; Note: all other symbols are defined in the previous equations and figures.

) is:

Introduction

This document reports the results of an experimental and theoretical research on the viscous behavior of the reconstituted Onsøy clay in the oedometric apparatus carried out at the Schmertmann Research Laboratory (SRL) at the Norwegian Geotechnical Institute (NGI). The focus of this report is on the rheological behavior of this clay and more precisely on stress relaxation and its potential relationship with secondary consolidation. This work is part of the research conducted by this researcher at the SRL during the year of 2014. Other research topics carried out at the SRL comprised the following:

-A report on the viscous behavior of the Batiscan clay using the model created by [START_REF] Martins | Fundamentals of a Behavioral Model for Saturated Clayey Soils[END_REF] as modified by [START_REF] Alexandre | Contribution to the Understanding of the Undrained Creep[END_REF] using data from [START_REF] Leroueil | Stress-strain-strain rate relation for the compressibility of sensitive natural clays[END_REF]. This report can be assessed at the following website: https://hal.archives-ouvertes.fr/hal-00940576v2; and -A report on the cyclic behavior of clays at small strains using data from [START_REF] Mortezaie | Cyclic threshold strains in clays versus sands and the change of secant shear modulus and pore water pressure at small cyclic strains[END_REF]. This report can be assessed at the following website: https://hal.archives-ouvertes.fr/hal-01016050v2.

This report is organized as follows: A brief introduction to stress relaxation and its potential relationship to secondary consolidation is presented as well as the equations from the model applicable to these processes. Following this introduction, a new theoretical development concerning the imperfect stress relaxation process for a logarithmic viscous function is presented. In the sequence, the soil, the equipment, procedures and experimental results are presented followed by analysis and discussions of these results and the conclusions reached.

Brief Description of the Imperfect Stress Relaxation Process and its Analytical Approach for a Power Law Viscous Function

A very brief exposition of an imperfect stress relaxation test in the oedometric apparatus is presented in this section. For more detailed discussions the reader is referred to [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF], which also contains detailed expositions of imperfect stress relaxation during shear and under hydrostatic conditions.

In short, an imperfect stress relaxation test is a stress relaxation test where a small deformation of the specimen occurs during the test. The small deformation experienced by the specimen is due to the rigidity of the testing equipment and is inevitable as no equipment is perfectly rigid.

The influence of the stiffness/rigidity of equipment on testing has been known for more than half a century. Examples of the consideration of the influence of equipment on testing can be found in Taylor (1955), regarding the testing of soils, and in [START_REF] Hart | A Phenomenological Theory for Plastic Deformation of Polygrystalline Metals[END_REF], regarding the testing of metals. In general, the approach regarding this concern when dealing with stress relaxation has been selecting an equipment that reduces or compensates the elastic rebound of the equipment as well as taking the advantage of the interaction of the testing equipment with the specimen to assess strain rates. For an example where stress relaxation has been used for the analysis of creep in thermoplastics the reader is referred to [START_REF] Grzywinski | Creep Analysis of Thermoplastics using Stress Relaxation Data[END_REF]. Figure 1 from Al-Haik and Garmestani ( 2001) is reproduced below, where it can be seen that the action of the testing equipment is represented by a spring mounted in series with the specimen.

Figure 1 -Example of consideration of the influence of the testing equipment on the testing of materials. From Al-Haik and Garmestani ( 2001).

An imperfect stress relaxation test in the oedometric apparatus can be carried out by placing a load cell or a proving ring under the loading arm of the testing equipment in such a way that prevents it from pivoting freely. The black oedometric apparatus on the right side of Figure 2 below shows a set-up where a load cell is mounted in-line with a proving ring.

Figure 2 -Set-up for an imperfect stress relaxation test in the oedometric apparatus carried out at the SRL.

Assuming that some deformation occurs during the test, despite of its magnitude, and that this deformation occurs over time, then the soil specimen will present a viscous resistance to compression during stress relaxation. This viscous resistance to compression is a function of the strain rate and its development over time during an imperfect stress relaxation test depends on the rigidity of the testing equipment. The rigidity of the equipment has also an influence on the deformation experienced by the specimen. Equipment with different rigidities yield different amounts of deformation over time and the smaller the rigidity the greater the deformation experienced by the specimen. If the rigidity is zero, then there will be no stress decay (no stress relaxation) but only secondary consolidation. If the rigidity is infinite, then no deformation occurs and therefore this stress relaxation is called a perfect stress relaxation. However, for an actual testing equipment some deformation will always occur. Consider an oedometric consolidation stage at a point at the "end" of primary consolidation or after where these 3 conditions can occur. These 3 conditions are represented in the figure below adapted from [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF]. Secondary consolidation is represented by segment AB, the perfect stress relaxation process is represented by segment AC and the imperfect stress relaxation process is represented by segment AD (greatly exaggerated for visualization purposes).

Figure 3 -Schematic representation of secondary consolidation, stress relaxation and the imperfect stress relaxation under oedometric conditions. Adapted from [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF].

A diagram of the relevant forces acting on an imperfect stress relaxation test in the oedometric apparatus is shown below. [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF].

B (log scale) E ′ σ sA vA σ ′ A B C D ′ σ ε 2 ε 0 = ε 0 1 2 3 4 5 > > > > > ε ε ε ε ε      1 ε 4 ε 3 ε 5 ε Figure 4 -Diagram of an "imperfect" stress relaxation test. From
In Figure 4 above, l p , l pr , l s , Fpr, P and Fs are defined as follows: l p , l pr and l s are dimensions;

Fpr is the force in the proving ring or load cell; P is the dead weight applied at the end of the loading arm of the oedometric apparatus; and Fs is the soil reaction.

The soil response, Fs, is governed by the constitutive equations of the soil. In the present model, it can be represented by an equivalent Kelvin model, that is, a parallel arrangement of a spring and a dashpot. It is worth noting that the spring in this constitutive model does not necessarily imply an elastic behavior. The spring in this model is only a way of stating that that strains are proportional to stresses. On the other hand, the response of the proving ring (or load cell or both combined), Fpr, is represented by a spring in the conventional sense. A schematic representation of the structural model of the soilequipment system is shown below. It is worth noting that a Kelvin model is not capable of presenting stress relaxation over time. However, because the soil-equipment system is not exactly a Kelvin model, then stress relaxation over time considering a kind of a Kelvin model for representing the soil behavior is possible. 5. At the beginning of a stress relaxation test, if deformation of the soil specimen were prevented by means of a perfectly rigid equipment then the strain rate and the viscous resistance of the soil would have to drop to zero immediately. However, because no testing equipment is perfectly rigid, some deformation of the equipment and soil is inevitable. The deformation of the soil specimen over time leads to a strain rate and a viscous resistance of the soil specimen delaying stress relaxation.

Another interpretation would be the following: the soil specimen at the end of primary consolidation will have the tendency to continue creeping. However, the creep implies in a rotation of the loading arm about Point O, which in turn, implies in loading the load cell/proving ring. As any load cell/proving ring has an actual stiffness some deformation in the load cell/proving ring is inevitable. This inevitable deformation of the load cell/proving ring implies in deformation of the specimen due to the pivoting movement of the loading arm about Point O. Therefore, creep in the specimen and loading of the load cell/proving are intertwined and the result is a stress relaxation which occurs over time and not instantaneously as one would expect in a Kelvin model. In other words, the actual rigidity of the testing equipment alters the perceived soil response.

By considering the equilibrium of the system represented in Figure 5, the constitutive equations of the soil (soil behavior), and the rigidity of the load cell/proving ring, the differential equation of the imperfect stress relaxation process can be obtained. The equations presented below refer also to Figure 3, where points A to D represent the different rheological processes under oedometric conditions. As in [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF] these components were considered as follows:

Soil behavior

In this model, the behavior of saturated soils is assumed to be governed by effective stresses. However, the effective stress, σ ′ , is assumed to have two components: a time-independent component, called solid effective stress (also called solid component; s σ ′ ); and a strain rate dependent component called the viscous effective stress (also called viscous component; v σ ′ ). Therefore:

s v σ σ σ ′ + ′ = ′ (1)
The excess pore-pressure does not need to be accounted for in the present treatment as the imperfect stress tests were carried out after the "end" of primary consolidation as defined in Taylor's interpretation of the deformation-time curve (Taylor's method). See [START_REF] Taylor | Fundamentals of Soil Mechanics[END_REF].

Viscous component

n vA K ε σ  ⋅ = ′ (2)
Where: vA σ ′ is the viscous normal effective stress at Point A in Figure 3; K and n are constants to be determined experimentally; and ε is the axial strain rate.

Solid component

ε σ σ ⋅ + ′ = ′ ed sA s E (3)
Where: sA σ ′ is the solid component of the normal effective stress at Point A (see Figure 3); E ed is the oedometric modulus for a given stress range at the vicinity of Point A; and ε is the axial strain in relation to Point A.

Rigidity of the System

F pr = k ⋅ x (4)
Where:

F pr is the force in the load cell/proving ring; k is the spring constant of the proving ring (or load cell; or both combined); x is the deformation experienced by the load cell/proving ring as a result of a force F pr acting on it.

Differential Equation and Solution for a Power Law Viscous Function

When the equilibrium of the soil-equipment system is considered and combined to equations (1) to (4) the following differential equation is obtained:

( ) n s s s s ed sA s s s s pr p x H K H x E A l x l l k l P         ⋅ ⋅ +         ⋅ + ′ = ⋅ ⋅ ⋅ - ⋅  1 2 σ (5)
Where: s x is the deformation experienced by the soil; s x  is the deformation rate experienced by the soil;

As is the cross-section area of the soil specimen; Hs is the height of the soil specimen;

( )       -       -           ⋅ ′       - +         ⋅         ′ -         ′ = n n n n s D t B n n A D B D B A t x 1 * 1 * * * * 1 1 (6)
Where t is the time since the beginning of the stress relaxation process and * A , * B , * C , ′ B and * D are auxiliary variables defined as below:

vA sA sA s s p A l l P A σ σ σ σ ′ = ′ - = ′ - ⋅ ⋅ = 0 * , ( ) s s pr A l l k B 2 * ⋅ = , s ed H E C = * , (
)

* * B C B + = ′ and n s H K D         ⋅ = 1 *
The steps taken to obtain Equation 6 are shown in Appendix A.

The expression of the rate of deformation of the soil specimen as a function of time is given by Equation 7below:

      -       -           ⋅ ′ ⋅       - +         = n n n s D t B n n A D x 1 1 * 1 * * 1 1  (7)
The evolution of the effective normal stress over time, ( ) t σ ′ , during the imperfect stress relaxation test is given by the equation below:

( ) n s s s s ed sA n ed sA v s x H K H x E K E t         ⋅ ⋅ +         ⋅ + ′ = + ⋅ + ′ = ′ + ′ = ′   1 1 σ ε ε σ σ σ σ (8)
Which is assumed to be equal to the evolution of the total normal stress over time, ( ) t σ , during the imperfect stress relaxation test, as the excess pore-pressure is considered negligible at or after the end of primary consolidation.

When combined, equations ( 6) to (8) give the following equation:

( )                                 ⋅ ′ ⋅       - +         ⋅ +                                 ⋅ ′       - +         ⋅         ′ -         ′ ⋅ + ′ = ′       -       -       -       - n n n n n n n n sA D t B n n A D D D t B n n A D B D B A C t 1 * 1 * * * 1 * 1 * * * * * 1 1 1 1 σ σ (9)
Substituting t = 0 in Equation ( 9) follows that:

( ) 0 0 σ σ = ⋅ ⋅ = ′ s s p A l l P (10)
This is the initial condition for the normal stresses at the beginning of the process, which is, at this particular time, independent of the rigidity of the system. Evaluating the limit of Equation 9 when t → ∞ follows that:

( ) ( )         + ⋅ ′ - ⋅         + = ′ ∞ → s ed s s pr sA s ed sA t H E A l l k H E t 2 0 lim σ σ σ σ (11)
The variation of the solid and viscous components of the normal effective stress as well as the variation of the effective normal stress over time is presented in the schematic figure below for a hypothetical case.

Figure 6 -Variation of viscous, solid and effective stresses during a hypothetical imperfect stress relaxation under oedometric conditions after the end of primary consolidation. From [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF].

As shown in Figure 6, most of the stress decay is due to the decrease of the viscous component over time. Only a small portion of the viscous component is transferred to the solid component of the effective stress due to the small compression experienced by the soil specimen.

The effect of the rigidity of the system can be assessed with Equation 9 by varying k at the same time that all the other variables remain constant. The greater the rigidity, the faster the process. Evaluating the limit of Equation ( 11) when k tends to infinity gives

sA σ σ ′ = ′
as it should for a perfect stress relaxation test. However, when k is zero, the case of the simplified secondary consolidation process is obtained. This equation for the representation of secondary consolidation after the end of primary is simplified. In this equation, the viscosity of the soil is considered constant while it should be expected to increase as the void ratio decreases. In addition, the oedometric modulus is also considered constant in the present treatment while it is expected to vary with void ratio.

For the other limit case, that is, for k equal to zero, Equation (11) gives The qualitative relationship between secondary consolidation and stress relaxation according to the rigidity of the system as described above seems to agree with the results from [START_REF] Karimpour | Time effects in relation to crushing in Sand[END_REF] for the Virginia Beach Sand. [START_REF] Karimpour | Time effects in relation to crushing in Sand[END_REF] carried out "creep-relaxation" tests in the triaxial apparatus and obtained the results shown in the figures reproduce below.

Figure 3 has similarities with Figure 8 below. Path AB from Figure 3, which is the secondary consolidation case, would correspond to the "100% creep" case (shown as a horizontal line in Figure 8). Path AC from Figure 3, which is the perfect stress relaxation case, would correspond to the "100% relaxation" case (shown as a vertical line in Figure 8). Finally, the imperfect stress relaxation case, Path AD from Figure 3 would correspond to any intermediate case, namely "Creep-Relaxation 1", "Creep-Relaxation 2" or "Creep-Relaxation 3" in Figure 8. Figure 9 shows in more detail the relationship between stress relaxation and creep.

Another research that shows a similar pattern is the work of [START_REF] Ghassemi | Time-Independent and Time-Dependent Behavior of Clearwater Clay Shale Underneath Large Storage Tanks -Laboratory Testing and Numerical Modelling[END_REF] for the Clearwater clay shale. Figure 10 shows creep occuring at the same time as stress relaxation under triaxial shear conditions. In addition, the shape of the stress relaxation curve seems similar to the shape from the solution of the imperfect stress relaxation test for a power law viscous function as shown in Figure 6. 

Differential equation and analytical solution of the Imperfect Stress Relaxation Process for a logarithmic viscous function

In the previous section the differential equation of the imperfect stress relaxation process and its analytical solution for a power law viscous function were presented. A prediction for the longest test in duration carried out by [START_REF] Garcia | Relationship Between Secondary Consolidation and Stress Relaxation of a soft clay[END_REF] and presented in Alexandre and Martins ( 2013) is reproduced in the sequence.

Figure 11 -Imperfect stress relaxation test carried out by [START_REF] Garcia | Relationship Between Secondary Consolidation and Stress Relaxation of a soft clay[END_REF]. From [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF].

This test lasted for about 80,000 minutes and it can be seen that experimental data and prediction are in general agreement. The soil tested by [START_REF] Garcia | Relationship Between Secondary Consolidation and Stress Relaxation of a soft clay[END_REF] was a very soft organic clay from Barra da Tijuca, Rio de Janeiro, Brazil.

As it will be seen later in this report, this function not always worked for making predictions for the reconstituted Onsøy clay, therefore motivating the development of a differential equation and its solution for a new viscous function. As it will also be seen later in this report, the simplest function that best fits the experimental data was found to be a logarithmic function. The adopted function is mathematically similar to various other logarithmic functions used for expressing the strain rate dependency of the shear resistance. One such function presented in Kulhawy and Mayne (1990) is reproduced in the sequence. In the previous section, the differential equation of the imperfect stress relaxation phenomena using a power law function of the strain rate was presented. This equation is reproduced below to highlight the difference between that approach and the new one where a logarithmic equation is used instead of a power law.

( )

n s s s s ed sA s s s s pr p x H K H x E A l x l l k l P         ⋅ ⋅ +         ⋅ + ′ = ⋅ ⋅ ⋅ - ⋅  1 2 σ (5) bis
Replacing the power law by a logarithmic function for representing the viscous component of the effective stress gives the following differential equation:

( )               ⋅ ⋅ + +         ⋅ + ′ = ⋅ ⋅ ⋅ - ⋅ s s s s ed sA s s s s pr p x H C A B H x E A l x l l k l P  ln 2 σ (12)
Where A, B and C are constants of the logarithmic viscous function.

For this new differential equation, the solution is:

        ⋅ ⋅ + ⋅       = t A x E E A x s s 0 * * 1 ln  (13)
Where:

2 *         ⋅ +         = s pr s s ed l l A k H E E ;         - - ⋅       = A B s s sA e C H x ' 0 σ σ  ; 0 s
x  is the initial deformation rate at the beginning of the stress relaxation; and t is the time since the beginning of the stress relaxation.

The steps taken to obtain Equation 13 are shown in Appendix B.

The equation for the rate of deformation of the specimen is shown below:

        ⋅ ⋅ + = t A x E x x s s s 0 * 0 1    (14)
Combination of Equations ( 12), ( 13) and ( 14) leads to the stress decrease during relaxation, which is the following:

( )                                       ⋅ ⋅ + ⋅ ⋅ + +         ⋅ ⋅ + ⋅       ⋅ + ′ = t A x E x H C A B t A x E E A H E t s s s s s ed sA 0 * 0 0 * * 1 ln 1 ln    σ σ (15)
The end of the stress relaxation process is reached when the viscous component decreases to zero, which means that:

0 ln =         ⋅ ⋅ + s s x H C A B 
This in turn means that the process will not stop at zero vertical deformation rate but at a deformation rate given by:

      - ⋅ = A B s s e C H x 
This minimum deformation rate at which the process stops is a shortcoming of the mathematical formulation of the used logarithmic viscous function. A better function would be one where the viscous stress drops to zero at the same time that the strain rate also drops to zero.

For the sake of comparison, a schematic representation of the stress relaxation process for a logarithmic function as well as a power law function is shown below: Finally, it is worth noting that the solution of the stress relaxation process is in fact a creep equation, which in turn is a logarithmic function of time.

The case of the simplified secondary consolidation process can be obtained by making

0 = k in the above equations. In this case, * E becomes         = s ed H E E *
and Equation 13 results in the following expression:

        ⋅ ⋅ ⋅ + ⋅       ⋅ = t H A x E E H A x s s s s 0 1 ln  (16)
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Therefore, the expression of the axial strain during secondary consolidation becomes:

      ⋅ ⋅ + ⋅ = t A E E A s0 1 ln ε ε  (17)
Equation 17, which is the solution of a differential equation of the imperfect stress relaxation process for 0 = k , seems in agreement with the empirical evidence regarding the initial part of the secondary consolidation process as secondary consolidation is observed to be represented by a straight line in strain vs time (log scale) plot. However, Equation 17 is a simplified representation of secondary consolidation for several reasons. The first reason is that, in the present model, secondary consolidation is also believed to occur during primary consolidation. The second reason is that neither the variation of viscosity or the variation of the oedometric modulus with void ratio was accounted for in the differential equation.

Brief Description of The Reconstitued Onsøy Clay, Specimen Preparation and Testing

The reconstituted Onsøy clay was selected because of the following reasons:

-This clay as reconstituted in the laboratory has presented pronounced rheological effects as observed during preliminary oedometric and triaxial tests carried out at the SRL; -In comparison with natural "undisturbed" clays, reconstituted clays are less prone to problems such as differences among samples due to heterogeneity, spatial variability and disturbance induced by sampling; and; -Reconstituted soils are cheaper than natural soils and can be re-utilized.

The samples utilized in this research were obtained from block samples reconsolidated in the laboratory from a slurry under oedometric conditions to vertical effective stresses of 30 to 40 kPa prepared in May 2012. Salt concentration of the water used in the slurry was 12 g/l.

Two specimens were trimmed according to NGI procedures from the same sample only a few centimeters apart to reduce variability problems. Setup also followed NGI procedures. These two specimens were subjected to oedometric consolidation stages at the following vertical effective stresses: 12.0, 18.0, 27.0, 40.0, 61.0, 90.0, 135 and 203 kPa.

For test RC#2B, in the first 4 stages (12.0, 18.0, 27.0 and 40.0 kPa) the specimen was loaded to the End of Primary (EOP) consolidation in accordance to Taylor's method while the last 4 loading stages were subjected to long-term consolidation to the following periods of time: Taylor's method, which is a rational theoretical criterion for the determination of the end of primary consolidation, was used because measurements of excess pore-pressure were not carried out in these tests. In addition, no measurement of vertical loads by means of load cells were used for assessing the percentage of the load taken by friction between the specimen and the consolidation ring. However, a highly polished steel ring with an aspect ratio of 4 was utilized to reduce this problem (diameter of the ring = 7.98 cm and height of the ring = 2.00 cm).

The ratio of the "Total stress increment" divided by the current vertical effective stress, v σ σ ′ ∆ / was chosen as 1.5 to better define the stress-strain curve as well as to produce consolidation time curves in which secondary compression is significant in comparison to primary compression. Figure 1 shows a photo of the set-up of stress relaxation test RC#2A (black consolidation apparatus) as well as the consolidation apparatus (light green) where test RC#2B was carried out.

The load cell that supports the loading arm shown in Figure 1 was attached to a proving ring to provide some structural flexibility to the system. The pair proving-ring/load cell was calibrated prior to testing to assess its equivalent spring constant k.

The dimensions lp, ls and lpr of each stress relaxation stage as well as the spring constants of the proving rings/load cell pairs used are presented in the following 

Tests Results

The results of the tests are presented in the following figures. The first figure, Figure 14, shows the void ratio vs vertical effective stress at EOP according to Taylor's method. The following figure, Figure 15, shows the vertical effective stress vs axial strain for EOP points as well as for points in the stress 

Analysis and Discussion

General Comments

The initial void ratio for RC#2A and RC#2B specimens were 1.497 and 1.443 respectively, which corresponds to difference of approx. 3.7 % between specimens. This difference in void ratio reduced with the increase in vertical effective stress to about 2.5 % for σ' = 203 kPa as can be seen in Figure 14.

From Figure 15 it can be seen that the vertical effective stress vs axial strain curves for up to σ' = 61 kPa are very close to each other. From this point on to σ' = 203 kPa the difference between curves starts to increase presenting a maximum of about 8.4 % for σ' = 203 kPa.

The stress relaxation curves from this research are similar to the shape of such curves as presented by other researchers. These curves are initially convex turning into approximately straight lines over time in a vertical effective stress vs time (log scale) plot. A closer look reveals that the latter portion of these curves is not really straight but slightly convex or slightly concave.

The decrease in vertical effective stress during relaxation was very significant, amounting from 21% (D2 -SR1; duration of about 10,000 minutes) to 49 % (RC#2A -SR1; duration of about 336,000 minutes) of the initial vertical effective stress at the beginning of the stress relaxation stages. The long-term secondary tail portion of consolidation curves are also similar in shape to the curves of similar tests as described by other researchers. In general, they also appear to be straight lines in a void ratio (or vertical strain or deformation) vs time (log scale) plot. However, the initial part of the stages of tests carried out at vertical effective stresses of about 61 and 90 kPa is not similar to the classic curve from Terzaghi's consolidation theory.

Despite of the long duration, no test reached the zero strain rate line (the End of Secondary consolidation line, EOS). Instead, the stress relaxation and secondary consolidation tests showed the same approximate straight-line tendency in the reduction of vertical stress and volume over time (log scale). From the point of view of soil behavior this tendency seems contrary to what would be expected for a frictional material (capable of sustaining shear stresses independently of time).

The stress scatter observed in stages SR1 and SR4 of test RC#2A, of less than about ±1 kPa, is believed to be due to temperature effects as the consolidation apparatus equipped with the load-cell/proving-ring set is a statically indetermined structure2 . A plot of the variation of stress over time and temperature is shown below for SR1 for the period of 6 days in July 2014, where the temperature fluctuation was the greatest. In general, the temperature fluctuation was less than ±0. As can be seen in Figure 24, it seems that strain rates from stress relaxation stages appear to be in general agreement with the strain rates from the secondary consolidation stages. Lines of equal strain rates were assessed and appear to consist of approximately straight lines (apart from the initial top part of each curve) when represented in a vertical strain vs vertical effective stress (log scale) plot. This result is consistent with the findings from [START_REF] Garcia | Relationship Between Secondary Consolidation and Stress Relaxation of a soft clay[END_REF]. 1x10 -6 min -1 1x10 -7 min -1 Stress relaxation points: 1x10 -6 min -1 1x10 -7 min -1 1x10 -8 min -1 1x10 -9 min -1 Sec. cons. points: 1x10 -6 min -1 1x10 -7 min -1 1x10 -8 min -1 1x10 -8 min -1 1x10 -9 min -1 Estimated end of Secondary consolidation line (EOS); strain rate = 0 This result seems to corroborate also the idea that stress relaxation and secondary consolidation are related to each other. If so, then the use of imperfect stress relaxation stages might be more advantageous than secondary consolidation stages for assessing strain rate lines, as stress relaxation stages require less time to reach a given strain rate than secondary consolidation stages. This result can be seen in Figure 15. As an example, the minimum strain rate assessed from the RC#2B SR2 stress relaxation stage carried out at σ' = 90 kPa was 1.4x10 -9 min -1 , while the minimum strain rate calculated from the long-term secondary consolidation stage at σ' = 61 kPa was 1.7 x 10 -9 min -1 . The time required to reach these strain rates were 8,300 minutes and 330,000 minutes respectively. The analysis of other points in Figure 15 supports this idea.

Model Simulation

Predictions of stress relaxation as described in [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF] were carried out for the stress relaxation stages from this research. This section presents the general procedure for assessing the parameters of the model for making the predictions for the imperfect stress relaxation and secondary consolidation stages. It is worth noting that the predictions presented in this section are not true predictions as they were not made before the execution of the tests. In addition, the results of these tests were used for making its predictions. However, they are not fittings either as the prediction curves were not obtained by the manipulation of parameters in order to match the test data. This parameter can be assessed by the following methods: 1-By waiting the end of stress relaxation stages (or secondary consolidation stages); 2-By estimating the EOS line making use of the geological history of the deposit; and 3-By solving a non-linear system of equations.

Method 1 is the preferred method as it is the factual result of the experiment. However, no stage reached the EOS line in this research, therefore, it cannot be used. Method 2 relies on the conjecture that the OCR calculated from lab test data on soils that presents no geological history of true (mechanical) overconsolidation is the result of viscous effects. That is, the soil's true OCR is actually equal to one and the OCR calculated from test results is "contaminated" by viscous effects. In the present research the Onsøy clay was reconstituted in the laboratory, therefore the use the geological history of the natural deposit cannot, strictly speaking, be used. Method 3 makes use of the following equation:

( ) n sA K ε σ σ  ⋅ + ′ = ′ (18)
That is, the effective stress for a given strain is the sum of its solid component and its viscous component, which in turn, is a function of the strain rate.

With 3 pairs of values σ ′ vs ε , a set of 3 equations can be written and solved to obtain sA σ ′ , K , and n . This method has the advantage of estimating the constants of the power law viscous function at the same time. However, this method can produce values of the initial solid component that are not realistic, values lacking physical meaning or even produce no result at all. These problems sometimes arise when using sets of values of the solid component and strain rate that are too close to each other or simply because the viscous component of the effective stress cannot be represented by a power law function. For stages RC#2A SR1 to SR4 the use of the non-linear system failed. However, this method was applied to the preliminary test stages D2-SR1 and D2-SR2 and resulted in values for OCR 3 of 1.8 and 2 respectively.

As these 3 methods failed in the present research, the initial value of the solid effective stress was estimated based on previous experience with other clays and the available useful test data.

From RC#2A-SR1 a conservative estimate of OCR can calculated as follows: at the beginning of the test, the normal effective stress was 61 kPa and at the moment the stage was terminated, 336,000 minutes later, the normal effective stress was 31.3 kPa, which results in an OCR of about 1.95. This result is consistent with the values of OCR of 1.8 and 2 obtained using Method 3 from test stages D2-SR1 and D2-SR2.

In [START_REF] Alexandre | Stress Relaxation Under Various Stress and Drainage Conditions[END_REF], an OCR of about 2.2 was used for making predictions for the organic clay tested by [START_REF] Garcia | Relationship Between Secondary Consolidation and Stress Relaxation of a soft clay[END_REF] yielding satisfactory results. This OCR was chosen based on the findings of Feijó (1991), who carried out long-term oedometric unload stages (swelling tests) on specimens of the Sarapui River clay for different values of OCR. These tests lasted up to about 200 days and the results show that, for OCR values less than 2 from the end of primary consolidation line, the specimens show first an expansion and then a recompression. For specimens with OCR's greater than 6, the specimens showed expansion only. For specimens with OCR's between 2 and 6, the expansion ceased after about 200,000 minutes. These tests are shown in Figure 25 below. In light of these results, an OCR of 2.2 seems reasonable and will be used in the predictions. Figure 26 shows the obtained EOS line as described above.

3 As this research deals with a reconstituted soil, the term OCR is used herein to represent a mathematical relationship to locate the end of secondary line, EOS, having as a starting point, the end of primary line, EOP. Therefore, this term does not have the physical meaning that OCR may have in natural deposits, that is, to represent an actual loading from a geological process that occurred in the past that no longer acts on the soil in the present. At the same time, this term as used herein is not entirely mathematical, as some sort of overconsolidation is expected to have happened to the samples used in this research as they were reconstituted in the laboratory. These samples were reconsolidated under K0 conditions from a slurry to vertical effective stresses of 30 to 40 kPa, and later unloaded and allowed to rest in the humid room for more than a year before testing took place. * Calculated as secant modulus using this point and the previous one (σ'sA = 61.4 kPa).

Assessment of the viscous function

The variation of force over time measured in the load cell can be used to assess the rate of deformation at the position of the load cell with the following equation:

dt dF k dt dx pr ⋅ = 1 (19)
Where:

Fpr is the force in the load cell; t is the time; k is the spring constant of the load cell-proving ring system; and

x is the deformation of the load cell-proving ring system;

Therefore, the strain rate of the specimen can be assessed by the following equation4 :

dt dF l l k H pr pr s s ⋅ ⋅ ⋅ = 1 1 ε (20)
On the other hand, the viscous component of the normal effective stress can be calculated by the difference between the normal stress at a given time and the initial solid normal effective stress, σ'sA. Hence, at various times, the pair viscous effective stress vs strain rate can be obtained and then the viscous functions can be fitted. The following table summarizes the fitted viscous functions and their respective coefficients of correlation: 

ε σ  ⋅ = ′ v ; R 2 = 0.956 ( ) ε σ  ln 466 . 2 155 . 67 ⋅ + = ′ v ; R 2 = 0.993 RC#2A-SR2 107 . 0 886 . 199 ε σ  ⋅ = ′ v ; R 2 = 0.993 ( ) ε σ  ln 625 . 3 312 . 95 ⋅ + = ′ v ; R 2 = 0.996 RC#2A-SR3 099 . 0 508 . 278 ε σ  ⋅ = ′ v ; R 2 = 0.995 ( ) ε σ  ln 249 . 5 017 . 142 ⋅ + = ′ v ; R 2 = 0.992 RC#2A-SR4 109 . 0 851 . 443 ε σ  ⋅ = ′ v ; R 2 = 0.989 ( ) ε σ  ln 506 . 7 152 . 201 ⋅ + = ′ v ; R 2 = 0.994 D2-SR1 111 . 0 315 . 265 ε σ  ⋅ = ′ v ; R 2 = 0.984 ( ) ε σ  ln 388 . 5 031 . 132 ⋅ + = ′ v ; R 2 = 0.978 D2-SR2 087 . 0 661 . 439 ε σ  ⋅ = ′ v ; R 2 = 0.997 ( ) ε σ  ln 682 . 9 742 . 265 ⋅ + = ′ v ; R 2 = 0.994
 ⋅ = ′ ′ sA v ( ) ε σ σ  ln 089 . 0 410 . 2 / ⋅ + = ′ ′ sA v RC#2A-SR2 107 . 0 908 . 4 / ε σ σ  ⋅ = ′ ′ sA v ( ) ε σ σ  ln 089 . 0 340 . 2 / ⋅ + = ′ ′ sA v RC#2A-SR3 099 . 0 539 . 4 / ε σ σ  ⋅ = ′ ′ sA v ( ) ε σ σ  ln 086 . 0 314 . 2 / ⋅ + = ′ ′ sA v RC#2A-SR4 109 . 0 806 . 4 / ε σ σ  ⋅ = ′ ′ sA v ( ) ε σ σ  ln 0813 . 0 178 . 2 / ⋅ + = ′ ′ sA v D2-SR1 111 . 0 363 . 3 / ε σ σ  ⋅ = ′ ′ sA v ( ) ε σ σ  ln 068 . 0 673 . 1 / ⋅ + = ′ ′ sA v D2-SR2 087 . 0 118 . 3 / ε σ σ  ⋅ = ′ ′ sA v ( ) ε σ σ  ln 069 . 0 885 . 1 / ⋅ + = ′ ′ sA v TABLE 7 -NORMALIZED VISCOUS FUNCTIONS
The results shown in the table above seem to indicate that normalization is possible regarding the viscous component of the effective stresses. The results from stages D2-SR1 and D2-SR1 differ from stages RC#2A-SR1 to RC#2A-SR4. However the results seem reasonable within each test series. Stages D2-SR1 and D2-SR1 were intended for assessing the potential of the reconstitued Onsøy clay regarding rate effects and had a different stress relaxation procedure. For these tests, the load-cell/proving ring set was placed into position below the loading arm and the support screw which was mounted on top of the load-cell/proving ring set was adjusted until it touched the loading arm. For stages RC#2A SR1 to SR4 the support screw was adjusted visually in a way that it was the closest it could get to the loading arm without touching it.

Results of the model for Stress Relaxation

The plots in the sequence show the viscous functions assessed as described above and the predictions made together with the experimental data.

In response to an inquiry made by [START_REF] Schmertmann | [END_REF] about the sensitiveness of the value of OCR used for the preparation of the simulations with the model, a parametric study was made. In this parametric study, OCR values of 2, 3, and 5 were assumed and then simulations were carried out. The results of this parametric study are presented in Appendix C. As it can be seen in Appendix C, the results do not seem significantly sensitive to a change in the assumed OCR. 

Similitude

An assessment of the potential similitude between imperfect stress relaxation and secondary consolidation was carried out using the usual techniques of dimensional analysis. For additional information on dimensional analysis and similitude the reader is referred to [START_REF] Carneiro | Dimensional Analysis and Theory of Similitude and Physical Models[END_REF] or [START_REF] Douglas | Fluid Mechanics[END_REF].

As the closed-form analytical solutions of both processes are available then this task is significantly simplified as these solutions present the dimensionless groups in them.

As the predictions using a logarithmic viscous function seem visually better than the predictions using the power law viscous function, then the analysis of the similitude of the imperfect stress relaxation and secondary consolidation processes was carried out using the logarithmic viscous function. For this viscous function, the analytical solution (Equation 13) reproduced below was used for obtaining two dimensionless groups.

  

     ⋅ ⋅ + ⋅       = t A x E E A x s s 0 * * 1 ln  (13) bis
The analysis of the equation above provides the following two dimensionless groups:

t A x E s ⋅ ⋅ = Π 0 * 1  and; A E x s * 2 ⋅ = Π
Equation 14, reproduced below, was also used to obtain dimensionless numbers.

  

     ⋅ ⋅ + = t A x E x x s s s 0 * 0 1    (14) bis
Equation 14 yields one more dimensionless number, which is shown below:

0 3 s s x x   = Π
This third dimensionless group can also be written in terms of strain rate, like below:

0 3 ε ε   = Π
The first group, 1 Π , can be interpreted as a sort of non-dimensional time, the second, 2 Π , as a sort of non-dimensional deformation and the third, 3 Π , as a non-dimensional strain rate. The following parameters were used for the assessment of similitude:

Test A (kPa) (1) E* (kPa/m) (2) 0 s x  (m/min) (3) Eed (kPa) - from the EOS line (4) 
A/E -from fitting of secondary consolidation

(5) 

TABLE 8 -PARAMETERS FOR THE ASSESSMENT OF SIMILITUDE

Note 1: Value back-calculated from columns (4) and ( 5).

Note 2: E* becomes E/hs for k=0

The parameters in the table above were used in conjunction with the experimental data and resulted in the figure below. It is worth noting that the deformation of the soil specimen, xs , of the imperfect stress relaxation stages was assessed using the calibrated equivalent spring constant of the proving ring/load cell set using also the distances lp, lpr and ls. Plot of Π1 vs Π3.

From Figures 39 and 40 it appears that there is reasonable physical similitude between stress relaxation and secondary consolidation. This result is somehow unexpected as the variation of the viscous properties were not accounted for in the case of the simplified secondary consolidation process. The same can be said of the oedometric modulus, Eed. Both parameters were expected to change with the decrease of void ratio over the duration of the secondary consolidation process. However, as these quantities appear as a ratio in Equation 13, it is possible that they increase in such a way that this quotient remains approximately unchanged for a significant portion of the process.

Results of the Model for Secondary Consolidation

Despite of this agreement, prediction of secondary consolidation curves using parameters assessed from the stress relaxation stages do not agree with the experimental data. As an example, the prediction for RC#2B -σ' = 61 kPa is presented below. ). The lack of agreement between prediction and experimental data can also be seen as the lack of agreement between the A values from RC#2A-SR1 and RC#2B -σ' = 61 kPa as presented in Table 8.

At this point of the development of this model the reasons for this difference are unknown. Possible explanations included one or more of the following:

1-The model is not correct; 2-The model is incomplete; 3-The assessed parameters are not representative of the true parameters of the soil; and 4-The test methodology is not entirely correct and better controlled test are needed.

Reason 1 seems unlikely as the predictions made using the model agree well qualitatively and quantitatively with tests results. Reason 4 also seems unlikely as the tests were carried out in the same way with similar equipment and in the same environment with specimens that came from the same sample (only a few centimeters apart). Therefore, it seems that Reasons 2 and 3 are more likely to be true.

In fact, Reason 2 is more than likely to be true. At this point of the development of this model, components such as elastic and plastic strains, yield surface and plastic potential are indeed missing. In addition, the model cannot be applied to unsaturated soils, anisotropic soils, among other limitations. Finally, chemical processes such bonding occurring over time are not considered either.

Regarding Reason 3, among all parameters, the oedometric modulus is the more questionable parameter as the end-of-secondary consolidation line, EOS, could not be determined experimentally as none of the long-term stages reached strain rate equal to 0. However, the last data points on the stress relaxation stages can be used to assess this parameter, even if only approximately. Considering the last points for stages RC#2A-SR1 and RC#2A-SR3 in Figure 15. These points are σ' = 31.3 kPa and ε = 2.22% for SR1 and σ' = 96.8 kPa and ε = 7.64% for SR3. With these points, the calculated oedometric modulus is approximately 1.21x10 3 kPa. Using this value for assessing secondary consolidation results in the following figure:

Figure 42 -Prediction of secondary consolidation data from imperfect stress relaxation using the last stress relaxation points for assessing oedometric modulus.

As can be seen above, the difference between experimental data and model is much less significant, which seems to corroborate the impression that the assessment of the parameters is very important to the validation of this model.

On the other hand, it is worth noting that Equation 17 is a simplified equation for representing secondary consolidation. Therefore, the predictions above do not account for the variation of viscosity or oedometric modulus with void ratio as it should. An attempt to include the variation of viscosity with the solid effective stress component was made and the result of this new equation (presented in Appendix D) is shown in Figure 43 below: As it can be seen from Figure 43 above, the inclusion of the variation of viscosity did not improve the prediction, on the contrary, it made it worse. Therefore, it can be concluded that the model is incomplete and that, at this point of the research, the prediction of secondary consolidation from stress relaxation data using the present model remains a conjecture. In order to verify the suggestion that secondary consolidation can be predicted from imperfect stress relaxation stages, more, improved and longer testing is required as well as modifications to the model. The differential equation of the imperfect stress relaxation process is given by Equation 5, reproduced below:

List of Symbols

( ) n s s s s ed sA s s s s pr p x H K H x E A l x l l k l P         ⋅ ⋅ +         ⋅ + ′ = ⋅ ⋅ ⋅ - ⋅  1 2 σ
(5) bis Equation ( 5) can be re-arranged to look like the following equation:

n s s s s pr s s ed sA s s p x H K x l l A k H E A l l P         ⋅ ⋅ + ⋅                 ⋅ + =         ′ - ⋅ ⋅  1 2 σ (21)
By Introducing the following auxiliary parameters:

        ′ - ⋅ ⋅ = sA s s p A l l P σ σ * ; 2 *         ⋅ +         = s pr s s ed l l A k H E E ; and n s H K         = 1 *
Equation 21 can be re-written as:

( ) n s s x K x E  ⋅ + ⋅ = * * * σ (22)
Equation 22 is similar to the differential equation of the undrained creep as developed by [START_REF] Alexandre | Contribution to the Understanding of the Undrained Creep[END_REF], which is reproduced below:

( ) n d K E ε ε σ  ⋅ + ⋅ = (23)
Where d σ is the deviatoric stress (the difference between the major and the minor principal effective stresses).

Therefore, the solution of the imperfect stress relaxation process is similar to the solution of the differential equation of the undrained creep as obtained by [START_REF] Alexandre | Contribution to the Understanding of the Undrained Creep[END_REF], also reproduced below:

( )       -       -           ⋅       - +         ⋅       -       = n n n n d d K t E n n K E K E t 1 1 1 1 σ σ ε (24)
Equation 24 is, of course, similar to the solution of the imperfect stress relaxation process as given by Equation 6, reproduced below: 

( )       -       -           ⋅ ′       - +         ⋅         ′ -         ′ =
∫ ∫ = = ω ω ψ λ d dx x q q s s (32)
The result of this integration gives: 

( ) ( ) 2 1 1 C q x q q s + + = + ω ψ λ (33)
( ) [ ] s s v C ε α β σ σ  ⋅ ⋅ + ′ = ′ ln (45) 
Where α and β are non-dimensional viscous constants and the constant C is as defined before.

Combining Equations 1 and 45 gives the following equation:

( ) [ ] s s C ε α β σ σ  ⋅ ⋅ + + ⋅ ′ = ′ ln 1 (46)
After some algebraic operations, one gets the expression for the time required for a certain strain to be reached under constant effective normal stress, which is:

ε ε ε α σ α σ α β d e e C t E sA ∫         ⋅ ⋅ + ′ ⋅ ′ -       + ⋅ = 0 1 (47)
The solution of Equation 47 is the following:

              ′ ⋅ ′ - Γ -         ⋅ ⋅ + ′ ⋅ ′ - Γ ⋅ ⋅ ′ ⋅ ⋅ =       + sA sA ed E E e C t σ α σ ε α σ α σ α σ α β , 1 , 1 1 (48)
Where Γ is the incomplete Gamma function.

Figure 5 -

 5 Figure 5 -Schematic structural representation of the soil-equipment system.

  . This condition is represented by the horizontal solid line in Figure7shown below. During secondary consolidation, the viscous component of the effective normal stress is entirely transferred to the solid component of the effective stress.

Figure 7 -

 7 Figure 7 -The simplified secondary consolidation process under oedometric conditions for a hypothetical case. From Alexandre and Martins (2013).
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 8 Figure 8 -Stress-strain curves of "Creep-Relaxation" tests carried out by Karimpour (2012).
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 9 Figure 9 -"Creep-Relaxation" tests carried out by Karimpour (2012).
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 10 Figure 10 -Stress relaxation tests in the Clearwater clay shale. From Ghassemi (2016).
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 12 Figure 12 -Strain rate dependency of the undrained strength. Kulhawy and Mayne (1990).

Figure 13 -

 13 Figure 13 -Schematic representation of the imperfect stress relaxation process for a power law and a logarithmic viscous function.

  relaxation 1 and secondary consolidation stages where the minimum strain rate was assessed (just prior to the termination of these stages). The following six figures, Figures 16 to 21, show long-term stress relaxation stages (including results from test D2) and the last figure, Figure22, shows the long-term secondary consolidation stages.
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 14 Figure 14 -Void ratio vs σ' relationship for RC#2A and RC#2B.

Figure 16 -

 16 Figure 16 -Imperfect stress relaxation test -RC#2A-SR1.
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 17 Figure 17 -Imperfect stress relaxation test -RC#2A-SR2.
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 18 Figure 18 -Imperfect stress relaxation test -RC#2A-SR3.

Figure 19 -

 19 Figure 19 -Imperfect stress relaxation test -RC#2A-SR4.

Figure 20 -

 20 Figure 20 -Imperfect stress relaxation test -D2-SR1. Stress relaxation from kPa 143 = ′ σ

  Figure 23 -Stress and temperature fluctuation for RC#2A-SR1.

Figure 24 -

 24 Figure 24 -Strain rate lines assessed from RC#2A and RC#2B.

  5.3.1. Procedure for estimating the parameters of the model 5.3.1.1. Assessment of σ'sA -The initial solid component of the normal effective stress

Figure 26 -

 26 Figure 26 -EOS and EOP lines for RC#2A.
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 27 Figure 27 -Fitted viscous functions for RC#2A-SR1.

Figure 28 -

 28 Figure 28 -Predictions for RC#2A-SR1.
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 29 Figure 29 -Fitted viscous functions for RC#2A-SR2.
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 30 Figure 30 -Predictions for RC#2A-SR2.
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 33 Figure 33 -Fitted viscous functions for RC#2A-SR4.
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 34 Figure 34 -Predictions for RC#2A-SR4.
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 35 Figure 35 -Fitted viscous functions for D2-SR1.
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 36 Figure 36 -Predictions for D2-SR1.
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 37 Figure 37 -Fitted viscous functions for D2-SR2.
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 38 Figure 38 -Predictions for D2-SR2.

Figure 39 -

 39 Figure 39 -Similitude between imperfect stress relaxation and secondary consolidation.Plot of Π1 vs Π2

Figure 41 -

 41 Figure 41 -Prediction of secondary consolidation data from imperfect stress relaxation.

Figure 43 -

 43 Figure 43 -Prediction using a secondary consolidation equation that accounts for the variation of viscosity with void ratio.

A-

  , B and C -Constants of the logarithmic viscous function A * , B * , B ' , C * and D * -Auxiliary mathematical parameters of the imperfect stress relaxation process using a power law viscous function As -Cross-section area of the soil specimen the proving ring or load cell Hs -Height of soil specimen K and n -Constants of the power law viscous function k -Spring constant of the proving ring (or load cell; or both combined) l p , l pr and l s -Linear dimensions P -Dead weight applied at the end of the loading arm of the oedometric apparatus su -Undrained strength t -Time since the beginning of stress relaxation or secondary consolidation x -Deformation experienced by the proving ring as the result of a force F pr acting on it Ratio of the total stress increment to the current vertical effective stress ε -Axial strain Appendix A -The solution of the differential equation of the imperfect stress relaxation test for a power law viscous function

C

  be obtained as follows: Returning to Equation 22 and taking its first derivative in respect to the time t follows that: at or after the end of primary consolidation and with * K , n and * E considered constants over the entire process, then: can be determined by analyzing the beginning of the process using Equation22. For time

C

  the variables defined above into Equation 33 gives the solution below: The solution of the differential equation of the imperfect stress relaxation test for a logarithmic viscous function Equation 12, reproduced below, is the differential equation of the imperfect stress relaxation process for a logarithmic viscous function: equation can be rearranged to look like the following: E , C , A and s H as constants during the whole process and taking the first derivative of Equation 37 with respect to the time t, then: therefore Equation 38 can be re-written as follows: and z in Equation 42 and after some algebraic operations, Equation 42 can be re- written as follows: the solution of the differential equation of the imperfect stress relaxation process for a logarithmic viscous function.Appendix D -The equation of the simplified secondary consolidation process with variable viscosityIt can be shown that Equation17in the present model represents the secondary consolidation process for the case where the viscous component and the oedometric modulus do not vary with void ratio.Equation 17 is obtained from Equation 13 by makingAssuming also that the solid component remains the same as before, which is a simplification, then the solid component can be represented by Equation 3 reproduced below: the viscous component is proportional the solid component, that is:

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE 1 -RC#2B -STAGE LOADING AND DURATION

 1 

	Test RC#2A had all stages loaded to EOP. However, stress relaxation tests were carried out at the last
	four stages with the following duration:	
	Test RC#2A
	Loading stage (kPa)	Stage duration (min)
	61.0	336,000
	90.0	10,000
	135	14,000
	203	411,000

TABLE 2 -RC#2A -STAGE LOADING AND DURATION

 2 

table :

 : 

	Test stage	k (kN/m)	ls (m)	lpr (m)	lp (m)
	RC#2A -SR1	1.16x10 3	0.055	0.451	0.553
	RC#2A -SR2	1.16x10 3	0.055	0.445	0.553
	RC#2A -SR3	1.16x10 3	0.055	0.446	0.553
	RC#2A -SR4	1.16x10 3	0.055	0.473	0.553
	D2-SR1	618	0.055	0.225	0.553
	D2-SR2	1.22x10 3	0.055	0.417	0.553

TABLE 3 -STRESS RELAXATION TESTS CHARACTERISTICS Test

 3 D2 was a preliminary test intended to assess the adequacy of the soil as well as of the testing equipment to the purposes of this research. Although test D2 differs in procedure in relation to tests RC#2A and RC#2B, they were included in this report because the comparison of predictions and experimental data for stress relaxation can be considered as "stand-alone" tests.

  The initial solid component of the effective stress, σ'sA, can be read from the above plot. For the imperfect stress relaxation stages carried on this research these values are presented in the following table:

	Test stage	σ'sA (kPa)
	RC#2A-SR1	27.9
	RC#2A-SR2	40.7
	RC#2A-SR3	61.4
	RC#2A-SR4	92.4

TABLE 4 -ASSESSMENT OF THE END OF SECONDARY LINE -EOS 5

 4 .3.1.2. Assessment of Eed -the oedometric modulusOnce the EOS line is assessed, the oedometric modulus can be assessed as the tangent to the EOS line at a given point. The oedometric modulus at the points σ'sa shown above are presented in the following

	table:	
	σ'sA (kPa)	Eed (kPa)
	27.9	775
	40.7	618
	61.4	825
	92.4	1.17x10 3 *

TABLE 5 -ASSESSMENT OF THE OEDOMETRIC MODULUS

 5 

TABLE 6 -ASSESSMENT OF VISCOUS FUNCTIONS When

 6 normalized in relation to their respective initial solid component, σ'sA, the following functions are obtained:

	Test stage Normalized Power law	Normalized Logarithmic
			viscous function		viscous function 6
	RC#2A-SR1	σ	/	σ	. 6	024	ε	. 0	113

The maximum deformation experienced by any RC#2A stress relaxation stage, as inferred by the load cell/proving ring readings, was 4.95x10 -3 mm at RC#2A-SR4. This deformation implies a strain of less than about 0.03%. Due to these small changes in strain, the stress relaxation paths in Figure15were represented as horizontal lines, although, in a strict sense, they are inclined as depicted in Figure3.

A structure with redundant supports; with more supports than the required for equilibrium in accordance to the equations of equilibrium from Statics.

This equation is obtained by considering the loading arm of the consolidation apparatus as a perfectly rigid bar that pivots about Point O as shown in Figure4. Although this is not stricly true, it is considered a first approximation to a more rigorous approach where the deflection considers also the deformation of the loading arm as a beam sujected to the point loads P, Fs and Fpr.

Figure 31 -Fitted viscous functions for RC#2A-SR3.Figure 32 -Predictions for RC#2A-SR3.

Figure 46 -Viscous functions -Model simulations -OCR = 3 Figure 47 -Model simulations -OCR = 3

Figure 48 -Viscous functions -OCR = 5 Figure 49 -Model simulations -OCR = 5

Figure 50 -Viscous functions -OCR = 2 Figure 51 -Model simulations -OCR = 2

Figure 52 -Viscous functions -OCR = 3 Figure 53 -Model simulations -OCR = 3

Figure 54 -Viscous functions -OCR = 5 Figure 55 -Model simulations -OCR = 5

Figure 56 -Viscous functions -OCR = 2 Figure 57 -Model simulations -OCR = 2

Figure 58 -Viscous functions -OCR = 3 Figure 59 -Model simulations -OCR = 3

Figure 60 -Viscous functions -OCR = 5 Figure 61 -Model simulations -OCR = 5

Figure 62 -Viscous functions -Model simulations -OCR = 2 Figure 63 -Model simulations -OCR = 2

Figure 64 -Viscous functions -OCR = 3 Figure 65 -Model simulations -OCR = 3

Figure 66 -Viscous functions -OCR = 5 Figure 67 -Model simulations -OCR = 5

Stress-strain-strain rate relationship

The small deformation of the specimen as inferred from the spring constants of load cell-proving ring pairs in imperfect stress relaxation stages allowed the assessment of strain rates during the relaxation process. The assessed strain rates from such relaxation stages were plotted against the strain rates calculated from the long-term secondary consolidation and are shown in Figure 24 below. 

Conclusions

The reconstituted Onsøy clay shows pronounced rheological effects making this clay a good option for studying secondary consolidation, creep and stress relaxation in clays in the laboratory; Despite of the long duration of some secondary consolidation and imperfect stress relaxation stages, deformation and stress decay was still ongoing when the tests were terminated showing no signs of stabilization;

Strain rates assessed from stress relaxation stages are in reasonable agreement with strain rates from secondary consolidation stages;

Lines of equal strain rates of tests under oedometric conditions can be assessed from imperfect stress relaxation stages in lesser time than secondary consolidation stages;

The differential equation of the imperfect stress relaxation test and its analytical solution were obtained for a logarithmic viscous function. The analytical solution of this differential equation is a creep equation and is a logarithmic function of time;

Simulations of imperfect stress relaxation stages using either power law or logarithmic viscous functions were in agreement with experimental data both qualitatively and quantitatively; Both power law and logarithmic viscous functions can be reasonably normalized in relation to σ' sA.

Secondary consolidation and imperfect stress relaxation under oedometric conditions seem related to each other as indicated by the similitude between these processes; and Secondary consolidation could not be successfully predicted from stress relaxation tests. Despite the true reasons for this disagreement are unclear at this point, this might be due to missing elements in this model as well as due to problems related to the assessed parameters. print ((n),(t),(epsilon)) time.append(t) strain.append(epsilon) l1=time l2=strain df = DataFrame({'Time': l1, 'strain': l2}) df.to_excel ('testGamma.xlsx',sheet_name='sheet6',index=False)