

## Hybrid centrifugal spreading model to study the fertiliser spatial distribution and its assessment using the transverse coefficient of variation

Sylvain Villette, Emmanuel Piron, Denis Miclet

#### ► To cite this version:

 $\label{eq:sylvain} \begin{array}{l} \mbox{Villette, Emmanuel Piron, Denis Miclet. Hybrid centrifugal spreading model to study the fertiliser spatial distribution and its assessment using the transverse coefficient of variation. Computers and Electronics in Agriculture, 2017, 137, pp.115-129. 10.1016/j.compag.2017.03.023 . hal-01601353 \end{array}$ 

## HAL Id: hal-01601353 https://hal.science/hal-01601353

Submitted on 4 Feb 2019

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

# **Preprint of :**

- Villette, S., Piron, E., & Miclet, D. (2017). Hybrid centrifugal spreading model to study the
   fertiliser spatial distribution and its assessment using the transverse coefficient of variation.
   *Computers and Electronics in Agriculture*, 137, 115-129.
- 14 http://doi.org/10.1016/j.compag.2017.03.023

| 16 | http://www. | .sciencedirect | .com/science | /article/pi | ii/S016816 | 9917304325 |
|----|-------------|----------------|--------------|-------------|------------|------------|
|    |             |                |              |             |            |            |

# Hybrid centrifugal spreading model to study the fertiliser spatial distribution and its assessment using the transverse coefficient of variation

S Villette <sup>a,b\*</sup>, E Piron <sup>c</sup>, D Miclet <sup>c</sup>

<sup>a</sup> Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France

<sup>b</sup> Equipe Agroéquipements, AgroSup Dijon, BP 87999, 21079 Dijon Cedex, France

<sup>c</sup> IRSTEA, Les Palaquins, 03150 Montoldre, France

11
12 \* Corresponding author.

13 E-mail address: sylvain.villette@agrosupdijon.fr

#### 15 Abstract

16

14

1 2

3 4 5

6 7

8

9

17 Studying centrifugal spreading by carrying out field or in-door experiments using fertiliser 18 collection trays is tedious and labour intensive. This is particularly true when several 19 implementation methods need to be compared, numerous replications are required or fertiliser 20 sample characterisation is required. To circumvent cumbersome experiments, an alternative 21 approach consists in performing in silico studies. In order to reach this objective, a hybrid 22 centrifugal spreading model is designed by combining theoretical fertiliser motion equations 23 with statistical information. The use of experimental measurements to characterise fertiliser 24 properties, outlet velocity, angular mass flow distribution and spread pattern deposition, 25 ensure a realistic calibration of the model. Based on this model, static spread patterns and 26 transverse distributions are computed for a virtual twin-disc spreader. The number of fertiliser granules used to compute a spread pattern is deduced from the target application rate while 27 28 the granule properties and their motion parameters are randomly selected from pre-established 29 statistical distributions. This Monte Carlo process reproduces the random variability of fertiliser spread pattern depositions. Using this model, simulations demonstrate the mean and 30 31 standard deviation of CV value decrease with the application rate. The CV mean value also 32 decreases with the collection tray surface, while the standard deviation decreases with the 33 collection tray length. Mathematical relationships are deduced from simulation results to 34 express the mean and standard deviation of the CV as functions of the application rate and 35 collection tray surface or length. The simulation model is also used to compare spreader test 36 methods and study the influence of some fertiliser particles properties on the transverse 37 distribution.

38 39

#### 40 Keywords

41

42 Centrifugal spreading, Coefficient of Variation, Model, Monte Carlo, Simulation, Virtual43 spreader

- 44
- 45
- 46

| Notation                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| а                                                                  | regression parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| а<br>А                                                             | particle frontal area m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| h                                                                  | regression parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C                                                                  | regression parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C                                                                  | drag coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $C_d$                                                              | transverse coefficient of variation %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CV<br>CV                                                           | $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $CV_{geom}$                                                        | value of the CV obtained when the collection tray width is $w_1$ %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D                                                                  | continuous random variable m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D<br>d                                                             | fertiliser granule diameter m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $d_p$                                                              | diameter of the <i>i</i> <sup>th</sup> fertiliser granule m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $u_{pi}$<br>$E_{p}(d)$                                             | cumulative frequency function of the granule diameter $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $f_D(u_p)$                                                         | probability density function of the granule diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $J_D(u_p)$                                                         | acceleration due to gravity $m s^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $g$ $G_{r}(d)$                                                     | cumulative mass distribution function of the granule diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $G_D(a_p)$                                                         | cumulative mass flow distribution with respect to the years location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $G_M(\Theta_{vane})$                                               | cumulative mass now distribution with respect to the valle location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $g_M(\theta_{vane})$                                               | mass flow distribution with respect to the vane location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| h <sub>vane</sub>                                                  | neight of the outer extremity of the vane, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| K                                                                  | constant, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $K_a$                                                              | aerodynamic coefficient, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| l <sub>tray</sub>                                                  | length of the collection tray, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $L_w$                                                              | swath spacing, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| m                                                                  | particle mass, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $m(d_p)$                                                           | mass of a granule of diameter $d_p$ , kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $m_i$                                                              | mass of the $i^{\text{m}}$ fertiliser granule, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $m_{tot}$                                                          | total mass of fertiliser ejected by the two discs of the virtual spreader, kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $n_{disc}$                                                         | number of granules ejected by one disc of the virtual spreader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $(\mathbf{O}, \boldsymbol{\iota}, \boldsymbol{J}, \boldsymbol{k})$ | Cartesian frame centred on the disc centre, with j oriented in the travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                    | direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $q_t$                                                              | target application rate, kg/ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $q_f$                                                              | in-field target rate, kg/ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| r                                                                  | Pearson correlation coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <i>r</i> <sub>vane</sub>                                           | radius of the vane, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S <sub>disc</sub>                                                  | distance between the two disc axles of the virtual spreader, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| t                                                                  | time, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $v_H$                                                              | horizontal component of the outlet velocity, m s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vout                                                               | outlet velocity, m s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (vx, vy, vz)                                                       | velocity components of the granule during the ballistic flight, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(vx_{out}, vy_{out}, vz_{out})$                                   | components of the outlet velocity, m s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wk                                                                 | width of the collection trays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (x, y, z)                                                          | coordinates of the granule, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(x_{out}, y_{out}, z_{out})$                                      | coordinates of the granule when it leaves the vane, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $lpha_{lv}$                                                        | pitch angle of the vane, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\alpha_{set}$                                                     | setting angle of the virtual spreader, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\Delta l_{grid}$                                                  | grid sampling interval along the travel direction, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Delta w_{grid}$                                                  | grid sampling interval along the transverse direction, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\theta_{out}$                                                     | horizontal outlet angle of the granule when it leaves the vane, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $	heta_{traj}$                                                     | horizontal orientation of the outlet velocity with respect to $i$ , °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                    | Notation<br>a<br>$A_{p}$<br>b<br>c<br>$C_{d}$<br>CV<br>$CV_{geom}$<br>$CV_{k}$<br>D<br>$d_{p}$<br>$d_{pi}$<br>$F_{D}(d_{p})$<br>g<br>$G_{D}(d_{p})$<br>g<br>$G_{M}(\theta_{vane})$<br>$h_{vane}$<br>K<br>$K_{a}$<br>$l_{tray}$<br>$L_{w}$<br>m<br>$m(d_{p})$<br>$m_{i}$<br>$m_{tot}$<br>$n_{disc}$<br>(O, i, j, k)<br>$q_{t}$<br>$q_{f}$<br>r<br>$r_{vane}$<br>$S_{disc}$<br>t<br>$V_{H}$<br>$v_{out}$<br>(vx, vy, vz)<br>$(vx_{out}, vy_{out}, vz_{out})$<br>$w_{k}$<br>(x, y, z)<br>$(x_{out}, y_{out}, z_{out})$<br>$\alpha_{lv}$<br>$\alpha_{set}$<br>$\Delta l_{grid}$<br>$\theta_{out}$<br>$\theta_{traj}$ |

| 1  | $\theta_{vane}$       | angular location of the vane with respect to $i$ , °       |
|----|-----------------------|------------------------------------------------------------|
| 2  | $\mu_{CV}$            | mean value of the CV, %                                    |
| 3  | $\mu_{ln}$            | fitting parameter of the cumulative mass distribution      |
| 4  | $\mu \theta_{out}$    | mean value of the horizontal outlet angle, °               |
| 5  | ξ                     | variable of integration, m                                 |
| 6  | ρ                     | density of the fertiliser granule, kg m <sup>-3</sup>      |
| 7  | $ ho_{air}$           | air density, kg m <sup>-3</sup>                            |
| 8  | $\sigma 	heta_{out}$  | standard deviation of the horizontal outlet angle, °       |
| 9  | $\sigma \Omega_{out}$ | standard deviation of the vertical outlet angle, °         |
| 10 | $\sigma_{CV}$         | standard deviation of CV, %                                |
| 11 | $\sigma_{ln}$         | fitting parameter of the cumulative mass distribution      |
| 12 | ω                     | rotational speed of the spinning disc, rad s <sup>-1</sup> |
| 13 | $\Omega_{out}$        | vertical outlet angle of the granule, °                    |
| 14 | $arOmega_{vane}$      | vertical angle of the vane, °                              |
| 15 |                       | -                                                          |
| 16 |                       |                                                            |
| 17 |                       |                                                            |
|    |                       |                                                            |

#### 1 <u>1. Introduction</u>

2 3 In agriculture, the objective of mineral fertiliser supplies is to provide the right rate of 4 nutrients to cultivated plants. Because of their low cost and high productivity, centrifugal 5 spreaders are widely used for this application aiming to spread fertiliser at a target rate with 6 an acceptable uniformity in the field. For 50 years several works have demonstrated the negative effects of non-uniform spatial distributions concerning environmental impacts 7 8 (Tissot et al., 2002) and yield or economical losses (Horrell et al., 1999; Jensen and Pesek, 9 1962; Miller et al., 2009; Richards and Hobson, 2013; Søgaard and Kierkegaard, 1994; Tissot et al., 1999). For the same decades, numerous works have been devoted to the measurement 10 of fertiliser distributions, the assessment of distribution quality and the understanding of 11 spread patterns. Throughout the world, transverse tray tests are traditionally performed to 12 measure the spreading uniformity according to various standards such as: ISO Standard 13 14 5690/1 (1985); ASAE Standards S341.2 (1999); EN 13739-2 (2003); Spreadmark code of 15 practice (New Zealand Fertiliser Quality Council (2015)) or ACCU Spread (Australian Fertiliser Services Association, 2001). The experimental transverse distribution is then used to 16 17 compute the coefficient of variation CV after overlapping. This CV value is used to quantify 18 the spreading quality, define the appropriate swath spacing according to the fertiliser and the 19 spreader setting, and thus certify the spreader bout width.

20 Some studies have addressed the comparison of transverse distribution measurement methods.

Several works investigated the influence of the collection systems. <u>Parish (1986)</u> compared
 twelve collection methods in laboratory conditions using a manually-operated rotary spreader

and two granular materials. The maximal effective swath width of this spreader was 4.3 m.

Each test run consisted of three passes and three replications where carried out. Using the results obtained in this previous work, Parish and de Visser (1989) analysed the effect of the

25 results obtained in this previous work, <u>Parish and de Visser (1989)</u> analysed the effect of the 26 collection tray width on the CV value. In field, <u>Parish et al. (1987)</u> compared the crop 27 response quality assessed by a horticulturist with the fertiliser rates deduced from transverse 28 distribution measurements. Three collection methods were compared using three replications

29 for each test. All these studies demonstrated that, depending on the test method, major 30 differences occurred in the measurement of the transverse distribution. Therefore, the authors

31 highlighted the importance of using the same test method for comparisons of spreader 32 performance. Moreover regarding the low throwing distance of the spreader chosen for these 33 studies and the low number of replications, these works illustrate the difficulties of carrying

34 out such experiments.

35 To perform statistical comparisons of six international spreader tests, Jones et al. (2008)

36 carried out a huge experimental work by using 18 transverse rows of 80 trays each. The

experiments were carried out with urea, for three application rates and two replications so that
36 transverse distributions were obtained for each spreading situation. The bout width of the

39 spreader was 15 m. Concerning the prediction of the certifiable working width, the authors

40 concluded that the ACCU Spread test method (<u>Australian Fertiliser Services Association</u>, 41 2001) was superior to the other tested standards because it uses two rows of collector trays

42 and multiple passes. Jones et al. (2008) concluded multiple rows of trays, multiple passes of

43 the spreader and long trays can improve the accuracy of transverse tests.

44 Since the transverse distribution results from the combination of numerous parameters, it only

45 provides a limited piece of information concerning the spread pattern. Thus, transverse tests

46 are not efficient to study how mechanical parameters or fertiliser characteristics affect the 2D

spread pattern deposition. This was illustrated by <u>Piron and Miclet (2005)</u> who showed that
 different 2D static spread patterns can yield to similar transverse patterns. Unfortunately, the

48 measurement of the 2D static spread pattern is very tedious when a grid of collection travs is

50 used, because of the wide size of spreader footprints and the high number of trays required to

1 cover this area. Moreover, for indoor test, the high throwing distance of recent spreaders 2 would require very expensive infrastructures. To circumvent these difficulties, Piron and 3 Miclet (2005) developed a rotating test bench called CEMIB. With this method, the spreader 4 is rotated during the spreading and a radial row of collection trays equipped with load cells 5 records the cumulated mass of fertiliser according to the angular orientation of the spreader. 6 The static spread pattern is then derived from the cumulated mass and the CV of the 7 transverse distribution can be deduced (EN 13739-2, 2011). The measurement of the 2D 8 spread pattern is of particular interest to improve the understanding of the spread pattern 9 formation, the understanding of mechanical parameter effects and more generally to design 10 new spreader. It is also useful to calibrate or validate spreading models.

Recently, Cool et al. (2015) addressed the design of a simplified measurement technique to 11 12 estimate the 2D static spread pattern in field, using a limited number of collection trays placed on a square or polar grid. The results of these two sampling techniques were compared with 13 14 the results obtained with a transverse test. Tests were carried out with a spreader whose 15 setting corresponded to 15 m bout width for ammonium nitrate fertiliser. Tests were performed for three fertilisers without replication. The authors observed large differences in 16 17 the CV values deduced from the three measurement techniques and highlighted the 18 importance of using the same measurement techniques to compare spread patterns. As this 19 kind of experiments is tedious and does not make possible a sufficient number of replications 20 to compare significant values, this work illustrates the need of alternative approaches when 21 the design or the assessment of new spreading quality measurement techniques is required.

22

23 The complexity and the labour-intensive nature of experimental measurements further 24 increase when the study is not limited to the fertiliser mass distribution but aims to analyse the 25 size or the nutrient formulation of the granules with respect to their spatial distribution. For 26 example, very few studies investigated the effect of fertiliser particle size on spread distribution. Pettersen et al. (1991) studied the spatial distribution of fertiliser particle size 27 28 using a twin disc spreader. Experiments were limited to the choice of one fertiliser, one 29 spreader setting, one feeding flow rate and one measurement of the 2D stationary spread 30 pattern. A set of 884 collected samples was analysed by image processing technique to draw 31 the spatial distribution of the particle size. Thirty years later, Yule (2011) attempted to study the effect of fertiliser particle size on spread distribution. The transverse distribution of the 32 33 percentage of particle size was drawn for two loads of superphosphate having different 34 granule size distributions. Yule (2011) used these experimental results to simulate the 35 transverse distribution of other materials with other particle size characteristics. Nevertheless, the author underlined the work is limited to representing only one particular spreading 36 37 situation: one spreader with one fertiliser and one setting. Yule (2011) concluded that further work would be required but analysing each tray from field testing was too time-consuming 38 39 and no laboratory measurement techniques were adapted for this kind of study at the present 40 time.

41 The study of the spatial distribution of fertiliser granules according to their physical properties 42 is of particular interest in the case of blended fertilisers. As these materials are produced by 43 mixing mechanically single products, their components differ in the physical properties (size, 44 shape and density). These differences can involve segregation of the fertiliser components during handling and spreading. This problem was already addressed by Hoffmeister et al. 45 (1964). When fertiliser is applied with a centrifugal spreader, the differences in physical 46 properties can affect the granule behaviour during the ballistic flight. Then, ballistic 47 segregation can occur and yield heterogeneous spatial distribution of chemical elements. 48 Several works have examined the ballistic segregation of blended fertilisers by carrying out 49

- field experiments (<u>Miserque and Pirard, 2004</u>; <u>Tissot et al., 1999</u>; <u>Virk et al., 2013</u>). All these
   studies required huge field test to evaluate the mass and nutrient distribution.
- 3 In order to circumvent cumbersome experiments or reduce the number of experiments, some
- 4 author attempted to develop new approaches based on modeling fertiliser granule motion.

5 Recently, <u>Antille et al. (2013)</u> suggested the particle size range of new fertilisers could be 6 designed to meet a target bout width and the author proposed to model and simulate the

designed to meet a target bout width and the author proposed to model and simulate the
ballistic flight to assess whether granule physical properties suited the spreading objective.
<u>Grafton et al. (2015)</u> also suggested the use of a ballistic model to provide information to

- 9 reduce the risk of crop striping. In these recent works, the proposed models were limited to
- 10 predict the landing distance of some individual granules projected by a spinning disc.
- 11 Therefore, no spread pattern was computed so that no transverse distribution can be 12 determined.
- 12

14 Numerous works have attempted to model the motion of fertiliser granules in the spreading 15 process. Various mechanical models have been proposed to describe the motion of individual fertiliser granules on a spinner disc (Cunningham, 1963; Cunningham and Chao, 1967; 16 Hofstee, 1995; Inns and Reece, 1962; Olieslagers, 1997; Patterson and Reece, 1962; Villette 17 18 et al., 2005) and through the air (Antille et al., 2015; Mennel and Reece, 1963; Pitt et al., 19 1982). Concerning the motion on the disc, models using the discrete element method (DEM) 20 have also been developed to take into account particle interactions (Casas et al., 2015; Coetzee and Lombard, 2011; Tijskens et al., 2005; Van Liedekerke et al., 2006). One 21 22 drawback of DEM models is that they required input parameters that are difficult to obtain to characterise the physical behaviour of fertilisers. When results of simulations are compared 23 with actual spread pattern depositions, they reach moderate success even when spreading 24 25 distances are lower than 3m (Coetzee and Lombard, 2011; Van Liedekerke et al., 2009). Consequently, at the present time, no model appears sufficiently advanced to correctly 26 simulate actual spread pattern depositions. Moreover, to the best of our knowledge, no model 27 28 reproduces the random variability observed from run to run in spreader test.

29

30 Despite some experimental studies, the comparison of spreader transverse tests using different 31 collection trays or different test protocols is still difficult and the main conclusion is limited to 32 the recommendation of using the same test to give sense to comparisons. For example, there is a lack of knowledge concerning the quantitative effect of the surface or shape of collection 33 34 travs on the CV measurement. Similarly, the effect on the CV of increasing the number of 35 runs or reducing the speed travel of some standard tests has not been studied. In addition, the effect of the application rate on the measurement of the CV value has never been studied. This 36 37 lack of information results from the difficulty, not to say impossibility, of carrying out adapted experiments with enough replications. The same difficulty limited the production of 38 39 knowledge on the spatial distribution of fertiliser particle size and on the ballistic segregation 40 for blended fertilisers. An alternative solution lies in the use of models to simulate the 41 physical phenomena and carry out in silico experimental studies. The main advantages of this 42 approach are to avoid practical and time limitations so that statistical parameters can be 43 deduced from replications. Nevertheless, this implies that simulation models have to 44 reproduce the stochastic nature of fertiliser dispersal processes.

The aim of this paper is to design such a model for simulating realistic fertiliser spread patterns and providing new solutions to carry out numerical experiments. This hybrid model combines a mechanistic approach based on the use of mechanical relationships and a stochastic approach based on the use of the statistical distributions of input parameters. The simulation model is used to study the sense of the CV value deduced from transverse tests according to the target application rate and the test method. The paper also presents an insight

1 into the influence of particle size distributions and particle drag coefficients on transverse 2 distributions. 3

#### 2. Materials and methods

6 The particularity of the Hybrid Centrifugal Spreading Model HCSM lies in combining some 7 8 theoretical motion models with experimental data obtained at various steps of the spreading 9 process. This model assumes the spread pattern deposition is affected by the outlet velocity of 10 the particles when they leave the spinning disc, the angular mass flow distribution around the disc and the fertiliser particle properties (specific density, size-distribution, drag coefficient). 11

12 13

4 5

#### 2.1 Model of granule motion on and off the spinning disc

14 15 Concerning the motion of the granules on the spinning disc, the HCSM considers the kinematic relationships between the disc configuration, the outlet angles and the outlet 16 17 velocity components. In this section, the motion model is described for a clockwise spinning 18 disc. Figure 1 presents the main geometrical parameters used to describe the disc and the

19 motion of the granules when they leave the vane.



20 21

Fig. 1 - Side view (top) and top view (bottom) of a clockwise spinning disc: vout, outlet

- velocity;  $v_H$ , horizontal component of the outlet velocity;  $\theta_{out}$ , horizontal outlet angle;  $\theta_{traj}$ , 22 23 horizontal angle of the trajectory;  $\Omega_{out}$ , vertical outlet angle;  $r_{vane}$ , radius of the vane;  $\alpha_{lv}$ , pitch 24 angle of the vane; *i*, *j*, *k*, vectors of a right handed Cartesian coordinate system centred on the 25 disc axle.
- 26

27 Let (O, i, j, k) be a three dimensional right-handed Cartesian coordinate system having its 28 origin O on the rotational axle of the disc and with *i* pointing in the travel direction.

29 In this coordinate system, the location  $(x_{out}, y_{out}, z_{out})$  of the granule when it leaves the vane is:

1
$$\begin{cases} x_{out} = r_{vane} \times \cos \theta_{vane} \\ y_{out} = r_{vane} \times \sin \theta_{vane} \\ z_{out} = h_{vane} \end{cases}$$
(1)

2 where  $r_{vane}$  is the radius of the vane,  $\theta_{vane}$  is the angular location of the vane,  $h_{vane}$  is the height 3 of the outer extremity of the vane.

- 4 For a concave disc, the relationship between the vertical outlet angle  $\Omega_{out}$  of the particle when
- 5 it leaves the vane, the horizontal outlet angle  $\theta_{out}$ , the vertical angle of the vane  $\Omega_{vane}$  and the 6 nitch angle of the vane  $\alpha_{v}$  is as follows:

b pitch angle of the vale 
$$\alpha_{lv}$$
, is as follows:

$$\Omega_{out} = \arctan\left(\frac{\sin\theta_{out}}{\cos\alpha_{lv}}\tan\Omega_{vane}\right)$$
(2)

8 The horizontal component of the outlet velocity is also deduced from  $\theta_{out}$  as follows:

9 
$$v_{H} = \frac{r_{vane}\omega}{\cos\theta + \sin\theta - \tan\alpha}$$
(3)

$$\cos \theta_{out} + \sin \theta_{out} \tan \alpha_{lv}$$

- 10 where  $\omega$  is the rotational speed of the disc.
- 11 Demonstrations of equations (2) and (3) can be found in <u>Villette et al. (2008)</u>.
- 12 Then, the outlet velocity is deduced:

$$v_{out} = \frac{v_H}{\cos \Omega_{out}} \tag{4}$$

- 14 According to Fig. 1, for a clockwise rotating disc, the expression of the horizontal orientation 15  $\theta_{trai}$  of the outlet velocity with respect to *i* is as follows:
- 16  $\theta_{traj} = \theta_{vane} + \theta_{out} 90^{\circ}$  (5)
- 17 The components of the outlet velocity in the Cartesian coordinate system (O, i, j, k) are:

18  

$$\begin{cases}
vx_{out} = v_H \times \cos \theta_{traj} \\
vy_{out} = v_H \times \sin \theta_{traj} \\
vz_{out} = v_{out} \times \sin \Omega_{out}
\end{cases}$$
(6)

19

7

13

In this model, owing to Eq. (2), the vertical outlet angle is not taken as the vertical angle of
 the vane unlike some other models suggested in the literature (<u>Gomez-Gil et al., 2009</u>;
 <u>Olieslagers et al., 1996</u>). This avoids coarse approximations in computing the initial
 conditions of the ballistic flight.

24

32

During the ballistic flight the model considers that the forces acting on the granule are only the gravity force and the drag force due to the motion of the granule through immobile air. This simple ballistic model had been used in numerous works such as <u>Mennel and Reece</u> (1963), <u>Pitt et al. (1982)</u>, <u>Griffis et al. (1983)</u>, <u>Olieslagers et al. (1996)</u>, <u>Grift and Hofstee</u> (2002), <u>Reumers et al. (2003)</u>, <u>Aphale et al. (2003)</u>, <u>Bradley and Farnish (2005)</u>. In the three dimensional Cartesian coordinate system, the motion in the air is described by the following differential equations:

$$\begin{cases} \frac{d^{2}x}{dt^{2}} = -K_{a}vx\sqrt{vx^{2} + vy^{2} + vz^{2}} \\ \frac{d^{2}y}{dt^{2}} = -K_{a}vy\sqrt{vx^{2} + vy^{2} + vz^{2}} \\ \frac{d^{2}z}{dt^{2}} = -g - K_{a}vz\sqrt{vx^{2} + vy^{2} + vz^{2}} \end{cases}$$
(7)

1 where x, y, z are the coordinates of the granule; vx, vy, vz are the velocity components of the 2 granule, g is the acceleration due to gravity and  $K_a$  is as follows:

3

7

$$K_a = \frac{1}{2m} C_d A_p \rho_{air} \tag{8}$$

4 where *m* is the granule mass,  $C_d$  is the drag coefficient,  $A_p$  is the projected surface area of the 5 granule,  $\rho_{air}$  is the air density. In this study,  $A_p$  is computed for spherical shapes. 6

#### 2.2 Spreading process parameters

8 9 The HCSM uses experimental data measured at the beginning and at the end of the ballistic 10 flight. This provides the initial parameters of the ballistic flight (i.e. outlet velocity) but also 11 makes possible the estimation of the drag coefficient during the flight. The combination of 12 these experimental measurements with mechanical models is of particular interest to take into 13 account the actual behaviour of the fertiliser in the spreading process (Grift et al., 2006; 14 Reumers et al., 2003) and to provide realistic simulations.

15 In the spreading simulations, the motion of a high number of fertiliser granules is computed. 16 To compute one simulation some variables are taken constant for all granules while some 17 other variables assign random values for each granule. These last variables are associated with 18 certain probability distributions. Thus, some probability distribution functions or the

19 corresponding cumulative distribution functions needs to be defined.

- This section describes the input parameters used in the simulations and their measurement methods.
- 22

#### 23 <u>2.2.1 Experimental spreading device and spread pattern deposition</u>

23

A custom-made spreader was used for the experimental measurements. This spreader consisted of a single clockwise rotating disc. This concave disc was equipped with two radial vanes ( $\Omega_{vane}$  was 13.5°;  $\alpha_{lv}$  was 0°;  $r_{vane}$  was 0.395 m) and was spinning at 810 rpm. The height  $h_{vane}$  of the outer extremity of the vanes was 0.8 m. The feeding mass flow was 0.97 kg/s.

The stationary spread pattern obtained with this spreader and with ammonium nitrate was measured using a rotating test bench called CEMIB. This measurement device consisted in a rotating carrier and a motionless line of 80 collection trays. Each tray was equipped of a load

- cell and had a square collection area of  $0.5 \times 0.5$  m. The design and the advantages of this test bench are detailed in Piron and Miclet (2005) and Piron et al. (2010).
- 54 bench are detailed in <u>Piron and Miclet (2005)</u> and <u>Piron et al. (2010)</u>. 55 During the spreading, the spreader carrier turned at a constant rotation speed of 3.1 °/s, so that 56 the whole spread pattern passed above the collection tray row. During the rotation, the 57 cumulated mass collected by each tray was recorded and the weight values were stored with 58 the corresponding orientation angle of the carrier, measured by an angular optical encoder. 59 The acquisition frequency was 10 Hz. During the whole carrier rotation, the total fertiliser
- 40 mass ejected by the spreader was approximately 38 kg and the total mass collected by all the 41 trays was approximately 0.45 kg.
- Using this measurement device, the resulting raw data was a matrix where each line corresponded to an orientation angle and each column corresponded to the cumulative fertiliser mass collected in each tray. The fertiliser mass collected at each angular location was then derived from cumulative measurements. Since the collection areas of all trays are the same, the spatial density of the fertiliser deposition was directly deduced from previous data in polar coordinates. Then, the spread pattern deposition was computed by the CEMIB algorithm, with respect to the disc centre in Cartesian coordinates, using a mathematical

deposition obtained with the experimental spreader and the ammonium nitrate fertiliser used in this study. This spread pattern is taken as reference data for the study.

2 in this study. This spread pattern is taken as reference data for the study.

The analysis of the spread pattern deposition shows that the mean radius of the spread pattern slightly increases with the rotation of the vane (i.e. from the beginning to the end of the spreading angular sector).



Fig. 2 - Stationary spread pattern obtained for ammonium nitrate and the experimental spreader. The graduation of the colour scale reflects the fertiliser amount lying on the sampling area (0.25×0.25 m) expressed in percentage of the total mass.

10 11

12

2.2.2 Horizontal outlet angle distribution

13 The horizontal outlet angles  $\theta_{out}$  were measured using an imaging system based on the 14 processing of motion-blurred images. In this acquisition technique, the exposure time is long 15 relative to the velocity of fertiliser granules so that the granule displacements appear as 16 streaks across the image. The horizontal outlet angles were derived from the distance between 17 these streaks and the disc axle. The imaging system and the image processing are detailed in 18 Villette et al. (2008).

19 Images were captured with a monochrome CCD camera (Sony XCD-SX910), equipped with a

20 6 mm lens. The camera was approximately placed at 0.7 m above the upper corner of the vane

21 and approximately above the central part of the spreading angular sector. The optical axis of

22 the camera was set parallel to the disc axle at a distance of approximately 0.5 m from this

axle. Using a set of 300 images, the horizontal outlet angle was measured for trajectories

selected near the principal point of the image (i.e. the point corresponding to the view axis in the image) to improve the measurement accuracy and avoid geometrical bias. Thus, 2280

trajectories lying in a 10° spreading angular sector were used to estimate the horizontal outlet

27 angle. The angular location of the vane  $\theta_{vane}$  corresponding to the middle of this sector was -

28 20°. The mean value  $\mu \theta_{out}$  was 40.2° and the standard deviation  $\sigma \theta_{out}$  was 0.85°.

29 Considering the histogram of the measured value (Fig. 3), the probability density function was

30 chosen as a normal distribution defined by the two parameters:  $\mu \theta_{out}$  and  $\sigma \theta_{out}$ .



Fig. 3 - Distribution histogram of the horizontal outlet angle measured in the middle of the spreading angular sector. The Gaussian curve that fits the distribution is superposed (continuous line).

6 In order to take into account, the slight increase of the spread pattern radius with respect to the 7 rotation of the vane, the mean value  $\mu \theta_{out}$  was modelled by the following linear relationship:

12

$$\mu \theta_{out} = 39.2 - 0.05 \times \theta_{vane} \tag{9}$$

9 where  $\mu \theta_{out}$  and  $\theta_{vane}$  are expressed in degrees. 10

#### 11 2.2.3 Vertical outlet angle distribution

13 For a given value of the horizontal outlet angle  $\theta_{out}$ , the mean value of the corresponding 14 vertical outlet angle  $\Omega_{out}$  was provided by Eq. (2). Nevertheless, this relationship did not 15 model the dispersion of  $\Omega_{out}$  around its mean value. Consequently this dispersion was measured separately by analysing the vertical distribution of the mass flow. The experimental 16 17 method consisted in recording granule impacts on a vertical screen placed in the vicinity of 18 the spinning disc. The method is the same than the one described in Villette et al. (2013), 19 except a simple flat screen was used instead of a cylindrical screen. Moreover a shutter 20 system was added to control the exposure time of the screen to fertiliser impacts. The screen 21 was covered with a paper of A4 size, a carbon film and a protective film, so that granules 22 hitting the screen produced impact marks on the recording paper (Fig. 4). After the exposition 23 of the recording paper to granule shocks, the paper was digitalised and a dedicated image 24 processing was carried out to analyse the vertical distribution of the impacts. The details of 25 the mathematical model and algorithms used to process impact records or compute the 26 corrected impact surface ratio, can be found in Villette et al. (2013). Considering the curve of the vertical distribution of the impacts (Fig. 4), the probability density function was chosen as 27 28 a normal distribution. Placing the recording screen at 1.08 m and 2.09 m from the axle of the 29 spinning disc, 5 replications of impact recording were carried out at each distance. The mean 30 values of the standard deviations of the impact heights were respectively: 13.3 mm and 25.9 31 mm. Then, the standard deviation  $\sigma \Omega_{out}$  of the vertical outlet angle was estimated at 0.7°.



Fig. 4 - Example of impact record (left) and the corresponding vertical impact distribution
(right) expressed in terms of corrected impact surface ratio. The Gaussian curve (bold) that
fits the distribution is superposed.

#### 5 6 <u>2.2.4 Angular mass flow distribution</u>

8 The angular mass flow distribution was computed at the outer extremity of the vane, as a 9 function of the angular location of the vane. The distribution was deduced from the spread 10 pattern deposition and the horizontal outlet angle. The whole spreading angular sector was 11 sampled each degree. For each angular location of the vane, the theoretical horizontal 12 direction was computed using Eq. (5) and the relative fertiliser quantity was computed for 13 each sampled angular sector from the outer extremity of the vane to a range of 30 m with a 14 sampling interval of 0.25 m. Thus, the spread pattern deposition was computed as a function 15 of the spreading distance (from the extremity of the vane to the landing point) and the angular location of the vane (Fig. 5). The angular mass flow distribution  $g_M(\theta_{vane})$  at the extremity of 16 17 the vane (Fig. 5) was obtained by summing the relative mass of fertiliser obtained for each 18 vane location (whatever the spreading distance). The cumulative mass flow distribution with 19 respect to the vane location  $G_M(\theta_{vane})$  was deduced from  $g_M(\theta_{vane})$  as follows:

20 
$$G_M(\theta_{vane}) = \int_{-\infty}^{v_{vane}} g_M(\xi) d\xi$$

This distribution was used in the HCSM to compute the probability of the fertiliser mass ejected for each angular position of the vane for the clockwise spinning disc of the virtual spreader.

24

7

(10)



# Fig. 5 - Spread pattern deposition (top) and angular distribution of the mass flow (bottom). The spread pattern deposition is drawn as a function of the spreading distance and the angular location of the vane. The graduation of the colour scale reflects the fertiliser amount lying on the sampling area (0.25 m $\times$ 1°), expressed in percentage of the total mass.

#### 2.3 Fertiliser parameters

9 In this study, ammonium nitrate was used for actual experiments. The same fertiliser 0 characteristics were used in numerical simulations computed with the HSCM. The shape of 1 the granules was assumed to be spherical.

#### 12 13

# 13 <u>2.3.1 Specific density</u>14

15 The density of the fertiliser granules was deduced from weighing a material bulk volume and 16 weighing anew the same bulk volume after completing with a liquid of known density. Then, 17 the volume of the granules is deduced and the granule density is calculated. For the 18 ammonium nitrate used in this study, the specific density  $\rho$  was 1563 kg.m<sup>-3</sup>.

19

#### 20 <u>2.3.2 Granule diameter distribution</u>

21

27

The particle size analysis was performed with a sieving test according to the European standard EN 1235/A1 (2003). This provided the cumulative mass distribution function. Then, a two-parameter lognormal distribution was used to describe the distribution.

Thus, the normalised cumulative mass distribution (value range from 0 to 1) was fit with the following function:

$$G_{D}(d_{p}) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\ln(d_{p}) - \mu_{ln}}{\sqrt{2}\sigma_{ln}}\right)$$
(11)

1 where  $d_p$  is the granule diameter, erf() is the error function,  $\mu_{ln}$  and  $\sigma_{ln}$  are the two fitting 2 parameters (corresponding to the mean and standard deviation of the variable's natural 3 logarithm).

4 The derivative function of  $G_D(d_p)$  is:

$$g_D(d_p) = \frac{1}{d_p \sigma_{\ln} \sqrt{2\pi}} \exp\left(\frac{\left(\ln(d_p) - \mu_{\ln}\right)^2}{2\sigma_{\ln}^2}\right)$$
(12)

6 Considering the probability density function  $f_D(d_p)$  and the cumulative frequency function 7  $F_D(d_p)$  of the random variable *D*, the probability of having the granule diameter *D* lower than 8  $d_p$  is:

5

$$p(\{D \le d_p\}) = F_D(d_p) = \int_0^{d_p} f_D(\xi) d\xi$$
(13)

10 Using the probability density function  $f_D(d_p)$ , the cumulative mass distribution  $G_D(d_p)$  is also 11 expressed as follows:

12 
$$G_D(d_p) = \frac{\int_0^{d_p} f_D(\xi) \times m(\xi) d\xi}{\int_0^{+\infty} f_D(\xi) \times m(\xi) d\xi}$$
(14)

13 where  $m(d_p)$  is the mass of granules of diameter  $d_p$ .

14 Assuming the mass of the granule is proportional to  $d_p^{3}$ , Eq. (14) yields:

15 
$$G_D(d_p) = \frac{1}{K} \int_0^{d_p} f_D(\xi) \times \xi^3 d\xi$$
(15)

16 where  $K = \int_0^{+\infty} f_D(\xi) \times \xi^3 d\xi$ 

17 This provides:

18

21

$$g_{D}(d_{p}) = \frac{1}{K} f_{D}(d_{p}) \times d_{p}^{3}$$
(16)

Combining Eq. (13) and Eq. (16), the cumulative frequency function of the granule diameteris finally obtained as follows:

$$F_D(d_p) = K \int_0^{d_p} \frac{g_D(\xi)}{\xi^3} d\xi$$
(17)

In practice, the integration of Eq. (17) is computed numerically and the constant *K* is determined so that  $F_D(d_p)$  is 1 when  $d_p$  tends to infinity.

For the ammonium nitrate fertiliser used in this study, Fig. 6 presents the results of the sieve test with the corresponding cumulative mass distribution  $G_D(d_p)$  and the cumulative frequency function  $F_D(d_p)$ .



Diameter, mm Fig. 6 - Results of the particle size analysis: fraction of the fertiliser mass retained on each sieve (bar graph), cumulative mass distribution  $G_D(d_p)$  (dashed line), cumulative frequency function  $F_D(d_p)$  (continuous line).

6 The establishment of the cumulative frequency function  $F_D(d_p)$  is of particular interest to 7 select efficiently random diameter values corresponding to a random set of granules whose 8 the mass distribution respects the fertiliser sieve test.

9 10

2.3.3 Drag coefficient in the air

11

To compute the ballistic flight of fertiliser particles, many researchers assumed the drag coefficient  $C_d$  to be constant (Coetzee and Lombard, 2011; Grafton et al., 2015; Grift and Hofstee, 2002; Olieslagers et al., 1996; Pitt et al., 1982), while some other authors tried to improve the description of the ballistic flight by considering changes of the  $C_d$  value during the motion (Antille et al., 2015).

- 17 In some works, the fertiliser particles were approximated as perfect spheres. Consequently, 18 considering a turbulent flow regime, the  $C_d$  value of the fertiliser granules was chosen at 0.44 19 (Coetzee and Lombard, 2011; Olieslagers et al., 1996; Walker et al., 1997). Taking into 20 account the influence of shape and texture of fertiliser granules on their aerodynamic
- 21 behaviour, some other authors chose higher  $C_d$  values. For instance, <u>Pitt et al. (1982)</u> chose
- 0.46 for ammonium nitrate. Comparing modelled and measured fall time, <u>Grift and Hofstee</u>
   (2002) suggested multiplying the diameter of the equivalent sphere by a correction factor
   (named "q-factor") ranged from 0 to 1.
- In the present study, the drag coefficient was assumed constant during the ballistic flight. The value of  $C_d$  was chosen by comparing the reference spread pattern (i.e. obtained with the CEMIB test bench) with simulated spread patterns computed for various  $C_d$  values. Thus, for the ammonium nitrate used in this study, the value of the drag coefficient was estimated to 0.47. Moreover, the air density  $\rho_{air}$  was assumed to be 1.21 kg/m<sup>3</sup> in the spreading condition.
- 30

#### 31 2.4 Monte Carlo Spreading Simulation

32

#### 33 <u>2.4.1 The virtual spreader</u>

34

The virtual spreader considered for the simulations was a twin disc spreader for which the spacing between the two disc axles  $s_{disc}$  was 1 m. Both discs had the same angular speed. The

right disc rotated in the counter-clockwise direction while the left one rotated in the clockwise
 direction. Each disc of the spreader was fed by the same mass flow of fertiliser.

3 The setting of the virtual spreader consisted in modifying the angular location of the feeding 4 point on each disc. With this setting mechanism, rotating the angular location of  $\alpha_{set}$  for the

5 left disc involves the rotation of the left spread pattern in the same direction and with the same 6 angle  $\alpha_{set}$ .

7 8

#### 2.4.2 Static spread pattern simulation

9 10 Considering the virtual spreader, static spread patterns were computed using the HCSM and a Monte Carlo process. This approach consisted in computing the motion of a high number of 11 fertiliser granules for which several characteristics were randomly drawn from pre-established 12 13 statistical distributions. Simulations were implemented with Matlab (2005), and used the random number generator of this software. For normally distributed variables, the values were 14 15 obtained using the *randn* function. In the case of other arbitrary distributions, the selection of 16 random values was performed in two steps. First, random numbers were generated with a 17 uniform distribution using the *rand* function on the range 0 to 1. Second, final random values 18 were deduced from these random numbers by inversing the cumulative frequency function of 19 the specified distribution.

For a given mass  $m_{tot}$  of fertiliser, the computation of the spread pattern was decomposed in computing the left and the right spread patterns independently. For the left disc, the Monte Carlo simulation consisted of the following steps.

23

First, a set of virtual granules was generated by drawing a set of diameter values from the fertiliser diameter distribution using the cumulative frequency function  $F_D$ . Then, the mass  $m_i$ of each granule was computed as follows:

27

$$m_{i} = \rho \frac{\pi}{3} d_{pi}^{3}$$
(18)

28 where  $d_{pi}$  is the diameter of the granule of mass  $m_i$ .

29 The total number  $n_{disc}$  of granules ejected by the disc was adjusted so that:

$$\sum_{i=1}^{\text{disc}} m_i = \frac{m_{tot}}{2} \tag{19}$$

31

30

32 Second, the initial conditions of the ballistic flight were assigned to each granule 33 independently from its diameter. For each granule, the values of the different variables were 34 assigned as follows:

1) The angular location of the vane  $\theta_{vane}$  corresponding to the granule ejection was randomly selected using the cumulative mass flow distribution  $G_D$ .

2) The corresponding coordinates of the ejection point ( $x_{out}$ ,  $y_{out}$ ,  $z_{out}$ ) were deduced from  $\theta_{vane}$ using Eq. (1).

39 3) The corresponding horizontal outlet angle  $\theta_{out}$  was drawn from the normal distribution

40 parametrized by  $\mu \theta_{out}$  and  $\sigma \theta_{out}$ , where  $\mu_{\theta_{out}}$  was deduced from the vane location  $\theta_{vane}$  using 41 Eq. (9).

42 4) The corresponding vertical outlet angle  $\Omega_{out}$  was drawn from the normal distribution

43 parametrized by  $\mu \Omega_{out}$  and  $\sigma \Omega_{out}$ , where  $\mu \Omega_{out}$  was the vertical outlet angle deduced from  $\theta_{out}$ 44 using Eq. (2).

45 5) The corresponding outlet velocity  $v_{out}$  and its 3D-components ( $vx_{out}$ ,  $vy_{out}$ ,  $vz_{out}$ ) were 46 deduced from  $\theta_{vane}$ ,  $\theta_{out}$  and  $\Omega_{out}$  using successively Eqs. (3), (4), (5) and (6).

- 1 Third, the coordinates of the landing point of each granule were computed by solving Eq. (7) 2 with the initial conditions of flight  $x_{out}$ ,  $y_{out}$ ,  $z_{out}$  and  $vx_{out}$ ,  $vy_{out}$ ,  $vz_{out}$ . Then, the setting of the 3 spreader is taken into account by computing the coordinates of the landing points with the 4 rotation angle  $\alpha_{set}$  around the disc axle.
- 5

6 The spread pattern produced by the right disc is computed by 1) using anew the same process 7 to generate a second spread pattern for another set of granules; 2) changing the sign of the x8 coordinates of this second spread pattern.

9 The global spread pattern resulting from the twin-disc virtual spreader is finally deduced from 10 the left and right spread patterns after translating the coordinates of the granules by half the

11 disc spacing  $s_{disc}$  in the left or right direction. This global spread pattern is defined by a set of

12 granules for which each mass and each landing position is perfectly known.

13

14 <u>2.4.3 Transverse distribution</u>

15

16 The transverse distribution is deduced from the static spread pattern by considering a virtual 17 row of collection trays placed continuously along a line perpendicular to the travel axis (along 18 the *x*-axis) of the virtual spreader. For a given swath spacing  $L_{w_2}$  several static spread patterns

were computed and translated on the right and the left at a multiple of  $L_w$  of the central pass to

20 reproduce the overlapping. The successive spread patterns were oriented to simulate overlaps

21 resulting from adjacent swaths applied in alternate directions (*i.e.* back and forth mode).

22 Depending on the *x*-value of each granule of the spread patterns, the granules were affected to

23 the corresponding collection trays, so that the sub-set of granules virtually collected by each

tray was perfectly known in terms of granule masses and granule diameters. The transverse distribution of the fertiliser mass was obtained by summing the mass of all the granules virtually collected by each collection tray. Then, the transverse coefficient of variation CV is deduced from this mass distribution by dividing the standard deviation by the mean. In this

28 paper the CV is expressed in percentage.

For a target application rate  $q_t$ , the total mass  $m_{tot}$  of fertiliser used to compute the static spread pattern was determined as the product of the application rate by the collection surface on the swath spacing. Calling  $l_{tray}$  the length of the collection trays (measured in the travel direction), the total mass  $m_{tot}$  is as follows:

33 34  $m_{tot} = q_t \times l_{tray} \times L_w \times 10^{-4}$ (20)

#### 35 **3 Results and discussion**

#### 36

#### 37 **3.1 Comparison of the measured and simulated spread pattern**

38

Although the objective of the HCSM was not the perfect description of the physical phenomena of the spreading process or the perfect reproduction of the experimental spread pattern, it is important to ensure the simulated spread pattern was in accordance with experimental results. Thus, the first simulation consisted in computing the spread pattern for a single disc for the same spreading conditions than those carried out with the experimental spreading device.

45 The 2D-representation of the spread pattern deposition was obtained by considering a grid

46 with a sampling interval  $\Delta w_{grid} = 0.25$  m and  $\Delta l_{grid} = 0.25$  m in the transverse and longitudinal 47 dimensional dimensionada dimensionada dimensionada dimensionada dimensi

47 directions. Depending on the granule coordinates, the granules located in each grid cell were

48 identified and the sum of their masses was affected to the corresponding cell. This matrix was

49 the raw Cartesian representation of the spread pattern deposition.

As the experimental measurement device (CEMIB) was a rotating system, and as the processing of the polar data included some interpolation and regularization steps, it was difficult to compare visually the raw Cartesian representation of the simulated spread pattern with the interpolated experimental measurement (especially for low fertiliser amount).

5 Thus, the raw Cartesian representations of the simulated spread pattern had been sampled in a

6 polar coordinate system, regularized by a Gaussian filter and then re-interpolated into a 7 Cartesian coordinate system to simulate the effect of the Cemib acquisition and data 8 processing. For three different amount of fertiliser, Fig. 7 shows the raw Cartesian 9 representation of the simulated spread pattern deposition and its representation when 10 interpolations are applied in an intermediate polar system.

Fig. 7 shows that the local variability increases inside the spread pattern when the fertiliser amount decreases. This corresponds to the well-known random variability observed in CV measurement from run to run. Moreover, when the fertiliser amount is 0.45 kg the representation is in good accordance with the reference spread pattern (Fig. 2) measured with the rotating test bench (when the same fertiliser amount was collected). A better comparison

16 would have been obtained by modeling the rotating acquisition system, but this was out of

17 scope of this paper.

18 When the fertiliser amount is very high (i.e. 50 kg), the relative local variability inside the

19 spread pattern is reduced. Then, the representations of the spread patterns are similar whatever

20 the use of intermediate steps in a polar system or not.



Fig. 7 - Simulated spread patterns for three fertiliser amounts: 0.1 kg, 0.45 kg, 50 kg (from top to bottom) and two kind of representations: raw Cartesian representation of the simulated spread pattern (left) and after sampling and interpolating in a polar coordinate system (right) to reflect CEMIB data processing.

# 7 3.2 Setting map of the virtual spreader8

A set of simulations were performed to draw the setting map of the virtual spreader. Thus, the spread pattern was computed by considering  $10^6$  particles (i.e. a total mass of approximately 26.8 kg) ejected by each disc. The value of the setting angle was from -30° to -60°, and for each value the transverse CV was computed for a set of swath spacing (from 15 to 45 m). The size of the virtual collection trays was 0.5 x 0.5 m each.

Figure 8 shows the setting map deduced from the simulations. This map represents the CV value obtained with the virtual spreader with respect to setting angle and swath spacing. Since all the CV values were computed for a very high number of particles, these values reflect the geometry qualities or defects of the spread patterns related to the swath spacing and do not take into account other transverse variabilities that occur for lower application rates. This CV value is an estimation of  $CV_{geom}$  which is only due to the geometrical shape of the spread

pattern (for a specified swath spacing) regardless of the application rate.  $CV_{geom}$  is the value of

21 CV that would be reached if the application rate tended to infinity.



1 2 Fig. 8 - Setting map of the virtual spreader providing the value of the CV (expressed in 3 percentage) with respect to the setting angle and the swath spacing when the spread pattern is 4 computed for a very high number of fertiliser granules. The color scale corresponds the value 5 of the CV. Six specific spreading situations SS1 to SS6 are marked on the setting map (black 6 circle). 7

#### 3.3 Influence of application rate and collection tray size on the CV value

8 9

10 Simulations have been performed to investigate the effects of the application rate q and the 11 collection tray size on CV measurements. For the simulations, the sizes of the collection trays 12 (length × width) were: 1×1 m, 1×0.5 m, 1×0.25 m, 0.5×1 m, 0.5×0.5 m, 0.5×0.25 m, 0.25×1 13 m, and 0.25×0.5 m. The application rates were: 50, 100, 200, 400, 800, 3000 kg/ha and for each rate the number of replication runs was respectively 2000, 1000, 500, 500, 400, and 200. 14 15 The simulations have been computed for six spreading situations (SS1 to SS6) located on the 16 setting map (Fig. 8). Conditions SS1 to SS4 correspond to a setting angle of -41° and swath 17 spacing of respectively 16, 26, 32 and 42 m. Conditions SS5 and SS6 correspond to a setting angle of -55° and swath spacing of respectively 36 and 42 m. These situations have been 18 19 chosen to illustrate various setting conditions: optimal settings and swath spacing (SS2 and 20 SS6) and inadequate settings or swath spacing.

- 21 In the case of the situation SS2, Fig. 9 demonstrates that the mean value  $\mu_{CV}$  and the standard
- deviation  $\sigma_{\scriptscriptstyle CV}$  of the CV increase when the application rate decreases. The curves also show 22
- that  $\mu_{CV}$  and  $\sigma_{CV}$  depend on the size of the collection trays. The mean value  $\mu_{CV}$  increases 23
- 24 when the surface of the collection trays decreases, while the standard deviation  $\sigma_{CV}$  increases
- 25 when the length of the collection trays decreases.
- 26 Concerning  $\mu_{CV}$ , as shown in Fig. 9, it appears that the values are very similar when they are
- 27 deduced from simulations computed with the same tray surface. Comparing the results
- obtained for the six spreading situations (SS1 to SS6) at the six application rates, the 28
- 29 maximum difference observed on the CV values is 0.36 % for the following tray dimensions
- 1×0.25 m, 0.5×0.5 m, and 0.25×1 m (this maximum difference is obtained for SS4 at 200 30

1 kg/ha). For the dimensions 1×0.5 m and 0.5×1 m, the maximum difference is 0.24 % 2 (obtained for SS4 at 3000 kg/ha). For the dimensions 0.5×0.25 m and 0.25×0.5 m, the 3 maximum difference is 0.23 % (for SS1 at 50 kg/ha). These differences are very low 4 regarding the traditional range of CV values encountered in practice or regarding  $\mu_{CV}$  values

5 encountered here for spreading situations and all application rates (from 1.7 % to 46.3 %).

Furthermore, considering one spreading situation, the mean values of the CV obtained for alltray size tend to converge.

8



9 10

Fig. 9 - Mean value (top) and standard deviation (bottom) of the CV values (in %) with respect to application rate for the spreading situation SS2 and for 8 sizes (length x width) of collecting trays ( $\cdot 1 \times 1 \text{ m}$ ,  $\Box 1 \times 0.25 \text{ m}$ ,  $\times 1 \times 0.5 \text{ m}$ ,  $+ 0.5 \times 1 \text{ m}$ ,  $\bigcirc 0.5 \times 0.5 \text{ m}$ ,  $\triangle 0.5 \times 0.25 \text{ m}$ ,  $\downarrow 0.25 \times 1 \text{ m}$ ,  $\bigtriangledown 0.25 \times 0.5 \text{ m}$ ).

15

All these observations lead to consider that the mean value of the CV depends on two components. One component reflects the spreading situation depending on the setting and on

the swath spacing. This component is expressed by the constant value to which  $\mu_{CV}$  tends for 1 high application rates. The second component reflects the influence of the application rate 2 3 and, more precisely, the influence of the mass collected in trays (depending on the rate and 4 the tray surface). Consequently, the expression of the mean value of the CV is proposed as a 5 function of q and  $S_{trav}$  as follows:

6

$$\mu_{CV} = \sqrt{\frac{a}{q \times S_{tray}} + b^2}$$
(21)

where q is expressed in kg/ha,  $S_{tray}$  is expressed in m<sup>2</sup>, a and b are two coefficients. 7

This relationship is used as a regression model to fit the data obtained for the six studied 8 9 spreading situations (SS1 to SS6). Figure 10 presents the mean value  $\mu_{CV}$  with respect to the product of the application rate by the collection tray surface  $(q \times S_{trav})$ . Table 1 shows the 10 values of the parameters a, b and the correlation coefficient resulting from the use of Eq. (21) 11 12 to fit the data. The regression curves are drawn on Fig. 10. The values of the correlation coefficient r demonstrate that Eq. (21) accurately describes the relationship between  $\mu_{CV}$ , q 13 and  $S_{tray}$ . The lowest value of correlation coefficients is obtained for SS4 but is still higher 14 15 than 0.996.



16 17

Fig. 10 – Mean value of the CV obtained for various spreading situations (SS1 to SS6) when 18 it is measured with various size of collection trays, with respect to the product of the 19 application rate by the collection tray surface  $(q \times S_{tray})$ . The symbols correspond to the size of the collection trays: • 1×1 m,  $\Box$  1×0.25 m, × 1×0.5 m, + 0.5×1 m,  $\bigcirc$  0.5×0.5 m,  $\triangle$ 20  $0.5 \times 0.25 \text{ m}$ ,  $\triangleright 0.25 \times 1 \text{ m}$ ,  $\bigtriangledown 0.25 \times 0.5 \text{ m}$ . 21 22

2 Table 1 – Parameters (a, b) and Pearson correlation coefficient (r) of the regression model 3 used to fit CV mean values (expressed in %) according to Eq. (21) for various spreading

4 situations.

| Spreading situation | а             | b     | r      |
|---------------------|---------------|-------|--------|
| SS1                 | $35.1 \ 10^2$ | 6.64  | 0.9999 |
| SS2                 | $35.4 \ 10^2$ | 1.38  | 0.9999 |
| SS3                 | $35.4 \ 10^2$ | 12.74 | 0.9999 |
| SS4                 | $35.0\ 10^2$  | 39.76 | 0.9969 |
| SS5                 | $35.2 \ 10^2$ | 18.26 | 0.9998 |
| SS6                 | $35.4 \ 10^2$ | 5.76  | 1.0000 |

5

6 Considering Eq. (21), the value of  $\mu_{CV}$  tends to b when the application rate approaches

7 infinity. Thus, the parameter b corresponds to the  $CV_{geom}$ , which depends on the geometrical shape of the spread pattern (for a specified swath spacing) regardless of the application rate. 8 9 Regarding Table 1, the values of the parameter *a* are very similar whatever the spreading 10 situation. Some additionnal simulations shows that this value depends on the particle size

11 distribution of the fertiliser.

12 Another interesting aspect of the finding expressed in Eq. (21) is that, whatever the setting of 13 the machine, the mean value of the CV is higher than a limit defined by the application rate

14 and the collection tray surface. This limit is as follows:

15 μ

$$u_{CV} \ge \sqrt{\frac{a}{q \times S_{tray}}}$$
 (22)

16 This means that trying to set the machine to obtain a CV below this limit does not make sense. 17 Conversely, measuring CV values significantly higher than this value indicates that the setting

18 or the design of the machine could be optimized to improve the spreading quality. 19 Nevertheless, the practical use of this threshold remains dependent on the accuracy of the CV 20 estimation regarding the measurement variability.

21

22 Concerning the standard deviation  $\sigma_{CV}$  of the CV, Fig. 9 shows that the values are close when 23 they are deduced from simulations computed with the same collection tray length.

24 Comparing the results obtained for the six spreading situations (SS1 to SS6) at the six 25 application rates, the maximum difference observed on the standard deviation is 0.25 % for 26 the following tray dimensions 1x1 m, 1x0.25 m, 1x0.5 m. For the dimensions 0.5x1 m, 0.5x0.5 m, 0.5x0.25 m, the maximum difference is 0.19 %. For the dimensions 0.25x1 m, 27 28  $0.25 \times 0.5$  m, the maximum difference is 0.2 %. 29

30 For each collection tray size and for each spreading situation, the standard deviation of the 31 CV is well fitted by the following expression:

$$\sigma_{CV} = c \left( q \times l_{tray} \right)^{-0.5} \tag{23}$$

33 The range of values of the parameter c and the range of value of correlation coefficients are 34 presented in Table 2, when q is expressed in kg/ha.

35 36

1 Table 2 – Range values of parameter (c) and Pearson correlation coefficient (r) of the 2 regression model used to fit CV standard deviation values according to Eq. (23) for various 3 spreading situations.

| <u>8 5</u>          |                |                  |
|---------------------|----------------|------------------|
| Spreading situation | С              | r                |
| SS1                 | 11.55 to 13.57 | 0.9893 to 0.9976 |
| SS2                 | 8.35 to 8.66   | 0.9975 to 0.9996 |
| SS3                 | 8.74 to 10.37  | 0.9914 to 0.9988 |
| SS4                 | 8.78 to 9.08   | 0.9980 to 0.9999 |
| SS5                 | 8.89 to 10.13  | 0.9900 to 0.9993 |
| SS6                 | 6.93 to 7.85   | 0.9905 to 0.9968 |

5 In the literature, very few studies addressed the problem of the influence of the application 6 rate or the collection tray size on the CV value. This is due to the difficulty in performing a 7 high number of replications and in maintaining constant spreading conditions to establish a 8 unbiased relationship when actual experiments have to be carried out.

9 Since the quality of the spreading results from numerous combined parameters, simulations 10 afford the possibility of, not only avoiding perturbations (e.g. humidity, wind or fertilizer property variations) but also analyzing the studied parameter independently from the others. 11 This is the case in this section, where the effect of the application rate on the CV is studied 12 13 without any change in the outlet angle distribution or in the angular mass flow distribution. 14 This specific study is very difficult to carry out in practice, because the global shape of the spread pattern can be modified when the feeding flow rate is modified (Fulton et al., 2001) 15 16 due to the change in the feeding area on the spinning disc (Kweon and Grift, 2006), or in the 17 vane loading (Villette et al., 2012).

18

19 <u>Parish and de Visser (1989)</u> suggested that given a collection tray width  $w_1$ , and a resulting 20 coefficient of variation  $CV_1$ , a collection tray width of  $w_2$  will result in a new coefficient of 21 variation  $CV_2$  related to  $CV_2$  as follows:

- 21 variation  $CV_2$ , related to  $CV_1$  as follows:
- 22

$$\frac{CV_2}{CV_1} = \sqrt{\frac{w_1}{w_2}} \tag{24}$$

The length of the collection tray was implicitly the same for the two kinds of trays. The authors underlined that, because of variability, this equation should be effective in dealing with averages of multiple tests.

Using Eq.(21), the ratio of the mean value of  $CV_2$  on the mean value of  $CV_1$  is as follows:

27 
$$\frac{\mu_{CV2}}{\mu_{CV1}} = \sqrt{\frac{a \times q^{-1} \times (l \times w_2)^{-1} + CV_{geom2}^2}{a \times q^{-1} \times (l \times w_1)^{-1} + CV_{geom1}^2}}$$
(25)

where *l* is the length of the collection trays (which is the same for the collection trays used to measure  $CV_l$  and  $CV_2$ ).

30 It appears that the relationship between  $CV_2$  and  $CV_1$  is more complex than the one suggested 31 by <u>Parish and de Visser (1989)</u> and that Eq.(24) is not correct when the geometrical 32 component of the CV ( $CV_{geom}$ ) is not null. Nevertheless, in the case of a good quality 33 spreading,  $CV_{geom1}$  and  $CV_{geom2}$  are low and are negligible compared to the component related 34 to the effect of the application rate. In the case of a good quality spreading, Eq.(25) yields:

35 
$$\frac{\mu_{CV2}}{\mu_{CV1}} = \sqrt{\frac{w_2^{-1}}{w_1^{-1}}} = \sqrt{\frac{w_1}{w_2}}$$
(26)

This demonstrates that the relationship proposed by <u>Parish and de Visser (1989)</u> is a correct approximation only when the setting of the machine is very good, or when the CV value is

38 widely due to the effect of the application rate (low application rate).

- Simulation findings demonstrate the variability in CV measurement (i.e.  $\sigma_{CV}$ ) decreases with the application rate and the length of the collection trays used for the measurement. These results are in perfect accordance with recommendations of Jones et al. (2008) who concluded that multiple rows of trays, multiple passes and long trays can reduce experimental variability
- and improve the accuracy of bout width calculation. It is worth noting that doubling thenumber of passes corresponds to doubling the apparent application rate collected by the tray.

8 Concerning the collection trays used for transverse tests, the European Standard specified in 9 EN 13739-2 (2011) recommends the size (length x width ) of 0.5×0.5 m but also permits 10 1×0.25 m. The simulation findings confirmed that the mean value expected for the CV is the same when these two collection tray sizes are used. Nevertheless, simulations demonstrates 11 12 these two collection devices are not equivalent regarding the variability in CV measurement. Thus, the variability is reduced when the size of 1×0.25 m is used and the confidence in bout 13 14 width calculation is improved. This illustrates that simulations would be of practical interest 15 when standard revision process are launched.

16

#### 17 **3.4 Influence of the test method on the CV value**

18

19 Simulations had been carried out to compare the values of CV when they were obtained 20 following two different measurement methods. The first method was a simple "in-field" 21 measurement consisting in measuring the CV when the machine was driven at the forward 22 speed of 10 km/h and was set to apply the in-field target rate  $q_f$ . The second method was a 23 "standard test" performed following the European Standard specified in EN 13739-2 (2011). 24 In this standard test, the machine was driven at 4 km/h, the number of runs for each 25 measurement was two, and the flow adjustment using 4 km/h was set to correspond to the flow rate obtained at a forward driving speed of 10 km/h. Thus, in practice, the application 26 27 rate used in the simulation program for the virtual standard test was:

28

$$=\frac{10}{4}q_f \tag{27}$$

29 Following the European Standard, two replications were done for each virtual standard test before computing the corresponding CV. Moreover, the mirror image of the transverse 30 31 distribution of the central pass was used to compute the overlapped distribution with the 32 adjacent passes on the swath spacing. In contrast, concerning the virtual "in-field" 33 measurement, no replication is done before computing the corresponding CV and the 34 transverse distributions for each pass were completely independent (i.e. no mirror image was 35 used). For both test procedures, the same transverse line of collection trays was used. The size 36 of these virtual trays was 0.5×0.5 m.

q

37 For the spreading situation SS2, Fig. 11 presents the mean value and error bar (twice the 38 standard deviation) of the CV with respect to the application rate. The mean value and the 39 standard deviation of the CV decrease with the application rate. The figure also shows that the 40 CV is lower when it is measured with the standard procedure than when it is measured with 41 the simple in-field test. Moreover, the standard deviation is lower when it is measured 42 following the standard procedure (the standard deviation is approximately divided by 2). 43 These results illustrate that the use of the standard test reduce the variability on the 44 measurement of the CV. Nevertheless, the standard test underestimates the value of the CV with respect to the value that should be obtained in field by considering the actual target 45 46 application rate (i.e. with the actual application rate at the actual forward speed and without 47 any replication). In this example, the "in-field" CV is at least twice the "standard" CV when the application rate is lower than 490 kg/ha. 48

1 The differences observed here only result from the measurement procedure since no 2 additional perturbation (i.e. wind, ground topography, ground irregularity, guidance error...) 3 was taken into account for the "in field" measurements. Thus, the "in-field" CV defined in this section should not be confused with the "field CV" defined by Lawrence and Yule 4 5 (2007).



6 7 Fig. 11 – Mean value and error bar (twice the standard deviation) of the CV with respect to 8 the application rate for the spreading situation SS2. Simulations are performed with collection 9 trays of 0.5×0.5 m for virtual "in-field" measurements (continuous line) and for virtual "standard" measurements (dotted line). 10

11

13

#### 12 3.5 Influence of granule size and drag coefficient

One particularity of the spread pattern simulations described in this article was that each 14 15 fertilizer granule was tracked during the whole virtual spreading process. Consequently, at the 16 end of the process, when all granules lied on the ground, the location and the diameter of each 17 granule were perfectly known. Thus, simulations were used to study how fertiliser particles 18 contribute to the transverse distribution in relation to their diameters. Figure 12 presents the 19 transverse distributions of the fertilizer sieve fractions for two spreading situations: SS2 and SS5. For each situation, simulations have been performed with  $10^6$  fertiliser granules per disc. 20 The size of the virtual collection trays was 0.5×0.5 m. In the case of situation SS2, the 21 22 proportions of each diameter class are approximately kept constant on all the working width 23 (26 m) and correspond to the particle size analysis presented in Fig. 12. In this situation, the 24 transverse distribution has a triangular shape before overlapping and adjacent passes overlap 25 on a large part of the working width. In contrast, in the case of situation SS6, the proportions 26 of diameter classes are modified at the extremities of the working width with small diameter vanishing. In this last situation, the swath spacing is 42 m, the transverse distribution has a 27 28 trapezoidal shape before overlapping and adjacent passes overlap only on a low part of the 29 working width. Thus, the overlapping area only concerns the external part of the spread 30 pattern and the landing points of biggest granules.



1 2 3 4

Fig. 12 – Overlapped transverse distribution of fertiliser diameter classes on the working width, in the case of two spreading situations: SS2 (top) for a spacing width of 26 m and SS6 (bottom) for a spacing width of 42 m. The transverse mass distributions are superposed for the 5 central pass (continuous black line) and adjacent passes (dashed black line).

7 In the case of situation SS6, the same rate (i.e. same mass per surface unit) is applied locally 8 at 2.5 m and 21 m from the centerline of the virtual spreader, but the number of granules per surface unit is not the same. For the same application rate, the number of granules decrease 9 10 when their sizes increase. Consequently, this affects the spatial variability of the fertiliser supply at very small scales. A further characterization of this effect is worth of studying but is 11 12 out of scope for this article.

The study of spreading segregation is also of particular interest for blended fertilisers. The 13 14 HCSM is an interesting tool to investigate how ballistic segregation affects the spatial 15 distribution of each fertiliser components. To illustrate this aspect, a simulation was performed by considering two fertiliser components and one spreading situation. The first 16 fertiliser component corresponded to ammonium nitrate whose characteristics had been 17 described and used in the previous sections. The second fertiliser component corresponded to 18 19 a fictive material, which only differ by the drag coefficient set at 0.60 (instead of 0.47 for the 20 first component). This  $C_d$  value was the one used by Grafton et al. (2015). Considering that the two fertiliser components were in the same weight proportion, the simulation was carried 21 22 out for a setting angle of -54° and a swath spacing of 39 m. In these spreading conditions, Fig. 23 13 shows the transverse distribution of the blended fertilisers and of each component. The CV 24 computed for the blended fertilisers was 6.1 %. Nevertheless, the CV values were at least 1 twice when each fertiliser component was considered independently. Thus, the CV reached

2 12.5% for the first component and 17.1% for the second one. This illustrates that the 3 measurement of the CV for blended fertilisers (i.e. measured without differencing the 4 components) does not systematically provide a good assessment of the spatial chemical

5 variability.



Fig 13. Overlapped transverse distribution of blended fertilisers that only differ in their respective drag coefficient: 0.47 (in light grey) and 0.60 in (in dark grey).

The benefit of this approach is that results are not limited to comparison of the ballistic lengths of individual particles in contrast with works of <u>Antille et al. (2015)</u> or <u>Grafton et al.</u> (2015). The present approach considers the two-dimensional spread pattern so that the transverse distribution is computed taking into account the overlapping of adjacent passes.

14

15 This section put the emphasis on the interest of HCSM to investigate the impact of fertiliser properties on the transverse distribution. The accurate study of a specific blended fertiliser 16 would require to characterize the mechanical behavior of the mixture on the spinning disc to 17 18 provide the horizontal and vertical outlet angle distributions and the angular mass flow distribution (as described in section 2.2). It would also required to characterize the properties 19 20 of each fertiliser components in terms of specific density, diameter distribution and drag 21 coefficient (as described in section 2.3). Using these input parameters, the HCSM would be an 22 efficient and low cost strategy to study the behaviour of blended fertilisers and provide 23 recommendations on swath spacing. 24

#### 25 **4.** Conclusion

26

To simulate fertiliser spread pattern depositions, a hybrid model was proposed. This approach combined the use of theoretical motion equations and experimental results. The experimental data were used to adjust few constant parameters and to provide the statistical distributions of other input parameters. This ensured the realistic nature of fertiliser mechanical behaviours and spread pattern simulations. The particularity of the hybrid model was the use of successive random selections to compute the spread pattern deposition of virtual particles whose size and motion parameters respected experimental statistical distributions. This Monte 1 Carlo process took into account the variability of input parameters and made possible the use 2 of simulation replications to access to statistical characteristics of the output variables.

3 Simulation results showed the Hybrid Centrifugal Spreading Model was worth of interest to

4 study information that was difficult or impossible to access with actual experiments. In 5 particular, results demonstrated the transverse CV not only depended on the spreader setting 6 and the swath spacing but also increased when the application rate decreased. The CV value 7 also increased when the collection tray surface decreased. A mathematical relationship had 8 been derived from simulation results to describe these influences. The study also 9 demonstrated the variability of CV measurements increased when the application rate or the 10 collection tray length decreased. Differences observed in the CV value, when it was measured

11 in field or following the standard specified in EN 13739-2, were highlighted.

An insight into the distribution of the fertiliser particles related to their diameter or their drag coefficient showed the Hybrid Centrifugal Spreading Model will be a powerful tool to analyse further the impact of fertiliser ballistic properties on the spread pattern.

15 More generally, the model and the associated Monte Carlo simulations open up the possibility of carrying out virtual and numerical experiments to avoid cumbersome experimental tasks 16 17 for numerous research or development activities. For instance, this will be of particular 18 interest in: studying the effects of perturbing factors such as wind; providing recommendations concerning the use of blended fertilisers for a selected swath spacing; 19 20 comparing different test methods to assess the transverse distribution or the spread pattern 21 (especially to design simplified tests); assessing the accuracy of test methods (especially in 22 defining the optimal swath width); or defining the probability of obtaining a selected range of 23 application rate for a selected spatial scale defined by agronomical criteria. 24

### 25

# 26 **5. References**27

- Antille, D.L., Gallar-Redondo, L., Godwin, R.J., 2013. Determining the particle size range of
  organomineral fertilisers based on the spreading characteristics of the material, ASABE
  Annual International Meeting, Kansas City, Missouri, July 21-July 24, 2013. American
  Society of Agricultural and Biological Engineers, p. 18.
- Antille, D.L., Gallar, L., Miller, P., Godwin, R., 2015. An investigation into the fertilizer
   particle dynamics off-the-disc. Applied Engineering in Agriculture 31, 49-60.
- Aphale, A., Bolander, N., Park, J., Shaw, L., Svec, J., Wassgren, C., 2003. Granular fertiliser
   particle dynamics on and off a spinner spreader. Biosystems Engineering 85, 319-329.
- ASAE Standards S341.2, 1999. Procedure for measuring distribution uniformity and
   calibrating granular broadcast spreaders, ASAE, St. Joseph, Michigan, USA.
- Australian Fertiliser Services Association, 2001. Accu-Spread Code of practice for
   spreading, Glenthompson.
- Bradley, M., Farnish, R., 2005. Segregation of Blended Fertiliser During Spreading: The
  Effect of Differences in Ballistic Properties, International Fertiliser Society. IFS, United
  Kingdom.
- Casas, G., Mukherjee, D., Celigueta, M.A., Zohdi, T.I., Onate, E., 2015. A modular,
   partitioned, discrete element framework for industrial grain distribution systems with
   rotating machinery. Computational Particle Mechanics, 1-18.
- Coetzee, C.J., Lombard, S.G., 2011. Discrete element method modelling of a centrifugal
   fertiliser spreader. Biosystems Engineering 109, 308-325.
- Cool, S., Vangeyte, J., van Damme, J., Sonck, B., Pieters, J., van de Gucht, T., Mertens, K.,
   2015. Comparison of different spread pattern determination techniques, Precision
   agriculture'15. Wageningen Academic Publishers, p. 146.

- Cunningham, F.M., 1963. Performance characteristics of bulk spreaders for granular fertilizer.
   Transactions of the ASAE 6, 108-0114.
- Cunningham, F.M., Chao, E.Y., 1967. Design relationships for centrifugal fertilizer
   distributors. Transactions of the ASAE 10, 91-0095.
- 5 EN 13739-2, 2003. Agricultural machinery Solid fertilizer broadcasters and full width
   6 distributors Environmental protection Part 2: Test methods., European Committee for
   7 Standardisation.
- 8 EN 13739-2, 2011. Agricultural machinery Solid fertilizer broadcasters and full width
   9 distributors Environmental protection Part 2: Test methods, European Committee for
   10 Standardization, Bruxelles.
- Fulton, J., Shearer, S., Chabra, G., Higgins, S., 2001. Performance assessment and model
   development of a variable-rate, spinner-disc fertilizer applicator. Transactions of the
   ASAE 44, 1071.
- Gomez-Gil, J., de-Lozar-Escudero, A., Navas-Gracia, L., Ruiz-Ruiz, G., 2009. Analytical
   estimation of optimal operation variables of a centrifugal fertilizer distributor, using the
   gradient method on multiple seeds. Agrociencia (Montecillo) 43, 497-509.
- Grafton, M., Yule, I., Robertson, B., Chok, S., Manning, M., 2015. Ballistic Modeling and
   Pattern Testing to Prevent Separation of New Zealand Fertilizer Products. Applied
   Engineering in Agriculture 31.
- Griffis, C., Ritter, D., Matthews, E., 1983. Simulation of rotary spreader distribution patterns.
   Transactions of the ASAE 26, 33-37.
- Grift, T., Hofstee, J., 2002. Testing an online spread pattern determination sensor on a
   broadcast fertilizer spreader. Transactions of the ASAE 45, 561-570.
- Grift, T., Kweon, G., Hofstee, J., Piron, E., Villette, S., 2006. Dynamic Friction Coefficient
   Measurement of Granular Fertiliser Particles. Biosystems Engineering 95, 507-515.
- Hoffmeister, G., Watkins, S., Silverberg, J., 1964. Fertilizer Consistency, Bulk Blending of
   Fertilizer Material: Effect of Size, Shape, and Density on Segregation. Journal of
   Agricultural and Food Chemistry 12, 64-69.
- Hofstee, J.W., 1995. Handling and Spreading of Fertilizers: Part 5, The Spinning Disc Type
   Fertilizer Spreader. Journal of Agricultural Engineering Research 62, 143-162.
- Horrell, R., Metherell, A., Ford, S., Doscher, C., 1999. Fertiliser evenness-losses and costs: a
   study on the economic benefits of uniform applications of fertiliser, New Zealand
   Grassland Association Conference, pp. 215-220.
- Inns, F., Reece, A., 1962. The theory of the centrifugal distributor II: Motion on the disc, off centre feed. Journal of Agricultural Engineering Research 7, 345-353.
- ISO Standard 5690/1, 1985. Equipment for Distributing Fertilizers: Test Methods, part 1: Full
   width fertilizer distributors, International Organization for Standardization, Genève.
- Jensen, D., Pesek, J., 1962. Inefficiency of fertilizer use resulting from nonuniform spatial
   distribution: II. Yield losses under selected distribution patterns. Soil Science Society of
   America Journal 26, 174-178.
- Jones, J.R., Lawrence, H.G., Yule, I.J., 2008. A statistical comparison of international
   fertiliser spreader test methods Confidence in bout width calculations. Powder
   Technology 184, 337-351.
- Kweon, G., Grift, T.E., 2006. Feed Gate Adaptation of a Spinner Spreader for Uniformity
   Control. Biosystems Engineering 95, 19-34.
- Lawrence, H., Yule, I., 2007. Estimation of the in-field variation in fertiliser application. New
   Zealand Journal of Agricultural Research 50, 25-32.
- Mennel, R., Reece, A., 1963. The theory of the centrifugal distributor III: Particle trajectories.
   Journal of Agricultural Engineering Research 7, 78-84.

- Miller, P.C., Audsley, E., Richards, I.R., 2009. Costs and effects of uneven spreading of nitrogen fertilisers, Conference of the International Fertiliser Society, Cambridge, UK, 10th December 2009. International Fertiliser Society, pp. 1-24.
- Miserque, O., Pirard, E., 2004. Segregation of the bulk blend fertilizers. Chemometrics and
   intelligent laboratory systems 74, 215-224.
- New Zealand Fertiliser Quality Council, 2015. Spreadmark code of practice, Wellington New
   Zealand: Online publication. Retrieved from <a href="http://www.fertqual.co.nz">http://www.fertqual.co.nz</a>.
- 8 Olieslagers, R., 1997. Fertilizer distribution modelling for centrifugal speader design. PhD
   9 Thesis, nr. 341. aan de faculteit der landboowwetenschappen, K. U. Leuven, Belgium.
- Olieslagers, R., Ramon, H., De Baerdemaeker, J., 1996. Calculation of Fertilizer Distribution
   Patterns from a Spinning Disc Spreader by means of a Simulation Model. Journal of
   Agricultural Engineering Research 63, 137-152.
- Parish, R., 1986. Comparison of spreader pattern evaluation methods. Applied Engineering in
   Agriculture 2, 89-93.
- Parish, R., Chaney, P., Fuller, D., 1987. Comparison of laboratory methods of spreader
   pattern evaluation with agronomic response. Applied Engineering in Agriculture 3, 237 240.
- Parish, R., de Visser, P., 1989. Technical Notes: Experimental Verification of the Effect of
   Collection Pan Width on Apparent Spreader Pattern. Applied Engineering in
   Agriculture 5, 163-164.
- Patterson, D., Reece, A., 1962. The theory of the centrifugal distributor. I: Motion on the disc,
   near-centre feed. Journal of Agricultural Engineering Research 7, 232-240.
- Pettersen, J., Svendsen, J., Øvland, S., 1991. A method of studying the influence of fertilizer
   particle size on the distribution from a twin-disc spreader. Journal of agricultural
   engineering research 50, 291-303.
- Piron, E., Miclet, D., 2005. Centrifugal fertiliser spreaders: a new method for their evaluation
   and testing, Conference of the International Fertiliser Society, York, United Kingdom.
   The International Fertiliser Society, p. 22p.
- Piron, E., Miclet, D., Villette, S., 2010. CEMIB: an innovative bench for spreader eco-design,
   AgEng 2010, International Conference on Agricultural Engineering, Clermont-Ferrand,
   France, p. 9 p.
- Pitt, R., Farmer, G., Walker, L., 1982. Approximating equations for rotary distributor spread
   patterns. Transactions of the ASAE 25, 1544-1552.
- Reumers, J., Tijskens, E., Ramon, H., 2003. Experimental Characterisation of the Tangential
   and Cylindrical Fertiliser Distribution Pattern from a Spinning Disc: A Parameter
   Study. Biosystems Engineering 86, 327-337.
- Richards, I.R., Hobson, R.D., 2013. Method of calculating effects of uneven spreading of
   fertiliser nitrogen. International Fertiliser Society Proc. No. 734.
- Søgaard, H.T., Kierkegaard, P., 1994. Yield reduction resulting from uneven fertilizer
   distribution. Transactions of the ASAE 37, 1749-1752.
- Tijskens, B., van Liedekerke, P., Ramon, H., 2005. Modelling to aid assessment of fertiliser
   handling and spreading characteristics, Conference of the International Fertiliser
   Society, York, United Kingdom. The International Fertiliser Society.
- Tissot, S., Miserque, O., Mostade, O., Huyghebaert, B., Destain, J., 2002. Uniformity of N fertiliser spreading and risk of ground water contamination. Irrigation and drainage 51,
   17-24.
- Tissot, S., Quenon, G., Miserque, O., 1999. Tolérance d'une culture de froment à l'égard de
  l'hétérogénéité d'épandage des engrais azotés. Biotechnologie, Agronomie, Société et
  Environnement 3, 247-252.

- Van Liedekerke, P., Tijskens, E., Dintwa, E., Anthonis, J., Ramon, H., 2006. A discrete
   element model for simulation of a spinning disc fertilizer spreader I. Single particle
   simulations. Powder Technology 170, 71-85.
- Van Liedekerke, P., Tijskens, E., Dintwa, E., Rioual, F., Vangeyte, J., Ramon, H., 2009. DEM
  simulations of the particle flow on a centrifugal fertilizer spreader. Powder technology
  190, 348-360.
- Villette, S., Piron, E., Cointault, F., Chopinet, B., 2005. Centrifugal Spreading: an Analytical
   Model for the Motion of Fertiliser Particles on a Spinning Disc. Biosystems
   Engineering 92, 157-164.
- Villette, S., Piron, E., Cointault, F., Chopinet, B., 2008. Centrifugal spreading of fertiliser:
   Deducing three-dimensional velocities from horizontal outlet angles using computer
   vision. Biosystems Engineering 99, 496-507.
- Villette, S., Piron, E., Martin, R., Miclet, D., Jones, G., Paoli, J., Gée, C., 2013. Estimation of
   two-dimensional fertiliser mass flow distributions by recording granule impacts.
   Biosystems Engineering 115, 463-473.
- Villette, S., Piron, E., Miclet, D., Martin, R., Jones, G., Paoli, J., Gée, C., 2012. How mass
  flow and rotational speed affect fertiliser centrifugal spreading: Potential interpretation
  in terms of the amount of fertiliser per vane. Biosystems Engineering 111, 133-138.
- Virk, S.S., Mullenix, D.K., Sharda, A., Hall, J.B., Wood, C.W., Fasina, O.O., McDonald,
   T.P., Pate, G.L., Fulton, J.P., 2013. Case Study: Distribution uniformity of a blended
   fertilizer applied using a variable-rate spinner disc spreader. Applied Engineering in
   Agriculture 29, 627-636.
- Walker, J., Grift, T., Hofstee, J., 1997. Determining effects of fertilizer particle shape on
   aerodynamic properties. Transactions of the ASAE 40, 21-27.
- Yule, I., 2011. The effect of fertilizer particle size on spread distribution. NZ Centre for
   Precision Agriculture, Massey University, Palmerston North, New Zealand, 1-9.