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interactions
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Abstract

Background: A large amount of research has been devoted to the detection and investigation of epistatic
interactions in genome-wide association studies (GWASs). Most of the literature focuses on low-order interactions
between single-nucleotide polymorphisms (SNPs) with significant main effects.

Results: In this paper we propose an original approach for detecting epistasis at the gene level, without
systematically filtering on significant genes. We first compute interaction variables for each gene pair by finding its
Eigen-Epistasis component, defined as the linear combination of Gene SNPs having the highest correlation with the
phenotype. The selection of significant effects is done using a penalized regression method based on Group Lasso
controlling the False Discovery Rate.

Conclusion: The method is tested against two recent alternative proposals from the literature using synthetic data,
and shows good performances in different settings. We demonstrate the power of our approach by detecting new
gene-gene interactions on three genome-wide association studies.

Keywords: Genome-wide association study, Gene-gene interactions, Epistasis, Group Lasso

Background
Genome Wide Association Studies (GWASs) look for
genetic markers linked to a phenotype of interest. Typ-
ically, hundreds of thousands of single nucleotide poly-
morphisms (SNPs) are studied for a limited number of
individuals using high-density genotyping arrays. Usually
the association between each SNP and the phenotype
is tested using single-marker methods. Multiple markers
may also be considered, but these are typically selected
using simple forward-selection methods. GWASs are a
powerful tool for investigating the genetic architecture
of complex diseases and have been successful in iden-
tifying hundreds of variants. However, they have been
able to explain only a small proportion of the pheno-
typic variations expected from classical family studies
[1]. A number of explanations for this missing heritabil-
ity have been put forward. For example, it has been
suggested that shared environments among relatives are
not adequately taken into account. Another suggestion is
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that much larger numbers of variants with small effects
remain to be identified. Rare variants, which are diffi-
cult to find using existing genotyping arrays [1], seem to
be important causal factors, and so do structural vari-
ations. But complex diseases may also be caused, at
least in part, by complex genetic structures with multi-
ple interactions between markers (a phenomenon termed
epistasis). Whereas in pedigree studies the genetic effect
on phenotype is seen as part of the additive genetic
variance, in GWASs it is seen as an unmeasured inter-
action between genes [2]. For example, Zuk et al. pro-
posed amodel that takes into account epistatic interaction
in relation to Crohn’s disease [3]. They found that
80% of the missing heritability could be due to genetic
interactions.
In recent years a number of methods for studying

epistasis have been proposed and reported in various
reviews [4–6]. They vary in terms of their data analysis
(genome-wide or filtering) and their statistical method-
ology (Bayesian, frequentist, machine learning or data
mining). Most of them focus on single-locus interac-
tions, but considering interactions at the gene level can
have several advantages. First, given that genes are the
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functional unit of the genome, results may be more bio-
logically interpretable. Second, genetic effects are more
easily detected when SNP effects are aggregated together.
Third, gene-based analysis simplifies the multiple test-
ing problem by reducing the number of variables. Several
gene-gene methods have been proposed. These are based
on a summarizing step which is used to obtain informa-
tion at the gene level. In more recent methods, filters or
penalized models are used to make the method appli-
cable to a large number of genes, while older methods
are only applicable to two or a very limited number of
genes. For the summarizing step, most methods resort to
a principal components (PC) approach, but each method
has its specific characteristics. We describe some of
these below.
Chatterjee et al. harnessed Tukey’s one-degree-of-

freedom method to investigate interaction between two
genes [7]. Their method is based on the assumption that
the SNPs included in each gene region act as surrogates
for an underlying biological phenotype. The genotypic
information for the gene region is extracted as a single
component by a weighted sum of all SNPs. The weights
are determined according to the SNP’s correlation with
the trait. The product of the two sums is then introduced
as the gene-gene interaction term into a logistic model,
where marginal effects are represented by the respective
sums. Building on this idea,Wang et al. compared two dif-
ferent interaction tests [8]. On the one hand, they used
Principal Component Analysis (PCA) to summarize SNP
information within a gene, and on the other hand they
used Partial Least Squares (PLS) to extract components
that summarize, first, the information among SNPs in a
gene and, second, the correlation between SNPs and the
outcome of interest. They then proposed an interaction
test based on either the first PC or the first PLS com-
ponent for each gene, and were able to show that the
PCA and PLS methods often outperformed Tukey’s one-
degree-of-freedom method. But it is worth noting that
the main objective of these three methods was improving
the detection of associations in the presence of gene-
gene interactions, rather than identifying the interactions
themselves. Other approaches based on principal com-
ponent analysis have since been proposed for epistasis
detection. Li et al. proposed selecting, as the gene repre-
sentation, PCs that are able to explain at least 80% of the
variation [9].
Genotypic data are characterized by the high corre-

lation among markers resulting from so-called linkage
disequilibrium (LD). Procedures that take LD information
into account have been developed for epistasis detection.
For example, He et al. proposed an approach using LD
information to weight genotype scores which are then
aggregated using principal components [10]. Rajapakse
et al. developed a gene-based test of interactions for

case-control studies which compares LD patterns between
cases and controls [11]. Using the same idea, Peng et
al. used a canonical correlation-based U-statistic model
(CCU) to detect co-association in case-control studies
[12]. The idea is to test for two given genes the difference
between canonical correlation coefficient computed by
Canonical Correlation Analysis (CCA) among cases and
among controls. Their work was subsequently extended to
include kernel [13, 14].
However most of these methods can be applied only to

a reduced number of genes. Computational constraints
mean that it is not feasible to model all gene-gene interac-
tions directly. One way of overcoming this is to reduce the
gene-gene search space by eliminating unimportant genes,
and to this end two-step procedures have been devel-
oped that first filter out specific genes or SNPs through
a genome-wide search before testing for interactions.
One example of this is the model-based kernel machine
method (3G-SPA) proposed by Li and Cui, which first
performs a search for gene pairs contributing to the over-
all phenotypic variations [15]. Significant pairs are then
tested for interaction effects. Another attractive alterna-
tive is offered by penalized regression methods that select
a subset of important predictors out of a large number of
potential predictors. These methods operate by shrinking
the size of the coefficients. The coefficients of predictors
with little or no apparent effect are force to be set to zero,
reducing the effective degrees of freedom and in many
cases making model selection possible. A few approaches
using penalized models have been proposed. D’Angelo
et al. combined principal component analysis and lasso
penalized regression [16]. Wang et al. used a principal
component analysis combined with an L1 penalty, with
adaptive weights based on gene size, pathway support and
effect size [17].
Here we propose a Group Lasso approach [18] that

takes into account the group structure of each gene in
order to detect epistasis. We introduce Gene-Gene Eigen-
Epistasis (G-GEE) as a new approach for computing the
gene-gene interaction part of the model, and we compare
G-GEE with two different interaction variable modeling
approaches inspired by previous proposals in the litera-
ture, namely PCA and PLS. An adaptive ridge-cleaning
approach [19] is then used in order to compute p-values
for each group.
In the next section, we detail each model and outline

the design of the simulation studies performed to com-
pare the performance of the different approaches. In the
Results section, the findings of the simulation studies
are shown, and we illustrate our approach on three real
datasets relating to ankylosing spondylitis, thyroid car-
cinomas and inflammatory bowel disease. The different
approaches and the results are discussed in the last
section.
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Methods
We consider n individuals where y = (y1, y2, . . . , yn)T
denotes the vector of trait values. For each individual,
genetic variants amongG genes are considered. Each gene
is described by a given number of SNPs pg where

∑
g pg =

p. The SNPmatrixX ∈ R
n×p considers an additive coding

scheme in which the genotype value of each SNP j from
individual i is denoted Xij ∈ {1, 2, 3}. Xi is a p-dimensional
vector of covariates for observation i and for j ∈ {1, . . . , p}.
Xg denotes the submatrix of X whose columns are the pg
SNPs of gene g. A generalized linear model is generally
assumed for GWAS, where the phenotype is considered
as a random variable yi whose conditional expectation can
be written as a function of the covariates X i and their
interactions Zi,

g
(
E

[
yi|X

]) = XT
i β + ZT

i γ ,

where

β =
⎛

⎜
⎝β1,1,β1,2, . . . ,β1,p1︸ ︷︷ ︸

gene1

, . . . ,βG,1, . . . ,βG,pG︸ ︷︷ ︸
geneG

⎞

⎟
⎠

T

,

and Zi is the ith line of the matrix of interactions and
γ a parameter vector of appropriate dimension. When
the phenotype is binary (case control study), it is usual
to assume a logistic model where g() is the logit and Y
is assumed to follow a binomial distribution. Below we
will consider only quantitative phenotypes using a classi-
cal linear model. In this case g() is the identity and the
residuals are assumed to be Gaussian.
The main effect of each gene is modeled through the

sum of the effects of all its SNPs. Concerning interaction
effects, we compute new variables representing interac-
tions between two specific genes and define as a group all
the interaction variables related to a given pair of genes.
The matrix of interaction is thus structured into G(G −
1)/2 submatrices:

Z =
[
Z11 · · ·Zrs · · ·ZG(G−1)/2

]

where Zrs describes the interactions between the two
genes r and s. The parameter vector γ is accordingly struc-
tured into sub-vectors γ rs. We will now present and com-
pare three different approaches for modeling gene-gene
interactions.

Modeling gene-gene interactions
Let us consider two genes r and s described respectively
by pr and ps SNPs. A possible interaction term describing
the epistasis between the two genes is

Zrs
i
Tγ rs =

pr∑

j=1

ps∑

k=1
γ rs
jk X

r
ijX

s
ik . (1)

We hereafter set W rs = {Xr
ijX

s
ik}j=1,··· ,pr ;k=1,··· ,ps

i=1···n . In this
case the submatrix of interactions is Zrs = W rs and γ rs =
{γ rs

jk } is a vector of size prps. The number of parameters
in such a model is obviously too large to be reliably esti-
mated. For this reason a number of papers in the literature
consider reducing the dimension of γ .
In this paper we will consider three different methods

for reducing the dimension reduction, namely Principal
Component Analysis (PCA), Partial Least Squares (PLS),
and our proposed Gene-Gene Eigen-Epistasis approach
that we have termed G-GEE.

Principal component analysis
Principal Component Analysis (PCA) can reduce the
number of variables describing each gene r from pr to
qr < pr . Considering gene r described by pr SNPs, we
compute the matrix of the first q principal components

Cr = XrUr ,

where Ur is the matrix of the first qr principal axes. Using
Cr and Cs instead of Xr and Xs in the computation of the
interaction allows the number of parameters relative to
each interaction to be controlled. This control is achieved
by choosing the number of principal components q. The
PCAmodel that we describe draws upon ideas in [20]. The
interaction term takes the form

Zrs
i
Tγ rs =

q∑

j=1

q∑

k=1
γ rs
jk C

r
ijC

s
ik .

Relating this expression to the general form of the
interaction term W rs

i described above, we can see that
performing PCA prior to computing the interactions is a
means of constraining the linear interaction term of Eq. 1.
The submatrix of interactions is Zrs =

{Cr
ijC

s
ik}j=1,··· ,q;k=1,··· ,q

i=1···n , and γ rs = {γ rs
jk } is a vector of size

q2 describing the interaction between genes r and s. In
particular, if a single principal component is chosen, there
will be only one parameter to estimate per interaction.

Partial least squares
Wang et al. proposed an alternative method for integrat-
ing interactions using a PLS approach [8]. Let (Xr ,Xs)
be the genotypic matrix for the given pair of genes (r, s).
Their approach computes the components that maximize
cov2(Xru,Tv), with T = (y,Xs) and (u, v) the weight vec-
tors. The interaction of a couple of genes (r, s) is then
represented by the first q components:

Zrs
i
Tγ rs =

q∑

j=1
γ rs
j Trs

ij .

In this approach phenotypic information is retained
when the interaction variables are constructed.
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Gene-gene Eigen-Epistasis
We propose an original approach for modeling interac-
tions. The general idea is to consider the interaction vari-
able between the two genes r and s as a function fu(Xr ,Xs)
parameterized by u. One way to estimate u is to maximize
the correlation between the interaction function and the
phenotype:

û = arg max
u,‖u‖=1

cov2
(
y, fu

(
Xr ,Xs)) .

If we consider the function f to be linear, our problem
becomes easily tractable and has only one solution. Setting

Zrs = fu
(
Xr ,Xs) = W rsu,

where W rs = {Xr
ijX

s
ik}j=1··· ,pr ;k=1,··· ,ps

i=1···n and u ∈ R
prps we

obtain the following problem:

max
u,‖u‖=1

∥
∥ ˆcov [

W rsu, y
]∥
∥2 = max

u,‖u‖=1

∥
∥
∥uTW rsTy

∥
∥
∥
2

= max
u,‖u‖=1

uTW rsTyyTW rsu.

(2)

The solution u is the eigenvector corresponding to the
largest eigenvalue of the matrix W rsTyyTW rs, which is
the vector W rsTy. The complexity of computing u is
therefore in O(nprps). We then use the projection of the
matrix W rs on u as the interaction variable. The result-
ing Eigen-Epistasis vector Z is the linear combination of
all the SNP-SNP interactions being the most correlated
with the phenotype. In its construction, G-GEE has simi-
larities with PLS. The main difference lies in the original
design matrix. PLS searches for components that maxi-
mize cov2(Xru, yXsv), whereas G-GEE retains the compo-
nent thatmaximizes cov2(y,W rsu), withW rs thematrix of
all pairwise interaction between the two genes r and s. Like
PLS, G-GEE takes phenotypic information into account
in the construction of the interaction variables. Other
methods as such as CCU [12] and the kernel versions of
CCU [13, 14] that we referred to in the introduction also
consider the phenotype in their construction, but these
methods can be applied only to case-control problems.

Estimation of coefficients
We propose a Group Lasso approach [18] for estimating
the parameters of linear or logistic (case control) regres-
sion. A group comprises either the SNPs of a given gene,
or interaction terms relative to a given gene-pair interac-
tion. In the particular case of linear regression, the model
parameters are estimated by:

θ̂ =
(
β̂ , γ̂

)
= argmin

β ,γ

⎛

⎝
∑

i
(yi − X iβ − Ziγ )2 + λ

⎡

⎣
∑

g

√
pg‖βg‖2

+
∑

rs

√prps‖γ rs‖2
])

,

The parameter λ is selected by cross-validation.
In order to improve estimation accuracy and to obtain

p-values for each of the selected groups, we use the adap-
tive ridge cleaning approach proposed by Bécu et al. [19].
This screen and clean procedure is a two-stage method.
The group lasso model is first fitted on half of the data.
The coefficient of the candidate groups selected by the
model are then introduced into a ridge regression model
fitted on the second half of the data with a specific penalty
that allows the group structure to be taken into account.
For each group the significance of the regression coeffi-
cients is estimated using permutation tests.

Simulation design
To evaluate the performance of the proposed approach,
we conducted two simulation studies, the first using sim-
ulated data and the second using a real dataset relating to
ankylosing spondylitis. In each case we compared the pro-
posed G-GEE model to the two other interaction variable
modeling approaches. The first simulation corresponds to
a simplified context where all parameters were controlled
and external interference limited, while the second sim-
ulation corresponds to a realistic context with a realistic
pattern of minor allele frequency (MAF) and LD.

Design
Genotypes Our first (simplified) simulation study was
adapted from the model used in [21] with an extension to
control the MAF of each SNP. The n lines of the genotype
matrix are an i.i.d. sample from a multivariate random
vector X i ∼ Np(0,�). The correlation matrix � is block
diagonal, each block corresponding to a gene. Two vari-
ables belonging to the same gene are correlated at level
ρ = 0.8 while all other correlations are null. Each SNP
(column of the genotype matrix) is randomly assigned an
MAF p from a uniform distribution between 0.05 and 0.5.
An MAF value of 0.2 is assigned to all causal SNPs. The
genotype frequencies derived from the Hardy-Weinberg
equation are then used to discretize Xik values to 0, 1 or 2.
In practice, Xik is set to 1 if Xik < qp2;N(0,1), Xik is set to 3
if Xik < q(1−p)2;N(0,1) and Xik is set to 2 otherwise.
In the second (realistic) simulation study using a

real ankylosing spondylitis dataset, genes are randomly
selected. The number of SNPs composing each genes
varies according to the selection.

Phenotypes For both simulation studies, we generated
phenotype vectors using two different schemes. Our first
scheme corresponds to the model proposed by Wang et
al. [17] (which, for the sake of brevity, we will refer to
hereafter as the “Wang Pathway” model):

Yi = β0 +
∑

g
βg

(
∑

k∈C
Xg
ik

)

+
∑

rs
γrs

⎛

⎝
∑

(j,k)∈C2

Xr
ijX

s
ik

⎞

⎠ + εi, (3)
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where C and C2 are respectively the set of causal SNPs and
causal interactions, and εi a randomGaussian variable. For
each causal gene g, we consider two causal SNPs and a
coefficient βg is assigned to the standardized sum of these
causal SNPs. In the same way, for the interactions, all the
causal SNPs from a causal pair (r, s) are pairwise multi-
plied and a coefficient γrs is assigned to the standardized
sum of the product.
Our second scheme for simulating phenotypes is based

on the following model:

Yi = β0+
∑

g
βg

(
∑

k∈C
Xg
ik

)

+
∑

rs
γrs

⎛

⎝
∑

(j,k)∈C2

Cr
ijC

s
ik

⎞

⎠+εi.

(4)

The difference with the first model concerns the simu-
lation of the interaction effect. In the second model the
interaction effect for a causal couple (r, s) is defined as the
product of the first PCA component Cr

.1 of gene r and the
first PCA component Cs

.1 of gene s.
In both models, β0 is set to 0, and εi are generated inde-

pendently from a N (0, σ 2), with σ 2 determined from the
coefficient of determination R2 that calibrates the strength
of the association. Both simulation models can be writ-
ten as yi = XT

i β + ZT
i γ + εi where X the marginal effect

genotype matrix and Z the interaction effect matrix.

Let us denote Qφ =[X,Z]
[

β

γ

]

and

R2 =
∑

(Qiφ − ȳ)2
∑

(Qiφ + εi − ȳ)2

=
∑

(Qiφ − ȳ)2
∑

(Qiφ − ȳ)2 + ∑
ε2i + ∑

2 (εi (Qiφ − ȳ))

=
∑

(Qiφ − ȳ)2
∑

(Qiφ − ȳ)2 + n ˆvar(εi) + 2n ˆcov (εi,Qiφ − ȳ)
.

We remark that:

2ncov (εi,Qiφ − ȳ) = 2ncov
(

εi,Qiφ −
∑

j yj
n

)

= 2ncov (εi,Qiφ) −
∑

j

2n
n
cov

(
εi, yj

)

= 0 − 2cov (εi, εi) = −2σ 2

Thus, replacing ˆvar(εi) by σ 2, and ˆcov(εi,Qiφ − ȳ) by
−σ 2/n, we obtain R2 ≈

∑
(Qiφ−ȳ)2∑

(Qiφ−ȳ)2+nσ 2−2σ 2 . This rela-
tion between R2 and σ 2 gives us an expression for σ 2 that
depends on R2, σ 2 = (R2−1)

∑
(Qiφ−ȳ)2

R2(2−n)
.

We looked at how much of the coefficient of determi-
nation R2 is explained by main effects, and how much
is explained by interaction effects, in order to determine
their respective roles in the model.

For a similar reason, when simulating phenotypes,
Wang et al. [17] examined how much of partial R2 was
due to interaction effects. They selected coefficient values
so that 30% of the partial R2 was explained by interaction
effects. Li and Cui [15] did not use the R2 directly, but they
simulated data assuming different proportions of interac-
tion effects among the total genetic variance. In our study,
once the phenotype y had been set for each simulated
design matrix, we computed howmuch of the R2 could be
attributed to interaction and main effects as pI = R2I

R2T
and

pM = R2M
R2T

respectively, with R2
I the R-square value for the

model containing only simulated interaction effects, R2
M

the R-square value where there were only simulated main
effects, and R2

T R-square value where there were both
simulated main effects and simulated interaction effects.

Scenarios In the first (simplified) simulation study, geno-
types are simulated as described in the design. We con-
sidered six genes, each composed of six SNPs and for 600
subjects. We define one causal interaction between genes
and two causal genes withmain effects, and the simulation
takes place using two alternative simulation settings:

• (1) one interaction and two main effects involving the
same genes

• (2) one interaction and two different main effects

For these two settings, different coefficients of determina-
tion, from 0.05 to 0.7, are considered and 1000 iterations
are performed.
In the second (realistic) simulation study, genotypes

come from a real dataset comprising 763 individuals. At
each iteration we randomly select six genes of various size
(from 1 to 1119 with a median of 2 SNPs) in the dataset.
We consider the five following settings:

• (1) one interaction and two main effects involving the
same genes

• (2) one interaction and two different main effects
• (3) one interaction effect only
• (4) two main effects only
• (5) no effects

For each setting, coefficients of determination, from 0.1
to 0.4, are considered and 500 iterations are performed.
For both simulation studies, main effects and interac-

tion effects are weighted with the same coefficient values
(βg = γrs = 2,∀g, r, s). For each interaction, the power is
estimated as the proportion of detected interactions over
the total number of simulations.

Real data illustration
To illustrate our approach we applied the proposed
method on three real datasets related to ankylosing
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spondylitis, thyroid carcinomas and inflammatory bowel
disease.
The dataset regarding ankylosing spondylitis consists of

the French subset of the large study of the International
Genetics of Ankylosing Spondylitis (IGAS) study [22].
For this subset, unrelated cases were recruited through
the Rheumatology clinic of Ambroise Paré Hospital
(Boulogne-Billancourt, France) or through the national
self-help patients’ association: "Association Française des
Spondylarthritiques". Population-matched unrelated con-
trols were obtained from the "Centre d’Etude du Polymor-
phisme Humain", or were recruited as healthy spouses of
cases. The protocol was reviewed and approved by the
Ethics committee of the Ambroise Paré hospital. All par-
ticipants gave their informed consent to the study. The
application on thyroid carcinomas was carried out on a
public dataset that came from the study of Luzón-Toro
et al. on identification of epistatic interactions in two dif-
ferent types of thyroid carcinomas [23]. Finally, we used
the Wellcome Trust Case-Control Consortium genome-
wide association dataset to study Inflammatory Bowel
Disease.

Results
Simulation studies
In the following, we will refer to the different simulation
settings by using letters as described in Table 1.

Results from the simplified simulation study
Figure 1 shows results obtained for the two settings. The
first column gives the estimated power to detect the gene
interaction as a function of the R2 values. The last two
columns show heatmapmatrices reflecting the proportion
of significant values for each variable and each method
over the 1000 simulations for different R2 values.
In the first setting (Fig. 1a, b), we consider genes 1 and

2, both having main and interaction effects. When the
phenotype is simulated using the Wang Pathway model,
the G-GEE and PLS methods have a higher power to
detect the interaction effect than PCA method, which
tends to identify only the two main effects of the two
genes (Fig. 1a). Whereas for PCA and PLS the power is

Table 1 Effects simulated in each settings and referring names
according to the phenotype simulation model

Settings Names

Id Main effects Interaction effects Wang Pathway model PCA model

1 Genes 1 & 2 Genes 1 x 2 A B

2 Genes 1 & 2 Genes 3 x 4 C D

3 - Genes 1 x 2 E F

4 Genes 1 & 2 - OME

5 - - NE

nondecreasing with R2, for G-GEE we observe a U-shaped
curve. For the smallest R2 values, which correspond to the
most difficult cases, the power of G-GEE to detect the
interaction tends to decrease. When R2 values reach 0.4,
G-GEE’s power to detect the interaction starts to increase.
The situation is different for the main effects, since G-
GEE’s power to detect these increases continuously with
R2 [see Additional file 1]. For PLS, the power to detect the
interaction effect is continuously nondecreasing. Note,
however, that for this method one of the two main effects
(here gene 1) is detected to the detriment of the second,
regardless of the value of R2. In the PCA phenotype simu-
lation model (Fig. 1b), G-GEE has a higher power than the
other methods to detect interaction effects while retaining
a good specificity, whatever the value of R2. The reason-
ably high power of the PCA method can be explained by
the similarity between the phenotype simulation model
and the estimation model. It is worth noting that in this
first setting, only a few variables are falsely significant,
which reflects a good specificity for all methods (the worst
being for the gene 3 × gene 4 interaction variable in the
case of the Wang Pathway model and r2 = 0.1, where the
false discovery rate is 0.068).
In the second setting (Fig. 1c, d), genes 1 and 2 have

only main effects, and genes 3 and 4 have only an inter-
action effect. When the phenotype is simulated using the
Wang Pathway model, the interaction power of G-GEE is
uniformly higher than that of the other methods (Fig. 1c).
For all values of R2, PCA tends to detect false main effects
for genes 3 and 4, but not to detect interaction effects.
In the PCA phenotype simulation (Fig. 1d), PCA has a
good power to detect interaction effects, but once again
these good performances can be explained by the simi-
larity between the simulation model and the estimation
model. The interaction power for G-GEE is lower, but still
good. With this model, only G-GEE tends to attribute a
false main effect to genes 3 and 4. In this second setting,
whatever the phenotype simulation model, the power of
the PLS method is almost null. PLS identifies only the first
gene as having a main effect, while the effects of genes
3 and 4 are not detected, whether as main or as inter-
action effects. Moreover, PLS tends to attribute a false
interaction effect between genes 1 and 2.
To evaluate the performances of the different methods

in a more complex context, we also consider a setting
where we simulate 25 genes with four causal interac-
tions between genes, and two genes with causal main
effects. In these simulations, interaction genes are differ-
ent from main effect genes, and we only consider the case
where R2 = 0.7. The results of this setting reflect the
good performance of the G-GEE method over PCA and
PLS in detecting interaction in a context where further
interactions and different main effects are simulated [see
Additional file 2].
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a

b

c

d

Fig. 1 Power and discoveries under a simplified context. The figures in the first column shows the power to detect interaction effects of the three
methods depending on the R2. The last two columns show the ratio of the number of times where each variable was significant to the total number
of simulations for a given R2. The panels a, b, c and d refer to the different simulation settings described in Table 1
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Results from the realistic simulation study
Figures 2 and 3 show results for the first three settings.
Fig. 2 shows the power to detect gene interaction depend-
ing on the R2, and Fig. 3 shows heatmaps of significant
effects when R2 = 0.2. In both figures, the upper row
relates to phenotypes simulated using the Wang Pathway
model, and the lower row to phenotypes simulated using
the PCA model.
In the first setting (Fig. 2a, b, Fig. 3a, b), the same two

genes (genes 1 and 2) are simulated with main and inter-
action effects. In this setting G-GEE has the best power
to detect interaction effects for all R2 values. The interac-
tion power of PLS remains close to 0.3. The power of PCA
depends on the phenotype simulation model. When the
phenotype is simulated using the Wang Pathway model,
the power is similar to PLS. When it is simulated using
PCA it increases continuously, because of the similarity
between the phenotype simulation model and the estima-
tion model. Looking at the heatmaps (Fig. 3a, b) we can
see that only a few variables are falsely significant. We also
observe that unlike G-GEE, PCA and PLS can detect the
two simulated main effects, with a preference for gene 1 in
the case of PLS. These results are obtained when R2 = 0.2,
but other R2 values give similar results [see Additional
file 3].

In the second setting (Fig. 2c, d, Fig. 3c, d), main effects
are simulated for genes 1 and 2, and one interaction is sim-
ulated between genes 3 and 4. In this setting the power
of PLS to detect interaction effects is almost null, while
the respective powers of PCA and G-GEE are different,
according to which phenotype simulation model is used.
Both methods have a higher power when the phenotype
is simulated using the PCA model. Regarding the detec-
tion of main effects, the results are similar to the first
setting, with G-GEE less successful than PCA and PLS
(Fig. 3c, d). But unlike in the first setting, here some
variables are falsely significant. False detections among
interaction variables are more pronounced for G-GEE and
concern genes that have been simulated to have only main
effects. False detections among main effects are more
pronounced for PCA and PLS when the phenotype is sim-
ulated using the Wang Pathway model and concern genes
that have been simulated to have an interaction effect.
Under the PCA phenotype model, false detections among
main effects are more pronounced for PLS and G-GEE
when R2 values are higher [see Additional file 3].
In the third setting, where only one interaction is simu-

lated between genes 1 and 2, G-GEE has a higher power
to detect interaction than PLS and PCA when the pheno-
type is simulated using theWang Pathway model (Fig. 2e).

a

b

c

d

e

f

Fig. 2 Power under a realistic context. The figures show the power to detect interaction effects of the three methods depending on R2. The panels
a, b, c, d, e and f refer to the different simulation settings described in Table 1
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Fig. 3 Discoveries under a realistic context. Heatmaps of the ratio of the number of times where each variable was significant to the total number of
simulations for R2 = 0.2. The panels a, b, c, d, e and f refer to the different simulation settings described in Table 1

The power of PCA is higher in the PCA phenotype sim-
ulation model because of its similarity to the estimation
model, whereas the power of PLS is almost null (Fig. 2f).
In the Wang Pathway phenotype simulation model, PCA
and PLS both falsely detect main effects. In the PCA phe-
notype simulation model, the false detections are made
by PLS and G-GEE (Fig. 3e, f ). In all cases these false

detections concern genes that are simulated to have an
interaction effect.
Figure 4 shows the results for the fourth and fifth set-

tings. The heatmap on the left corresponds to the fourth
setting, where only two main effects are simulated. We
remark that all methods successfully identify the main
effect, PCA and PLS doing so with a higher power. False

Fig. 4 Discoveries for the fifth and the sixth settings. Heatmaps of the ratio of the number of times where each variable was significant to the total
number of simulations for R2 = 0.4 when only main effects are simulated for gene 1 and gene 2 (left), and when no effects are simulated (right)
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detections corresponding to the respective interaction
effects are observed for G-GEE, and to a lesser extent for
PLS. The figure on the right corresponds to the fifth set-
ting, where no specific effects are simulated and the result
shows that all three methods perform well with very few
false detections.
In all settings, estimating the coefficients with the group

lasso is more computationally expensive than construct-
ing the interaction variables. G-GEE and PCA are quite
similar in terms of computation time, whereas in some
settings PLS has a slightly greater execution time than
other methods. Note that the time required by G-GEE
for constructing the interaction variables varies accord-
ing to the number of SNPs that constitute each gene [see
Additional file 4].

Percentage of R2 attributable to interaction andmain effects
respectively
Using each setting in both simulation studies, we deter-
mine the pI and pM average values that correspond to the
proportion of the R2 attributed to interaction and main
effects, respectively. For most settings, the pI depends
on the number of simulated effects. With one interaction
and two main effects simulated the R2 part attributable
to interaction effects is around 33% (Table 2 (B, C, D),
Table 3 (C, D)). For the setting with numerous effects [see
Additional file 2], the average pI is 67% because we con-
sider four interaction effects for only two main effects.
Finally, as expected, when only interaction effects are sim-
ulated, the average pI is 100% (Table 3 (E, F)) and 0% when
only main effects are simulated (Table 3 (OME)). How-
ever, the R2 distribution between main and interaction
effects is not distinguishable in the setting where the phe-
notype is simulated using the Wang Pathway model with
the same main and interaction effects. The pI and pM val-
ues are all above 90% (Table 2 (A), Table 3 (A)). In the
second simulation study, the R2 distribution is also not
well divided between main and interaction effects when
the phenotype is simulated under the PCA model, though
pM is still higher than pI (Table 3 (B)).

Real data illustrations
Ankylosing spondylitis
Ankylosing spondylitis (AS) is a common form of inflam-
matory arthritis predominantly affecting the spine and
pelvis. It occurs with a prevalence of 0.1% to 1.4%

depending on the considered population [24]. Genetic
factors account for more than 90% of the risk of suscep-
tibility to AS. Human leukocyte antigen (HLA) class I
molecule HLA B27, belonging to the Major Histocompat-
ibility Complex (MHC) region, was the first genetic risk
factor identified as associated with ankylosing spondyli-
tis in the 1970’s [25, 26] and remains the most important
risk locus for this pathology. Despite the strong associa-
tion only a small portion of HLA-B27 carriers develop the
disease. Furthermore, studies in families suggest that less
than 50% of the overall genetic risk is due to HLA-B27,
which suggests that other genetic factors are involved [27].
A number of updated reviews on AS genetics, including
genome-wide association study (GWAS) results, identi-
fied new ankylosing spondylitis-susceptibility genes out-
side of the MHC region [28, 29].
We applied all the methods described above to the AS

dataset. The data contain 408 cases and 358 controls,
and each individual was genotyped for 116, 513 SNPs
with Immunochip technology. For each SNP we obtained
detailed genetic information, such as gene affiliation, with
the NCBI2R package [30] which annotates lists of SNPs
with current information from NCBI. We considered only
SNPs located within a single gene in order to form gene
groups without overlap. We focused our analysis on a list
of 29 genes previously identified as having a main effect in
GWAS.
The three methods tested yield different results, and

only the PLS and G-GEE methods identify interactions.
PCA detects only the main effect HLA-B and identifies
no interactions. PLS detects the main effect HLA-B, but
also identifies one interaction effect between the genes
EOMES and BACH2. Our method G-GEE does not detect
any main effects, but it shows two significant interactions,
the first between the genes HLA-B and SULT1A1 and the
second between IL23R and ERAP2.

Thyroid carcinomas
Thyroid cancers are thought to be related to a number
of environmental and genetic predisposing factors and
can be classified in various types and subtypes. Most
association studies have focused on main effects but
only a limited number of genes were identified. Recently,
some papers focus on the detection of epistatic interac-
tions [23, 31]. We applied our proposed approach on the
two data sets used in Luzón-Toro et al. [23] regarding

Table 2 Average percentage of R2 attributable to interaction and main effects, by setting, in the first simulation study

A B C D

R2=0.7 R2=0.05 R2=0.7 R2=0.05 R2=0.6 R2=0.3 R2=0.7 R2=0.2

pI 97.73 92.08 33.11 32.80 33.32 33.47 33.51 33.57

pM 98.84 95.57 66.42 66.97 66.60 66.57 66.70 66.56
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Table 3 Average percentage of R2 attributable to interaction and main effects, by setting, in the second simulation study

A R2=0.2 B R2=0.2 C R2=0.2 D R2=0.2 E R2=0.2 F R2=0.2 OME R2=0.4

pI 94.01 52.04 33.36 33.27 100 100 0

pM 99.08 78.62 66.60 66.87 0 0 100

two rare tumours, sporadic medullary thyroid carcinoma
(sMTC) and juvenile papillary thyroid carcinoma (jPTC).
Affymetrix Genome-Wide Human SNP 6.0 arrays were
used to hybridized DNA. The data set related to sMTC
contains 66 cases and the jPTC data set 30 cases. The
same 125 healthy controls and 232, 607 SNPs were
used for both studies. As for the ankylosing spondylitis
dataset, we obtained gene affiliation for each SNP with
the NCBI2R package and considered only SNPs located
within a single gene. We focused the analysis of the sMTC
data set on a list of 10 genes, 3 of these genes (CHFR,
AC016582.2 and C8orf37) were chosen following the con-
clusions of Luzón-Toro et al., the others because they
contained markers that were susceptible to be associated
with the disease from univariate analysis. The analysis
of the jPTC data set was realized on a list of 20 genes
among them we can cite DIO, RP11-648K4.2, LOXL1,
DMGDH, PAX8 and STK17B from which epistatic inter-
action were already detected (even if the interaction
between PAX8 and STK17B was identified in a study con-
cerning papillary thyroid and not the juvenile form). The
14 others genes contained susceptible associated individ-
ual markers from univariate analysis. Regarding the sMTC
study, G-GEE identifies one interaction between genes
NCK1 and TRIQK. PCA detects only one main effect
for the gene TRIQK whereas none effects were identified
with PLS. Concerning the jPTC data set, 3 interactions
were identified by G-GEE (NCAM1 and MNDA, MNDA
and STK17B, LOC105370481 and STX3). PLS identi-
fies 2 interactions (LOC105370236 and LOC105370481,
LOC105370236 and PIKFYVE) and PCA detects only one
main effect for the gene LOC105370481. We note that the
effects detected with our approach concerned different
genes that the ones identified in the presented previous
studies (except for the gene STK17B). More analysese are
needed to better understand these differences.

Inflammatory bowel disease
Although the etiology of Inflammatory Bowel Disease
(IBD) is not completely understood, previous studies
have underlined the contribution of an important genetic
susceptibility. Recently, Martinez-Chamorro et al. [32]
detected an epistatic interaction between the genes NOD2
and TLR4. We applied our approach to the Wellcome
Trust Case-Control Consortium genome-wide associa-
tion dataset for Inflammatory Bowel Disease. The data
contains 1949 case for 159 960 SNPs genotyped by

Affymetrix. The control group was constituted of 1972
individuals from the Wellcome Trust Case-Control Con-
sortium genome-wide association dataset for hyperten-
sion. As for the two previous real data analysis, we
obtained gene affiliation for each SNP with the NCBI2R
package and considered only SNPs located within a sin-
gle gene. The analysis was realized on a list of 22 genes
that contain SNPs that are suspected to be associated with
IBD from an univariate analysis. The two genes NOD2
and TLR4 were added to the list as they were previously
detected as having an epistatic interaction. G-GEE iden-
tifies one interaction between the genes LOC105376008
and CACNB2 whereas PCA detects 9 main effects (IL23R,
PODN, ATG16L1, C5orf56, DNAH11, LOC105378282,
HSD17B12, LINC00558, ADCY4) but none interaction.
Finally PLS identifies 3 main effects for the genes IL23R,
PODN and DNAH11 as well as 2 interactions the first one
between the genes PODN and FCRLA, the second one
between PVT1 and NOD2.

Discussion
The results obtained in both simulation studies point to
a certain confusion between main and interaction effects.
When simulated interaction and main effects involve dif-
ferent genes, the methods tend to detect as interaction
effects the pairs of genes simulated to have main effects
and, conversely, to detect as main effects the genes simu-
lated to having interaction effects.
Overall, G-GEE tends to detect more false interactions

than falsemain effect whereas PLS and PCA tend to detect
more false main effects though PLS tends to attribute a
false interaction effect between genes 1 and 2. This type
of confusion may explain the U-shaped power curve for
G-GEE observed in the first simulation study (Fig. 1a). As
the problem becomes harder, the genetic effects of both
genes are preferentially assigned to the interaction effect,
implying a better power to detect interaction where R2

values are small. Finally, we remark that for G-GEE false
detections of main effects are more frequent when the
PCA phenotype simulation model is used, whereas for the
PLS and PCA methods, where the number of false detec-
tions for main effects is higher when the Wang Pathway
phenotype simulation model is used.
Other observations regarding the power of the different

methods can be made with these simulation results. PLS
has more trouble than PCA and G-GEE in detecting inter-
action effects, and has a tendency to detect the first main
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effect with a higher power than the second main effect
when two main effects are simulated. For all methods, the
power to detect interactions increases more slowly with
respect to R2 when simulations are performed using real
data genotypes than with fully simulated genotypes, but
we observe that in the first setting the curve representing
the interaction power of G-GEE is detached from the oth-
ers, reflecting the superior performance of G-GEE over
PLS and PCA. Note that the power of G-GEE to detect
main effects is always less than that of PCA and PLS when
R2 < 0.4 [see Additional file 1 and 5]. In short, G-GEE
performs better when detecting interactions than when
detecting main effects.

Conclusions
In this paper we compared different approaches for
modelling gene-gene epistasis in a penalized regression
framework. Our primary concern was the detection of
interaction effects, and for this purpose we defined a
general model and tested different interaction terms. We
focused our analysis at the gene scale and compared
three ways to design the interaction term. Some methods
were inspired by previous proposed approaches based on
dimensional reduction methods including Principal Com-
ponent Analysis (PCA) and Partial Least Square analysis
(PLS). We additionally proposed a new interaction mod-
eling approach that we called Gene-Gene Eigen-Epistasis
(G-GEE), where one interaction variable is built for each
couple. The interaction variable was defined based on a
criterion that maximizes the covariance between the phe-
notype and the pairwise SNP product matrix of the two
genes. The interaction components were then introduced
in a Group Lasso penalized regression model that takes
the gene structure into account and is capable of handling
a large number of genes simultaneously.
A power study of the different methods based on two

different simulation schemes (simplified and realistic)
provided us with a rich body of information. Across vari-
ous papers in the literature we find comparisons of similar
methods that use different phenotype simulation settings.
In the present work we compared two simulation models.
Our first model was from a previous study [17] that simu-
lated the interaction component of each couple in an SNP
pairwise product fashion. Our second model defined the
interaction component as a pairwise product of represen-
tative variables of each gene. Overall the G-GEE method
performed well in detecting interactions in all the set-
tings that were tested, although it was not always able to
do so in the settings where main and interaction effects
involved different genes. The power of the PCA method
is highly dependent on the phenotype simulation model,
because of the similarity between the second phenotype
simulation model and the estimation model of the PCA

method. The PLS method is characterized by a lack of
power in detecting interactions. PLS performs well only
when the related main effects are also present. When the
simulated main and interaction effects do not concern the
same genes, the detection capability of the PLS approach
collapses dramatically.
For all methods we observed a confusion phenomenon

when active genes are not simulated with both main and
interaction effects. False detections of interactions con-
cern genes that were simulated to have main effects, and
false detections ofmain effects concern genes simulated to
have interaction effects. This phenomenon reveals the dif-
ficulty that all methods encounter in clearly distinguishing
the different types of effects. There are more false main
detections when using methods such as PCA and PLS
that are better at detecting main effects (except when the
phenotype is simulated using the PCA model). As for
interaction effects, the G-GEE methods make more false
interaction detections than PCA and PLS.
When genotypes are fully simulated in the simplified

simulation study, the G-GEE and PCA approaches per-
formed better when the PCA phenotype simulationmodel
was used, whereas the PLS method was not very sensitive
to the choice of phenotype simulation model. Unlike PCA
and PLS, G-GEE is better at detecting interaction effects
than at detecting main effects when simulations use a real
data set. Since the simulation study using realistic data is
meant to mimic real genotype data structure, we conclude
that in a real context G-GEE will be better at detecting
interaction effects than main effects.
In comparison to SNP-SNP interaction approaches, the

gene-scale dimension of our proposedmethodmeans that
considerably fewer interaction variables need to be con-
sidered within a genetic region. This reduction in problem
size allows larger problems to be handled. Moreover, a
penalized regression method allows a true multivariate
approach over a larger number of genes. It also extends
other proposed gene-scale approaches, such as that pre-
sented by Wang et al. [8]. The ability to handle a relatively
large number of genes simultaneouslymakes the detection
of interactions between different genetic regions possible.
This might be useful as an initial step, prior to using SNP-
SNP interaction methods that may provide more accurate
information.
As the G-GEE method is not able yet to consider all

human genes at the same time, it is necessary to specify
a list of genes to be explored for potential interactions.
Given that its power to detect main effects is low, for the
detection of main effects it will be safer to use previously
acquired knowledge of the genetic effects, or to use a pre-
processing method. Another limitation of the method is
gene size. Computing the gene Eigen-Epistasis vector for
two genes of size pr and ps requires an n × (prps) matrix
to be computed.
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Prospects are improving the G-GEE method’s perfor-
mance by optimizing the computational cost and explor-
ing new interaction functions to be plugged into the
G-GEE criterion.
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