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NON-ASYMPTOTIC ORACLE INEQUALITIES FOR THE LASSO AND GROUP
LASSO IN HIGH DIMENSIONAL LOGISTIC MODEL

Marius Kwemou1,2

Abstract. We consider the problem of estimating a function f0 in logistic regression model. We propose
to estimate this function f0 by a sparse approximation build as a linear combination of elements of
a given dictionary of p functions. This sparse approximation is selected by the Lasso or Group Lasso
procedure. In this context, we state non asymptotic oracle inequalities for Lasso and Group Lasso
under restricted eigenvalue assumption as introduced in [P.J. Bickel, Y. Ritov and A.B. Tsybakov,
Ann. Statist. 37 (2009) 1705–1732].
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1. Introduction

During the last few years, logistic regression problems with more and more high-dimensional data occur in
a wide variety of scientific fields, especially in studies that attempt to find risk factors for disease and clinical
outcomes. For example in gene expression data analysis or in genome wide association analysis the number p
of predictors may be of the same order or largely higher than the sample size n (thousands p of predictors for
only a few dozens of individuals n, see for instance [11] or [37]). In this context the considered model is often
what we call here “usual” logistic regression. It is given by

P(Yi = 1) = π(zT
i β0) =

exp(zT
i β0)

1 + exp(zT
i β0)

, (1.1)

where one observes n couples (z1, Y1), . . . ,(zn, Yn) ∈ R
d ×{0, 1}, and β0 is the unknown parameter to estimate.

Throughout the paper, we consider a fixed design setting (i.e. z1, . . . , zn are considered deterministic).
In this paper, we consider a more general logistic model described by

P(Yi = 1) =
exp(f0(zi))

1 + exp(f0(zi))
, (1.2)

where the outputs Yi ∈ {0, 1}, i = 1, . . . , n are independent and f0 (not necessarily linear) is an unknown
function (see [12]). We aim at estimating f0 by constructing a suitable approximation. More precisely we
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1 Laboratoire de Mathématique et modélisation d’Evry UMR CNRS 8071- USC INRA, Université d’Évry Val d’Essonne, Evry,
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estimate f0 by a sparse approximation of linear combination of elements of a given dictionary of functions
D = {φ1, . . . , φp}: f̂(.) :=

∑p
j=1 β̂jφj(.). Our purpose expresses the belief that, in many instances, even if p is

large, only a subset of D may be needed to approximate f0 well. This construction can be done by minimizing
the empirical risk. However, it is well-known that with a large number of parameters in high dimensional data
situations, direct minimization of empirical risk can lead to Overfitting: the classifier can only behave well in
training set, and can be bad in test set. The procedure would also be unstable: since empirical risk is data
dependent, hence random, small change in the data can lead to very different estimators. Penalization is used to
overcome those drawbacks. One could use �0 penalization, i.e. penalized by the number of non zero coefficients
(see for instance AIC, BIC [1, 34]). Such a penalization would produce interpretable models, but leads to non
convex optimization and there is not efficient algorithm to solve this problem in high dimensional framework.
Tibshirani [32] proposes to use �1 penalization, which is a regularization technique for simultaneous estimation
and selection. This penalization leads to convex optimization and is important from computational point of
view (as well as from theoretical point of view). As a consequence of the optimality conditions, regularization
by the �1 penalty tends to produce some coefficients that are exactly zero and shrink others, thus the name
of Lasso (Least Absolute Shrinkage and Selection Operator). There exist some algorithms to solve this convex
problem, glmnet (see [10]), predictor-corector (see [30]) among the others.

A related Lasso-type procedure is the Group Lasso, where the covariates are assumed to be clustered in groups,
and instead of �1-penalty (summing the absolute values of each individual loading) the sum of Euclidean norms
of the loadings in each group is used. It shares the same kind of properties as the Lasso, but encourages predictors
to be selected in groups. This is useful when the set of predictors is partitioned into prescribed groups, only few
being relevant in the estimation process. Group Lasso has numerous applications: when categorical predictors
(factors) are present, the Lasso solution is not adequate since it only selects individual dummy variables instead
of whole factors. In this case, categorical variables are usually represented as groups of dummy variables. In
speech and signal processing for example, the groups may represent different frequency bands (see [21]).

1.1. Previously known results

Recently, a great deal of attention has been focused on �1-penalized based estimators. Most of this attention
concerns regression models and �1-penalized least squares estimator of parameters in high dimensional linear
and non linear additive regression. Among them one can cite [3,6–8,15,20], who have studied the Lasso for linear
model in nonparametric setting and proved sparsity oracle inequalities. Similar sparsity oracle inequalities are
proved in [4], and those results hold under the so-called restricted eigenvalue assumption on the Gram matrix.
Those kind of results have been recently stated for the variants of the Lasso. For instance Lounici et al. [18] under
a group version of restricted eigenvalue assumption stated oracle inequalities in linear gaussian noise model under
Group sparsity. Those results lead to the refinements of their previous results for multi-task learning (see [17]).
The behavior of the Lasso and Group Lasso regarding their selection and estimation properties have been studied
in: [16, 24, 25, 29, 39, 40] for Lasso in linear regression; [9, 26] for Group Lasso in linear regression; [14, 23, 33]
for additive models. Few results on the Lasso and Group Lasso concern logistic regression model. Most of
them are asymptotic results and concern the “usual” logistic regression model defined by (1.1). Zou [41] shows
consistency in variable selection for adaptive Lasso in generalized linear models when the number of covariables
p is fixed. Huang et al. [13] prove sign consistency and estimation consistency for high-dimensional logistic
regression. Meir et al. [22] shown consistency for the Group Lasso in “usual” logistic regression. Meir et al. [22]
shown consistency for the Group Lasso in “usual” logistic model (1.1). To our knowledge there are only two
non asymptotic results for the Lasso in logistic model: the first one is from Bach [2], who provided bounds for
excess risk (generalization performance) and estimation error in the case of “usual” logistic regression model
under restricted eigenvalue assumption on the weighted Gram matrix. The second one is from van de Geer [35],
who established non asymptotic oracle inequality for Lasso in high dimensional generalized linear models with
Lipschitz loss functions. Non asymptotic results concerning Group Lasso for logistic regression model have been
established by Negahban et al. [27], with the assumption that f0 is linear.
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In this paper, we state general non asymptotic oracle inequalities for the Lasso and Group Lasso in logistic
model within the framework of high-dimensional statistics. We do not assume that f0 is linear. We first state
“slow” oracle inequalities (see Thms. 2.1 and 3.1) with no assumption on the Gram matrix, on the regressors nor
on the margin. Secondly we provide “fast” oracle inequalities (see Thms. 2.2 and 3.2) under restricted eigenvalue
assumption and some technical assumptions on the regressors. In each case, we give, as a consequence, the
bounds for excess risk, L2( 1

n

∑n
i=1 δzi) and estimation errors for Lasso and Group Lasso in the “usual” logistic

regression. Our non asymptotic results lead to an adaptive data-driven weighting of the �1-norm (for the Lasso)
and group norm (for the Group Lasso).

This paper is organized as follows. In Section 2, we describe our weighted Group Lasso estimation procedure
and state non asymptotic oracle inequalities for the Group Lasso estimator. In Section 3 we describe our weighted
Lasso estimation procedure and state non asymptotic oracle inequalities for the Lasso estimator. In Sections 2.3
and 3.3 we give as a consequence the bounds for excess risk, L2( 1

n

∑n
i=1 δzi) and estimation errors for Lasso

and Group Lasso in the “usual” logistic regression (1.1). The proofs are gathered in Section 5 and Appendix.

1.2. Definitions and notations

Consider the matrix X = (φj(zi))1≤i≤n, 1≤j≤p and {Gl, l = 1, . . . , g} the partition of {1, . . . , p}. For any
β = (β1, . . . , βp)T = (β1, . . . , βg)T ∈ R

p, where βl = (βj)j∈Gl
for l = 1, . . . , g. Let fβ(.) =

∑p
j=1 βjφj(.) =∑g

l=1

∑
j∈Gl

βjφj(.). With our notations

(fβ(z1), . . . , fβ(zn))T = Xβ.

We define the group norm of β as

‖β‖2,q =

⎛
⎜⎝ g∑

l=1

⎛
⎝∑

j∈Gl

β2
j

⎞
⎠

q
2
⎞
⎟⎠

1
q

=

(
g∑

l=1

‖βl‖q
2

) 1
q

,

for every 1 ≤ q < ∞. For β ∈ R
p K(β) = {j ∈ {1, . . . , p} : βj �= 0} and J(β) = {l ∈ {1, . . . , g} : βl �= 0},

respectively the set of relevant coefficients (which characterizes the sparsity of the vector β) and the set of
relevant groups. For all δ ∈ R

p and a subset I ⊂ {1, . . . , p}, we denote by δI the vector in R
p that has the same

coordinates as δ on I and zero coordinates on the complement Ic of I. Moreover |I| denotes the cardinality of I.
For all h, f, g : R

d → R, we define the scalar products

〈f, h〉n =
1
n

n∑
i=1

h(zi)f(zi),

and

〈f, h〉g =
1
n

n∑
i=1

h(zi)f(zi)π(g(zi))(1 − π(g(zi))), where π(t) =
exp(t)

1 + exp(t)
·

We use the notation

qf (h) =
1
n

n∑
i=1

h(zi)(Yi − π(f(zi))),

‖h‖∞ = maxi |h(zi)| and ‖h‖n =
√〈h, h〉n =

√
1
n

∑n
i=1 h2(zi) which denote the L2( 1

n

∑n
i=1 δzi) norm (empirical

norm). We consider empirical risk (logistic loss) for logistic model

R̂(f) =
1
n

n∑
i=1

log(1 + exp(f(zi))) − Yif(zi). (1.3)
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We denote by R the expectation of R̂ with respect to the distribution of Y1, . . . , Yn, i.e.

R(f) = IE(R̂(f)) =
1
n

n∑
i=1

log(1 + exp(f(zi))) − IE(Yi)f(zi).

It is clear that R(.) is a convex function and f0 is a minimum of R(.) when the model is well-specified (i.e.
when (1.2) is satisfied). Note that with our notations

R(f) = IE(R̂(f)) = R̂(f) + qf0(f). (1.4)

We shall use both the excess risk of fβ̂ , R(fβ̂)−R(f0) and the prediction loss ‖fβ̂ − f0‖2
n to evaluate the quality

of the estimator. Note that R(fβ̂) corresponds to the average Kullback–Leibler divergence to the best model
when the model is well-specified, and is common for the study of logistic regression.

2. Group Lasso for logistic regression model

2.1. Estimation procedure

The goal is not to estimate the parameters of the “true” model (since there is no true parameter) but rather
to construct an estimator that mimics the performance of the best model in a given class, whether this model
is true or not. Our aim is then to estimate f0 in Model (1.2) by a linear combination of the functions of a
dictionary

D = {φ1, . . . , φp},
where φj : R

d → R and p possibly �n. The functions φj can be viewed as estimators of f0 constructed from
independent training sample, or estimators computed using p different values of the tuning parameter of the
same method. They can also be a collection of basis functions, that can approximate f0, like wavelets, splines,
kernels, etc. . . We implicitly assume that f0 can be well approximated by a linear combination

fβ(.) =
p∑

j=1

βjφj(.),

where β has to be estimated.
In this section we assume that the set of relevant predictors have known group structure, for example in

gene expression data these groups may be gene pathways, or factor level indicators in categorical data. And we
wish to achieves sparsity at the level of groups. This group sparsity assumption suggests us to use the Group
Lasso method. We consider the Group Lasso for logistic regression (see [22, 38]), where predictors are included
or excluded in groups. The logistic Group Lasso is the minimizer of the following optimization problem

fβ̂GL
:= argmin

fβ∈Γ

{
R̂(fβ) + r

g∑
l=1

ωl‖βl‖2

}
, (2.1)

where

Γ ⊆
⎧⎨
⎩fβ(.) =

g∑
l=1

∑
j∈Gl

βjφj(.), β ∈ R
p

⎫⎬
⎭ .

The tuning parameter r > 0 is used to adjust the trade-off between minimizing the loss and finding a
solution which is sparse at the group level, i.e., to a vector β such that βl = 0 for some of the groups l ∈
{1, . . . , g}. Sparsity is the consequence of the effect of non-differentiable penalty. This penalty can be viewed
as an intermediate between �1 and �2 type penalty, which has the attractive property that it does variables
selection at the group level. The weights ωl > 0, which we will define later, are used to control the amount of
penalization per group.
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2.2. Oracle inequalities

In this section we state non asymptotic oracle inequalities for excess risk and L2( 1
n

∑n
i=1 δzi) loss of Group

Lasso estimator. Consider the following assumptions:

There exists a constant 0 < c1 < ∞ such that max
1≤i≤n

|f0(zi)| ≤ c1. (B1)

There exists a constant 0 < c2 < ∞ such that max
1≤i≤n

max
1≤j≤p

|φj(zi)| ≤ c2. (B2)

There exists a constant C0 such that the set Γ = Γ (C0) = {fβ, max
1≤i≤n

|fβ(zi)| ≤ C0} is non-empty. (B3)

Assumptions (B1) and (B3) are technical assumptions useful to connect the excess risk and the L2( 1
n

∑n
i=1 δzi)

loss (see Lem. 5.1). An assumption similar to (B1) has been used in [7] to prove oracle inequality in gaussian
regression model. The same kind of assumption as (B3) has been made in [31] to prove oracle inequality for
support vector machine type with �1 complexity regularization.

Theorem 2.1. Let fβ̂GL
be the Group Lasso solution defined in (2.1) with r ≥ 1 and

ωl =
2
√|Gl|

n

√√√√1
2
max
j∈Gl

n∑
i=1

φ2
j (zi) (x + log p) +

2c2

√|Gl|
3n

(x + log p) , (2.2)

where x > 0. Under assumption (B2), with probability at least 1 − 2 exp(−x) we have

R(fβ̂GL
) − R(f0) ≤ inf

β∈Rp

{
R(fβ) − R(f0) + 2r‖β‖2,1 max

1≤l≤g
ωl

}
. (2.3)

The first part of the right hand of Inequality (2.3) corresponds to the approximation error (bias). The selection
of the dictionary can be very important to minimize this approximation error. It is recommended to choose
a dictionary D such that f0 could well be approximated by a linear combination of the functions of D. The
second part of the right hand of Inequality (2.3) is the variance term and is usually referred as the rate of
the oracle inequality. In Theorem 2.1, we speak about “slow” oracle inequality, with the rate at the order
‖β‖2,1

√
log p/n for any β. Moreover this is a sharp oracle inequality in the sense that there is a constant 1

in front of term inf
β∈Rp

{R(fβ) − R(f0)}. This result is obtained without any assumption on the Gram matrix

(Φn = XT X/n). In order to obtain oracle inequality with a “fast rate” of order log p/n we need additional
assumption on the restricted eigenvalue of the Gram matrix, namely the restricted eigenvalue assumption.

For some integer s such that 1 ≤ s ≤ g and a positive number a0, the following condition holds (RE1)

μ1(s, a0) := min
K⊆{1,...p}:|K|≤s

min
Δ�=0:‖ΔKc‖2,1≤a0‖ΔK‖2,1

‖XΔ‖2√
n‖ΔK‖2

> 0.

This is a natural extension to the Group Lasso of restricted eigenvalue assumption introduced in [4] (or As-
sumption (RE3) used below) for the usual Lasso. The only difference lies on the set where the minimum is
taken: for the Lasso the minimum is taken over {Δ �= 0 : ‖ΔKc‖1 ≤ a0‖ΔK‖1} whereas for the Group Lasso
the minimum is over {Δ �= 0 : ‖ΔKc‖2,1 ≤ a0‖ΔK‖2,1}. This assumption has already been used in [17, 18] to
prove oracle inequality for linear gaussian noise model under Group sparsity and for multi-task learning. To
emphasize the dependency of Assumption (RE1) on s and a0 we will sometimes refer to it as RE(s, a0).

Theorem 2.2. Let fβ̂GL
be the Group Lasso solution defined in (2.1) with ωl defined as in (2.2). Fix η > 0 and

1 ≤ s ≤ g, assume that (B1), (B2), (B3) and (RE1) are satisfied, with a0 = 3 + 4/η. Thus with probability at
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least 1 − 2 exp(−x) we have

R(fβ̂GL
) − R(f0) ≤ (1 + η) inf

fβ∈Γ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R(fβ) − R(f0) +
c(η)|J(β)|r2

(
max
1≤l≤g

ωl

)2

c0ε0μ1(s, a0)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (2.4)

and

‖fβ̂GL
− f0‖2

n ≤ c′0
4c0ε0

(1 + η) inf
fβ∈Γ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖fβ − f0‖2

n +
4c(η)|J(β)|r2

(
max
1≤l≤g

ωl

)2

c′0c0ε20μ1(s, a)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (2.5)

where c(η) is a constant depending only on η; c0 = c0(C0, c1) and c′0 = c′0(C0, c1) are constants depending on
C0 and c1; ε0 = ε0(c1) is a constant depending on c1; and r ≥ 1.

In Theorem 2.2, the variance terms are of order log p/n. Hence we say that the corresponding non asymptotic
oracle inequalities have “fast rates”. For the best of our knowledge, Inequalities (2.3), (2.4) and (2.5) are the
first non asymptotic oracle inequalities for the Group Lasso in logistic regression model. These inequalities allow
us to bound the prediction errors of Group Lasso by the best sparse approximation and a variance term. The
major difference with existing results concerning Group Lasso for logistic regression model (see [22,27]) is that
f0 is not necessarily linear.

Remark 2.3. Our results remain true if we assume that we are in the “neighborhood” of the target function.
If we suppose that there exists ζ such that max1≤i≤n |fβ(zi) − f0(zi)| ≤ ζ, then Lemma 5.1 is still true.

Remark 2.4. The choice of the weights ω� comes from Bernstein’s inequality. We could also use the following
weights

ω′
l =

2
√|Gl|

n

√√√√2max
j∈Gl

n∑
i=1

E[φ2
j (zi)ε2i ] (x + log p) +

2
√|Gl| max

1≤i≤n
max
j∈Gl

|φj(zi)|
3n

(x + log p) ,

where εi = Yi −E[Yi], i = 1, . . . , n. Theorems 2.1 and 2.2 still hold true with such weights ω′
l. But these weights

depend on the unknown function f0 to be estimated through IE(ε2i ) = π(f0(zi)(1−π(f0(zi)). This is the reason
for using weights ωl slightly greater than ω′

l. We also note that our weights are proportional to the square root
of groups sizes, which is in acordance with the weights previously proposed for grouping strategies (see [22]).

2.3. Special case: f0 linear

In this section we assume that f0 is a linear function i.e. f0(zi) = fβ0(zi) =
∑g

l=1

∑
j∈Gl

βjzij . Denote
by X = (zij)1≤i≤n,1≤j≤p, the design matrix. Let zi = (zi1, . . . , zip)T be the ith row of the matrix X and
z(j) = (z1j , . . . , znj)T is jth column. For i = 1, . . . , n

P(Yi = 1) =
exp(zT

i β0)
1 + exp(zT

i β0)
· (2.6)

This corresponds to the “usual” logistic regression (1.1) i.e. logistic model that allows linear dependency be-
tween zi and the distribution of Yi. In this context, the Group Lasso estimator of β0 is defined by

β̂GL := argmin
β: fβ∈Γ

1
n

n∑
i=1

{
log(1 + exp(zT

i β)) − Yiz
T
i β
}

+ r

g∑
l=1

ωl‖βl‖2. (2.7)
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Corollary 2.5. Let assumption RE1(s,3) be satisfied and |J(β0)| ≤ s, where 1 ≤ s ≤ g. Consider the Group
Lasso estimator fβ̂GL

defined by (2.7) with

ωl =
2
√|Gl|

n

√√√√1
2
max
j∈Gl

n∑
i=1

z2
ij (x + log p) +

2c2

√|Gl|
3n

(x + log p) (2.8)

where x > 0. Under the assumptions of Theorem 2.2, with probability at least 1 − 2 exp(−x) we have

R(fβ̂GL
) − R(fβ0) ≤

9sr2

(
max
1≤l≤g

ωl

)2

μ2(s, 3)c0ε0
(2.9)

‖fβ̂GL
− fβ0‖2

n ≤
9sr2

(
max
1≤l≤g

ωl

)2

μ2(s, 3)c2
0ε

2
0

(2.10)

‖β̂GL − β0‖2,1 ≤
12rs

(
max
1≤l≤g

ωl

)2

μ2(s, 3)c0ε0( min
1≤l≤g

ωl)
(2.11)

‖β̂GL − β0‖q
2,q ≤

⎛
⎜⎜⎜⎝

12rs

(
max
1≤l≤g

ωl

)2

μ2(s, 3)c0ε0( min
1≤l≤g

ωl)

⎞
⎟⎟⎟⎠

q

for all 1 < q ≤ 2. (2.12)

Remark 2.6. In logistic regression model (3.7), if vector β0 is sparse, i.e. |J(β0)| ≤ s, then assumption (RE1)
implies that β0 is uniquely defined. Indeed, if there exists β∗ such that for i = 1, . . . , n, π(zT

i β0) = π(zT
i β∗), it

follows that Xβ0 = Xβ∗ and |J(β∗)| ≤ s. Then according to assumption RE(s, a0) with a0 � 1, we necessarily
have β0 = β∗. Indeed if RE(s, a0) is satisfied with a0 � 1, then min{‖Xβ‖2 : |J(β)| ≤ 2s, β �= 0} > 0.

Remark 2.7 (Theoretical advantage of Group Lasso over the Lasso). Concerning results on oracle inequality
for the Group Lasso few results exist. The first oracle inequality for the Group Lasso in the additive regression
model is due to [26]. Since then, some of these inequalities have been improved in Lounici et al. [18], concerning
in particular the gain on order rate. More precisely, Lounici et al. [18] have found a rate of order log g/n for
Group Lasso in gaussian linear model, which is better than is corresponding rate for the Lasso, log p/n (since
g ≤ p). This improvement seems mainly based on the assumption that the noise is gaussian. In our case (see
proof of Thm. 2.1, formula (5.3)) the empirical process involves non gaussian variables and thus their method
should not apply in our context. However the probability that their results are true depends on g whereas the
probability that our results hold does not depend on g.

We can find the rate of order log g/n by choosing this constant x in the weights in a certain manner. Indeed,
let us assume (without loss of generality) that the groups are all of equal size |G1| = · · · = |Gg| = m, so that
p = m.g. Since the weights in (2.2) are defined for all x > 0, if we take x = q log g − log m > 0 where q is a
positive constant such that gq > m. Then the weights in (2.2) become

ωl =
2
√|Gl|

n

√√√√1
2
max
j∈Gl

n∑
i=1

φ2
j (zi) [(1 + q) log g] +

2c2

√|Gl|
3n

[(1 + q) log g] ,

thus
ω2

l ∼ log g

n
,
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and the results in Theorems 2.1 and 2.2 hold with probability at least

1 − 2
m

gq
·

In the special case where the g > 2m these results are true for all q > 0.

2.4. Non bounded functions

The results of Corollary 2.5 are obtained (as the consequence of Thm. 2.2) with the assumptions that fβ0

and all fβ ∈ Γ are bounded. In some situations these assumptions could not be verified. In this section we will
establish the same results without assuming (B1) or (B3) i.e. neither fβ0 nor fβ is bounded. We consider the
Group Lasso estimator defined in (2.7) and the following assumption:

For some integer s such that 1 ≤ s ≤ g and a positive number a0, the following condition holds (RE2)

μ2(s, a0) := min
K⊆{1,...p}:|K|≤s

min
Δ�=0:‖ΔKc‖2,1≤a0‖ΔK‖2,1

ΔT XT DXΔ

n‖ΔK‖2
2

> 0,

where D = Diag (var(Yi)) .

This is an extension of the assumption RE1 to the weighted Gram matrix XT DX/n.

Theorem 2.8. Consider the Group Lasso estimator fβ̂GL
defined by (2.7) with wl defined as in (2.8) where

x > 0. Set v = max
1≤i≤n

max
1≤l≤g

‖zl
i‖2. Let assumptions (B2) and (RE2) be satisfied with

a0 =
3 max
1≤l≤g

ωl

min
1≤l≤g

ωl
·

If r(1 + a0)2 max
1≤l≤g

ωl ≤ μ2
2

3v|J| , with probability at least 1 − 2 exp(−x) we have

R(fβ̂GL
) − R(fβ0) ≤

9(1 + a0)2J(β0)|r2

(
max
1≤l≤g

ωl

)2

μ2
2(s, 3)

(2.13)

‖β̂GL − β0‖2,1 ≤
6(1 + a0)2|J(β0)|r

(
max
1≤l≤g

ωl

)
μ2

2(s, 3)
(2.14)

‖β̂GL − β0‖q
2,q ≤

⎛
⎜⎜⎝

6(1 + a0)2|J(β0)|r
(

max
1≤l≤g

ωl

)
μ2

2(s, 3)

⎞
⎟⎟⎠

q

for all 1 < q ≤ 2. (2.15)

Moreover if we assume that there exists 0 < ε0 ≤ 1/2 such that

ε0 ≤ π(fβ0(zi))[1 − π(fβ0(zi))] for all i = 1, . . . , n

then,

‖Xβ̂GL − Xβ0‖2
n ≤

36(1 + a0)2|J(β0)|r2

(
max
1≤l≤g

ωl

)2

μ2(s, 3)ε0
· (2.16)
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Inequalities (2.14) and (2.15) are the extensions of the results in [2] for the Lasso to Group Lasso in logistic
regression model.

In this section we studied some properties of the Group Lasso. However the Group Lasso is based on prior
knowledge that the set of relevant predictors have known group structure. If this group sparsity condition is not
satisfied, the sparsity can be achieve by simply using the Lasso. We will show in the next section how to adapt
the results of this section to the Lasso.

3. Lasso for logistic regression

3.1. Estimation procedure

The Lasso estimator fβ̂L
is defined as a minimizer of the following �1-penalized empirical risk

fβ̂L
:= argmin

fβ∈Γ

⎧⎨
⎩R̂(fβ) + r

p∑
j=1

ωj |βj |
⎫⎬
⎭ , (3.1)

where the minimum is taken over the set

Γ ⊆
⎧⎨
⎩fβ(.) =

p∑
j=1

βjφj(.), β = (β1, . . . , βp) ∈ R
p

⎫⎬
⎭

and ωj are positive weights to be specified later. The “classical” Lasso penalization corresponds to ωj = 1,
where r is the tuning parameter which makes balance between goodness-of-fit and sparsity. The Lasso estimator
has the property that it does predictors selection and estimation at the same time. Indeed for large values of ωj ,
the related components β̂j are set exactly to 0 and the other are shrunken toward zero.

3.2. Oracle inequalities

In this section we provide non asymptotic oracle inequalities for the Lasso in logistic regression model.

Theorem 3.1. Let fβ̂L
be the �1-penalized minimum defined in (3.1). Let assumption (B2) be satisfied.

(A) Let x > 0 be fixed and r ≥ 1. For j = {1, . . . , p}, let

ωj =
2
n

√√√√1
2

n∑
i=1

φ2
j(zi)(x + log p) +

2c2(x + log p)
3n

· (3.2)

Thus with probability at least 1 − 2 exp(−x) we have

R(fβ̂L
) − R(f0) ≤ inf

β∈Rp

{
R(fβ) − R(f0) + 2‖β‖1r max

1≤j≤p
ωj

}
.

(B) Let A > 2
√

c2. For j = {1, . . . , p}, let ωj = 1, and

r = A

√
log p

n
·

Thus with probability at least 1 − 2p1−A2/4c2 we have

R(fβ̂L
) − R(f0) ≤ inf

β∈Rp

{
R(fβ) − R(f0) + 2A‖β‖1r

√
log p

n

}
·
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As previously, the variance terms are of order ‖β‖1

√
log p/n for any β. Hence these are sharp oracle inequali-

ties with “slow” rates. These results are obtained without any assumption on the Gram matrix. To obtain oracle
inequalities with a “fast rate”, of order log p/n, we need the restricted eigenvalue condition.

For some integer s such that 1 ≤ s ≤ p and a positive number a0, the following condition holds (RE3)

μ(s, a0) := min
K⊆{1,...p}:|K|≤s

min
Δ�=0:‖ΔKc‖1≤a0‖ΔK‖1

‖XΔ‖2√
n‖ΔK‖2

> 0.

This assumption has been introduced in [4], where several sufficient conditions for this assumption are de-
scribed. This condition is known to be one of the weakest to derive “fast rates” for the Lasso. For instance
conditions on the Gram matrix used to prove oracle inequality in [6–8] are more restrictive than restricted
eigenvalue assumption. In those papers either Φn is positive definite, or mutual coherence condition is im-
posed. We refer to [36] for a complete comparison of the assumptions used to prove oracle inequality for the
Lasso. Especially it is proved that restricted eigenvalue assumption is weaker than the neighborhood stability
or irrepresentable condition.

Theorem 3.2. Let fβ̂L
be the �1-penalized minimum defined in (3.1). Fix η > 0 and 1 ≤ s ≤ p. Assume that

(B1), (B2), (B3) and (RE3) are satisfied, with a0 = 3 + 4/η.

(A) Let x > 0 be fixed and r ≥ 1. For j = {1, . . . , p}, ωj defined as in (3.2). Thus with probability at least
1 − 2 exp(−x) we have

R(fβ̂L
) − R(f0) ≤ (1 + η) inf

fβ∈Γ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R(fβ) − R(f0) +
c(η)|K(β)|r2

(
max

1≤j≤p
ωj

)2

c0ε0μ2(s, 3 + 4/η)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.3)

and

‖fβ̂L
− f0‖2

n ≤ c′0
4c0ε0

(1 + η) inf
fβ∈Γ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖fβ − f0‖2

n +
4c(η)|K(β)|r2

(
max

1≤j≤p
ωj

)2

c′0c0ε20μ
2(s, 3 + 4/η)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

· (3.4)

(B) Let A > 2
√

c2. For j = {1, . . . , p}, let ωj = 1, and

r = A

√
log p

n
·

Thus with probability at least 1 − 2p1−A2/4c2 we have

R(fβ̂L
) − R(f0) ≤ (1 + η) inf

fβ∈Γ

{
R(fβ) − R(f0) +

A2c(η)
c0ε0μ2(s, 3 + 4/η)

|K(β)|r2 log p

n

}
, (3.5)

and

‖fβ̂L
− f0‖2

n ≤ c′0
4c0ε0

(1 + η) inf
fβ∈Γ

{
‖fβ − f0‖2

n +
4c(η)A2

c′0c0ε20μ
2(s, 3 + 4/η)

|K(β)|r2 log p

n

}
· (3.6)

In both cases c(η) is a constant depending only on η; c0 = c0(C0, c1) and c′0 = c′0(C0, c1) are constants
depending on C0 and c1; and ε0 = ε0(c1) is a constant depending on c1.

In this theorem the variance terms are of order |K(β)| log p/n. Such order in sparse oracle inequalities usually
refer to “fast rate”. This rate is of same kind of the one obtain in [4] for linear regression model. For the best
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of our knowledge, (3.4) and (3.6) are the first non asymptotic oracle inequalities for the L2( 1
n

∑n
i δzi) norm in

logistic model. Some non asymptotic oracle inequalities for excess risk like (3.3) or (3.5) have been established
in [35] under different assumptions. Indeed, she stated oracle inequality for high dimensional generalized linear
model with Lipschitz loss function, where logistic regression is a particular case. Her result assumes to be hold in
the “neighborhood” of the target function, while our result is true for all bounded functions. Note also that our
results hold under RE condition, which can be seen as empirical version of assumption C in [35]. The confidence
(probability that result holds true) of Inequality (3.3) does not depend on n or p while the confidence of her
results depends on n and p. Moreover, the weights we proposed from Bernstein’s inequality are different and
easy to interpret.

3.3. Special case: f0 linear

In this section we assume that f0 is a linear function that is f0(zi) = fβ0(zi) =
∑p

j=1 β0jzij = zT
i β0, where

zi = (zi1, . . . , zip)T . Denote X = (zij)1≤i≤n,1≤j≤p the design matrix. Thus for i = 1, . . . , n

P(Yi = 1) = π(zT
i β0) =

exp(zT
i β0)

1 + exp(zT
i β0)

· (3.7)

The Lasso estimator of β0 is thus defined as

β̂L := argmin
β: fβ∈Γ

⎧⎨
⎩ 1

n

n∑
i=1

{
log(1 + exp(zT

i β)) − Yiz
T
i β
}

+ r

p∑
j=1

ωj|βj |
⎫⎬
⎭ . (3.8)

When the design matrix X has full rank, the solution of optimization problem (3.8) is usually unique. When
p � n this infimum might not be unique.

Corollary 3.3. Let assumption RE(s,3) be satisfied and |K(β0)| ≤ s, where 1 ≤ s ≤ p. Consider the Lasso
estimator fβ̂L

defined by (3.8) with

ωj =
2
n

√√√√1
2

n∑
i=1

z2
ij(x + log p) +

2c2(x + log p)
3n

·

Under the assumptions of Theorem 3.2 with probability at least 1 − exp(−x) we have

R(fβ̂L
) − R(fβ0) ≤

9sr2

(
max

1≤j≤p
ωj

)2

μ2(s, 3)c0ε0
(3.9)

‖fβ̂L
− fβ0‖2

n ≤
9s2r2

(
max

1≤j≤p
ωj

)2

μ2(s, 3)c2
0ε

2
0

(3.10)

‖β̂L − β0‖1 ≤
12sr

(
max

1≤j≤p
ωj

)2

μ2(s, 3)c0ε0

(
min

1≤j≤p
ωj

) (3.11)

‖β̂L − β0‖q
q ≤

⎛
⎜⎜⎜⎝

12sr

(
max

1≤j≤p
ωj

)2

μ2(s, 3)c0ε0

(
min

1≤j≤p
ωj

)
⎞
⎟⎟⎟⎠

q

for all 1 < q ≤ 2. (3.12)
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If r = A
√

log p/n and ωj = 1 for all j ∈ {1, . . . , p} we have the same results with probability at least 1 −
2p1−A2/4c2 .

Line (3.9) and Line (3.11) of the corollary are similar to those of Theorem 5 in [2]. Note that, up to differences
in constant factors, the rates obtained in this corollary are the same as those obtained in Theorem 7.2 in [4] for
linear model with an s-sparse vector. Remark 2.6 remains true in this section.

4. Conclusion

In this paper we stated non asymptotic oracle inequalities for the Lasso and Group Lasso. Our results are non
asymptotic: the number n of observations is fixed while the number p of covariates can grow with respect to n
and can be much larger than n. The major difference with existing results concerning Group Lasso or Lasso for
logistic regression model is that we do not assume that f0 is linear. First we provided sharp oracle inequalities
for excess risk, with “slow” rates, with no assumption on the Gram matrix, on the regressors nor on the margin.
Secondly, under RE condition we provided “fast” oracle inequalities for excess risk and L2( 1

n

∑n
i=1 δzi) loss.

We also provided as a consequence of oracle inequalities the bounds for excess risk, L2( 1
n

∑n
i=1 δzi) error and

estimation error in the case where the true function f0 is linear (“usual” logistic regression (1.1)).

5. Proofs of main results

5.1. Proof of Theorem 2.1

Since β̂GL is the minimizer of R̂(fβ) + r
∑g

l=1 ωl‖βl‖2, we get

R(fβ̂GL
) − 1

n
εT Xβ̂GL + r

g∑
l=1

ωl‖β̂l
GL‖2 ≤ R(fβ) − 1

n
εT Xβ + r

g∑
l=1

ωl‖βl‖2,

where ε = (ε1, . . . , εn)T with εi = Yi −E[Yi] for i = 1, . . . , n. By applying Cauchy–Schwarz inequality, we obtain

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) +

g∑
l=1

1
n

√√√√∑
j∈Gl

(
n∑

i=1

φj(zi)εi

)2

‖(β̂GL − β)l‖2

+ r

g∑
l=1

ωl‖βl‖2 − r

g∑
l=1

ωl‖β̂l
GL‖2. (5.1)

Set Zl = n−1
√∑

j∈Gl
(
∑n

i=1 φj(zi)εi)
2
, for l ∈ {1, . . . , g} and the event

A =
g⋂

l=1

{Zl ≤ rωl/2} . (5.2)

We state the result on event A and find an upper bound of P(Ac).
On the event A:

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) + r

g∑
l=1

ωl‖(β̂GL − β)l‖2 + r

g∑
l=1

ωl‖βl‖2 − r

g∑
l=1

ωl‖β̂l
GL‖2.

This implies that

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) + 2r

g∑
l=1

ωl‖βl‖2.
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We conclude that on the event A we have

R(fβ̂GL
) − R(f0) ≤ inf

β∈Rp

{
R(fβ) − R(f0) + 2r‖β‖2,1 max

1≤l≤g
ωl

}
.

We now come to the bound of P(Ac) and write

P(Ac) = P

⎛
⎝ g⋃

l=1

⎧⎨
⎩
√√√√∑

j∈Gl

(
n∑

i=1

φj(zi)εi

)2

> nrωl/2

⎫⎬
⎭
⎞
⎠ (5.3)

≤
g∑

l=1

P

⎛
⎝
√√√√∑

j∈Gl

(
n∑

i=1

φj(zi)εi

)2

> nrωl/2

⎞
⎠ . (5.4)

For j ∈ Gl set T l
j =
∑n

i=1 φj(zi)εi, we have

P(Ac) ≤
g∑

l=1

P

⎛
⎝√∑

j∈Gl

(T l
j)2 > nrωl/2

⎞
⎠

=
g∑

l=1

P

⎛
⎝∑

j∈Gl

(T l
j)

2 > (nrωl)2/4

⎞
⎠ .

Using the fact that, for all l ∈ {1, . . . , g}⎧⎨
⎩
∑
j∈Gl

(T l
j)

2 > (nrωl)2/4

⎫⎬
⎭ ⊂ ∪

j∈Gl

{
(T l

j)
2 >

(nrωl)2

4|Gl|
}

, (5.5)

it follows that

P(Ac) ≤
g∑

l=1

∑
j∈Gl

P

(
|T l

j | >
nrωl

2
√|Gl|

)
·

For j ∈ Gl, set vl
j =
∑n

i=1 IE(φ2
j ε

2
i ). Since

∑n
i=1 φ2

j (zi) � 4vl
j, we have

P

(
|T l

j | >
nrωl

2
√|Gl|

)
≤ P

(
|T l

j | >
√

2vl
j (x + log p) +

c2

3
(x + log p)

)
, r ≥ 1.

By applying Bernstein’s inequality (see Lemma A.4) to the right hand side of the previous inequality we get

P

(
|T l

j | >
nωl

2
√|Gl|

)
≤ 2 exp (−x − log p) .

It follows that

P(Ac) ≤
g∑

l=1

∑
j∈Gl

P

(
|T l

j | >
nωl

2
√|Gl|

)
≤ 2 exp(−x). (5.6)

This ends the proof of the Theorem 2.1. �



322 M. KWEMOU

5.2. Proof of Theorem 2.2

Fix an arbitrary β ∈ R
p such that fβ ∈ Γ . Set δ = W (β̂GL − β) where W = Diag(W1, . . . , Wp) is a block

diagonal matrix, with Wl = Diag(ωl, . . . , ωl). Since β̂GL is the minimizer of R̂(fβ) + r
∑g

l=1 ωl‖βl‖2, we get

R(fβ̂GL
) − 1

n
εT Xβ̂GL + r

g∑
l=1

ωl‖β̂l
GL‖2 ≤ R(fβ) − 1

n
εT Xβ + r

g∑
l=1

ωl‖βl‖2.

On the event A defined in (5.2), adding the term r
2

∑g
l=1 ωl‖(β̂GL −β)l‖2 to both sides of inequality (5.1) yields

to

R(fβ̂GL
) +

r

2

g∑
l=1

ωl‖(β̂GL − β)l‖2 ≤ R(fβ) + r

g∑
l=1

ωl(‖(β̂GL − β)l‖2 − ‖β̂l
GL‖2 + ‖βl‖2).

Since ‖(β̂GL − β)l‖2 − ‖β̂l
GL‖2 + ‖βl‖2 = 0 for for l /∈ J(β) = J, we have

R(fβ̂GL
) − R(f0) +

r

2

g∑
l=1

ωl‖(β̂GL − β)l‖2 ≤ R(fβ) − R(f0) + 2r
∑
l∈J

ωl‖(β̂GL − β)l‖2. (5.7)

we get from equation (5.7) that

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) + 2r

∑
l∈J

ωl‖(β̂GL − β)l‖2. (5.8)

Consider separately the two events:

A1 = {2r
∑
l∈J

ωl‖(β̂GL − β)l‖2 ≤ η(R(fβ) − R(f0))},

and
Ac

1 = {η(R(fβ) − R(f0)) < 2r
∑
l∈J

ωl‖(β̂GL − β)l‖2}. (5.9)

On the event A ∩A1, we get from (5.8)

R(fβ̂GL
) − R(f0) ≤ (1 + η)(R(fβ) − R(f0)), (5.10)

and the result follows. On the event A ∩ Ac
1, all the following inequalities are valid. On one hand, by applying

Cauchy–Schwarz inequality, we get from (5.8) that

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) + 2r

√
|J(β)|

√∑
l∈J

ω2
l ‖(β̂GL − β)l‖2

2

≤ R(fβ) − R(f0) + 2r
√
|J(β)|‖δJ‖2. (5.11)

On the other hand we get from equation (5.7) that

1
2

g∑
l=1

ωl‖(β̂GL − β)l‖2 ≤ R(fβ) − R(f0) + 2r
∑
l∈J

ωl‖(β̂GL − β)l‖2,
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and using (5.9) we obtain

1
2

∑
l∈J

ωl‖(β̂GL − β)l‖2 +
1
2

∑
l∈Jc

ωl‖(β̂GL − β)l‖2 ≤ 2
η

∑
l∈J

ωl‖(β̂GL − β)l‖2 + 2
∑
l∈J

ωl‖(β̂GL − β)l‖2,

which implies
‖δJc‖2,1 ≤ (3 + 4/η)‖δJ‖2,1.

We can therefore apply assumption (RE1) with a0 = 3 + 4/η, and conclude that

μ2
1‖δJ‖2

2 ≤ ‖Xδ‖2
2

n
=

1
n

(β̂GL − β)T WXT XW (β̂GL − β) ≤ ( max
1≤l≤g

ωl)2‖fβ̂GL
− fβ‖2

n. (5.12)

Gathering equations (5.11) and (5.12) we get

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) + 2r( max

1≤l≤g
ωl)
√
|J(β)|μ−1

1 ‖fβ̂GL
− fβ‖n

≤ R(fβ) − R(f0) + 2r( max
1≤l≤g

ωl)
√
|J(β)|μ−1

1 (‖fβ̂GL
− f0‖n + ‖fβ − f0‖n).

We now use Lemma 5.1 which compares excess risk to empirical norm.

Lemma 5.1. Under assumptions (B1) and (B3) we have

c0ε0‖fβ − f0‖2
n ≤ R(fβ) − R(f0) ≤ 1

4
c′0‖fβ − f0‖2

n.

where c0 and c′0 are constants depending on C0; and ε0 is a constant depending on c1 and c2.

(See the Appendix for the proof of Lem. 5.1).
Consequently

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) +

2r( max
1≤l≤g

ωl)
√|J(β)|μ−1

1

√
c0ε0

√
R(fβ̂GL

) − R(f0)

+
2r( max

1≤l≤g
ωl)
√|J(β)|μ−1

1

√
c0ε0

√
R(fβ) − R(f0).

Using inequality 2uv < u2/b + bv2 for all b > 1, with u = r( max
1≤l≤g

ωl)
√

|J(β)|μ−1
1√

c0ε0
and v being either√

R(fβ̂GL
) − R(f0) or

√
R(fβ) − R(f0) we have

R(fβ̂GL
) − R(f0) ≤ R(fβ) − R(f0) + 2b

⎛
⎝r( max

1≤l≤g
ωl)
√|J(β)|μ−1

1

√
c0ε0

⎞
⎠

2

+
R(fβ̂GL

) − R(f0)

b
+

R(fβ) − R(f0)
b

·

This implies that

R(fβ̂GL
) − R(f0) ≤ b + 1

b − 1

⎧⎨
⎩R(fβ) − R(f0) +

2b2r2( max
1≤l≤g

ωl)2|J(β)|
(b + 1)μ2

1c0ε0

⎫⎬
⎭ · (5.13)
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Now taking b = 1 + 2/η leads to

R(fβ̂GL
) − R(f0) ≤ (1 + η)

⎧⎨
⎩R(fβ) − R(f0) +

c(η)r2( max
1≤l≤g

ωl)2|J(β)|
μ2

1c0ε0

⎫⎬
⎭ · (5.14)

According to inequalities (5.10) and (5.14) we conclude that on event A,

R(fβ̂GL
) − R(f0) ≤ (1 + η)

⎧⎨
⎩R(fβ) − R(f0) +

c(η)r2( max
1≤l≤g

ωl)2|J(β)|
μ2

1c0ε0

⎫⎬
⎭ , (5.15)

where c(η) = 2(1 + 2/η)2/(2 + 2/η). Inequality (2.4) of the Theorem 2.2 follows. Inequality (2.5) follows from
Lemma 5.1. This ends the proof of the Theorem 2.2 by considering (5.6). �

5.3. Proof of Corollary 2.5

Set δ = W (β̂GL−β0), Line (2.9) of Corollary 2.5 follows directly from equation (5.15) with β = β0 and η = 1.
Note that on the event A defined in (5.2), we have

‖δJ(β0)c‖2,1 ≤ 3‖δJ(β0)‖2,1. (5.16)

Indeed, since β̂GL is the minimizer of R̂(fβ) + r
∑g

l=1 ωl‖βl‖2,

R(fβ̂GL
) − R(fβ0) + r

g∑
l=1

ωl‖β̂l
GL‖2 ≤ 1

n
εT X(β̂GL − β0) + r

g∑
l=1

ωl‖βl
0‖2

which implies

r‖Wβ̂GL‖2,1 ≤
g∑

l=1

1
n

√√√√∑
j∈Gl

(
n∑

i=1

(zij)εi

)2

‖(β̂GL − β0)l‖2 + r‖Wβ0‖2,1.

On the event A we have

‖W (β̂GL)J(β0)‖2,1 + ‖W (β̂GL)Jc(β0)‖2,1 ≤ 1
2
(‖W (β̂GL − β0)J(β0)‖2,1 + ‖W (β̂GL)Jc(β0)‖2,1)

+ ‖W (β0)J(β0)‖2,1.

This yields to (5.16). Line (2.10) follows from line (2.9) by applying Lemma 5.1. Line (2.11) follows from
line (2.10) by using Equation (5.12) and ‖δ‖2

2,1 ≤ 16s‖δJ(β0)‖2
2. Line (2.12) is the consequence of the Lemma A.3

with al = ‖(β̂GL − β0)l‖2 and

b1 =
12rs

(
max
1≤l≤g

ωl

)2

μ2(s, 3)c0ε0( min
1≤l≤g

ωl)
· �

5.4. Proof of Theorem 2.8

On the event A defined in (5.2), using inequality (5.1) with β = β0 yields

R(fβ̂GL
) − R(fβ0) ≤

g∑
l=1

3rωl

2
‖(β̂GL − β0)l‖2. (5.17)
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By Lemma A.1 we have,

〈h, h〉fβ0

‖h‖2∞
(exp(−‖h‖∞) + ‖h‖∞ − 1) ≤ R(fβ̂GL

) − R(fβ0) (5.18)

where

h(zi) = (fβ̂GL
− fβ0)(zi) =

g∑
l=1

∑
j∈Gl

(β̂GL,j − β0j)zij .

One can easily verify that‖h‖∞ ≤ v‖δ′‖2,1 with δ′ = β̂GL − β0. Equation (5.18) and the decreasing of t �→
exp(−t)+t−1

t2 lead to

δ
′T XT DXδ′

n(v‖δ′‖2,1)2
(exp(−v‖δ′‖2,1) + v‖δ′‖2,1 − 1) ≤ R(fβ̂GL

) − R(fβ0).

Now, inequality (5.16) implies

‖δ′J(β0)c‖2,1 ≤ 3

(
max
1≤l≤g

ωl

)
min

1≤l≤g
ωl

‖δ′J(β0)
‖2,1.

We can therefore apply assumption (RE2) with a0 = 3( max
1≤l≤g

ωl)/ min
1≤l≤g

ωl and get that

μ2
2‖δ′J‖2

2

v2‖δ′‖2
2,1

(exp(−v‖δ′‖2,1) + v‖δ′‖2,1 − 1) ≤ R(fβ̂GL
) − R(fβ0).

We can use that ‖δ′‖2
2,1 ≤ (1 + a0)2|J |‖δ′J‖2

2, with J = J(β0) to write

μ2
2

(1 + a0)2|J |v2
(exp(−v‖δ′‖2,1) + v‖δ′‖2,1 − 1) ≤ R(fβ̂GL

) − R(fβ0).

According to equation (5.17) we have

exp(−v‖δ′‖2,1) + v‖δ′‖2,1 − 1 ≤
3r(1 + a0)2

(
max
1≤l≤g

ωl

)
v2|J |

2μ2
2

‖δ′‖2,1. (5.19)

Now, a short calculation shows that for all a ∈ (0, 1],

e
−2a
1−a + (1 − a)

2a

1 − a
− 1 � 0 (5.20)

Set a = v‖δ′‖2,1/(v‖δ′‖2,1 + 2). Thus v‖δ′‖2,1 = 2a/(1 − a) and we have

e−v‖δ′‖2,1 + v‖δ′‖2,1 − 1 �
v2‖δ′‖2

2,1

v‖δ′‖2,1 + 2
· (5.21)

This implies using equation (5.19) that

v‖δ′‖2,1 ≤
3r(1 + a0)2

(
max
1≤l≤g

ωl

)
|J |v/μ2

2

1 − 3r(1 + a0)2
(

max
1≤l≤g

ωl

)
|J |v/2μ2

2

·
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Now if r(1 + a0)2 max
1≤l≤g

ωl ≤ μ2
2

3v|J| , we have v‖δ′‖2,1 ≤ 2 and consequently

exp(−v‖δ′‖2,1) + v‖δ′‖2,1 − 1
v2‖δ′‖2

2,1

� 1/4.

Now, inequality (5.19) implies

‖δ′‖2,1 ≤
6(1 + a0)2|J |r

(
max
1≤l≤g

ωl

)
μ2

2

·

This proves the line (2.14). Line (2.13) follows from (2.14) by using inequality (5.17). Line (2.15) is the conse-
quence of Lemma A.3 taking al = ‖(β̂GL − β0)l‖2 and b1 = 6(1 + a0)2|J |r( min

1≤l≤g
ωl)/μ2

2(s, 3). Line (2.16) follows

from line (2.13) and inequality (5.18). �

5.5. Proof of Theorem 3.1

Note that Lasso can be derived by Group Lasso by taking one predictor per group i.e. p = g and Gj = {j}
for j ∈ {1, . . . , p}. This implies, using (5.1) that

R(fβ̂L
) − R(f0) ≤ R(fβ) − R(f0) +

p∑
j=1

∣∣∣∣∣ 1n
n∑

i=1

φj(zi)εi

∣∣∣∣∣ |β̂L,j − βj | + r

p∑
j=1

ωj|βj | − r

p∑
j=1

ωj |β̂L,j|.

For 1 ≤ j ≤ p, set Sj =
∑n

i=1 φj(zi)εi and let us denote by E, the event

E =
p⋂

j=1

{|Sj | ≤ nrωj/2} . (5.22)

We state the results on the event E and then find an upper bound of P(ec).
On the event E:

R(fβ̂L
) − R(f0) ≤ R(fβ) − R(f0) + r

p∑
j=1

ωj |β̂L,j − βj | + r

p∑
j=1

ωj |βj | − r

p∑
j=1

ωj|β̂L,j |

≤ R(fβ) − R(f0) + 2r

p∑
j=1

ωj |βj |.

We conclude that on the event E we have

R(fβ̂L
) − R(f0) ≤ inf

β∈Rp

{
R(fβ) − R(f0) + 2r‖β‖1 max

1≤j≤p
ωj

}
.

Now we are going to find an upper bound of P(ec):

P(ec) ≤ P

⎛
⎝ p⋃

j=1

{|
n∑

i=1

φj(zi)(Yi − IE(Yi))| > rωjn/2}
⎞
⎠

≤
p∑

j=1

P(|
n∑

i=1

φj(zi)(Yi − IE(Yi))| > rωjn/2).
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For j ∈ {1, . . . , p}, set vj =
∑n

i=1 IE(φ2
j ε

2
i ). Since

∑n
i=1 φ2

j (zi) � 4vj, we have

P(|Sj| > nrωj/2) ≤ P

(
|Sj | >

√
2vj(x + log p) +

c2

3
(x + log p)

)
, r ≥ 1.

By applying Bernstein’s inequality (see [5, 19]) to the right hand side of the previous inequality we get

P(|Sj | > nrωj/2) ≤ 2 exp(−x − log p).

It follows that

P(ec) ≤
p∑

j=1

P(|Sj | > rωjn/2) ≤ 2 exp(−x). (5.23)

When ωj = 1, for all j ∈ {1, . . . , p} and r = A
√

log p
n , we apply Hoeffding’s inequality (see [5, 19]). This

leads to

P(ec) = P

⎛
⎝ p⋃

j=1

{∣∣∣∣∣
n∑

i=1

φj(zi)(Yi − IE(Yi))

∣∣∣∣∣ > rn/2

}⎞⎠

≤
p∑

j=1

P

(∣∣∣∣∣
n∑

i=1

φj(zi) (Yi − IE(Yi))

∣∣∣∣∣ > rn/2

)

≤ 2p exp
(
− 2(rn/2)2∑n

i=1 2c2

)
= 2p exp

(
−r2n

4c2

)
= 2p1− A2

4c2 · (5.24)

This ends the proof of Theorem 3.1. �

5.6. Proof of Theorem 3.2

Fix an arbitrary β ∈ R
p such that fβ ∈ Γ, and set δ = W (β̂L − β), where W = Diag(w1, . . . , wp). It follows

from inequality (5.15) that

R(fβ̂L
) − R(f0) ≤ (1 + η)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R(fβ) − R(f0) +
c(η)r2

(
max

1≤j≤p
ωj

)2

|K(β)|
μ2c0ε0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (5.25)

where c(η) = 2(1+ 2/η)2/(2+ 2/η). This ends the proof of inequality (3.3) of the Theorem 3.2. Inequality (3.4)

follows from Lemma 5.1. To prove inequalities (3.5) and (3.6) we just replace ωj by A
√

log p
n .

This ends the proof of the Theorem 3.2 by using (5.23) and (5.24). �

5.7. Proof of Corollary 3.3

Set δ = W (β̂L − β0). The result (3.9) directly comes by taking β = β0 and η = 2 in (5.25). Note that, on the
event E defined in (5.22), we have

‖δK(β0)c‖1 ≤ 3‖δK(β0)‖1. (5.26)

Indeed, since β̂L is the minimizer of R̂(fβ) + r
∑p

j=1 ωj |βj |, then

R(fβ̂L
) − R(fβ0) + r

p∑
j=1

ωj|β̂L,j | ≤ 1
n

εT X(β̂L − β0) + r

p∑
j=1

ωj |β0j |,
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which implies that

r‖Wβ̂L‖1 ≤
p∑

j=1

∣∣∣∣∣ 1n
n∑

i=1

φj(zi)εi

∣∣∣∣∣ |β̂L,j − βj | + r‖Wβ0‖1.

On the event E we have

‖W (β̂L)K(β0)‖1 + ‖W (β̂L)Kc(β0)‖1 ≤ 1
2
(‖W (β̂L − β0)K(β0)‖1 + ‖W (β̂L)Kc(β0)‖1)

+ ‖W (β0)K(β0)‖1.

Thus (5.26) follows. Line (3.10) follows from line (3.9) by applying Lemma 5.1. Line (3.11) follows from line (3.10)
by using inequality (5.12) and ‖δ‖2

1 ≤ 16s‖δK(β0)‖2
2. The last line follows from Lemma A.3 in Appendix with

aj = |β̂L,j − β0j | and

b1 =
12sr

(
max

1≤j≤p
ωj

)2

μ2(s, 3)c0ε0

(
min

1≤j≤p
ωj

) · �

A. Appendix

The proof of Lemma 5.1 are based on property of self concordant function (see for instance [28]), i.e., the
functions whose third derivatives are controlled by their second derivatives. A one-dimensional, convex function
g is called self concordant if

|g′′′
(x)| ≤ Cg

′′
(x)3/2.

The function we use (g(t) = R̂(g + th)) is not really self concordant but we can bound his third derivative by
the second derivative times a constant. Our results on self-concordant functions are based on the ones of [2].
He has used and extended tools from convex optimization and self-concordance to provide simple extensions
of theoretical results for the square loss to logistic loss. We use the same kind of arguments and state some
relations between excess risk and prediction loss in the context of nonparametric logistic model, where f0 is
not necessarily linear as assumed in [2]. Precisely we extend Proposition 1 in [2] to the functions which are not
necessarily linear (see Lem. A.1). This allows us to establish Lemma 5.1.

Lemma A.1. For all h, f : R
d → R, we have

〈h, h〉f
‖h‖2∞

(exp(−‖h‖∞) + ‖h‖∞ − 1) ≤ R(f + h) − R(f) + (qf − qf0)(h), (A.1)

R(f + h) − R(f) + (qf − qf0)(h) ≤ 〈h, h〉f
‖h‖2∞

(exp(‖h‖∞) − ‖h‖∞ − 1), (A.2)

and
〈h, h〉f e−‖h‖∞ ≤ 〈h, h〉f+h ≤ 〈h, h〉f e‖h‖∞ . (A.3)

Proof of Lemma A.1. We use the following lemma (see [2], Lem. 1) that we recall here:

Lemma A.2. Let g be a convex three times differentiable function g : R → R such that for all t ∈ R |g′′′
(t)| ≤

Sg
′′
(t), for some S ≥ 0. Then, for all t ≥ 0:

g
′′
(0)

S2
(exp(−St) + St − 1) ≤ g(t) − g(0) − g′(0)t ≤ g

′′
(0)

S2
(exp(St) − St − 1). (A.4)
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We refer to Appendix A of [2] for the proof of this lemma.
Set

g(t) = R̂(f + th) =
1
n

n∑
i=1

l((f + th)(zi)) − Yi(f + th)(zi), f, h ∈ H,

where l(u) = log(1 + exp(u)). A short calculation leads to l′(u) = π(u), l
′′
(u) = π(u)(1 − π(u)), l

′′′
(u) =

π(u)[1 − π(u)][1 − 2π(u)]. It follows that

g
′′
(t) =

1
n

n∑
i=1

h2(zi)l
′′
((f + th)(zi)) = 〈h, h〉f+th,

and

g
′′′

(t) =
1
n

n∑
i=1

h3(zi)l
′′′

((f + th)(zi)).

Since l
′′′

(u) ≤ l
′′
(u) we have,

|g′′′
(t)| =

∣∣∣∣∣ 1n
n∑

i=1

h3(zi)l
′′′

((f + th)(zi))

∣∣∣∣∣
≤ 1

n

n∑
i=1

h2(zi)l
′′
((f + th)(zi))‖h‖∞ = ‖h‖∞g

′′
(t).

We now apply Lemma A.2 to g(t) with S = ‖h‖∞, taking t = 1. Using equation (1.4) we get the first and second
inequality of Lemma A.1. Now by considering g(t) = 〈h, h〉f+th, a short calculation leads to |g′(t)| ≤ ‖h‖∞g(t)
which implies g(0)e−‖h‖∞t ≤ g(t) ≤ g(0)e‖h‖∞t. By applying the last inequality to g(t), and taking t = 1 we get
the third inequality of Lemma A.1. �

A.1. Proof of Lemma 5.1

Set h0 = fβ − f0 from Lemma A.1 below,

〈h0, h0〉f0

‖h0‖2∞
(exp(−‖h0‖∞) + ‖h0‖∞ − 1) ≤ R(fβ) − R(f0).

Using assumptions (B3), (B1) and the decreasing of t �→ exp(−t)+t−1
t2 , we claim that there exists c0 =

c0(C0, c1) > 0 such that

c0 ≤ exp(−‖h0‖∞) + ‖h0‖∞ − 1)
‖h0‖2∞

·
According to assumption (B1), there exists 0 ≤ ε0 ≤ 1/2 such that for 1 ≤ i ≤ n

ε0 ≤ π(f0(zi))(1 − π(f0(zi))) ≤ 1 − ε0.

The proof of the left hand side of Lemma 5.1 follows from the fact that ε0‖h0‖2
n ≤ 〈h0, h0〉f0 . From the second

line of Lemma A.1 we have

R(fβ) − R(f0) ≤ 〈h0, h0〉f0

‖h0‖2∞
(exp(‖h0‖∞) − ‖h0‖∞ − 1).

Using assumption (B3) and increasing of t �→ exp(t)−t−1
t2 thus there exists c′0 = c′0(C0, c1) > 0 such that

R(fβ) − R(f0) ≤ c′0〈h0, h0〉f0

≤ c′0
1
4
‖h0‖2

n.

This end the proof of the right hand side of the Lemma 5.1. �
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Lemma A.3. If we assume that
∑p

i=1 aj ≤ b1 with aj > 0, this implies that
∑p

i=1 aq
j ≤ bq

1, with 1 ≤ q ≤ 2.

A.2. Proof of Lemma A.3

We start by writing

p∑
i=1

aq
j =

p∑
i=1

a2−q
j a2q−2

j

≤
(

p∑
i=1

aj

)2−q( p∑
i=1

a2
j

)q−1

.

Since
∑p

i=1 a2
j ≤ (

∑p
i=1 aj)

2 ≤ b2
1, thus

p∑
i=1

aq
j ≤ b2−q

1 b2q−2
1 = bq

1. (A.5)

This ends the proof.

Lemma A.4 (Bernstein’s inequality). Let X1, . . . , Xn be independent real valued random variables such that
for all i ≤ n, Xi ≤ b almost surely, then we have

P

[∣∣∣∣∣
n∑

i=1

Xi − E(Xi)

∣∣∣∣∣ �
√

2vx + bx/3

]
≤ 2 exp(−x),

where v =
∑n

i=1 E(X2
i ).

This lemma is obtain by gathering Proposition 2.9 and inequality (2.23) from [19]. �

Lemma A.5 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that Xi takes its
values in [ai, bi] almost surely for all i ≤ n. Then for any positive x, we have

P

[∣∣∣∣∣
n∑

i=1

Xi − E(Xi)

∣∣∣∣∣ � x

]
≤ 2 exp

(
− 2x2∑n

i=1(bi − ai)2

)
.

This lemma is a consequence of Proposition 2.7 in [19].
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