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Integrated crop-livestock systems can have subtle effects on soil quality over time, particularly in semiarid regions where soil
responses to management occur slowly. We tested if analyzing temporal trajectories of soils could detect trends in soil quality
data which were not detected using traditional statistical and index approaches. Principal component and cluster analyses were
used to assess the evolution in ten soil properties at three sampling times within two production systems (annually cropped,
perennial grass). Principal component 1 explained 33% of the total variance of the complete dataset and corresponded to gradients
in extractable N, available P, and C :N ratio. Principal component 2 explained 25.4% of the variability and corresponded to
gradients of soil pH, soil organic C, and total N. While previous analyses found no differences in Soil Quality Index (SQI) scores
between production systems, annually cropped treatments and perennial grasslands were clearly distinguished by cluster analysis.
Cluster analysis also identified greater dispersion between plots over time, suggesting an evolution in soil condition in response
to management. Accordingly, multivariate statistical techniques serve as a valuable tool for analyzing data where responses to
management are subtle or anticipated to occur slowly.

1. Introduction

Integrated crop-livestock systems (ICLS) are recognized
globally for their contributions to improve agricultural sus-
tainability [1–4]. Recent emphasis on conservation agricul-
ture, climate-smart agriculture, and sustainable intensifica-
tion has underscored the potential role of ICLS to create
more productive and resilient agricultural systems [5, 6]. An
inherent emphasis on multiple enterprises makes ICLS well-
suited for future growing conditions, where production syn-
ergies between enterprises can serve to enhance adaptability
to increasingly variable weather andmarket conditions, while
concurrently minimizing input costs [7, 8].

Integrated crop-livestock systems can be more manage-
ment and labor intensive than single-enterprise production
systems [4]. Accordingly, producers need to know if invest-
ments in implementing ICLS translate into improvements

in key response metrics. Relevant information would uti-
lize metrics characterizing agroecosystem sustainability and,
ideally, do so quickly following adoption of management
practices to assess trajectory over time [9]. Such information
could serve to justify investments in ICLS or, if necessary,
provide quantifiable guidance for adjusting management to
more effectivelymeet production, economic, and/or environ-
mental goals.

Soil quality serves as an important response metric to
agroecosystem management given its foundational role in
affecting agricultural and environmental outcomes through
impacts on ecosystem services [10]. Formally defined, soil
quality refers to the capacity of soil to function [11].
Accordingly, soil quality contributes to numerous ecosystem
services within agricultural landscapes (e.g., water reten-
tion/filtration, climate regulation, and biodiversity conserva-
tion) [12].
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The central role of soil to deliver key ecosystem services
has served as a focal point for the development of numerous
assessment methods. Over the past 30 years, soil quality
assessments have evolved from the evaluation of a minimum
dataset of soil properties [13] to elaborate indices involving
scoring functions based on management goals across mul-
tiple scales [14–16]. As agricultural practices are intensified
to meet anticipated production and energy needs [17], soil
quality assessments will be essential to ensure deployed
practices are sustainable.

Previous soil quality evaluations of ICLS have focused
on treatment effects on single soil physical, chemical, or
biological properties or indices of multiple properties [4, 18–
21]. Outcomes from these evaluations have helped under-
stand soil responses to ICLS, as results are typically easy
to interpret and convey, thereby improving understanding
by clientele. Despite this benefit, there are unique attributes
associated with ICLS that may make traditional assessment
of soil property dynamics, whether by single properties or
an index, problematic. Soil properties can change slowly in
ICLS, particularly in semiarid regions where soil responses
to management occur slowly [22]. Accordingly, long-term
research may be necessary to assess ICLS effects on soil
quality, yet short-term funding cycles may make it difficult
to conduct such research. Secondly, traditional Soil Quality
Index methods “merge” outcomes from multiple soil prop-
erties to provide an aggregated numerical rating [11, 16]. In
doing so, traditional indexing methods may mask nuances
inherent to the data and, thus, miss important spatiotemporal
trends.

Given this context, we sought to analyze near-surface soil
quality indicator data collected over a six-year period from an
ICLS in a semiarid region using principal component analysis
(PCA).These data were previously analyzed using traditional
statistical and index approaches to evaluate soil property
responses to residue management, frequency of hoof traffic,
season, and production system [18, 23]. We hypothesized
a reanalysis of the same data with multivariate statistical
techniques would identify trends in soil property dynamics
not previously observed.

2. Materials and Methods

2.1. Site andTreatmentDescription. TheICLS experimentwas
located at the USDA-ARS Northern Great Plains Research
Laboratory near Mandan, ND, USA (46∘46 W, 100∘54N).
The experimental site is within the temperate steppe ecore-
gion of the USA, with a semiarid climate characterized by
long, cold winters and short, hot summers. Mean annual
precipitation and temperature at the site are 414mm and
4∘C, respectively, and the average frost-free period is 131
days. Gently rolling uplands (0 to 3% slope) characterize
the topography of the experimental site, and predominant
soil types are Temvik-Wilton silt loams (fine-silty, mixed,
superactive, frigid Typic, and Pachic Haplustolls) [24].

A thorough treatment description can be found else-
where [18]. Briefly, two 6.0 ha crested wheatgrass [Agropy-
ron desertorum (Fisch. ex. Link) Schult.] pastures were

sprayed with glyphosate [N-(phosphonomethyl) glycine;
0.7 kg a.i. ha−1] twice in mid-May and converted to an
annual cropping sequence of oat/pea (Avena sativa L./Pisum
sativum L.), triticale/sweet clover (Triticum aestivum x Secale
cereale/Melilotus officinalisL.), and corn (ZeamaysL.). Begin-
ning in 2007, the crop sequence was changed to oat/alfalfa
(Medicago spp.)/hairy vetch (Vicia villosa Roth)/red clover
(Trifolium pratense L.), brown midrib sorghum-sudangrass
(Sorghum bicolor L. Moench)/sweet clover/red clover, and
corn also using no-till planting techniques. Each phase of the
three-year cropping sequence was present in both pastures,
which were used as replicates. Management decisions related
to seeding, fertilizer, and weed control by herbicides followed
recommended practices by area producers.

The oat and triticale/sorghum crop mixtures were har-
vested for grain from mid-August to early-September with
the straw spreader removed from the combine, which created
a swath of crop residue for winter grazing. The corn was
swathed for forage in mid- to late-September. Each crop
strip was split into three residue management treatments
that included no residue removal (Control; 0.05 ha), residue
removal with a baler (Hayed; 0.05 ha), and residue removal
by grazing with livestock (Grazed; 1.69 ha). The Control and
Hayed treatments were randomly assigned within each crop
strip. For the Grazed treatment, the swathed crop residues
from the cropping sequence represented winter forage for ten
4–6-year-old nonlactating bred Hereford cows, due to calve
in lateMarch. Plot areas within a crop phasewere 27m× 23m
(0.06 ha) for the Control and Hayed treatments and 54m ×
312m (1.68 ha) for the Grazed treatment. Stocking rate within
a crop phase for the Grazed treatment was 0.2 ha cow−1
(5.9 cows ha−1), corresponding to winter grazing practices
used by local producers.

Grazing commenced in mid-November and ended in
mid-February, with the oat crop mixture grazed first, trit-
icale/sorghum crop mixture second, and corn last. Access
to crop swaths was controlled using electric fences oriented
at right angles to the swaths. Fences were moved daily to
provide access to fresh forage. A shelter and “frost-free” water
fountain were located at the end of each pasture within the
Grazed treatment.

Two perennial grass pastures were used for comparison
to the annually cropped treatments. The pastures, each
6.0 ha, were composed of a mixture of native and introduced
cool-season perennial grasses. Similar to Grazed treatments,
swathed grass from the perennial pastures was used as winter
forage from 1999 through 2002 for the same number of
cows managed in the annually cropped treatments. Within
each perennial pasture a nongrazed strip was split into
Hayed and Control treatments as outlined above. Drought-
induced limitations in forage in 2002 and 2003 resulted in
the perennial grass treatments being hayed but not grazed in
2003. From 2004 through 2008, the perennial grass treatment
was not swathed but lightly grazed with ten Hereford or
Angus cows from mid-October to mid-January.

2.2. Soil Sample Collection, Processing, and Analyses. Soil
samples were collected in April of 2002, 2005, and 2008 after
the swathed crops had been grazed but not replanted. Within
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Table 1: Description of soil properties used for data analysis.

Variable Acronym Units Minimum value Maximum value
Soil bulk density SBD Mgm−3 0.80 1.61
Electrical conductivity EC dSm−1 0.10 0.31
Soil pH PH −log[H+] 5.48 7.65
Soil nitrate NO3N mg kg−1 0 44
Soil ammonium NH4N mg kg−1 1 26
Available phosphorus P mg kg−1 1 29
Potentially mineralizable N PMN mgkg−1 19 166
Soil organic carbon SOC g kg−1 13.2 41.9
Total nitrogen TN g kg−1 1.2 3.5
Soil carbon to nitrogen ratio CNRATIO 10.3 12.5

the annually cropped pastures, samples were collected from
nine subplots (three per crop phase) in theControl andHayed
treatments, oriented randomly in each treatment but between
crop rows. Samples from theGrazed treatment were collected
from two transects differing in frequency of hoof traffic, also
between crop rows. Nine subplots (three per crop phase)
were established in each transect perpendicular to crop
swaths approximately 100m (representing high-traffic; HT)
and 200m (representing low-traffic; LT) from the shelter and
water source. Sampling protocol for the western wheatgrass
pastures followed that in the annually cropped pastures, with
the exception of fewer subplots in each treatment (three in the
Control, Hayed, and Grazed hoof traffic transects). Within
each subplot, six soil cores were collected from the 0 to 7.5 cm
depth using a 35mm (i.d.) step-down probe and composited.
Each sample was saved in a double-lined plastic bag, placed
in cold storage at 5∘C, and analyzed within 6wk of collection.

Soil samples were dried at 35∘C for 4 d and then ground
by hand to pass a number 10 (2.0mm) sieve. Identifiable plant
material (>2.0mm diameter, >10mm length) was removed
during sieving. Electrical conductivity andpHwere estimated
from a 1 : 1 soil-water mixture [25, 26]. Soil NO

3
-N and

NH
4
-N were determined from 1 : 10 soil-KCl (2M) extracts

using cadmium reduction followed by a modified Griess-
Ilosvay method and indophenol blue reaction [27]. Plant-
available soil P was estimated by bicarbonate extraction [28].
Potentially mineralizable N was estimated from the NH

4
-N

accumulated after a 7 d anaerobic incubation at 40∘C [29].
Total soil C and N were determined by dry combustion [30],
and as soil pH was <7.2 within the surface 7.5 cm depth,
total soil C was considered equivalent to SOC. All data were
expressed on an oven-dry basis prior to data analyses.

2.3. Data Organization. Prior to statistical analyses, data
were organized to facilitate characterization of all sampled
locations as well as sampled locations specific to the annually
cropped treatments. Data group 1 (S1) was composed of
10 soil properties from 40 plot locations in both annually
cropped and perennial grass treatments (Table 1). Within S1,
there were 24 locations in the annually cropped treatments
and 16 locations within the perennial grass treatments. Data
group 2 (S2) focused on the 24 locations within the annually
cropped treatments, with an equivalent number of grazed and

ungrazed locations (12 each). For both S1 and S2 data groups,
data were included from each sampling time: 2002, 2005, and
2008.

2.4. Statistical Analyses. Individual plot dynamicswere quan-
tified by combining a series of multivariate analyses using a
method developed by Dolédec and Chessel [31] and adapted
by Garćıa-Mart́ınez et al. [32] and Ryschawy et al. [33]. The
method distinguished impacts of external (the system envi-
ronment) and internal (system structure and functioning)
factors, while considering the evolution of individual plots
over time. We applied this statistical methodology to S1 to
analyse plot trajectories of near-surface soil quality indicators
(Table 1).

To analyse plot trajectories, we used a particular type of
PCA (Principal Component Analysis) called Within-Class
Analysis (WCA) to consider evolution of individuals (plots)
while not considering the general date effect on different
plots. We thus considered the deviation of each soil property
in a plot from the average across plots, considering time
period effect. The first step of the WCA consisted in stan-
dardizing the data. For each soil property (column), datawere
centered by subtracting the mean of the column to the values
and scaled by dividing the values of each column by their
standard deviation (with a column mean of 0 and a standard
deviation of 1). Within-Class Analysis used an R statistical
software package dedicated to Analysis of Environmental
Data (Exploratory and Euclidean Method; ade4 package)
[34]. Within-Class Analysis used orthogonal PCAs where
factors were used as covariables to partition rows (time was
used as the main factor to partition rows considering each
date separately for plots). The analysis characterized differ-
ences between plot locations once a general common trend
over time was eliminated. We considered the three sampling
times (2002, 2005, and 2008) as the factor partitioning rows.

Main factors within data group S1 were summarized by
PCA. We then performed a WCA resulting in a data frame
W1 containing transformed data for each of the 40 plot
locations at the three different dates considered, as the devi-
ation between individual and date-class mean coordinates
on within-analysis axes. The results of the WCA therefore
represented interplot location trajectories.
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Table 2: Principal component scores of measured variables and proportion of variability explained within each axis for data group 1 (S1).

Axis 1 Axis 2 Axis 3 Axis 4
Soil bulk density 0.59 0.42 0.27 0.17
Electrical conductivity −0.23 −0.32 0.62 0.53
Soil pH −0.34 0.74 0.42 0.08
Soil nitrate 0.71 −0.53 0.16 0.30
Soil ammonium 0.56 −0.15 0.50 0.54
Available P 0.65 −0.30 0.33 −0.41
Potentially mineralizable N −0.41 0.48 0.59 0.20
Soil organic carbon −0.58 −0.65 0.46 −0.04
Total nitrogen −0.45 −0.70 −0.50 −0.09
C :N ratio −0.78 0.12 −0.04 0.20
Variability explained 33.0% 25.4.% 13.6% 10.3%

To summarize soil trajectories for each individual plot
location for all dates, we performed a final PCA on the WCA
individuals considered at each date. Per the Kaiser criterion,
we thus considered the main factors with eigenvalues >1
as summarizing observed changes. A Hierarchical Cluster
Analysis (HCA) (with squared Euclidean distance andWard’s
aggregationmethod) was carried out on the fourmain factors
of the PCA to establish a typology of plot locations according
to their change over time.

To analyse changes in plot locations elucidated by HCA,
we calculated means and standard deviation of variables
for each measured variable. All statistical analyses were
performed using R 3.1.0 software [34]. We repeated this
statistical methodology on data group S2 to evaluate soil
property dynamics based on grazed (Grazed) and ungrazed
(Control, Hayed) areas within the 24 plot locations assigned
to annually cropped treatments.

3. Results

3.1. Analysis of All Sampled Locations. Thefirst four principal
components accounted for 82.3% of the variability based
on WCA of the whole sample (data group S1). Associations
between soil properties were evident following the WCA, as
three distinct groupings were observed graphically (Figure 1).
Soil nitrate (NO3N), ammonium (NH4N), and available
phosphorus (P) appeared linked, as did soil carbon to nitro-
gen ratio (CNRATIO), soil organic C (SOC), total nitrogen
(TN), and electrical conductivity (EC). Soil pH (PH) and
potentially mineralizable N were also linked. Only soil bulk
density (SBD) was not grouped with another soil property.

Contributions of measured soil properties to the four
principal components are provided in Table 2. Principal
component 1 explained 33% of the variability and corre-
sponded to gradients of available N and P (NO3N, P) and
CN ratio levels. Principal component 2 explained 25.4% of
the variability and corresponded to gradients of PH, SOC,
and TN. Principal component 3 explained 13.6% of the
variability and corresponded gradients in EC and PMN.
Principal component 4 explained 10.3% of the variability and
was primarily influenced by EC and NH4N.

PH

PMN

CNRATIO

SOC
TN

EC

NO3N

P
NH4N

SBD

Figure 1: Spatial representation of measured variables on the first
factorial map of the principal component analysis (PCA): SBD, soil
bulk density; EC, electrical conductivity; PH, soil pH; NO3N, soil
nitrate; NH4N, soil ammonium; P, available P; PMN, potentially
mineralizable N; SOC, soil organic carbon; TN, total nitrogen;
CNRATIO, soil carbon to nitrogen ratio.

Dispersion between plots showed a trend toward greater
dissimilarity in soil properties over time (Figure 2). Based
on standard deviation of mean values, plot differences were
closer in composition in 2002 and 2005 than in 2008, with
the latter showing substantial dispersion at the end of the 6 yr
study period (Table 3).

3.2. Analysis of Production Systems. Cluster analysis found
distinct groupings based on production system, as annually
cropped treatments and perennial grasslandswere clearly dis-
tinguished graphically (Figure 3). Such trends were evident
by comparing soil properties in each treatment between 2002
and 2008 (Table 4). Plots under annual cropping had a greater
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Table 3: Mean values (±1 standard deviation) for soil properties in 2002, 2005, and 2008.

Variable 2002 2005 2008
Soil bulk density (Mgm−3) 1.05 ± 0.08 1.09 ± 0.10 1.12 ± 0.11
Electrical conductivity (dSm−1) 0.24 ± 0.04 0.30 ±0.06 0.41 ± 0.10
Soil pH (−log[H+]) 6.12 ± 0.38 6.23 ± 0.38 6.32 ± 0.55
Soil nitrate (mg kg−1) 4 ± 3 5 ± 4 8 ± 9
Soil ammonium (mg kg−1) 2 ± 1 2 ± 0 5 ± 3
Available phosphorus (mg kg−1) 8 ± 3 5 ± 4 10 ± 6
Potentially mineralizable N (mg kg−1) 74 ± 22 86 ± 24 86 ± 34
Soil organic carbon (g kg−1) 30.1 ± 3.9 26.6 ± 3.6 29.6 ± 5.7
Total nitrogen (g kg−1) 2.7 ± 0.3 2.3 ± 0.3 2.7 ± 0.5
C :N ratio 11.2 ± 0.4 11.4 ± 0.4 11.1 ± 0.4

2008

d = 2

2002
2005

Figure 2: Spatial representation of three groups of measured
variables based on sampling year (2002, 2005, and 2008).

accumulation of mineral nutrients (NO3N, NH4N, and P)
compared to perennial grassland, whereas perennial grass-
lands had greater accumulation of organicmatter (SOC, TN),
increased mineralizable N (PMN), and a lower dispersion
between plots compared to annually cropped treatments.

3.3. Analysis of Grazing Effects under Annual Cropping. In
the analysis of grazing effects (data group S2), 83.4% of the
variability was explained based on WCA. Principal compo-
nent 1 explained 29.8% of the variability and corresponded
to gradients in total carbon and nitrogen accrual rates
(SOC, TN, and CNRATIO), whereas principal component
2 explained 24.7% of the variability and corresponded to
gradients of mineral nutrient accrual rates (NO3N, NH4N,
and P) (data not shown).

Hierarchical cluster analysis revealed four clusters that
were differentiated by grazing and treatment replication (Fig-
ure 4). Treatment replications were distinguished graphically
along the horizontal plane, with one replication (Field A) left
of the vertical plane and the other replication (Field B) right

of the vertical plane. Differences in soil properties between
treatments were limited to Field B, where soil pH was lower
and available P was higher under grazing (Table 5).

4. Discussion

Traditional statistical and index-based approaches for assess-
ing soil quality may provide a limited characterization of
soil property dynamics [35]. Multivariate statistical analyses
such as PCA provide a useful method for screening a
diverse collection of functionally relevant soil properties to
identify potential data trends [36]. These techniques provide
an objective approach to extract and weight information
in complex datasets [37], thereby providing a potentially
valuable tool for researchers seeking to link the status of soil
properties, soil function, and agroecosystem management.

Analysis of whole sample dynamics reflected the predom-
inant influence of soil chemical properties on total variance
in the dataset. Soil properties most influenced by additions of
N and P through fertilization (e.g., NO3N and P) accounted
for substantial variance between plots. Annual change in
nutrient-related properties would be expected to vary based
onweather-driven factors affecting plant growth and nutrient
loss [38]. Electrical conductivity, a relative measure of the
total quantity of ions in soil solution, also accounted for an
appreciable amount of variance in the dataset.

Previous PCA evaluations characterizing soil quality have
found organicmatter-related properties to account for a large
amount of variance in data [35, 36]. A similar outcome was
observed in this evaluation, as SOC, TN, and CNRATIO
accounted for a moderate amount of variation among soil
properties across principal components. The limited mea-
surement timespan (6 yr), coupledwith the inherent difficulty
in detecting change in properties with a large background
signal due to previous management as a perennial grassland
[39], may have compromised the usefulness of organic
matter-related properties in this evaluation. In general, soil
properties associated with organic matter are slow to change
in semiarid agroecosystems, sometimes requiring a decade or
longer for management effects to be detected [22].

Despite limited change in some soil properties in this
evaluation, the aggregate visual assessment of data dispersion
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Table 4: Mean values of near-surface soil properties within annually cropped and perennial grassland integrated crop-livestock systems in
2002, 2005, and 2008 [18].

Year/change Annual crop Perennial grassland
Soil bulk density (Mgm−3)

2002 1.07 ± 0.07
a 1.02 ± 0.09

2005 1.07 ± 0.12 1.11 ± 0.04
2008 1.16 ± 0.12 1.07 ± 0.06
Δ𝑆𝐵𝐷

b +0.09 +0.05
Electrical conductivity (dSm−1)

2002 0.24 ± 0.03 0.25 ± 0.04
2005 0.30 ± 0.06 0.29 ± 0.05
2008 0.43 ± 0.12 0.38 ± 0.07
ΔEC +0.19 +0.13

Soil pH (−log[H+])
2002 5.89 ± 0.21 6.46 ± 0.34
2005 6.00 ± 0.33 6.58 ± 0.27
2008 5.95 ± 0.33 6.88 ± 0.24
ΔPH +0.05 +0.43

Soil nitrate (mg kg−1)
2002 6 ± 3 1 ± 1
2005 7 ± 3 1 ± 1
2008 13 ± 8 1 ± 1
ΔNO3N +6 0

Soil ammonium (mg kg−1)
2002 2 ± 1 2 ± 1
2005 2 ± 1 3 ± 1
2008 6 ± 4 4 ± 1
ΔNH4N +4 +2

Available P (mg kg−1)
2002 7 ± 2 9 ± 4
2005 8 ± 4 2 ± 2
2008 14 ± 5 5 ± 1
ΔP +7 −4

Potentially mineralizable N (mg kg−1)
2002 62 ± 14 92 ± 20
2005 70 ± 14 109 ± 12
2008 66 ± 24 117 ± 21
ΔPMN +4 +25

Soil organic C (g kg−1)
2002 29.5 ± 3.8 30.9 ± 4.2
2005 27.1 ± 3.5 26.0 ± 3.8
2008 28.1 ± 6.0 31.9 ± 4.4
ΔSOC −1.4 +1.0

Total N (g kg−1)
2002 2.6 ± 0.3 2.7 ± 0.3
2005 2.4 ± 0.3 2.2 ± 0.3
2008 2.6 ± 0.5 2.8 ± 0.3
ΔTN 0.0 +0.1

C :N ratio
2002 11.2 ± 0.4 11.4 ± 0.5
2005 11.3 ± 0.4 11.7 ± 0.4
2008 10.9 ± 0.3 11.3 ± 0.3
ΔCN −0.3 −0.1
aMean ± standard deviations are given for each variable in 2002, 2005, and 2008. bChange reflects the difference in soil property between 2008 and 2002.
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Figure 3: Spatial representation of two groups of soil trajectory types following principal component analysis of the complete dataset.
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Figure 4: Spatial representation of four groups of soil trajectory types following principal component analysis of annually cropped treatments.

proved useful in detecting a general evolution of the dataset.
Such dispersion was confirmed upon inspection of standard
deviation values for soil properties within each year, as
mean values of all soil properties, except CNRATIO, had the
greatest standard deviation in the last year of the evaluation.
Coupled graphical and tabular data characterizations seem
particularly useful for datasets like the one analyzed in this
evaluation, as visual assessments infer possible data trends
generally, while tabular assessments provide confirmation
specifically.

Outcomes from the cluster analysis of the complete
dataset showed data groupings based on production sys-
tem, with perennial grass and annually cropped treatments
separated visually. Such separation was evident with cluster
analysis despite limited observed differences in mean values
of soil properties between production systems (Table 4) [18].
Moreover, multivariate analysis and graphical representation
of these previously analyzed data clearly showed limitations
associated with the aggregated Soil Quality Index (SQI)
approach to assessing soil quality, as differences in the overall
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Table 5: Mean values of near-surface soil properties within annually cropped fields according to grazing treatment.

Variable Field A Field B
Grazed Ungrazed 𝑃value Grazed Ungrazed 𝑃value

Soil bulk density (Mgm−3) 1.03 ± 0.11
a 1.04 ± 0.05 0.68b 1.18 ± 0.12 1.15 ± 0.06 0.46

Electrical conductivity (dSm−1) 0.22 ± 0.05 0.24 ± 0.04 0.26 0.20 ± 0.04 0.22 ± 0.05 0.40
Soil pH (−log[H+]) 5.76 ±0.16 5.78 ± 0.15 0.70 5.99 ± 0.13 6.27 ± 0.24 <0.01
Soil nitrate (mg kg−1) 9 ± 4 9 ± 4 0.64 10 ± 10 6 ± 4 0.13
Soil ammonium (mg kg−1) 3 ± 1 3 ± 2 0.67 4 ± 6 3 ± 1 0.31
Available phosphorus (mg kg−1) 9 ± 4 7 ± 4 0.29 12 ± 5 9 ± 4 0.04
Potentially mineralizable N (mg kg−1) 61 ± 16 62 ± 13 0.83 75 ± 20 65 ± 20 0.16
Soil organic carbon (g kg−1) 30.4 ± 5.5 31.2 ± 2.0 0.54 26.5 ± 3.1 24.9 ± 4.0 0.18
Total nitrogen (g kg−1) 2.7 ± 0.5 2.8 ± 0.2 0.34 2.4 ± 0.3 2.3 ± 0.3 0.15
C :N ratio 11.4 ± 0.5 11.2 ± 0.3 0.37 10.9 ± 0.2 10.9 ± 0.3 0.99
aMean ± 1 standard deviation; b𝑃 value associated with mean comparison within a field between grazed and ungrazed treatments. Field A corresponds to
clusters 1 and 2, while field B corresponds to clusters 3 and 4 (Figure 4).

SQI between production systems were not observed in any
year [18]. From a soil management perspective, outcomes
from the cluster analysis underscored the value of perennial
grass systems to enhance soil quality through increased
accrual of soil carbon and nitrogen, while minimizing levels
of nutrients susceptible to loss. Such attributes are impor-
tant features of sustainable agricultural systems [40] and
are central to agroecosystem resilience to climate-induced
stressors and improvements in environmental quality from
agricultural production [41, 42].

In contrast to whole production system analyses, out-
comes were less distinct when data were restricted to
annually cropped fields with and without grazing. Cluster
analysis revealed an overarching effect of replication on
data groupings, of which grazed and ungrazed plots lacked
homogeneity. It is possible that the limited number of data
points, coupled with a need for greater time-in-treatment
to resolve management effects on soil properties, resulted
in indeterminate responses to PCA. It is important to note
that no differences in soil properties were found between
grazed and ungrazed systems in any year when the same
data were analyzed using traditional statistical analyses [18].
Future evaluations of grazed and ungrazed treatments in
both annually cropped and perennial grassland systems are
warranted given the important role of livestock to affect
biomass productivity through influences on soil condition
[43].

Collectively, statistical methods used in this evaluation
contribute to an ongoing evolution of soil quality assessment.
As the interpretation of individual soil properties can be
complicated by multiple response functions [16], use of
aggregate approaches, such as PCA and HCA, potentially
offer novel insights into how soil responds to management
[14]. Use of statistical approaches capable of resolving changes
in soil condition in the near-term can be particularly useful
in regions where alterations in individual soil properties
require a decade or more to be detected [22]. Similarly, these
approaches may be valuable in detecting subtle changes in
soil induced by systemic drivers (i.e., climate). The capacity
to detect shifts in soil condition quickly under the context of

anticipated climate change will be increasingly valuable, par-
ticularly for dryland agriculture [44]. Timely management
interventions will be essential in the future to mitigate soil
degradation and maintain soil function.

5. Conclusions

Use of multivariate statistical analyses revealed trends in data
not previously detected using traditional statistical and index
approaches for assessment of soil quality. Principal com-
ponent and hierarchical cluster analyses provided a helpful
means to visually discriminate between annually cropped and
perennial grass treatments, while concurrently identifying a
clear trend toward greater dispersion in the data over time.
Based on the typology used in this evaluation, apparent
multivariate statistical techniques represent a valuable tool
for analysis of data collected at different time periods where
changes in response variables are anticipated to occur slowly.

Application of these techniques to datasets in other
semiarid regions may contribute toward identifying trajec-
tories in soil responses to applied treatments in the near-
term. Such information could justify research expenditures,
and therefore continuation of experimental treatments until
soil responses can be verified with traditional statistical
approaches and/or indices. Conversely, these techniques
could be used to inform possible changes in applied treat-
ments if visual discrimination is not detected.
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