared to the offspring of the crosses ami-ppd (?) X WT (3) and WT (Q) X SAURT9°E (3).
This approach standardizes for possible maternal effects (Scott et al., 1998). Next, we checked
the expression levels of the transgenes in the obtained heterozygous double mutants as well as in the
heterozygous control lines. In the majority of the combinations, transgene expression levels were com-
parable with those of the heterozygous controls (Figure 1—figure supplement 2). In total, 61 combi-
nations were used for further growth analysis. Sixteen plants per genotype were grown in three
independent repeats and at 21 days after stratification (DAS), the size of each individual leaf of the
rosette was measured, resulting in 56,505 data-points, enabling us to estimate potential gene interac-
tions for these quantitative traits (Figure 1—figure supplement 3). Leaf area (LA) of the paired com-
binations was compared to a theoretical, expected if non-interacting value (EXPni), based on the size
of the WT and both heterozygous controls. To estimate the EXPni, we applied an additive model on a
multiplicative scale by transforming the data on log2 scale (Koornneef et al., 1998, Phillips, 2008;
Horn et al., 2011):

log, (LA gxen)= log, (LAheterozygous control 1 ) +log, (’-A heterozygous control 2) —log, (LA wild type)

In order to identify combinations with synergistic or negative effects on leaf growth, we searched
for significant leaf-genotype interactions (FDR <0.05). The significance of the difference between the
EXPni and the observed value was determined using a mixed model (‘Materials and methods’). This
calculation and comparison was done for each combination (Figure 1—figure supplement 4-64). The
LAs were analyzed using repeated measurements to take into account dependencies between the
different leaves of the rosette. We also calculated the total rosette area, defined as the sum of all individual
leaves. Similarly as for leaf area, a rosette EXPni was calculated.

Identification of positive and negative epistasis effects on leaf
growth

Among the 61 combinations analyzed, 23 pairwise crosses, almost 38%, were found to have a rosette
size significantly exceeding the EXPni value (FDR <0.05, Figures 1 and 2). In the strongest synergistic com-
binations, such as BRI1°E-eod1-2, BRIT9E-EXP 10, BRIT1°€-SAUR 19°F, GRF5%-SAUR19°F, BRI1°E-da1-1,
ami-ppd-SAUR19°F and samba-eod1-2 (at least 20% larger than the EXPni), the positive effect on size
was observed for all rosette leaves. Remarkably, although out of the 13 genes that were selected for
this screen only two are involved in increasing cell size (EXP10° and SAUR19%%), almost half of the
synergistic combinations arose from combining cell proliferation-stimulating gene perturbations with
these two cell expansion-promoting genes, particularly with SAUR19°¢ (Figure 2; Table 1). We also
observed a positive epistasis in the majority of the combinations with samba, BRI1°F or SAUR19°E,
suggesting that these growth regulators are more prone to lead to synergistic effects in binary combi-
nations (Figure 2—figure supplement 1A).

Of all binary crosses analyzed, 39.2% resulted in plants with a rosette size exceeding that of both
heterozygous control lines and the WT (Figure 1; Supplementary file 1). Interestingly, 16 combinations
resulted from a synergistic effect, while eight were the result of an additive effect. Among the largest
plants, synergistic (GRF5°F-SAUR19°F and ANTE-SAUR 199, 39% and 38% larger than the WT, respec-
tively) and additive (da1-1-GA200x1°F and ANTCE-AVP1°E, 38% and 36% larger than the WT, respec-
tively) effects could be found.

In addition, we also found that 23% of the combinations led to the formation of smaller rosettes
than expected. We observed that mainly combinations with jaw-D and ami-ppd led to cases of negative
epistasis. The total rosette area of these combinations was similar or much smaller than that of WT
plants, such as GRF5-jaw-D (46% smaller than the WT), with the exception of da1-1-ami-ppd, which
was larger than the WT, but smaller than da1-1-Col-0. (Figure 1).

In conclusion, from this screen, we found that more than one third of the combinations showed
positive epistasis on leaf growth, resulting from combining either two genes both stimulating cell pro-
liferation, or either one gene enhancing cell proliferation and the other cell expansion.
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Figure 1. Heat map representing the effect of the binary combinations for rosette and leaf area. The outer ring shows the percentage of the rosette size
of the combinations compared to the WT (C/W). In the middle rings, percentages of the observed sizes of the cotyledons (LO) until leaf 6 (L6) and the
complete rosette are shown compared to the expected if non-interacting value (EXPni). Significant differences to the rosette EXPni value (FDR <0.05)
allowed identifying synergistic interactions (black line) and negative interactions (dashed line) between two transgenic lines. The inner circle shows the
color code with dark pink being the lowest and deep green being the highest value. Combinations that are at least 5% larger than each of their
heterozygous controls are marked in bold.

DOI: 10.7554/eLife.02252.004

The following figure supplements are available for figure 1:

Figure supplement 1. Overview of all heterozygous and homozygous combinations and their controls (Col x mutant or mutant x Col) obtained by
crosses.

DOI: 10.7554/eLife.02252.005

Figure supplement 2. Relative gene expression levels in the heterozygous binary combinations and their controls.

DOI: 10.7554/eLife.02252.006

Figure supplement 3. Phenotypic analysis workflow.
DOI: 10.7554/eLife.02252.007
Figure 1. Continued on next page
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Figure 1. Continued
Figure supplement 4. Statistical output of the phenotypic data for the heterozygous combination AN3°E-ANT®E,
DOI: 10.7554/eLife.02252.008
Figure supplement 5. Statistical output of the phenotypic data for the heterozygous combination AN3°E-AVP1°E,
DOI: 10.7554/eLife.02252.009
Figure supplement 6. Statistical output of the phenotypic data for the heterozygous combination AN3°E-BRIE,
DOI: 10.7554/eLife.02252.010
Figure supplement 7. Statistical output of the phenotypic data for the heterozygous combination AN3%-da1-1.
DOI: 10.7554/eLife.02252.011
Figure supplement 8. Statistical output of the phenotypic data for the heterozygous combination AN3%-eod1-2.
DOI: 10.7554/elLife.02252.012
Figure supplement 9. Statistical output of the phenotypic data for the heterozygous combination AN3°E-EXP10°E.
DOI: 10.7554/eLife.02252.013
Figure supplement 10. Statistical output of the phenotypic data for the heterozygous combination AN3°5-GA200X1°E.
DOI: 10.7554/elLife.02252.014
Figure supplement 11. Statistical output of the phenotypic data for the heterozygous combination AN3°5-GRF5°E.
DOI: 10.7554/eLife.02252.015
Figure supplement 12. Statistical output of the phenotypic data for the heterozygous combination AN3%-jaw-D.
DOI: 10.7554/eLife.02252.016
Figure supplement 13. Statistical output of the phenotypic data for the heterozygous combination AN3-ami-ppd.
DOI: 10.7554/elLife.02252.017
Figure supplement 14. Statistical output of the phenotypic data for the heterozygous combination AN3°5-SAURT9E.
DOI: 10.7554/eLife.02252.018
Figure supplement 15. Statistical output of the phenotypic data for the heterozygous combination ANTOE-AVP19E,
DOI: 10.7554/eLife.02252.019
Figure supplement 16. Statistical output of the phenotypic data for the heterozygous combination ANT?E-BRI1°E,
DOI: 10.7554/eLife.02252.020
Figure supplement 17. Statistical output of the phenotypic data for the heterozygous combination ANT®-da1-1.
DOI: 10.7554/eLife.02252.021
Figure supplement 18. Statistical output of the phenotypic data for the heterozygous combination ANT?E-eod1-2.
DOI: 10.7554/elife.02252.022
Figure supplement 19. Statistical output of the phenotypic data for the heterozygous combination ANTOE-EXP10°E.
DOI: 10.7554/eLife.02252.023
Figure supplement 20. Statistical output of the phenotypic data for the heterozygous combination ANTCE-GRF5CE.
DOI: 10.7554/elLife.02252.024
Figure supplement 21. Statistical output of the phenotypic data for the heterozygous combination ANT®E-ami-ppd.
DOI: 10.7554/eLife.02252.025
Figure supplement 22. Statistical output of the phenotypic data for the heterozygous combination ANTPE-SAURT9%E.
DOI: 10.7554/elife.02252.026
Figure supplement 23. Statistical output of the phenotypic data for the heterozygous combination AVPTE-BRI1°E,
DOI: 10.7554/eLife.02252.027
Figure supplement 24. Statistical output of the phenotypic data for the heterozygous combination AVP1%5-da1-1.
DOI: 10.7554/eLife.02252.028
Figure supplement 25. Statistical output of the phenotypic data for the heterozygous combination AVP1%-eod1-2.
DOI: 10.7554/eLife.02252.029
Figure supplement 26. Statistical output of the phenotypic data for the heterozygous combination AVP1E-EXP10°E.
DOI: 10.7554/eLife.02252.030
Figure supplement 27. Statistical output of the phenotypic data for the heterozygous combination AVP1%-ami-ppd.
DOI: 10.7554/eLife.02252.031
Figure supplement 28. Statistical output of the phenotypic data for the heterozygous combination BRIT%-da1-1.
DOI: 10.7554/eLife.02252.032
Figure supplement 29. Statistical output of the phenotypic data for the heterozygous combination BRI1%-eod1-2.
DOI: 10.7554/eLife.02252.033
Figure 1. Continued on next page
Vanhaeren et al. eLife 2014;3:02252. DOI: 10.7554/eLife.02252 7 of 19
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Figure 1. Continued

Figure supplement 30. Statistical output of the phenotypic data for the heterozygous combination BRIT95-EXP10°E.
DOI: 10.7554/elife.02252.034

Figure supplement 31. Statistical output of the phenotypic data for the heterozygous combination BRIT°5-GA200X1°E.
DOI: 10.7554/eLife.02252.035

Figure supplement 32. Statistical output of the phenotypic data for the heterozygous combination BRIT95-GRF5°E.
DOI: 10.7554/eLife.02252.036

Figure supplement 33. Statistical output of the phenotypic data for the heterozygous combination BRI1%-ami-ppd.
DOI: 10.7554/eLife.02252.037

Figure supplement 34. Statistical output of the phenotypic data for the heterozygous combination BRIT96-SAURT9°E.
DOI: 10.7554/eLife.02252.038

Figure supplement 35. Statistical output of the phenotypic data for the heterozygous combination da1-1-EXP10°E.
DOI: 10.7554/eLife.02252.039

Figure supplement 36. Statistical output of the phenotypic data for the heterozygous combination da1-1-GA200X1°E.
DOI: 10.7554/eLife.02252.040

Figure supplement 37. Statistical output of the phenotypic data for the heterozygous combination da1-1-GRF5°E.
DOI: 10.7554/eLife.02252.041

Figure supplement 38. Statistical output of the phenotypic data for the heterozygous combination da-1-jaw-D.

DOI: 10.7554/elife.02252.042

Figure supplement 39. Statistical output of the phenotypic data for the heterozygous combination da-7-ami-ppd.
DOI: 10.7554/elLife.02252.043

Figure supplement 40. Statistical output of the phenotypic data for the heterozygous combination da1-1-SAURT9°E.
DOI: 10.7554/eLife.02252.044

Figure supplement 41. Statistical output of the phenotypic data for the heterozygous combination eod1-2-ami-ppd.
DOI: 10.7554/elLife.02252.045

Figure supplement 42. Statistical output of the phenotypic data for the heterozygous combination EXP10°5-GRF5%E.
DOI: 10.7554/eLife.02252.046

Figure supplement 43. Statistical output of the phenotypic data for the heterozygous combination EXP10°%-jaw-D.
DOI: 10.7554/elLife.02252.047

Figure supplement 44. Statistical output of the phenotypic data for the heterozygous combination EXP10°¢-ami-ppd.
DOI: 10.7554/eLife.02252.048

Figure supplement 45. Statistical output of the phenotypic data for the heterozygous combination EXP10°5-SAURT9°E.
DOI: 10.7554/eLife.02252.049

Figure supplement 46. Statistical output of the phenotypic data for the heterozygous combination GA200X1°5-GRF5°E.
DOI: 10.7554/eLife.02252.050

Figure supplement 47. Statistical output of the phenotypic data for the heterozygous combination GA200X1°-jaw-D.
DOI: 10.7554/eLife.02252.051

Figure supplement 48. Statistical output of the phenotypic data for the heterozygous combination GA200X1-ami-ppd.
DOI: 10.7554/eLife.02252.052

Figure supplement 49. Statistical output of the phenotypic data for the heterozygous combination GA200X1°6-SAUR19°E.
DOI: 10.7554/eLife.02252.053

Figure supplement 50. Statistical output of the phenotypic data for the heterozygous combination GRF5°-jaw-D.
DOI: 10.7554/eLife.02252.054

Figure supplement 51. Statistical output of the phenotypic data for the heterozygous combination GRF5°-ami-ppd.
DOI: 10.7554/eLife.02252.055

Figure supplement 52. Statistical output of the phenotypic data for the heterozygous combination GRF5°€-SAURT9%E.
DOI: 10.7554/eLife.02252.056

Figure supplement 53. Statistical output of the phenotypic data for the heterozygous combination jaw-D-ami-ppd.
DOI: 10.7554/eLife.02252.057

Figure supplement 54. Statistical output of the phenotypic data for the heterozygous combination jaw-D -SAURT9°E.
DOI: 10.7554/eLife.02252.058

Figure supplement 55. Statistical output of the phenotypic data for the heterozygous combination ami-ppd -SAURT9E.
DOI: 10.7554/eLife.02252.059
Figure 1. Continued on next page
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Figure 1. Continued

Figure supplement 56. Statistical output of the phenotypic data for the heterozygous combination samba-AN3°E.
DOI: 10.7554/eLife.02252.060

Figure supplement 57. Statistical output of the phenotypic data for the heterozygous combination samba -ANT®E.
DOI: 10.7554/eLife.02252.061

Figure supplement 58. Statistical output of the phenotypic data for the heterozygous combination samba -AVP1°E,
DOI: 10.7554/eLife.02252.062

Figure supplement 59. Statistical output of the phenotypic data for the heterozygous combination samba -BRI®E.
DOI: 10.7554/eLife.02252.063

Figure supplement 60. Statistical output of the phenotypic data for the heterozygous combination samba -da-1.
DOI: 10.7554/eLife.02252.064

Figure supplement 61. Statistical output of the phenotypic data for the heterozygous combination samba-eod1-2.
DOI: 10.7554/eLife.02252.065

Figure supplement 62. Statistical output of the phenotypic data for the heterozygous combination samba -EXP10°E.
DOI: 10.7554/eLife.02252.066

Figure supplement 63. Statistical output of the phenotypic data for the heterozygous combination samba -ami-ppd.
DOI: 10.7554/eLife.02252.067

Figure supplement 64. Statistical output of the phenotypic data for the heterozygous combination samba-SAURT9°E.
DOI: 10.7554/eLife.02252.068

Reciprocal and homozygous combinations
To strengthen the observed effects of pairwise perturbations and to further exclude that the

observed phenotypes were influenced by maternal effects, we made reciprocal crosses of selected
synergistic combinations (SAUR19%-ami-ppd, EXP10°-BRI1°E, SAUR19°E-BRI1°F). We measured the
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Figure 2. Network representing the combinations showing positive epistasis on total rosette area and leaf series of gene combinations with a large
effect on leaf size. (A) The connections between two transgenics indicate the observation of a synergistic effect on rosette size. Two transgenics
producing larger leaves resulting from an increased cell area are SAURT9°F and EXP10°%. (B) Both synergistic (GRF5°F-SAURT9°F and ANTOE-SAURT99F)
and additive combinations (da1-1-GA200x1°¢ and ANTPE-AVP19) lead to plants strongly enlarged up to 39% compared to the WT. In order to flatten the
leaves for area measurements, cuts were made in the blade.

DOI: 10.7554/elLife.02252.069

The following figure supplements are available for figure 2:

GA200X1% dal-1 EXP10° AN3%

ami-ppd

Figure supplement 1. Occurrence of the growth-regulating genes in a (A) synergistic combination and (B) negative combinations.
DOI: 10.7554/elife.02252.070

Figure supplement 2. Phenotype of the homozygous combination da7-1-SAURT9-.

DOI: 10.7554/elife.02252.071
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leaf area at 21 DAS and could confirm the synergistic effects for all three combinations (Figure 3A,
Figure 3—figure supplement 1-3). Next, we generated homozygous lines for two synergistic
combinations, ami-ppd-SAUR19°E and samba-eod1-2, and one additive combination, producing
nevertheless a very large rosette, da7-1-SAUR19°. Transgene expression levels in these homozygous
lines were verified and found comparable to those in the homozygous single lines (Figure 3—
figure supplement 4). We confirmed a synergistic effect on the rosette sizes in homozygous ami-
ppd-SAUR19°E and samba-eod1-2 plants (24% and 8% larger than the rosette EXPni respectively)
(Figure 3B, Figure 3—figure supplement 5,6). The combination da1-1-SAUR19°E, which produced
among the largest plants in the screen, but did not enhance leaf size synergistically, was also found
to be particularly large when homozygous, since its rosette size was 61% larger than that of the
WT (Figure 3B, Figure 3—figure supplement 7, Figure 2—figure supplement 2). From these
experiments we could confirm the observed positive epistatic effects in a selected set of double
mutants from our screen of heterozygous combinations in a reciprocal direction and/or homozy-
gous status.

A
EXP10°E-BRI1°F

SAUR19°E-BRI1°F
SAUR19%-ami-ppd
B

da1-1-SAUR19°E
ami-ppd-SAUR19%E

samba-eod1-2 97

o
-l

(20}
-

L4

N O [a'=
- ]

L1

Figure 3. Heat map representing the effect of the binary combinations for rosette and leaf area (A) in reciprocal
heterozygous crosses and (B) homozygous lines. C/W represents the percentage of the rosette size of the
combinations compared to the WT. Percentages of the observed sizes of the cotyledons (LO) until leaf 6 (L6)

and the complete rosette are shown compared to the expected if non-interacting value (EXPni). The color

code represents the range of differences with dark pink being the lowest and deep green being the highest
value.

DOI: 10.7554/eLife.02252.072

The following figure supplements are available for figure 3:

Figure supplement 1. Statistical output of the phenotypic data for the heterozygous combination EXPT0F-BRI1E,
DOI: 10.7554/elife.02252.073

Figure supplement 2. Statistical output of the phenotypic data for the heterozygous combination
SAURT9E-BRI1°E,

DOI: 10.7554/elLife.02252.074

Figure supplement 3. Statistical output of the phenotypic data for the heterozygous combination
SAUR19%E-ami-ppd.

DOI: 10.7554/elife.02252.075

Figure 3. Continued on next page
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Figure 3. Continued

Figure supplement 4. Relative gene expression levels in the homozygous binary combinations and their controls.
DOI: 10.7554/eLife.02252.076

Figure supplement 5. Statistical output of the phenotypic data for the homozygous combination
ami-ppd-SAURT9CE.

DOI: 10.7554/eLife.02252.077

Figure supplement 6. Statistical output of the phenotypic data for the homozygous combination samba-eod1-2.
DOI: 10.7554/eLife.02252.078

Figure supplement 7. Statistical output of the phenotypic data for the homozygous combination da1-1-SAURT9°E.
DOI: 10.7554/elife.02252.079

Cellular analysis of ami-ppd-SAUR19°¢

In order to explain the cause for the observed synergistic phenotype at a cellular level, we quantified
cell numbers and cell size in the homozygous combination ami-ppd-SAURT9%E. In the ami-ppd line, in
which PPD1 and PPD2 expression is downregulated, the increased leaf size results from a prolonged
division of meristemoids (White, 2006), whereas overexpression of SAUR19 leads to cell enlargement
(Spartz et al., 2012). Samples of leaf 3 were harvested at 21 DAS, cleared and cell drawings of the
abaxial epidermis were analyzed. As shown in Figure 4, the larger leaves of SAUR19°E contain less but
larger cells, whereas in leaves of ami-ppd more cells are produced. In the latter, an observed reduction
in average cell area results from the presence of a larger amount of smaller cells surrounding the

>
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* = Cell number
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P e

ami-ppd SAUR19°F ami-ppd-SAUR19°%

percentage to the wild type

SAUR19°F ami-ppd-SAUR19°F

Figure 4. Cellular basis of the difference in leaf size observed for the homozygous line amippd-SAURT9°F and the
corresponding controls. (A) The graphs represent the percentage difference of leaf area, cell number and cell area
between a transgenic and the WT. (n = 3; *p<0.05). (B) Representative drawing of cells in the different lines. Cells
are colored in function of their area. Red: cells smaller than 1.25 E** mm?, light green: cell area ranging from 1.25 E**
mm?to 1.6 E~* mm?, medium green: cell area ranging from 1.6 E=> mm? to 3.2 E* mm?, dark green: cells larger than
6.4 E* mm?, stomata are marked in grey.

DOI: 10.7554/eLife.02252.080
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stomata which do not reach the mature wild-type size (Figure 4B). In the homozygous ami-ppd-
SAUR19 line, we observed an increased cell number compared to the WT, but to a lower extend than
in the ami-ppd line, and an increased cell area similar to that of SAUR19°E. Thus the effect of SAUR19°F
allows for an increased cell expansion of the many small cells resulting from PPD downregulation.

Discussion

In order to identify potential interactions existing within the genetic network regulating leaf growth,
we pairwised combined 13 gene perturbations each leading to an enhanced leaf size and looked for
positive interactions resulting in an increased leaf area larger than the additive combination of the
single perturbations.

From this screen, we found that 61% of the paired perturbations showed epistasis: 38% of the studied
gene combinations further enhanced leaf organ size synergistically and 23% negatively influenced leaf
size. Studies using limited numbers of mutations, random or affecting a specific trait, also showed that
epistasis is common, although lower levels of interactions were found (Clark and Wang, 1997, Magwire
et al., 2010). In D. melanogaster, for example, 35 of 128 (27%) of random paired mutations showed
epistasis (Clark and Wang, 1997). Larger-scale studies, in systems allowing automated quantitative
assays, identified between 13 and 35% of epistatic effects (Byrne et al., 2007, St Onge et al., 2007).
The large number of interactions we identified could be explained by the fact that we studied a set of
perturbations, including loss and gain of function, leading to one particular phenotype, namely an
increase of leaf area. In model systems permitting genome-wide genetic interactions assays, all genes
are either knocked down or knocked out and these perturbations can therefore affect the studied trait,
for example fitness, by increasing it or decreasing it. In D. melanogaster, the study of ten mutations
leading to an increased life span showed that paired combinations have high levels of connections, with
21 significant epistatic interactions in males and/or females (47%) observed (Magwire et al., 2010).

Interestingly, three genes, SAMBA, BRI1 and SAUR19, were found to lead to a synergistic effect in
the majority of combinations they were part of. Large-scale genetic interaction studies in yeast and
nematodes have shown that most genes in a network have only a few interactions, while a limited
number of genes show multiple interactions and are therefore considered as network hubs mediating
across-process connections (Lehner et al., 2006; Baryshnikova et al., 2010; Costanzo et al., 2010).
Despite the relative small scale of the study presented here, our observations suggest that SAMBA,
BRI1 and SAUR19 play a central role in the leaf growth regulatory networks.

Two of these highly connected genes in synergistic combinations, BRIT and SAURT9, have a known
role in hormone signaling. Interestingly, yeast studies have shown that highly connected genes in a
genetic network tend to be pleiotropic and multi-functional (Costanzo et al., 2010), similar to plant
hormones which regulate multiple processes. BRI1 is a receptor of the brassinosteroid (BR) hormone
which plays a crucial role in several biological processes, including leaf growth, as severe dwarfism is
observed in bri1 mutants and other mutants of the BR biosynthesis and signaling pathways (Clouse
et al., 1996; Vert et al., 2008). BRI1 is highly expressed in all organs during early seedling develop-
ment (Friedrichsen et al., 2000) similarly to highly connected genes in yeast which show high mRNA
levels (Costanzo et al., 2010). Additionally, introduction of BRIT°€ into P10-CKX3°E, which has a smaller
rosette size than WT plants, results in positive epistatic effects on shoot growth (Vercruyssen et al.,
2011), highlighting the importance of this gene in leaf growth regulation. SAUR19 belongs to the family
of SAUR genes known to be rapidly and strongly induced by auxin (Hagen and Guilfoyle, 2002), which
plays a major role in the initiation of leaf primordia, the formation of vascular patterns and leaf shape,
but also in the regulation of leaf cell expansion (Chen et al., 2001; Wilmoth et al., 2005; Scarpella
et al., 2010). SAUR19 is a positive regulator of cell expansion, most likely through the modulation of
auxin transport (Spartz et al., 2012). Our findings therefore suggest that alterations of BR or auxin
signaling in the binary combinations could potentiate the effect of several growth-promoting genes.

Interactions between BR and other plant hormones have been shown for several physiological
and developmental processes (Choudhary et al., 2012; Li and He, 2013; Zhu et al., 2013). BR and
auxin interactions exist at multiple levels, including hormone synthesis, transport, signal transduc-
tion, and gene transcription. For example, microarray studies have revealed similar effects of BR and
auxin on a large number of genes, including a member of the SAUR family, SAUR15 (Goda et al.,
2004, Nemhauser et al., 2004; Walcher and Nemhauser, 2012). Interestingly, exogenous applica-
tion of both hormones leads to a synergistic induction of many common targets (Nemhauser et al.,
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2004; Vert et al., 2008). In addition, auxin can increase the biosynthesis of BRs (Chung et al., 2011,
Yoshimitsu et al., 2011) and the BR-regulated BIN2 kinase contributes to a synergistic increase in
auxin-induced gene expression (Vert et al., 2008). The overexpression of both BRI1 and SAUR19,
involved in BR perception and auxin transport, respectively, could therefore amplify the effect of both
hormones, hereby leading to the observed synergism in leaf growth.

Studies in yeast have shown that most genetic interactions occur between genes involved in the
same biological process, except for highly connected genes (Tong et al., 2004; Costanzo et al., 2010).
In agreement with these studies, we found that by combining AN3°F with GRF5°, shown to interact in
a yeast two-hybrid assay (Horiguchi et al., 2005), the leaf size is increased more than expected. A sim-
ilar effect is seen when BRI1°F and ami-ppd, both producing enlarged and curled leaves (Wang et al.,
2001; White, 2006), are combined. Moreover, PPD genes regulate the division of dispersed meriste-
moid cells in the leaf epidermis, which will give rise to the stomatal lineage (White, 2006) and BRs have
been shown to control stomatal development (Gudesblat et al., 2012; Kim et al., 2012; Khan et al.,
2013). In addition, in BRI1 overexpressing seedlings, PPD2 has been reported to be downregulated
(Gonzalez et al., 2010). In literature, the combination of da1-eod has been reported to show a positive
epistatic effect on leaf growth. Both proteins are suggested to work in ubiquitin-mediated proteolysis
that could modulate the activity of a shared, yet unknown target (Li et al., 2008). However, not only
combining growth-regulating genes that are interconnected can lead to larger phenotypes than
expected, also combining cell proliferation with cell expansion leads to positive effects on leaf size as
found in the combinations ami-ppd-SAUR19°¢, GRF5°-SAUR 19°F and samba-EXP10°E. In addition, the
combination of lines positively affecting distinct growth processes seems to allow compensating nega-
tive effects sometimes observed when constitutively expressing or strongly downregulating growth
regulators, such as observed in ami-ppd-SAUR19°F (Figure 4). In plants overexpressing GRF5 and jaw-D,
each promoting cell proliferation, a reduction in cell area has also been reported (Gonzalez et al.,
2010). Interestingly, when these genes are combined with SAURT9, a synergistic effect on growth can
be observed, similar to ami-ppd-SAUR19°E. This suggests that the double transgenic line can acquire
the benefits from both genes and therefore enhance leaf size more than expected. Such compensation
could be lacking in the negative combinations we observed, therefore leading to the formation of
smaller plants than expected. For example, by combining GRF5 and jaw-D, both producing more
but smaller cells, the negative effect on leaf size could be caused by overstimulation of cell division
that affects the overall growth as observed when E2Fa and DPa are overexpressed simultaneously
(De Veylder et al., 2002). These findings highlight the challenge of studying genetic interactions in
multicellular organisms, compared to single cell systems such as yeast. Genetic interactions observed
at the organ level can reflect connections between genes working in the same pathway, but also the
interconnection of several processes such as cell division and cell expansion which occur in different cell
types and tissues, at different rates and developmental stages. Although yeast is heavily used as a
model to identify genetic interactions, it will be essential to also use multicellular organisms as a model
for genetic interactions to capture the complex relationship between developmental processes.

In this study we searched for binary combinations of growth-regulating genes exhibiting an increase
in leaf growth larger than the addition of the two single transgenic parents. In plants and animals, the
phenomenon of heterosis or hybrid vigor corresponds to the increased performance of a hybrid off-
spring compared to its parents (Schnable and Springer, 2013). Heterosis has been proposed to arise
from various mechanisms such as intra-allelic dominance and intra-allelic over-dominance, but emerg-
ing evidence also exists for the contribution of inter-gene interactions, or epistasis (Kaeppler, 2012;
Chen, 2013; Schnable and Springer, 2013). Our findings suggest that differences in expression of
growth-promoting genes in natural variants could lead to synergistic effects in hybrids. For example,
one could imagine that in one variant, PPD is lowly expressed, whereas in another variant SAURT9 is
highly expressed. The combination of both genes in a cross of natural variants could lead to a syner-
gistic increase in leaf size as observed in our study. Heterosis could therefore originate, in part, from
the assembly of the effects of various pairwised combinations of growth-regulating genes. Another
theory to explain heterosis describes the fact that hybrid vigor allows for the compensation of small
negative alleles (Kaeppler, 2012, Chen, 2013; Schnable and Springer, 2013). In our study, we also
found that negative effects of some perturbations can be compensated in pairwised combinations,
allowing the appearance of a synergistic effect on growth, such as in the cross ami-ppd-SAUR19°E.

So far, genetic engineering of crops mainly has been commercially successful for input traits,
such as insect tolerance and herbicide resistance (http://www.isaaa.org). Engineering quantitative,
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yield-related traits, such as drought tolerance and enhanced biomass production, turned out to be much
more difficult. The current study illustrates that gene combinations have great promise to successfully
engineer quantitative traits. Furthermore, the observation that genes stimulating cell proliferation
combine remarkably well with genes enhancing cell expansion, argues for a need for further in-depth
analysis of how single genes promote organ growth. A better understanding of the mode of action of
growth- and/or yield-enhancing genes will allow for rationalizing which gene stacks have the highest
probability to give successful results. Future prospects of combining multiple genes or even entire
circuits of networks using synthetic biology approaches offer great perspectives to further enhance
crop yield and to deliver sufficient food for the growing world demand.

Materials and methods

Plant material

Seeds of A. thaliana (L) Heyhn. ecotype Columbia-0 (Col-0) and all mutants (Table 1) were grown on soil
and kept in the same growth room for 25 days, when flower stalks started to emerge. For all single inser-
tion locus transgenic lines, binary crosses were made in one direction; for a selection of these lines,
reciprocal crosses were made and homozygous lines were produced.

Growth analysis

All plants were grown on plates containing half-strength MS medium (Murashige and Skoog, 1962)
supplemented with 1% sucrose with a density of one plant per 4 cm?2. The seeds were stratified for
2 days at 4°C and placed in growth rooms kept at 21°C and 16-hr day/8-hr night cycles. Plants were
grown in three experiments, consisting of 16 replicates per experiment. To ensure environmental condi-
tions are similar between the experiments, they were performed consecutively in the same growth
chamber on the same shelf. To prevent positional effects on plant growth, all plates were randomized
every 2 days. We set out to grow all genotypes simultaneously in three repeats, but due to germination
issues with some seed batches, a total of 5 experiments have been performed to obtain three repeats
for each genotype, with the exception of the cross ANT®-da1-1 for which we could obtain results in
one repeat. At 21 DAS, individual leaves (cotyledons and rosette leaves) were dissected at the base of
the petiole and their area was measured with ImageJ v1.45 (NIH; http://rsb.info.nih.gov/ij/).

RNA extraction, cDNA preparation and q-RT-PCR

Total RNA was extracted from flash-frozen seedlings with TRIzol reagent (Invitrogen, Belgium). To elimi-
nate the residual genomic DNA present in the preparation, the RNA was treated by RQ1 RNAse-free
DNase according to the manufacturer's instructions (Promega, The Netherlands, http://www.promega.
com) and purified with the RNeasy Mini kit (Qiagen, The Netherlands, http://www.giagen.com).
Complementary DNA was made with the iScript cDNA Synthesis kit from Biorad (Biorad, Belgium,
http://www.bio-rad.com) according to the manufacturer's instructions. Q-RT-PCR was done on a
LightCycler 480 (Roche, Belgium, http://www.roche.com) in 384-well plates with LightCycler 480 SYBR
Green | Master (Roche) according to the manufacturer's instructions. Primers were designed with the
Primer3 (http://frodo.wi.mit.edu/) (Supplementary file 2). Data analysis was performed using the
AACT method (Pfaffl, 2001), taking the primer efficiency into account. The data was normalized using
six normalization genes (UBQ10, CDKA1, CBP20, AT1G13320, AT2G32170, and AT2G28390) according
to the GeNorm algorithm (Vandesompele et al., 2002).

Microscopy for epidermal cell size measurements

For the cellular analysis, samples of leaf 3 were cleared in 70% ethanol and mounted in lactic acid on a
microscope slide. The total leaf blade area was measured for 10 representative leaves under a dark-field
binocular microscope. Abaxial epidermal cells along the complete proximal-distal axis of the leaves were
drawn with a microscope equipped with differential interference contrast optics (DM LB with 403 and
633 objectives; Leica) and a drawing tube. Photographs of leaves and scanned cell drawings were
used to measure leaf and cell area, respectively, with ImageJ v1.45 (NIH; http://rsb.info.nih.gov/ij/),
from which the cell numbers were calculated (De Veylder et al., 2001).

Statistical analysis
The leaf series data analysis yields the size of each individual leaf of the rosette. From this data, the rosette
area was calculated by summating the area of all separate leaves. A mixed model analysis was performed
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on the log, transformed rosette areas using Genotype as a fixed factor. Each experiment was repeated
three times. This Experiment effect was included as a random factor in the model to account for correlation
between measurements done within the same experiment. The Genotype*Experiment interaction was
included in the model when it was found to be significant (p<0.05), based on a likelihood ratio test. For
all described combinations the variation attributed to the Genotype was much larger than that attributed
to the interaction between Genotype and Experiment. Severe outliers, caused by germination problems,
were removed prior to the analysis. Least square means estimates for the rosette area were calculated.

Significant differences between the rosette area (RA) of the cross and its parental lines, as well as
with the reference plants, were determined using the described mixed model (WALD-type Ill tests of
fixed effects). To test for synergistic effects following null hypothesis was set up:

log, (@cross) =log, (ﬂcontro”) +log, (RA ooz ) — 09, (@wildtype)

Through log-transformation of the data, we apply an additive model with a multiplicative scale
(Koornneef et al., 1998; Phillips, 2008, Horn et al., 2011). As control lines the appropriate heterozygous
parental lines were used.

By rearranging terms we get:

log, (ﬂcross) —log, (ﬂcontro“) —log, (RA_,402) + 109, (ﬂwndrype)=0

A FDR multiple testing correction was applied. Synergistic effects were assumed when the null hypo-
thesis was rejected at a FDR level of 0.05. The model was fit with the mixed procedure from SAS. To
estimate repeatability (broad sense heritabilities at the individual level), the mixed model was refit with
genotype, experiment and genotype*experiment as random terms in the model (Supplementary file 3).

The leaf series data was analyzed using repeated measurements analysis with either the hpmixed
or mixed procedure from SAS. Data for leaves up to leaf 6 was included in the analysis. The four variance-
covariance structures available in the procedure were tested and the best structure was determined
based on the AIC values. For all combinations the unstructured structure was selected as the best. The
mean model included the main effects Genotype and Leaf, and their interaction term. To account for
dependencies of observations made within the same experiment, experiment was added as random
factor in the model. Based on a likelihood ratio test the Genotype*Experiment interaction was incor-
porated in the model when p<0.05. Several contrast hypotheses were set up. For all leaves, the area
in the reference line was compared to that in the cross and both parental lines. Synergistic effects of
the cross were determined for each leaf, as described previously.

For the cross ANT®t-da1-1, there was only one experiment that yielded results, therefore Experiment
was not included as a factor in the model.

All statistical analyses were performed with SAS 9.3 (SAS Institute Inc., 2011, Cary, North Carolina).
Residual diagnostics were carefully examined.
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