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Abstract 

 

Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive 

immune response and are associated with sexual selection. Evidence from a range of vertebrates supports 

MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice 

studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human 

studies make it difficult to know whether wide discrepancies in results among human populations are real 

or artifact. To better understand what processes may affect MHC-mediated mate choice across humans 

and non-human primates we performed phylogenetically controlled meta-analyses using 58 effect sizes 

from 30 studies across 7 primate species. Primates showed a general trend favoring more MHC-diverse 

mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-

dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-

dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that 

preference for MHC-similarity was an artifact of population ethnic heterogeneity in observational studies 

but not among experimental studies with more control over socio-cultural biases. This suggests that 

human assortative mating biases may be responsible for some patterns of MHC-based mate choice. 

Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak 

(Fisher’s Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful 

sampling design in future studies. Overall, our results indicate that preference for more MHC diverse 

mates is significant for humans and likely conserved across primates. 
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Introduction  

 

The major histocompatibility complex (MHC), an extraordinarily polymorphic and ancient chromosomal 

region shared by virtually all vertebrates, is the most likely candidate for “good genes”—genes with 

fitness benefits—due to its involvement in both immune defense and mate choice (Potts & Wakeland 

1990; Hedrick 1994; Bernatchez & Landry 2003; Milinski 2006). The MHC encodes molecules that bind 

specific self- and pathogen-derived peptides and present these to T lymphocytes, thus initiating 

appropriate immune activation (Hughes & Yeager 1998). Class I molecules mainly bind intracellular 

pathogen peptides (e.g., viruses and bacteria) and are expressed by all nucleated cells whereas class II 

molecules mainly bind extracellular parasite peptides (e.g., helminths, ectoparasites) and are expressed by 

professional immune antigen-presenting cells, such as mononuclear phagocytes or T-cells (Knapp 2005). 

Currently over 9,000 human MHC (HLA) class I alleles and over 3,000 class II alleles have been 

recorded across human populations (Robinson et al. 2014). This hyperpolymorphism is attributed to 

parasite-mediated balancing selection promoting host allelic diversity to defend against a dynamic 

spectrum of parasites (Bernatchez & Landry 2003; Wegner et al. 2003a; Prugnolle et al. 2005; Simkova 

et al. 2006; Goüy de Bellocq et al. 2008; Solberg et al. 2008; Eizaguirre et al. 2012; Garamszegi & Nunn 

2011; Garamszegi 2014). 

 Infectious agents are thought to be the strongest selective force shaping human evolutionary 

history (McMichael 2001; Fumagalli et al. 2011; Karlsson et al. 2014) and continue to have strong effects 

on fitness. For example, humans are currently known to be infected by over 1,400 parasitic species 

(Taylor et al. 2001) and in 2010 parasites were responsible for nearly 64% of global deaths in children 

younger than 5 years (Liu et al. 2012). Parasite-mediated balancing selection in humans is identifiable at 

both broad and fine scales. At the population level parasite-mediated balancing selection is indicated by 

spatial patterns of MHC polymorphism increasing with virus species richness (Prugnolle et al. 2005) and 

greater frequencies of protective MHC alleles in areas with greater parasite risk (Hill et al. 1991). 

Selection at the individual level is indicated by resistance of rare MHC genotypes to specific strains of 
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pathogens (Thursz et al. 1995; Trachtenberg et al. 2003) with reciprocal selection for pathogen escape 

mutations to avoid MHC immune control (Goulder et al. 2001).  

 While it is clear that population MHC allelic diversity is associated with pathogen diversity and 

prevalence, there is also theoretical and empirical support for the role of sexual selection in maintaining 

heterozygosity and allelic variation across the MHC (Potts et al. 1991; Hedrick 1992; Potts et al. 1994; 

Jordan & Bruford 1998; Penn & Potts 1999; Winternitz et al. 2013; Ejsmond et al. 2014). Proximate 

mechanisms enabling MHC-mediated mate choice include odor and visual cues of MHC composition. 

Animals can discriminate between the different volatile peptides bound by products of specific alleles that 

contribute to body odors (Boyse et al. 1983; Potts et al. 1994; Carroll et al. 2002; Penn 2002; Leinders-

Zufall et al. 2004; Milinski et al. 2005; Milinski et al. 2013). Additionally, visual cues such as the 

expression of sexually dimorphic conspicuous traits, or even condition-related behavior, can be indicators 

of immune genotype (Hamilton & Zuk 1982; Folstad & Karter 1992).  

Ultimate mechanisms for MHC-mediated mate choice can take three non-mutually exclusive 

forms (Piertney & Oliver 2006). (1) Preferences for MHC diversity (measured in terms of heterozygosity, 

or the number of MHC alleles) in mates could provide direct fitness benefits (e.g., healthier mates are 

better providers and less infectious to their mates and offspring) and/or indirect benefits if rare alleles, 

more likely to be carried by heterozygotes or by individuals harboring many alleles, can be passed on to 

offspring (e.g., “good-genes-as-heterozygosity (Brown 1997, 1999)), although this remains to be 

demonstrated empiracally. Thus, preferences for MHC diversity in mates could also increase offspring 

levels of heterozygosity in structured, finite populations (Fromhage et al. 2009). (2) Preferences for 

specific MHC genotypes in potential mates could provide the direct benefits mentioned previously and 

also indirect benefits if genes that are protective against contemporary parasites can be passed to 

offspring. Protective alleles are thought to be more rare in the population (Slade & McCallum 1992) and 

so more likely to be carried by heterozygotes. Both preferences for heterozygosity and preferences for 

specific resistance genotypes can broadly fit under the category of preferences for MHC diversity for our 

current study. (3) Preferences for MHC dissimilarity/complementarity in mates would provide indirect 
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fitness benefits by increasing immunodiversity of offspring (Tregenza & Wedell 2000). Alternatively, 

preferences for MHC-dissimilar mates may be independent of immunogenetic benefits for offspring if 

MHC alleles serve as markers of relatedness in mates. This would provide indirect fitness benefits by 

avoiding consequences of close inbreeding (Yamazaki et al. 1988). If preference for dissimilar mates is 

for immunogenetic indirect benefits, then the extent of dissimilarity of the potential mate may matter. The 

optimality hypothesis proposes that offspring may benefit most from optimal rather than maximal 

immunodiversity (Wegner et al. 2003b; Milinski 2006), because having too many different alleles could 

actually deplete autoreactive T-cells that are required for immune response (Nowak et al. 1992; Woelfing 

et al. 2009). In this case, the degree and composition of optimal MHC diversity for offspring is expected 

to primarily depend on the diversity of parasites in the environment (Wegner et al. 2003b; Milinski 2006; 

Eizaguirre et al. 2009).   

Instead of mediating mate choice preferences, the MHC may be incidentally associated with 

signals of overall condition and individual vigor that are dependent on genome-wide heterozygosity 

(Brown 1997). Similarly, MHC allele frequencies that vary by population may simply correlate with 

phenotypic cues of genetic relatedness. The absence of a correlation between MHC and neutral variation 

would support MHC-mediated mate choice, though the presence of a correlation would not necessarily 

preclude the MHC’s role.   

 A recent meta-analysis found broad evidence of MHC-associated mate choice in non-human 

species, with stronger support for diversity preferences than for dissimilarity preferences (Kamiya et al. 

2014), but results from human studies have been more equivocal and contentious (reviewed in Havlicek 

& Roberts 2009; Winternitz & Abbate 2015). This is in large part due to the greater variation inherent in 

human research because many potentially confounding aspects of the study design are harder to control. 

The most problematic issue is likely hidden, yet substantial admixture between populations that can result 

in spurious assortative or disassortative genetic patterns in pairing (Redden & Allison 2006; Solberg et al. 

2008; Havlicek & Roberts 2009). These patterns of genetic similarity/dissimilarity between partners can 

arise because autosomal and MHC genetic variation is structured by ethnicity (Rosenberg et al. 2002; 
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Vina et al. 2012) where the population frequencies of MHC alleles depends on the geographical location 

and on the level of population heterogeneity (Prugnolle et al. 2005; Solberg et al. 2008; Vina et al. 2012). 

A second confounding variable unique to humans is technological alterations of biological phenotypes, 

which include hygiene and makeup routines, surgery, and artificial hormones for controlling 

contraception (Wedekind et al. 1995). However, perfumes appear to be chosen to amplify one’s MHC 

odor profile (Milinski & Wedekind 2001). Lastly, it may sometimes be difficult to standardize 

experimental designs between studies when using human subjects and these methodological differences 

can also confound results (Havlicek & Roberts 2009). Several recent reviews have discussed these issues 

in attempts to reconcile significant and non-significant results from over three decades of human MHC 

mate choice research (Havlicek & Roberts 2009; Winternitz & Abbate 2015). However, only quantitative 

assessment that explores the magnitude and precision of effects can reveal the ultimate biological 

importance of phenomena (Nakagawa & Cuthill 2007). Thus, there is a need for a quantitative 

comparison of human MHC studies. For evolutionary context, non-human primates should be relatively 

free from the confounding biological and technological aspects of human studies and thus should more 

closely resemble human evolutionary origins than contemporary human populations.  

To determine the biological importance of MHC-based mating across human populations and 

uncover drivers of mate selection, we performed a phylogenetically controlled meta-analysis of published 

studies. We tested for biologically significant mate choice for MHC-dissimilarity and MHC-diversity 

separately. We aimed to identify consistent relationships between MHC and mating across primates, 

including non-human primates, to put human results in context. In addition, we tried to disentangle 

potential biological or methodological sources of variation in the observed effect sizes to better 

understand differences between past studies and minimize differences for future studies.  
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Materials and methods 

 

Literature Search 

Dataset compilation methods are described in detail in Winternitz and Abbate (2015). Briefly, studies 

were compiled from the reviews by Havlicek and Roberts (2009) and Setchell and Huchard (2010), from 

the meta-analysis by Kamiya et al. (2014), and additional studies were identified up from 2009 to January 

2015 via Web of Science using the topic “MHC” and “Major Histocompatibility Complex” and “mate 

choice” or “mate selection” or “mate preference” and searching within results for “human” and “primate”. 

Studies were listed as testing for human or primate preferences, and for preferences for MHC 

dissimilarity or diversity/heterozygosity. Studies were included if MHC genotypes (or their 

approximations via single nucleotide polymorphisms (SNPs) e.g., HapMap data) were obtained for the 

individuals tested. Studies were excluded if we could not extract the full set of effect sizes that related to 

the question of MHC influence on mating preferences (e.g., Giphart & D’Amaro (1983) did not provide 

test statistics for pairwise tests). We only considered classical MHC Class I and Class II genes since non-

classical MHC genes, although also involved in immunity, usually have tissue-specific expression and 

much less diversity indicating different selection schemes (reviewed in Rodgers & Cook 2005). For 

example, Khankhanian et al. (2010) provided data for non-classical HLA-E, which we did not use. 

Similarly, Laurent et al. (2012) only presented data for non-classical HLA-L and HLA-J genes. Lists of 

full references, including references we could not use and explanations for exclusion, are provided in the 

supplementary materials.  

 

Data extraction and effect size calculation 

We chose r effect size (correlation coefficients) as the measure of the association between MHC-target 

(dissimilarity or diversity) and the strength of mating preference/outcome. Studies had mostly measured 

dissimilarity as categories of allele-sharing (e.g., none and =>1) and occasionally as allele sequence 

divergence. Diversity was mostly measured categorically (i.e., homozygous at one or more loci versus 
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heterozygous) and occasionally continuously (mean heterozygosity over all loci considered). Test 

statistics other than measures of correlation were converted to r effect sizes following (Nakagawa & 

Cuthill 2007); while there are limitations to converting r from summary statistics other than bivariate 

correlations (Aloe 2015), we stress that these limitations will introduce noise and not bias. Results from 

Yang et al. (2014) could not be directly converted to effect sizes so we calculated values for the data 

points (points were extracted from Figure 5 using software Datathief (Tummers 2006)) and fit correlation 

models to obtain effect size estimates in the desired scale. When studies provided multiple effect sizes 

that we could not independently evaluate with moderator variables (e.g., results from multiple loci or 

MHC allele and supertype data), we calculated weighted means by first converting measures to r and then 

weighting them by the underlying sample sizes. We accounted for non-independence of multiple effect 

sizes extracted from the same study that remain after calculating weighted means by accounting for the 

specific hierarchical structure of the data in the appropriate statistical models (see the structure of the 

mixed model in the next section). For studies that listed effect sizes for MHC-similarity preferences, we 

reversed the sign (i.e., resulting in a negative association for dissimilarity) to align data for preference for 

dissimilar mates according to the predictions of our focal biological hypothesis. The number of raters was 

recorded to test for potential effects of sample size on the resulting effect size. The number of individuals 

rated (number of independent repeats) in the study was recorded to calculate the variance in effect size 

(variance = 1/(Nstudy rated -3)). When weighted effect size means were calculated, we also recorded the 

mean number of individuals rated, and used this estimate to calculate the variance of the weighted mean. 

Raw data and converted effect sizes were checked by independent extraction (JA) and any inconsistency 

was discussed until a consensus was reached (between JW, JA, and LG). We converted effect sizes into 

Fisher’s Z (Zr) to stabilize variance across effect sizes, and Zr and its variance (defined above) were used 

for meta-analyses. The full dataset, comprising 58 effect sizes from 30 studies across 7 species, and effect 

size extractions and conversions are provided in the electronic supplementary material. The dataset was 

split to test for MHC dissimilarity and diversity-mediated mating preferences across primates (N=41 and 
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17, respectively). Human studies greatly outnumber the other species, which may lead to biases in the 

observed effect size patterns. Therefore, we also analyze them separately from non-human primates. 

Biological and methodological differences between studies have been shown to predict variation 

in MHC-mediated mating patterns in human and non-human populations (Havlicek & Roberts 2009; 

Setchell & Huchard 2010; Kamiya et al. 2014). We accounted for these potential sources of heterogeneity 

by considering various moderator variables for the partition of the between-study variance in effect sizes. 

The following data were extracted from each study as methodological predictors: (1) study ID and (2) 

year of publication for publication bias testing, (3) choice cue used for mating preference (i.e., facial 

attractiveness, odor attractiveness, or mate choice outcome) (4) the number of individual raters (N of 

rater), (5) multi-locus or single locus, (6) level of population heterogeneity (dichotomously classified as 

ethnically homogeneous or heterogeneous). This moderator was included to control for artefactual 

patterns of MHC similarity or dissimilarity that can arise from the pooling of different ethnic groups 

together in the same sample (Rosenberg et al. 1983). Populations were classified as 'ethnically 

homogeneous' if the study samples fell into single ethnic groups according to the ethnic categories 

defined by the CIAfactbook (https://www.cia.gov/library/publications/the-world-factbook/index.html), or 

based on detailed genealogical (i.e., Ober et al. 1997) or anthropological records (i.e., Hedrick & Black 

1997). All other human populations were classified as 'ethnically heterogeneous'. All non-human primate 

populations were considered 'homogeneous' as they most likely represented single isolated populations 

(Setchell & Huchard 2010). (7) Contraceptive pill use can potentially reverse previous preferences 

(Wedekind et al. 1995) so we ran all models excluding pill-use effect sizes (N = 4) but results remained 

essentially unchanged when all effect sizes were used (both sets of results provided in all tables). We 

included pill use as a moderator for human odor preference studies (female-pill users, female non-pill 

users). Biological predictors included (8) species, (9) choosy sex (i.e., the unit of investigation: males, 

females, or pairs),(10) MHC class (Class I, Class II, or both), and (11) relative testes size as a proxy for 

mating system (Harcourt et al. 1981; Harcourt et al. 1995; Dixson & Anderson 2004; Figure S1). Mating 
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system strongly impacts individual mating strategies and population genetic structure (Sugg et al. 1996) 

and so could influence the expression of MHC-mediated mate choice (Setchell & Huchard 2010).  

Unfortunately, background genetic measures of dissimilarity and diversity were not available for 

the majority of studies in our dataset, thus we could not include this potentially important moderator in 

our analyses. However, we were able to extract a limited number of effect sizes based on neutral markers, 

which were found to show positive but non-significant correlations with MHC-based effect sizes (MHC 

dissimilarity correlation (95% highest posterior density, HPD) = 0.164 (-0.421 to 0.747), N=11; MHC 

diversity correlation (95% HPD) = 0.110 (-0.708 to 0.942), N=5, Figure S11. See Supplementary Text for 

analysis details). This suggests that MHC-mediated effects were largely independent of genome-wide 

effects. 

 

Statistical Analyses 

 

Meta-analytic procedures 

There were three causes of non-independence in our datasets: 1) more than one effect size was extracted 

from a study, 2) multiple effect sizes were available for the same species, and 3) species share 

evolutionary history making effect sizes confounded by the phylogeny of species. We used phylogenetic 

mixed-effects modeling that includes random effects to account for non-independence caused by study-, 

species-, and phylogeny-specific effects (Hadfield 2010; Hadfield & Nakagawa 2010; Nakagawa & 

Santos 2012). A phylogenetic tree was obtained by trimming the primate 10KTree (Arnold et al. 2010) 

using the drop.tip function from the ape package v3.4 (Paradis et al. 2004). The Deviance Information 

Criterion (DIC) was computed for all models considering different random effect structure (Table 1), and 

top model selection was based on DIC values, where the lowest DIC is considered the best, models within 

2 DIC units are considered equivalent, and a change in DIC of 4 or more significantly improves 

prediction (Spiegelhalter et al. 2002). We calculated phylogenetic heritability or phylogenetic signal, H2, 

as the proportion of total variance in Zr that can be explained by phylogenetic variance (Hadfield & 
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Nakagawa 2010; de Villemereuil & Nakagawa 2014), equivalent to Pagel’s λ (Pagel 1999). Our datasets 

of MHC-dissimilarity and MHC-diversity were limited (Dissimilarity N = 41; Diversity N = 17) and were 

comprised of 28 and 11 studies, respectively, and 7 species each. Preliminary exploratory analysis of the 

data revealed that the factors study ID and species were strongly associated, with each study focusing on a 

single species. We compared models for all combinations of the random factors: study ID, species, and 

phylogeny. We found that including study ID greatly improved model fit, but models adding species, 

phylogeny, or both were all within 1 deviance information criterion (DIC) from the top model (Table 1) 

and essentially equivalent in terms of prediction (Spiegelhalter et al. 2002). Therefore, to avoid 

potentially overfitting the models, we chose to include only study ID and phylogeny to control for 

phylogenetic pseudoreplication in multi-species models, and to include study ID in human-only models.  

Meta-analyses were conducted with generalized linear mixed-effect models with Markov Chain 

Monte Carlo techniques using the R package MCMCglmm (Hadfield 2010). We present details on 

MCMCglmm model specification and diagnostics in the supplementary material. Briefly, all models were 

fit using an uninformative inverse gamma prior for all random effects and residuals, and were checked for 

sensitivity to prior specification and convergence across independent model runs (following Wilson et al. 

2010). Each model was run for 3 million iterations, sampling every 500 after discarding one-million, and 

this process was repeated for each model to confirm stability of results. We first ran intercept-only mixed-

models (with random effects) to determine the mean effect size across all studies and for humans and 

non-human primates separately. We tested if specifying priors based on the effect size estimates from 

mammalian MHC mate choice (Kamiya et al. 2014) would improve model fit and reduce variance around 

posterior estimates (Garamszegi et al. 2009), but results were essentially identical to those obtained with 

uninformative priors (Table S1, S2, S6).  

 

Heterogeneity estimation 

Variation in observed effect sizes between studies is composed of both real differences in mating outcome 

(effect size heterogeneity) as well as random error. To estimate effect size heterogeneity we used I2 
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(Higgins & Thompson 2002; Higgins et al. 2003) modified for multilevel meta-analytic models 

(Nakagawa & Santos 2012). Low, moderate and high heterogeneities refer to I2 of 25%, 50% and 75%, 

respectively (Higgins et al. 2003). The intercept-only models indicated high heterogeneity (>75%) in 

effect sizes, and while this was mostly explained by the random effects of study ID and phylogeny, 

substantial residual heterogeneity persisted (26% for dissimilarity, 14% for diversity, Table 2).  

We next constructed a series of meta-regression models to identify the most important moderators 

(listed above) that explained substantial residual heterogeneity in effect sizes (Nakagawa & Santos 2012). 

We conducted univariate fixed-effect mixed models to estimate the mean effect size for each moderator 

separately (we avoided complex models with multiple predictors given the limited sample size). Models 

with categorical moderators were run without the intercept to test each trait against no effect. Parameter 

estimates were based on posterior means and estimates with highest posterior density (HPD) intervals that 

do not cross zero are inferred to represent real effects. All effect sizes are reported as Fisher’s normalized 

correlation coefficients (Zr) with 95% confidence intervals. In ecological literature, r ≈ 0.1 (Zr ≈ 0.10) is 

generally considered a small effect, r ≈ 0.3 (Zr ≈ 0.31) a medium effect and r ≈ 0.5 (Zr ≈ 0.55) a strong 

effect (Cohen 1988; Møller & Jennions 2002). 

 

Publication bais and power analysis 

We tested for publication bias by using four different approaches given that they have different 

advantages and disadvantages. First, we applied Egger's regression (Egger et al. 1997) on meta-analytic 

residuals instead of effect sizes, which can better distinguish between publication-bias and other sources 

of heterogeneity (Egger et al. 1997; Sutton et al. 2011; Kamiya et al. 2014). If the regression of the 

standard normal deviate (residuals divided by the standard error) on precision has an intercept different 

from zero at 90% confidence, then there is evidence of bias favoring publication of less precise yet 

significant results (Egger et al. 1997). Second, we tested for temporal bias in publication results (e.g., if 

non-significant studies are suppressed immediately after the first significant publication) by including the 

publication year of the study as a moderator in the meta-analytic model. We also used Spearman's rank to 
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test for significant correlations between effect size and year of publication. Third, to assess the impact of 

publication bias and test the robustness of our results, we used the nonparametric trim and fill method 

(Duval & Tweedie 2000b, a) in the metafor R package (Viechtbauer 2010). This method adjusts the 

mixed-model intercept for potentially missing studies and the difference is added to the original meta-

analysis model intercept (and credible interval) (following Sutton et al. 2011). Fourth and finally, as bias 

for publications with significant results can rely more on the p-value than on the effect size, we used the 

p-curve method to test if the distribution of significant p-values, the ‘p-curve’, indicates that our studies 

have evidential value and are free from "p-hacking" (Simonsohn et al. 2014a, b). While problems in 

identifying publication bias using the p-curve method have been identified (Bishop & Thompson 2016; 

Bruns & Ioannidis 2016), we controlled for false negative results by ensuring that all data entered into 

analysis met the three required assumptions set by Simonsohn et al. (2014). Specifically, these 

assumptions are that p-values are (1) associated with the hypothesis of interest, (2) statistically 

independent from other selected p-values, and (3) distributed uniformly under the null hypothesis of no 

bias.   

We tested the robustness of our results by conducting retrospective power analyses to evaluate 

whether our sample size (number of effect sizes) was sufficient to have a high chance of detecting a 

biologically significant effect. We used a pre-specified effect size of 0.15 (explaining 2.2% of the 

variation in mating patterns) which fell within the observed range of effect size estimates from the meta-

analysis of Kamiya et al. (2014) that investigated MHC-mating patterns across vertebrates  (Dissimilarity 

Zr (HPD) = 0.064 (-0.080 to 0.193); Diversity Zr = 0.113 (-0.004 to 0.237)). We used this pre-specified 

effect size to represent the minimal biologically significant effect and we used the observed mean 

variance of the effect sizes following recommendations of Thomas (1997). We conducted our power 

analyses for meta-analytic random-effects models for low, medium, and high levels of heterogeneity 

using the methods of Hedges & Pigott (2001).  

All statistical analyses except for the p-curve method (implemented at http://www.p-curve.com/) 

were carried out in the R environment (v.3.2.1) (R Core Team 2015) and all R code is provided in the 
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online appendix. The R packages we used were ape v3.5 (Paradis et al. 2004), MCMCglmm (Hadfield 

2010), metafor (Viechtbauer 2010), phytools (Revell 2012), plotMCMC (Magnusson & Stewart 2014), 

and shape (Soetaert 2014).   

 

Results 

The main results are presented in the next four sections and detailed results of our meta-regression 

analysis can be found in the supplementary materials (Tables S1-S17, Figures S1-S11). 

 

Preference for MHC-dissimilarity 

The mean effect size calculated over all studies (excluding contraceptive pill-users) indicated no 

significant correlation between MHC-dissimilarity and mating outcome (intercept-only posterior mean Zr 

(95% HPD) = 0.044 (-0.174 to 0.289), N = 37). The total heterogeneity (Total I2) in effect sizes was large 

(89%) and could mostly be explained by the two random factors (I2
ID = 37%, I2

phylogeny = 27%), with 

substantial residual variance remaining (I2
residual = 26%), shown in Table 2. We ran univariate models to 

identify moderators potentially explaining residual heterogeneity and while no moderator was identified 

as significant (Table S1), the moderator “choosy sex” showed significant contrasts between the categories 

of males and pairs (contrast p = 0.02, Figure 1a, Table S11). In other words, studies using mated pairs had 

greater effect sizes for MHC similar mates than studies investigating male preferences. This effect was 

driven by human studies, which had significant contrasts not found for non-human primates (human 

contrast p = 0.031, Table S11). Phylogenetic heritability in MHC-dissimilar mating patterns was low 

(mean H2 = 0.29 (0.004 to 0.77), mode H2 = 0.04, Figure 2a, Table 2) and we note that random effects are 

bound to be positive and their posterior distributions will never overlap zero (Wilson et al. 2010). Thus, 

the meaningfulness of the random effect of phylogeny cannot be based on its non-zero posterior 

distribution. Despite its effect of increasing the HPD intervals for model estimates, we retained phylogeny 

as a random effect to control for pseudoreplication in multispecies models. We investigated the impact of 

phylogeny on the meta-mean effect size of MHC-dissimilarity by comparing model DICs and posterior 
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estimates for models with and without phylogeny, but results were qualitatively similar and non-

significant (Table S13).  

 When human and non-human primate studies were examined separately, neither had significant 

associations between MHC-dissimilarity and mating outcome (human Zr = -0.022 (-0.107 to 0.073), 

N=31, non-human primate Zr = 0.109 (-0.194 to 0.404), N=6). Mean effect sizes calculated for these two 

taxonomic groups were not statistically differentiable. In intercept-only models, total heterogeneity was 

high for both humans and non-human primates (I2
total = 88% and 70%, respectively) with substantial 

residual variance in humans specifically (I2
residual = 36% versus 20% in primates, Table 2). Moderators 

tested separately in univariate models for humans, in models by human choice cue, and in models for 

primates were all non-significant and did not reduce residual heterogeneity (Table S2-S4, S9, Figure 1a, 

Figure 3), but the direction of effect sizes for primates was consistent for dissimilarity (Figure 1a, Figure 

2a). Phylogenetic heritability in MHC-dissimilar mating patterns among non-human primates was low but 

present (mean H2 = 0.41 (0.003 to 0.92), mode H2 = 0.09, Table 2).    

  

Preference for MHC-similarity 

As a post-hoc investigation to explain the large residual heterogeneity in effect sizes among the human 

dissimilarity dataset (I2
residual = 36%, Figure 4a), we specifically tested for the effects of population ethnic 

heterogeneity on patterns of MHC-assortative mating among experimental and observational studies 

(predicted by Rosenberg et al. 1983 and Havlicek & Roberts 2009). We ran mixed-effect models for the 

subset of dissimilarity effect sizes that were negative (indicating preferences for similarity). We found 

that preference for MHC-similarity was significant in ethnically heterogeneous population samples, but 

not among those that were homogeneous. This result was found only in observational (mate choice) 

studies, and not among those using experimental approaches (odor and facial preference combined) 

(Figure 5, Table S5). 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Preference for MHC-diversity 

For diversity models, we present results for effect sizes (N=17) including one from contraceptive pill-

using women because pill use was never shown to have an effect on preferences for MHC diverse mates, 

its exclusion did not reduce heterogeneity, and model results are virtually identical whether this effect size 

was excluded or not (both results presented in all tables for comparison). Across all effect sizes 

combining humans and primates there was a non-significant trend for MHC-diversity to be positively 

associated with mating outcome (posterior mean Zr (HPD) = 0.128 (-0.064 to 0.373), N=17; Figure 4b 

shows significant raw mean Zr effect sizes and results from random effect models without accounting for 

study ID and phylogeny). Total heterogeneity was large (I2
total = 64%) but was mostly accounted for by 

differences between studies and phylogeny (I2
ID = 16%, I2

phylogeny = 34%, Table 2). Residual heterogeneity 

was low (I2
residual = 14%) and could only slightly be reduced by the addition of the moderator relative 

testes size as a fixed effect (Table S10). Univariate models of moderator effects were non-significant 

(Table S6). The model including relative testes size was also non-significant, but the negative association 

between relative testes size and preferences for MHC diversity was trending toward biological 

significance (intercept (HPD) = 0.246 (-0.019 to 0.581); posterior mean testes (HPD) = -0.218 (-0.479 to 

0.047), Table S6). Phylogenetic heritability in strength of MHC-diversity mating patterns was moderate 

(mean H2 = 0.50 (0.04 to 0.96), mode H2 = 0.16, Table 2, Figure 2b).    

Examined separately, humans showed a significant association for more MHC-diverse 

individuals to be preferred as mates (humans = 0.153 (0.020 to 0.283), N = 10, Figure 1b) while non-

human primates had a non-significant trend for mate choice for diversity (primates = 0.110 (-0.207 to 

0.456), N=7, Figure 1b). Total heterogeneity was moderate for humans (I2
total = 45%) and high for non-

human primates (I2
total = 79%), and mostly explained for primates by the random effects of study ID and 

phylogeny (I2
ID = 26%, I2

phylogeny = 36%, Table 2). Residual variance was not substantially reduced after 

the addition of moderators as fixed effects for humans (Table S10) and these mixed models were 

essentially equivalent to the intercept-only model (all ΔDIC < 2). The addition of the moderator relative 

testes size slightly reduced residual heterogeneity and DIC for non-human primates compared to the 
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intercept-only model (Table S10), but not substantially (ΔDIC < 2). When examining categorical level 

differences in MHC-diversity effect sizes using univariate models, we found no significant moderator for 

non-human primates (Table S8). In contrast, humans showed stronger preferences for MHC-diverse mates 

for the categories of choosy sex (female rater) and MHC Class (when both classes were investigated 

together, using multiple loci) (Table S7, Figure 1b).  

Raw Zr effect sizes for all primates were positively associated with preferences for MHC 

diversity and showed significant means when not accounting for study ID and phylogenetic 

pseudoreplication (Figure 4b). All our mixed models including phylogeny as a random effect had wide 

95% confidence intervals for the phylogenetic heritability of effect sizes (proportion of total variance 

explained by phylogenetic variance, see Table 2). Thus, to test the stability of our results, we reran mixed-

models for combined datasets and for non-human primate datasets with the alternative random effects ID 

+ species, and ID + species + phylogeny and found qualitatively similar results (Table S13), indicating 

our conclusions are robust to the random effect structure employed. 

 

Publication bias and power analysis 

We found no evidence for publication bias in the datasets. Egger’s Regression tests indicated the 

intercepts for MHC-dissimilarity and diversity datasets were not significant at 90% confidence intervals 

(Table S14, Figure S2 and S3). The slope for MHC dissimilarity was significantly negative, indicating 

that studies with larger sample sizes (and less variance) showed stronger preference for MHC similarity 

(Table S14, Figure S2a). This effect was largely due to human correlative studies that had large sample 

sizes but did not control for ethnicity and assortative mating biases. Trim and Fill analyses on mixed-

model residuals (following Nakagawa & Santos 2012) were non-significant and suggested there were no 

missing studies on the left-hand side of the funnel plots (Table S14, Figures S2-3). The sensitivity 

adjustment of 0.002 to the original intercept-only mean for human MHC-diversity results would increase 

the significance (adjusted meta-mean (95% HPD) = 0.155 (0.022 to 0.285)). We found no evidence for 

temporal bias using year as a moderator, nor using Spearman's rank correlation between effect size and 
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year of publication (all p>0.05, Table S16). Finally, P-curve analyses for MHC-dissimilarity, similarity, 

and diversity datasets suggests that studies contained significant evidential value and showed no evidence 

of intense p-hacking (Table S16). However, study sets in general had low likelihoods to detect a true 

effect (average power = 24% for dissimilarity, 57% for similarity, 33% for diversity). 

 Power analyses on our meta-analytic results indicated that the combined primate and human 

datasets for MHC dissimilarity and diversity had high power (77.2% – 98.5%) to detect a biologically 

significant mean effect of 0.15 at an alpha value of 0.05 across low, medium, and high heterogeneity 

values (Table S17). Power was lower for non-human primate datasets (dissimilarity = 43.8%; diversity = 

58.2% power at high heterogeneity) and a total of 17 and 13 effect sizes, respectively, would be required 

to reach 80% power for an overall effect size of 0.15 at alpha = 0.05 at high heterogeneity (Table S17). 

Splitting the human dataset by experimental choice cue category, we should have high power to detect a 

biologically meaningful effect size, if it were present, for mate choice and facial preference sample sizes 

even at high heterogeneity (98.8 and 64.2% power, respectively). This indicates our non-significant meta-

analytic results for human mate choice and facial preference category were likely not due to sample size 

limitations. In contrast, given the observed variation in effect sizes, we would need 84 odor preference 

effect sizes to detect biological significance at alpha = 0.05 and high heterogeneity (Table S17).  

 

Discussion 

 

There is substantial evidence that immunity genes play direct and (less well-supported) indirect roles in 

mate choice across vertebrates (Kamiya et al. 2014). These roles could function to promote diverse 

immunological repertoires in mates and offspring to respond to diverse parasite attack. Yet nearly four 

decades of research into this phenomenon in humans has yielded puzzling results. Taking a quantitative 

meta-analysis approach to put these results in their evolutionary context, we sought to identify patterns of 

consistency across studies in humans and non-human primates. We found a suggestive trend for choice of 
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MHC-diverse mates across primates and clear support in humans, but inconsistency for MHC-dissimilar 

mating preferences.     

 

Humans select more MHC diverse mates 

Overall, we found a systematic trend for primates and a significant association for humans to prefer more 

heterozygous mates at MHC sites. In humans, congruent to findings from a range of non-human 

vertebrates (Kamiya et al. 2014), we found stronger evidence for female preferences for MHC-diversity, 

and when multiple MHC classes and loci were considered together. This may indicate that females 

receive greater evolutionary fitness benefits than males from selecting more MHC diverse mates, and thus 

the ability to identify heterozygosity of potential mates is particularly important. Moderate phylogenetic 

heritability observed in our study implies there may be evolutionary constraints on the expression of mate 

choice for MHC heterozygous mates. This could be related to olfactory signaling potential that varies 

among species (Niimura 2009). Our findings also suggest that power to detect significant effects increases 

when using more MHC classes and loci—allowing for greater variation in individual diversity. Non-

human primate studies did not use both MHC classes and they rarely used multiple loci in their mate 

choice research, so the comparatively weaker effect sizes could be due to the lower variation available 

compared to human studies. Additionally, non-human primate effect sizes measured mating outcomes 

where MHC mating effects, if existing, are likely to be smaller than those from more controlled human 

experimental studies that measured mating preferences. We did not find mean effect size differences 

between human odor and facial preference tests, suggesting that humans may be similarly sensitive to 

both odor and visual cues of diversity (Penn & Potts 1998).  

Attractiveness has been shown to correlate with health across cultures (Gangestad & Buss 1993; 

Hume & Montgomerie 2001; Gray & Boothroyd 2012; Rantala et al. 2012) and universal standards of 

attractiveness based on health and fitness cues (Langlois et al. 2000) may be advertising protective 

immunogenetic diversity (Hamilton & Zuk 1982). Facial attractiveness may be a particularly effective 

indicator of health and condition, and of individual heterozygosity (Roberts et al. 2005b; Lie et al. 2008). 
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To illustrate, the faces of mixed-ethnicity individuals, who tend to be more heterozygous than average, 

have been shown to be more attractive than single-ethnicity faces across genders and cultures (Rhodes et 

al. 2005; Lewis 2010; Little et al. 2012). In addition, work using facial image manipulations 

demonstrated that cues to heterozygosity are themselves attractive independent of other accompanying 

indicators of heterosis (Lewis 2010; Little et al. 2012). How much MHC heterozygosity would make an 

individual attractive? The majority of human studies (9/10) measured MHC diversity categorically, with 

individuals homozygous at one or more loci classified as “homozygous” and all others as “heterozygous”. 

Therefore, if increasingly higher levels of heterozygosity or if some optimal level of heterozygosity is 

favored remains to be determined. Furthermore, preferences for heterozygosity and dissimilarity need not 

be exclusive. A preference for both heterozygosity and some degree of similarity is possible (where for 

each level of similarity, relative heterozygotes are preferred), as demonstrated empirically and by models 

of correlations between heterozygosity and measures of genetic similarity (Roberts et al. 2005b; Roberts 

et al. 2006). 

 

Mate choice for MHC-dissimilarity is not consistent 

Non-human primates tend to consistently prefer MHC-dissimilar mates (Figure 4a), but our power to 

detect a significant average effect is limited by our small sample size (N=6) and by the addition of 

random effects to control for pseudoreplication. However, meta-analytic power analyses predict that 11 

additional effect sizes (total N=17) should be sufficient to detect a biologically relevant effect (Zr = 0.15, 

explaining 2.25% variance) of MHC-dissimilarity on mating patterns at 80% power (Table S17). In 

contrast to the unidirectional trend for dissimilarity in non-human primates (posterior mean Zr (HPD) = 

0.109 (-0.194 to 0.404)), humans show great variation in direction and magnitude of effect sizes (Figure 

4a). Directional variation could partly be explained by the unit of investigation; we found pairs had 

significantly stronger preferences for MHC similarity than males. Human males are thought to be less 

choosy than females since they tend to invest less in offspring, can reproduce at a faster rate, and have 

higher reproductive variance (Trivers 1972; Puts 2012). Thus, this significant contrast may reflect 
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assortative mating in pairs versus male indifference. The contrast between pairs and females was not 

significant, as females had a greater range of preferences.  

 One interpretation is that pairs represent mate choice outcomes, in contrast to individual 

preferences of males and females. Because actual choice of partners is influenced by many socio-

economic conditions including ethnicity, nationality, family relatedness, phenotypic similarity, and spatial 

segregation (reviewed in Kalmijn 1998; Bovet et al. 2012; Nojo et al. 2012) that can result in genetically 

assortative pairings, the apparent preference for MHC-similarity in pairs may be coincidental. In effect, 

ethnic heterogeneity within a sample will produce patterns of positive assortative mating at the ethnic 

level, where spouses are more similar at a genome-wide level than random pairs of individuals (Chaix et 

al. 2008; Laurent & Chaix 2012). We found strong support for this explanation in our findings of 

significant effects for similarity within couples sampled from ethnically heterogeneous populations, but 

not from homogeneous populations or from experimental studies that control for potential ethnic biases 

(Figure 5). A way to rule out spurious MHC-associations stemming from population stratification–

differences in subpopulation background allele frequencies (Cardon & Palmer 2003; Derti et al. 2010; 

Laurent & Chaix 2012)–would be to provide measures of neutral genetic similarity of couples. One study 

adopting this design was able to determine that MHC-dissimilarity in couples of European ancestry was 

independent of genome-wide effects, while MHC-similarity observed in couples of Yoruban ancestry was 

most likely a consequence of kinship-based assortative mating (Chaix et al. 2008; Laurent & Chaix 

2012). Neutral genetic markers would also allow for testing if the MHC is specifically targeted or if there 

is hitch-hiking during assortative or disassortative mating for other traits (Rosenberg et al. 1983; Redden 

& Allison 2006; Laurent & Chaix 2012).  

The variation in human MHC dissimilarity preference but single-direction trend in non-human 

primates suggests that selection pressure for MHC dissimilar mates may be sensitive to environmental or 

demographic perturbations primarily affecting humans. In contrast to non-human primates, humans have 

undergone a recent population expansion (Kaessmann et al. 2001) and show extensive levels of admixture 

(Lawson et al. 2012), while most non-human primate populations are more genetically isolated and 
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homogeneous, as are, for example, wild great apes (Prado-Martinez et al. 2013). Considering that mate 

choice relies on interpreting cues about traits relative to their background frequency, large changes in the 

genetic composition of the mating pool may distort signals. For example, if population-specific targets of 

optimal offspring diversity exist, mixing those populations would produce conflicting optimal targets. 

 

Methodological differences among studies  

Even considering only experimental studies with much greater control over the statistical design, there 

was still high heterogeneity among human dissimilarity effect size magnitude and direction (Table S3, 

Figure 3). It could be argued that differences among studies in methods or statistical design are 

responsible (Havlicek & Roberts 2009). However, the majority of experimental human studies used the 

same statistical design of Wedekind et al. (1995) which treated the chosen individual as the unit of 

analysis. Only two odor studies used different designs: one (Jacob et al. 2002) repeated the analysis using 

a within-donor design and found that the analysis “yields virtually identical results” (McClintock et al. 

2002). The other (Santos et al. 2005) used a chi-squared design, but had also had a percentage of 

participants on birth control, so this effect size along with other effect sizes of pill-users was ultimately 

removed from the dataset and could not influence the results. 

Sources of heterogeneity can arise through study design, how the outcome is measured, and 

through real biological differences between populations. Yet we emphasize that studies that differ in their 

methodologies can be combined for a meaningful meta-analysis. The meta-analysis of Kamiya et al. 

(2014) is a case in point, which combined studies employing a diversity of methods across a range of 

vertebrates and found a clear general pattern for individuals to prefer MHC dissimilar and diverse mates. 

In fact, combining research based on different methodologies insures that the variance in effect-size 

patterns reflects this process and not any one methodological artifact (Lajeunesse 2010). We can then 

explore the factors that contribute to variation in MHC mate choice research to synthesize discordant 

results. One main source of heterogeneity we detected with statistical support was from combining 

different ethnic groups in a sample for studies that compared observed pairs to randomly created pairs. 
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Another methodological source of heterogeneity we tested was choice cue because preferences based on 

different stimuli could show different patterns, but we found no strong evidence of this and other studies 

have found positive correlation between facial and scent attractiveness (Thornhill & Gangestad 1999; 

Thornhill et al. 2003). Additional methodological differences between human studies and their 

implications for results have been thoroughly discussed elsewhere (Wedekind et al. 2002; Havlicek & 

Roberts 2009; Derti et al. 2010; Winternitz & Abbate 2015). We note that we cannot unanimously 

differentiate whether the differences between study outcomes are caused by methodology or biology, and 

it is likely that both types of mechanisms are in effect. 

 

Study limitations 

One potential source of type I (false positive) errors is biases in published effect sizes. Publication 

bias testing showed no evidence for p-hacking but did reveal that the average power of the studies 

analyzed was low, ranging between 24-57% between datasets, indicating that true effects may have gone 

undetected in those studies. Based on our mean effect sizes for dissimilarity (Zr=0.044) and diversity 

(Zr=0.153), we recommend study samples sizes of ~ 4051 and ~260 respectively, to detect true effects in 

primates 80% of the time. The magnitude of these mean effect sizes are typical for ecological data 

(Møller & Jennions 2002) but this translates to dissimilarity only explaining approximately 0.2% and 

diversity 2.3% of the variation in primate mating patterns. Clearly, MHC-mediated mate choice in 

humans and other primates is just one relatively small consideration of many involved in choosing a mate. 

Another issue regarding type I error is multiple testing. In our study we used a large number of predictors, 

the majority being those from Kamiya et al. (2014) in order to get comparable results across different taxa 

(mammals, non-human primates and humans). We also performed a large number of tests for each MHC 

target. We appreciate that type I errors may occur when testing for multiple predictors, but highlight that 

the magnitude of the effects may be suggestive for designing future studies. It is reassuring to see that a 

significant variable in our study (choosy sex) was also found to be significant in a previous meta-analysis 

on MHC-diversity based mating in vertebrates (Kamiya et al. 2014).  
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Regarding type II (false negative) errors, retrospective power-analysis of our own results 

indicates we have sufficient sample sizes to have enough power detect an effect of Zr = 0.15 (explaining 

~2.2% variation in MHC mating patterns) for human MHC-diversity model and models of all human 

MHC dissimilarity choice cue categories excluding odor preference studies. Sample sizes for non-human 

primates were too low to have a good chance of detecting true effects, but high power could easily be 

achieved with less than 20 additional effect sizes. Noise in the data may increase the risk of not finding 

biological effects. Therefore, we have tried to draw attention to models where power was limited and new 

data would be very helpful (i.e., human odor preference models, non-human primate models), to help 

advance the field of MHC-linked mate choice.   

Another challenge linked with interpreting meta-analyses conducted across heterogeneous 

samples and study designs is the issue of confounding factors. Confounding factors not accounted for in 

original studies pose a substantial problem for the interpretation of all meta-analytical approaches, as they 

can increase the risk of missing a true effect. Specifically, in our study, only four studies in our dataset 

had (i) controlled for Pill effects, (ii) used subjects of the same ethnicity, and (iii) conducted an 

experimental study to control for confounding factors. Two of these studies (Wedekind et al. 1995; 

Wedekind & Furi 1997) investigated odor preferences and found positive effects of MHC dissimilarity 

(r=0.3347, r=0.11, respectively). The two other studies (Roberts et al. 2005a, Roberts et al. 2005b) 

investigated facial preferences and found negative effects of MHC dissimilarity (r= -0.2632, r= -0.2067). 

Therefore, even studies that fulfill the strictest of conditions still find opposing effects of MHC-

dissimilarity on human mate preferences (which may have a biological explanation if the two modalities 

work in complementary ways to optimize level of MHC diversity for offspring (Roberts et al. 2005a)). 

Our meta-analysis has shown that various moderators can impact the sizes and directions of results 

investigating MHC-linked primate mating and therefore can point to gaps in the research field to be 

addressed by future studies. Unfortunately, given our limited sample size, we were not able to incorporate 

multiple moderators within the same models. Thus, we cannot rule out a significant effect of MHC-



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

dissimilarity on primate mate choice under certain conditions and a definitive answer awaits further 

studies.        

  

Evidence for mate choice for MHC-optimality? 

Considering only experimental studies that could control for potential socio-ethnic assortative biases we 

still found wide variation in effect sizes for MHC-dissimilarity. It seems prudent to consider that an 

alternative biological explanation may be at least partially responsible for the variation. The optimality 

hypothesis predicts that direction of preference either for MHC dissimilarity or some degree of allele 

matching may depend on the relative allelic diversity in the pool of potential mates (Aeschlimann et al. 

2003; Milinski 2006). For example, Aeschlimann et al. (2003) showed that sticklebacks preferred 

dissimilar partners in simulated inbred populations and optimally dissimilar partners in simulated outbred 

populations. High heterogeneity in MHC-dissimilar mating preferences could reflect differences among 

individuals attempting to achieve “optimal dissimilarity” by preferring similar or dissimilar mates 

depending on ecological and demographic context (Jacob et al. 2002; Milinski 2006; Roberts 2009). 

Thus, MHC-based mate choice may be stronger or easier to detect in settings where there is less 

population genetic diversity and less heterogeneity in other factors which influence mate choice (Ober et 

al. 1997; Jacob et al. 2002; Chaix et al. 2008). Considering that the diversity of distinct HLA haplotypes 

(multi-locus set of linked alleles) per population typically ranges from 100s to 1000s (Gragert et al. 

2013), individuals from isolated populations would most frequently encounter only a fraction of the 

diversity of haplotypes common in more outbred populations. For example, only 10 haplotypes make up 

the high frequency majority for the Hutterite community (N=1891 sampled) where a significant 

preference for MHC haplotype-dissimilar mating was detected (Ober et al. 1997). Matching at 6 alleles 

(for 6-locus haplotypes) could severely limit the potential antigenic detection range and/or interfere with 

maternal-fetal interactions (Ober et al. 1988; Ober et al. 1997; Lashley et al. 2015). The Hutterite results 

are in line with the hypothesis of mate selection disfavoring extreme MHC similarity (Derti et al. 2010), 

and our results also show that experimental study preferences for MHC-similar individuals had relatively 
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few matching alleles between mates (average of 1-3 alleles). It would be helpful if tests for MHC-

dissimilarity preferences considered a higher range of potentially matching alleles (e.g., allele matching at 

0-6 loci). Odor preference studies in particular could employ synthetic peptides that mimic individual 

alleles to have greater control of the range of allelic diversity (Milinski et al. 2005; Milinski et al. 2013).   

  

Importance of direct and indirect fitness benefits 

Our finding of greater mean effect size for MHC diversity compared to dissimilarity is in line with 

evidence from across all vertebrates (Zr = 0.113 vs Zr = 0.064, respectively, (Kamiya et al. 2014)). 

Detecting MHC diversity in a mate may be easier than detecting dissimilarity, as diversity is expected to 

correlate positively with the mate’s phenotypic condition, including health status (Penn et al. 2002) or 

perception of health status through skin condition (Roberts et al. 2005), body mass (Thoß et al. 2011), 

and coloration dependent on infection status (Milinski & Bakker 1990), among others. Dissimilarity, on 

the other hand, should not be reflected by the mate’s phenotype alone, as it depends only on the 

combination of both mates genotypes. Thus, this type of preference would require more sophisticated 

sensory mechanisms including self-referential capabilities. The evolutionary benefits of human mate 

choice for MHC diversity may include prolonged parental care and reduced risk of contracting disease for 

a partner and the offspring (Roberts et al. 2005b), in addition to the potential indirect benefits from 

transmission of advantageous genes to offspring by diverse mates (Brown 1997, 1999; Kempenaers 

2007). If preferences for MHC-diverse mates are primarily for direct fitness benefits, then resource-based 

mating systems where direct benefits (e.g., mate protection, provisioning, and paternal care) are important 

should show stronger effects for mate choice. Alternatively, if diversity preferences are primarily for 

indirect fitness benefits, then non-resource based mating systems should show stronger effects for mate 

choice.  We found preliminary support favoring direct fitness benefits in our trend of more promiscuous 

mating systems (with larger relative testes size) correlating with weaker mate choice for MHC-diversity 

in primates (Table S6 and S10). Another piece of support for direct benefits is that our results show 

stronger mate choice for MHC-diversity in humans, where direct benefits are important, than in non-
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human primates. For instance, the expression of a major direct fitness benefit, paternal care, is intense for 

humans but rare in non-human primates (reviewed in Fernandez-Duque et al. 2009). This association 

suggests that more promiscuous mating systems which tend to provide fewer resource-based benefits to 

females (Clutton-Brock 1989) have weaker effects of mate choice for MHC-diversity.   

 

Conclusions and suggestions for future research 

We found clear support for humans and a trend for non-human primates choosing more MHC-diverse 

mates. In contrast, we found extremely high heterogeneity and no such clear pattern in humans for choice 

for MHC-dissimilar mates. A key driver of this heterogeneity was whether or not ethnic heterogeneity in 

studies on couples was controlled. High heterogeneity among non-human primate studies still showed a 

consistent direction for MHC dissimilarity, which could stem from methodological differences but also 

from socio-ecological differences between populations and species (Setchell & Huchard 2010). In fact, 

we found preliminary evidence that the expression of MHC-based mate choice could depend on the 

mating system and the reproductive strategies of individuals within those systems, as well as the 

phylogenetic history among species.  

 Results of this study show clear priorities in how to design future human and non-human primate 

studies, including studies that: (1) are large scale (>=200 individual targets) and include power analysis, 

(2) focus on individuals from (ethnically) homogeneous populations with limited MHC-diversity (Ober et 

al. 1997; Jacob et al. 2002; Chaix et al. 2008) and test socio-ecologically sensitive hypotheses (e.g., how 

expression of preferences for diversity/dissimilarity/optimality may vary according to mating system or 

demography; Setchell & Huchard 2010), (3) explicitly test the optimality hypothesis (with the prediction 

of less variance around an optimal parental combination of alleles than combination under random 

mating; Forsberg et al. 2007) and consider experimentally adjusting MHC peptide diversity/overlap 

(Milinski et al. 2013), (4) use multiple loci, including different MHC classes (I and II) (Kamiya et al. 

2014), (5) control for non-MHC variability–key in determining incidental or adaptive MHC-assortative 
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mating (Jiang et al. 2013), and (6) control for biologically confounding variables (e.g., ovulatory status 

and contraceptive pill use; Wedekind et al. 1995).  

Finally, we emphatically call for more non-human primate studies to improve understanding of 

the evolutionary trajectory of human mate choice. We hope that our synthesis highlights the need for 

additional studies of the selective pressure of MHC genotype on mating decisions and provides direction 

for future research. 
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Tables 

Table 1. Comparison of models with varying random effects and their deviance information criteria 

(DIC) values for effects of MHC dissimilarity and diversity on mate choice for all species, only humans, 

and only non-human primates. All models include the intercept and the listed random effects. Values in 

bold specify the random-effects used in subsequent models. Models within 2 DIC units are essentially 

equivalent (Spiegelhalter et al. 2002), so we chose to include random effects that would account for study 

and phylogenetic non-independence without overfitting the models.  

    All Humans Non-human Primates 

Model ID Random effects DIC ΔDIC DIC ΔDIC DIC ΔDIC 

MHC Dissimilarity        

Model0 No random -8.76 43.00 -4.20 34.53 -14.76 0.54 

Model1 ID -51.09 0.68 -38.73 0.00 -15.30 0.00 

Model2 Species -8.26 43.51 . . -15.30 0.01 

Model3 Phylogeny -8.57 43.20 . . -15.13 0.17 

Model4 ID + Phylogeny -51.77 0.00 . . -15.28 0.02 

Model5 ID + Species -51.72 0.05 . . -15.26 0.04 

Model6 ID + Species + Phylogeny -51.69 0.08 . . -15.16 0.14 

MHC Diversity        

Model0 No random -45.12 1.26 -25.05 0.00 -19.85 0.00 

Model1 ID -45.73 0.65 -24.82 0.23 -19.32 0.54 

Model2 Species -46.06 0.32 . . -19.37 0.48 

Model3 Phylogeny -46.38 0.00 . . -19.61 0.24 

Model4 ID + Phylogeny -46.31 0.07 . . -19.33 0.53 

Model5 ID + Species -46.11 0.27 . . -19.24 0.61 

Model6 ID + Species + Phylogeny -46.17 0.21 . . -19.35 0.51 

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 2. Heterogeneity estimates and deviance information criteria (DIC) for a set of random-effect only 

meta-analytical models for MHC dissimilarity and diversity. The heterogeneity (I2) value is the percent 

variance from a particular random factor over the sum of all variance components plus the mean variance, 

and was calculated from posterior means. The total I2 (and the 95% HPD) is the sum of all variance 

components. The mode total variance is shown for comparison (where similar values indicate stable 

models). Phylogenetic heritability (H2) is the proportion of variance that can be explained by phylogenetic 

variance (Hadfield & Nakagawa 2010). The final random-effect models used in subsequent analyses are 

highlighted in bold. Rationale for using the bold models is explained in the methods. Model ID refers to 

models from Table 1. 
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Figure Legends 

 

Figure 1. Effect of moderators on strength of MHC-associated mating outcome. This figure is a 

forest plot of effect size for categorical moderators for a) preference for MHC-dissimilarity and b) 

preference for MHC-diversity. Positive posterior estimates of Fisher’s Z transform of the correlation 

coefficient (Zr) indicate positive associations whereas negative estimates indicate negative associations 

between MHC target and mating outcome. Boxes show the mean posterior estimate from the model, and 

error bars represent the 95% highest posterior density (HPD) interval. Numbers on the right-hand side of 

each panel indicate the number of effect sizes in each subgroup. White boxes indicate model estimates 

from human data, black boxes are from non-human primate data, and gray polygons indicate estimates 

from models using all data. We removed pill-user effect sizes from the combined primate and human 

dataset to control for its potentially confounding effect (see methods), and tested pill-use as a moderator 

for studies that investigated its affect or controlled for it. The meta-analytic mean is from the intercept-

only model run with study ID and phylogeny as random effects (and study ID as the random effect for the 

human-data model). Dashed boxes highlight mean estimates with HPD intervals that do not overlap zero. 

Vertical bars indicate significant contrasts between moderator categories for humans and all data (*p-

value < 0.05, see Table S10). 

 

Figure 2. Phylogenetic heritability of effect sizes for MHC-dissimilar and MHC-diverse mating 

patterns. We calculated the residuals of Zr effect sizes due to phylogenetic relatedness and computed the 

mean for each species to graphically represent the heritability of effect sizes for a) MHC-dissimilar 

mating patterns (heritability posterior mean (HPD) = 0.30 (0.01 - 0.78)) and b) MHC-diverse mating 

patterns (heritability posterior mean (HPD) = 0.50 (0.04 to 0.96)). Colors indicate the strength of 

phylogenetic signal. 

 

Figure 3. Effect of moderators on strength of human MHC-dissimilarity mating preferences 

(experimental designs) and mate choice (observational data). Zr effect sizes for human data were 

investigated by choice cue category, including facial preferences (white/yellow diamond), odor 

preferences (dark gray/blue diamond), these experimental categories combined (light gray/green 

polygon), and mate choice studies (black/maroon square). Points show the mean posterior estimate from 

the model, and error bars represent the 95% HPD interval. Numbers on the right-hand side of each panel 

indicate the number of effect sizes in each subgroup. We ran all models excluding potentially 

confounding pill-use effect sizes, except those models specifically testing for pill-use effect (only 
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available for odor preference studies). The cross-diamond model estimates include only studies that had 

dichotomously classified raters as pill-users or not (i.e., Santos at al. (2005) provided an effect size for a 

group of raters in which 30% were taking birth control pills). The meta-analytic mean is from the 

intercept-only model run with study ID as a random effect. 

 

Figure 4. Forest plot of original Fisher’s Z-transformed (Zr) effect sizes extracted from each study. 

Zr effect sizes and associated variance were extracted from each study for a) preference for MHC-

dissimilarity (positive Zr values indicate preference for dissimilarity, negative for similarity) and b) 

preference for MHC-diversity. Black diamonds indicate means from random effect (RE) models for 

humans and non-human primates presented separately, and for all data combined, and error bars represent 

the meta-analytic variance (1/(Nstudy-3)). N is the number of independent targets per study. 

 

Figure 5. Effect of ethnic homogeneity of the population on the strength of human preference for 

MHC-similarity. We investigated the effect of the moderator ‘population’ on the subset of Zr effect sizes 

that were negative (indicating preference for similarity). Models with the moderator ‘population’ were run 

between choice cue categories for combined experimental studies (odor and facial preference studies, 

light gray/green diamond) and for mate choice studies (black/maroon square). Points show the mean 

posterior estimate from the model, and error bars represent the 95% HPD interval. Numbers on the right-

hand side of each panel indicate the number of effect sizes in each subgroup. Effect sizes from ethnically 

heterogeneous populations for mate choice studies (but not experimental studies) had a significant 

posterior mean estimate for similarity (mean Zr (95%HPD) = -0.142 (-0.275 to -0.017)).   
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