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We previously showed that genomic imprinting regulates
matrix attachment region activities at the mouse Igf2 (insulin-
like growth factor 2) locus and that these activities are function-
ally linked to neighboring differentially methylated regions
(DMRs). Here, we investigate the similarly structuredDlk1/Gtl2
imprinted domain and show that in the mouse liver, the G/C-
rich intergenic germ line-derived DMR, a sequence involved in
domain-wide imprinting, is highly retained within the nuclear
matrix fraction exclusively on the methylated paternal copy,
reflecting its differential function on that chromosome. There-
fore, not only “classical” A/T-rich matrix attachment region
(MAR) sequences but also other important regulatory DNA ele-
ments (such as DMRs) can be recovered from genomic MAR
assays following a high salt treatment. Interestingly, the recov-
ery of oneA/T-rich sequence (MAR4) from the “nuclearmatrix”
fraction is strongly correlated with gene expression. We show
that this element possesses an intrinsic activity that favors tran-
scription, and using chromosome conformation capture quan-
titative real time PCR assays, we demonstrate that the MAR4
interacts with the intergenic germ line-derived DMR specifi-
cally on the paternal allele but not with the Dlk1/Gtl2 promot-
ers. Altogether, our findings shed a new light on gene regulation
at this locus.

Genomic imprinting is a parent-of-origin gene-silencing
mechanism required for normal mammalian development. It
involves germ line-specific epigenetic modifications acquired

on restricted regions of the genome (imprinting control region
or element) that control the imprinting of several genes often
over several hundred kilobase pairs. Accumulating evidence
indicates that monoallelic expression at mammalian imprinted
loci largely results from allele-specific higher order chromatin
structures that impair or favor gene expression. In this context,
it becomes crucial to elucidate the genomic architecture asso-
ciated with imprinted genes as well as to identify DNA
sequences and factors involved in such higher order chromatin
organization. In the present work, we examine the potential
role of the so-called matrix attachment regions (MARs)3 in
imprinting and gene regulation.MARs have been operationally
defined in “in vitroMAR assays” by their ability to “attach” to a
purified nuclear matrix or scaffold. In that context, they appear
as A/T-rich DNA sequences that may be involved in chromatin
structure and gene expression (1). They are frequently associ-
ated with enhancers and promote chromatin accessibility and
histone acetylation. Using a “genomic MAR” assay based on
high salt treatment of purified nucleus preparations (2, 3), we
previously showed that parental genomic imprinting controls
MAR activities at the mouse Igf2 (insulin-like growth factor 2)
locus. That work indicated that tissue-specific MARs and dif-
ferentially methylated regions (DMRs) may act as bipartite ele-
ments controlling the long range activity of other regulatory
elements such as enhancers (3), thus contributing to the regu-
lation of gene expression. Here, we investigate MAR activities
at theDlk1/Gtl2 imprinted domain located on mouse chromo-
some 12 (human chromosome 14). Both the Dlk1 and Gtl2
genes are expressed during embryogenesis, and they are known
to function as a critical barrier against parthenogenetic devel-
opment in mammals (4). The Dlk1 (Delta-like 1 homologue)
gene is expressed from the paternal allele. It encodes a protein
with homology tomembers of theNotch-Delta family of signal-
ingmolecules, which is important formammalian development
(5–7). 80 kilobases downstream of Dlk1, the Gtl2 (gene trap
locus 2) promoter is active only on the maternally inherited
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chromosome (8, 9). It produces large polyadenylated alterna-
tively spliced transcripts, which may extend further down-
stream and be processed into numerous noncoding RNAs,
including several small nucleolar RNAs and microRNAs in
addition to the Gtl2 RNA (10–13). Regulatory mechanisms
involved in the imprinting of the Gtl2 promoter may differ
between the embryo and the placenta (14). In all lineages,
imprinting of the Dlk1-Gtl2 domain is dependent on the so-
called intergenic germ line-derived DMR (IG-DMR) located
�13 kb upstream of the Gtl2 gene. This region is highly meth-
ylated on the paternal chromosome and unmethylated on the
maternal chromosome (15). Thismethylation of the IG-DMR is
therefore associated with activity from Dlk1 and repression of
Gtl2. The pattern of differential methylation originates from
the gametes and is maintained in all cell types during the entire
life of the individual (primary imprinting mark). The signifi-
cance of the IG-DMR was demonstrated by its deletion in the
mouse (16). In the embryo, the deletion of the IG-DMR (�IG-
DMR) on thematernally inherited chromosome leads to loss of
imprinting (activation) of the normally repressed paternally
expressed genes (Dlk1, Rtl1, and Dio3) and to the repression of
thematernally expressed noncoding RNAs. However, the latter
effect is not observed in the placenta to the same extent (14, 16).
Furthermore, upon paternal transmission of the deletion,
imprinting is unaltered. These findings demonstrate that the
unmethylated IG-DMR acts as a repressor for imprinted pro-
tein coding genes on thematernal chromosome over a region of
�1 Mb. To better understand how such long range regulation
may occur at this locus, we investigated MAR activities and
performed chromosome conformation capture (3C-qPCR)
assays (17) in both the embryonic and the postnatalmouse liver.

EXPERIMENTAL PROCEDURES

Genomic MAR Assays/HRS Assays

The genomic MAR assay, which we propose to rename the
“high salt recovered sequence assay” (HRS assays: see “Discus-
sion”), was performed as previously described (3). Briefly, the
nuclei isolated from tissue samples were extracted in high salt
conditions (2 M NaCl), and the resulting “nuclear halos ” were
digested by XbaI, HindIII, and BamHI. Matrix bound DNA
(MAR fraction) was isolated from loop DNA (loop fraction) by
ultrafiltration (Ultrafree-CL), and the relative enrichment of
target sequences in the MAR fraction relative to the loop frac-
tion was determined by real time quantitative PCR (see below).

Quantitative Analysis of MAR/HRS Assays

In eachHRS assay, target DNA sequences were quantified by
real time PCR using a SYBR Green mix (18) and a LightCycler
apparatus (Roche Applied Science; software version 3.5).
Amplifications were performed as previously described (3), and
the enrichments were calculated as the ratio of the amount of
target DNA in the MAR fraction versus the loop fraction. To
standardize each assay, the ratio values were normalized
against the ratio obtained for a negative control (NC) located 41
kb upstream of the Gtl2 gene and lacking predicted MAR fea-
tures (see Fig. 2B). For primer sequences used for quantifica-
tions, please see supplemental data.

Quantification of the Allele Proportions

To assess the allelic specificity of the IG-DMR attachment,
we took advantage of its parental origin-specific methylation
pattern and the presence of restriction sites for methylation-
sensitive/dependent enzymes. The following real time PCR
primers were designed on either side of a restriction site for the
methylation-dependentMcrBC enzyme, which corresponds to
a HhaI restriction site that was previously reported to be fully
methylated on the paternal allele and unmethylated on the
maternal (15): 5�-ACTCCTGGAGTGAGGGAAGG-3� and
5�-CAGCTAACCTGAGCTCCATGC-3�. The relative allele
proportions in the DNA samples were determined by real time
PCR quantifications performed before and after McrBC diges-
tion. The reliability of the method was first demonstrated by
using genomic DNA samples of wild-type mice (expected IG-
DMRmethylation level: 50%) and of �IG-DMRmice (16) upon
both maternal (expected IG-DMR methylation, 100%) and
paternal transmission (expected IG-DMR methylation, 0%)
(data not shown).
To assess the allelic specificity of theGtl2-MAR attachment,

we performed MAR assays on nuclei from reciprocal hybrid
mice obtained bymating (C57BL/6J�CBA) F1mice (Musmus-
culus domesticus) with the JF1 strain (Mus musculus molossi-
nus). The following primers for real time PCRwere designed on
either side of a BglII polymorphic restriction site absent in
M. musculus domesticus: 5�-GCAGTTCTTTGCTCCACT-
GAAG-3� and 5�-ATCTTGACACGGGGAAGAG-3�. Amplifi-
cations were equally efficient on M. musculus molossinus and
M. musculus domesticus alleles (i.e. no PCR biases were
detected) (data not shown).
The relative proportions of both alleles were deduced from

quantifications of DNA digested or undigested with BglII (see
Refs. 2 and 3).
To assess MAR4 allelic attachment, a primer pair, specific to

M. musculus molossinus, was designed: 5�-GTGCCTCCT-
CATCTTCTCCC-3� and 5�-GTGCGCTCACTGGGTGA-
CAA-3�. This primer pair does not significantly amplify MAR4
from theM.musculus domesticus alleles. The allelic attachment
ofMAR4was deduced from theM.musculusmolossinusMAR4
attachment in MAR assays performed on reciprocal hybrid
mice.

Luciferase Reporter Assay

DNA fragments containing the MAR4 and F9 sequences
were PCR amplified on genomic DNA with the following
primer pairs: MAR4 5�-AAGAGGGTGCCTCAGTCTGG-3�
and 5�-TTGGGTTCCACCCTCAGTGG-3�; F9 5�-GGAAT-
GCCACCCACAAGGAG-3� and 5�-TCAGCCTCCGGAA-
CAGCTAG-3�. The resulting 2248- and 2720-bp fragments
were cloned in both directions in the pDrive vector (Qiagen)
and subsequently cloned into the “pGL3promotor” vectors
(firefly luciferase under the SV40 promoter) using XhoI and
KpnI restriction sites. MAR4 constructs were then subjected to
mutagenesis by using the QuikChange site-directed mutagen-
esis kit (Stratagene) with the following primers: 5�-GCGAA-
GATCTCCCAGACGTTGTGCTAAGACGAGG-3� and 5�-
CCTCGTCTTAGCACAACGTCTGGGAGATCTTCGC-3�.

MAR/HRS at the Mouse Dlk1/Gtl2 Locus
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The resulting �MAR4 constructs contain a 2169-bp insert in
the sense or antisense directions with a 79-bp deletion that
removes the A/T-rich MAR4 sequence from the constructs.
Primary bipotential mouse embryonic liver cells, derived from
E14.5 embryos, were transfected with these reporter plasmids,
together with the Renilla luciferase (Rluc) control reporter vec-
tor pRL-TK vector (Promega) using the jetPEI transfection rea-
gent (PolyPlus Transfection) according to the supplier’s proto-
col. Luciferase activity was determined with a dual luciferase
reporter assay system (Promega).

3C-qPCR Assays

3C-qPCR assays were performed as previously described
(17). Briefly, the assays were performed on nucleus prepara-
tions extracted from E15.5/16.5 or D30 mouse liver samples.
1 � 107 nuclei were formaldehyde cross-linked, digested using
EcoRI, and ligated as previously described (17). DNA was then
decross-linked (overnight at 65 °C) and purified by classical
phenol extraction procedures. An additional digestion using
BamHI was then performed on each sample to allow more
accurate quantifications (see Ref. 17). Real time PCR was per-
formed on a LighCycler apparatus (Roche Applied Science)
using the TaqMan technology (QuantiTect Probe PCR Master
Mix; Qiagen). We used a 5�FAM-3�BHQ1 oligonucleotidic
probe (MWG-Bioctech). For primer sequences used for quan-
tifications, please see the supplemental data. 3C-qPCR data
processing was as follows.

Normalization 1: GAPDH Normalization (“Loading Control”)

As previously described (17), Ct obtained for each chimerical
ligation fragments were processed using parameters of a stand-
ard curve (slope and intercept) to obtain quantification values
that were normalized to a “GAPDH loading control.”

Normalization 2: Noise Band Determination and
Normalization of Data to Basal Interaction Level

This normalization compensates for experimental variations
and allows comparison between different 3C assays; it replaces
the Pdhb or Ercc3 normalizations usually used, (see Ref. 17).
The procedures below (Parts A, B, and C) should be followed
independently for each sample.
Part A: Removal of “Deviant” Experimental Points—Impor-

tant: removal can only be done when at least three independent
3C assays have been performed for a given sample. In the pres-
ent study, three independent assays were performed for both
the E16.5 liver and theD30 liver samples.When only one or two
independent assays have been performed, select all points and
go to Part B of the procedure.
For Step A.1, for each experimental point, calculate the

Log of the values (v) normalized to GAPDH (Normalization
1), [Log v].
For Step A.2, for each fragment (fx), calculate the mean

[m(fx)] of [Log v].
For Step A.3, for each fragment (fx), calculate the standard

deviation [sd(fx)] of [Log v].
For Step A.4, for each experimental points corresponding to

a given fragment (fx), calculate x(fx)�m(fx)� (sd(fx)*k), where
k is the tolerance factor that we systematically fix at 1.05.

For Step A.5, for each experimental point corresponding to a
given fragment (fx), calculate y(fx)�m(fx)� (sd(fx)*k), where k
is the tolerance factor that we systematically fix at 1.05.
For Step A.6, for each fragment (fx), select all experimental

points for which x(fx) � [Log v] � y(fx). Remove all other
points.
Part B: Determination of the Basal Interaction Level—For

Step B.1, for each experimental point selected above (Part A)
corresponding to a given fragment (fx), calculate the mean of
values (v) normalized to GAPDH (normalization 1) [m�(fx)].
For Step B.2, for each experimental points selected above

(Part A) corresponding to a given fragment (fx), calculate the
standard deviation of the values normalized to GAPDH v (nor-
malization 1) [sd�(fx)].
For Step B.3, calculate themean [M] of all the [m�(fx)] values.
For Step B.4, calculate the mean [SD] of all [sd�(fx)] values.
For Step B.5, for each fragment (fx), select all experimental

points for whichm�(fx) � M � (SD).
For StepB.6, calculate themean [M1] of all the [m�(fx)] values

of the points selected in Step B.5.
For Step B.7, calculate the standard deviation [SD1] of all the

[m�(fx)] values of the points selected in Step B.5.
For Step B.8, for each fragment (fx), select all experimental

points for whichm�(fx) 	 M1 � (SD1).
For StepB.9, calculate themean [M2] of all the [m�(fx)] values

of the points selected in Step B.8.
For Step B.10, calculate the standard deviation [SD2] of all

the [m�(fx)] values of the points selected in Step B.8.
The value ofM2 is the rawbasal interaction level thatwe then

use to normalize our data (see Part C, below).M2 
 SD2 is the
raw noise band.
Part C: Normalization to the Basal Interaction Level and

Determination of the Noise Band—For Step C.1, for each frag-
ment (fx), calculate the normalized meanM(fx) � m�(fx)/M2.
For Step C.2, for each fragment (fx), calculate the normalized

standard deviation SD(fx) � sd�(fx)/M2.
For Step C.3, calculate the normalized basal interaction

level � M2/M2 � 1.
For Step C.4, calculate the normalized noise band (NB) �

SD2/M2. The basal interaction level 
 NB is the normalized
noise band.
For Step C.5, make a graph showing the distribution of the

M(fx) values (“relative cross-linking frequencies”) as a function
of the distance (in kb) between the fx fragments and the “con-
stant fragment.”

RESULTS

Evolutionarily Conserved MAR Features at the Dlk1/Gtl2
Locus—Bioinformatic analysis of the sequence encompassing
both the Dlk1 and Gtl2 genes and the entire intergenic region
predicted five MARs at this locus in the mouse (Fig. 1A). Three
of them are located around theDlk1 gene: MAR1 is juxtaposed
with the Dlk1 promoter and MAR2 and MAR3 map down-
stream of this gene. MAR4 is located within the intergenic
region between two previously described “conserved
sequences” (CS9 and CS10) (19). The fifth predicted MAR,
which we called the Gtl2-MAR, is located few kilobase pairs
downstream of the IG-DMR (16). Interestingly, despite the fact

MAR/HRS at the Mouse Dlk1/Gtl2 Locus
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that the human DLK1/GTL2 locus is considerably longer
(�160 kb) than the equivalentmouse locus (�110 kb), both the
number and relative positions of the predictedMARs relative to
the IG-DMR and the Dlk1 gene are conserved between both
species (Fig. 1). Altogether, the situation is reminiscent of
MARs previously identified at the Igf2/H19 locus (3).
Patterns of Matrix Association at theMouse Dlk1/Gtl2 Locus—

Using a genomicMAR assay previously set up in our laboratory
(3), we analyzed the nuclear matrix association of 18 restriction
fragments spread throughout 95 kb of the mouse Dlk1/Gtl2
locus. An intergenic 15.8-kb sequence that contains a high pro-
portion of repetitive elements (19) was not investigated. The
experiments were conducted in parallel on two sets of samples
obtained from embryonic day 15.5 (E15.5) and 30-day-old
mouse livers, when the genes are expressed or fully repressed,
respectively (Fig. 2A). We first analyzed five negative controls
(NC, F5, F7, F9, and F11), i.e. fragments lacking any particular
feature. Four of them (NC, F5, F7, and F11) display attachment
levels corresponding to nonspecific background (Fig. 2B). Sur-
prisingly, the F9 fragment, which possesses a mild attachment
level at E15.5, displays a higher attachment level in the 30-day-

old mouse liver, when the Dlk1 and
Gtl2 genes are repressed (p �
0.1251). This fragment contains
highly repetitive LINE1 elements,
and its potential role in the regula-
tion of gene expression or imprint-
ing may need further investigation.
DNA fragments containing the

predicted MARs were then investi-
gated. The fragments containing the
MAR1, MAR2, MAR3, and the
Gtl2-MAR were found to be
enriched in the MAR fraction in
both the E15.5 and 30-day-old
mouse liver (Fig. 2B). We can thus
conclude that their attachment is
not linked to gene expression.
In contrast, MAR4 attachment
appears strongly correlated with
gene expression (p � 0.0384).
Indeed, its attachment level, which
is very high in the E15.5 liver when
the genes are strongly expressed,
falls to background level in the
30-day-old mouse liver, when the
Dlk1 and Gtl2 genes are repressed.
We also assessed the enrichment

of DNA fragments containing the
previously reported conserved
sequences (cs9, 10/11, 12, 13, and
14) as well as the differentially
methylated regions (Dlk1-DMR,
IG-DMR, and Gtl2-DMR) (15, 19).
The conserved sequences are not or
are only weakly enriched into the
MAR fraction, with exception of the
cs10/11 fragment, which displays an

attachment pattern similar to the neighboring MAR4 (high
attachment in the E15.5 liver; p � 0.0384). The attachment
pattern of the Dlk1-DMR fragment, which essentially corre-
sponds to exonic sequences, seems to follow the Dlk1 gene
transcription pattern. Therefore, as previously shown for other
actively transcribed regions (20), attachment of theDlk1-DMR
fragment may thus be driven by the transcription machinery
itself. The fragment containing the Gtl2-DMR (F12) was also
found enriched in the nuclear matrix fraction. However, the
Gtl2-DMRcorrespondswith theGtl2promoter, and it contains
several conserved sequences (cs16 to 19), and therefore it is
difficult to hypothesize which feature is responsible for the
nuclear matrix attachment.
The IG-DMR Is Retained within the NuclearMatrix Fraction—

Surprisingly, the fragment containing the IG-DMR was also
found to be strongly and persistently attached in the mouse
liver (Fig. 2B). After performing experiments at a higher reso-
lution, we were able to isolate the attachments of the IG-DMR
and of the neighboring Gtl2-MAR into two distinct restriction
fragments separated by several other weakly attached frag-
ments (data not shown).
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FIGURE 1. Conserved MAR features at the murine and human Dlk1/Gtl2 loci. Murine (A) and human (B)
Dlk1/Gtl2 locus sequences were analyzed with the MAR-Wiz software (version 1.5). A window size of 300 bp
stepped at 50-bp intervals was used. The line graph shows the MAR potential score versus nucleotide positions.
A map of the locus is shown below the graphs (solid boxes, gene bodies; open boxes, IG-DMR).
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TheMAR4 Sequence Possesses an Intrinsic Directional Activ-
ity That Favors Transcription—Given that the MAR4 attach-
ment pattern correlates with gene expression (Fig. 2B), we pos-
tulate that this sequencemay favor transcription. Furthermore,
because the attachment of the intergenic F9 fragment appears
to increase with repression (Fig. 2B), we hypothesized that this
fragment may possess a repressive activity. To test these
hypotheses, we performed luciferase assays in primary bipoten-
tial mouse embryonic liver cells, derived from E14.5 embryos.
DNA fragments containing the MAR4 or F9 sequences were
cloned into a vector containing the firefly luciferase gene under
the control of the strong SV40 promoter either in a sense or
antisense orientation (i.e. a direction that is similar or opposite
to theDlk1/Gtl2 transcriptional orientation at the endogenous
locus) (Fig. 3, right part). Luciferase assays using these con-
structs showed that the F9 sequence displays a 2-fold enhancing
activity in these cells (Fig. 3, left part). Therefore, we conclude
that this sequence itself has no repressor activity. Similarly to
the F9 sequence, the MAR4 fragment also displays a 2-fold
enhancer activity when inserted in the sense direction. How-
ever, the antisense orientation displays amuch stronger activity
(2.85 
 0.16 times the levels observed for the empty pGL3-

promotor plasmid). Interestingly,
this directional effect was lost when
the 79-bpA/T-richMAR4 sequence
was deleted from the construct
(�MAR4 construct) (Fig. 3). We
conclude that the 79-bp A/T-rich
MAR4 fragment contains intrinsic
directional activity that favors
transcription.
MAR4 and Gtl2-MAR Attach-

ments Occur on Both Parental
Chromosomes—Because MAR4
attachment correlates with expres-
sion and because both Dlk1 and
Gtl2 genes are monoallelically
expressed, it was of interest to
determine whether one or both
parental copies is recovered from
the nuclear matrix. To address this,
we usedM. musculus domesticus �
M. musculus molossinus hybrid
mice and designed two real time
quantitative PCR primer pairs. The
first one is able to detect MAR4
independently of the genotype, i.e.
from both domesticus and molossi-
nus alleles (dom�mol), whereas the
second primer pair is specific for the
molossinus alleles (mol) (Fig. 4A).
Only the (dom�mol) primer pair
showed enrichment into the MAR
DNA fraction. We conclude that
genomic MAR assays retain the
MAR4 sequence exclusively from
the M. musculus domesticus chro-
mosome. This domesticus-specific

finding is most likely a genetic background-specific phenome-
non, because this attachment is similar in a (dom � mol) cross
compared with the reverse cross (mol � dom) (Fig. 4A). We
therefore conclude that attachment of the domesticus MAR4
allele can occur on both chromosomes and does not depend on
its parental origin.
We next examined the allelic attachment of the Gtl2-MAR.

Here, no allele-specific primer pair could be successfully
designed; however, a BglII restriction site specific for the M.
musculus molossinus allele was identified. We thus used a pre-
viously described technique that allows determination of allele
ratios using such polymorphic restriction sites and the real time
quantitative technique (2). After assessing for the absence of
any PCR bias (data not shown), we showed that theM. muscu-
lus domesticus allele was preferentially retained in our assays
(Fig. 4B). However, again, this preferential attachment was
found to be independent of its parental origin because both the
(dom � mol) and (mol � dom) crosses display similar allele
ratios (Fig. 4B). We conclude that the Gtl2-MAR is equally
attached on both parental chromosomes.
Parental Imprinting Influences IG-DMR Attachment—Fi-

nally, it was particularly important to determine the relative
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FIGURE 2. Patterns of matrix association at the Dlk1/Gtl2 locus during the perinatal period in the mouse
liver. A, Dlk1 and Gtl2 expression patterns in the mouse liver. Transcript levels were quantified by real time
reverse transcription-PCR at the indicated developmental and postnatal stages (NB, newborn) and normalized
to GAPDH mRNA levels as previously described (32). B, nuclear halos were prepared from liver nuclei at the
indicated developmental stages and digested with XbaI, HindIII, and BamHI. Genomic DNA was then isolated
from both the MAR and loop fractions. The graph shows the relative matrix attachment levels expressed as the
ratio between the amount of target sequence quantified in the MAR and loop fractions after normalization to
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allelicMAR attachment level of the IG-DMR sequence because
this sequence displays allele-specific features characteristic of
imprinting control regions. This sequence is hypermethylated
on the paternal chromosome and completely unmethylated on
the maternal copy (15). We used this imprinted allele-specific
methylation pattern as a means to determine the parental ori-
gin of the alleles. We applied the DNAmethylation-dependent
McrBC restriction enzyme and determined the ratio between
the methylated versus unmethylated alleles that correspond to
the allele ratio (2). Therefore, for this experiment, classical
inbred mouse strains (M. musculus domesticus) could be used
instead of hybrid mice, thus precluding any potential PCR or
genetic background related bias. We first checked that, in the
loop fraction of genomic MAR assays, this region possesses a

mean methylation level of 50%, as a
result of itsmonoallelicmethylation
pattern (Fig. 4C, left panel).We next
examined the MAR fraction and
found that the methylated paternal
allele is strongly enriched in this
fraction (76.2% 
3.1) (Fig. 4C, right
panel). Because the signal observed
in Fig. 2B for the IG-DMR sequence
is four times higher than the control
sequence (NC), the remaining sig-
nal observed on the maternal allele
(23.8% 
3.1) can be entirely attrib-
uted to nonspecific background.
Therefore, the IG-DMR sequence is
attached exclusively on the methyl-
ated paternal allele.
MAR4 Interacts with the IG-DMR

but Not the Dlk1/Gtl2 Promoters—
Because MAR4 possesses an
intrinsic activity that favors tran-
scription and because genomic
MAR assays show that this
sequence is retained into the
nuclear matrix fraction on both
chromosomes in a transcription-
dependent manner, we postulated
that its potential in vivo activitymay
depend on direct physical interac-
tionswith the promoters of theDlk1
andGtl2 genes. To test this hypoth-
esis, we conducted 3C-qPCR assays
(17) centered on the MAR4
sequence in livers of both E16.5
embryos and 30-day-old mice (Fig.
5). In both assays, strong “side
effects,” extending �15–20 kb on
each side of the MAR4, prevented
detection of any specific interac-
tions that may occur close to this
sequence. However, from 20 to 80
kb away from MAR4, long range
interaction frequencies appear to
stabilize to a basal level that corre-

sponds to random interactions between the fragment contain-
ing the MAR4 and other fragments throughout the locus.
Therefore, for each sample (E16.5 or D30 liver), a mean basal
interaction level covering the whole locus, was calculated and
fixed to a value of 1. Themean of the experimental variations of
the points used to calculate this value was then determined and
used to define a “noise band,” within which cross-linking fre-
quencies can be considered as reflecting random interactions
(see “Experimental Procedures”). Local peaks observed outside
the side effect zone and above the noise band represent favored
(nonrandom) interactions. Weak interactions peaks were
found between the restriction fragment containing the MAR4
and fragments�6,�3, and�7 in the E16.5 liver and fragments
�10, �6, �3, and �9 in the D30 liver. Interestingly, MAR4

SV40 P Firefly Luciferase

pGL3-Promotor

SV40 P Firefly Luciferase

pGL3-F9 sense

pGL3-F9 antisenseF9

F9

SV40 P Firefly Luciferase

pGL3-∆MAR4 sense

pGL3-∆MAR4 antisense

∆MAR4

∆MAR4

SV40 P Firefly Luciferase

pGL3-MAR4 sense

pGL3-MAR4 antisense

MAR4

MAR4

R
el

. L
uc

ife
ra

se
Si

gn
al

 (A
.U

.)

1.99
+/-

0.10

1.95
+/-

0.38

2.85 +/-0.16

*

0

0,5

1

1,5

2

2,5

3

3,5

pGL3-
∆MAR4

pGL3-
F9

pGL3-
MAR4

pG
L3

 P
rom

oto
r

SENSE
ANTISENSE

1.88
+/-

0.20

2.06
+/-

0.04

2.08
+/-

0.51

(p=0.0606)

FIGURE 3. Luciferase assays of the MAR4 sequence. Fragments containing the F9, MAR4, or �MAR4
sequences were inserted into the pGL3 vector containing the firefly luciferase under the control of the SV40
promoter (right part of the figure). Transfections were performed on bipotential mouse embryonic liver cells
derived from E14.5 embryonic liver as described under “Experimental Procedures. ” The histogram shows the
luciferase signals obtained for each construct inserted in sense (light gray bars) or antisense (dark gray bars)
orientation relative to the activity of the empty pGL3-Promotor vector (value 1) (white bar). Error bars, S.D. of
two independent experiments. The asterisk indicates the significant enhancement observed for the MAR4
antisense construct. The p value was obtained by using the statistical Mann-Whitney U test.

A
lle

le
pr

op
or

tio
n 

(%
)

dom moldom mol
0

20

40

60

80

100
Gtl2-MAR

2.5

2

1.5

1

0.5

0

mol X dom
dom X mol

NC dom + mol mol

MAR4

R
el

. A
tta

ch
m

en
tL

ev
el

B C

A
lle

le
pr

op
or

tio
n 

(%
)

0

20

40

60

80

100

MAR fractionLoop fraction

IG-DMR
Methylated
Pat. Allele
Unmethylated
Mat. Allele

A

FIGURE 4. Allelic attachment of the MAR4, Gtl2-MAR, and IG-DMR regions. A, MAR4 allelic attachment was
determined on hybrid mice (M. musculus molossinus females � M. musculus domesticus males: light gray bars;
reverse cross: dark gray bars) using primer pairs that detected either both alleles (dom�mol) or only the
molossinus allele (mol). Error bars, S.D. of three independent experiments. B, Gtl2-MAR allele ratio was deter-
mined on hybrid mice (M. musculus domesticus females � M. musculus molossinus males: left panel; reverse
cross: right panel) as previously described (2) using a molossinus-specific BglII restriction site. Error bars, S.D. of
two independent experiments. C, IG-DMR allele ratio was determined on inbred M. musculus domesticus mice
(C57BL/6J�CBA F1) using the methylation-dependent McrBC restriction enzyme as described under “Experi-
mental Procedures. ” Error bars, S.D. of two independent experiments.

MAR/HRS at the Mouse Dlk1/Gtl2 Locus

JULY 4, 2008 • VOLUME 283 • NUMBER 27 JOURNAL OF BIOLOGICAL CHEMISTRY 18617

 at IN
R

A
 Institut N

ational de la R
echerche A

gronom
ique on June 14, 2017

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


interacts with the 5� part of the IG-DMR (fragment �7) in
E16.5 liver, but not in D30 liver. Conversely, interactions with
fragments �10 and �9 (containing the Gtl2-MAR) are only
observed in D30 liver. However, in the absence of any func-
tional data about these unexpected interactions, their potential
roles remain unclear. Finally, no interaction was foundwith the
fragments containing the Dlk1/Gtl2 promoters (fragments �8
and �10, respectively). Furthermore, in the E16.5 liver, inter-
action frequencies with these fragments (as well as with frag-
ment �10) even fall below the noise band (see inset in Fig. 5).
This means that the frequencies of random interactions
between theMAR4 sequence and theDlk1/Gtl2 promoters are
lower than those observed for the other fragments of the locus.
Noticeably, this effect is not observed in D30 liver when the
genes are repressed, and it may thus simply reflect local steric
impairment around the promoters because of the high tran-
scriptional activity in E16.5 liver.
MAR4/IG-DMR Interaction Occurs on the Paternal

Chromosome—To assess whether theMAR4/IG-DMR interac-
tion occurs preferentially on one of the two parental chromo-
somes, we performed 3C-qPCR assays on liver samples issued
from E16.5 mouse embryos heterozygous for the �IG-DMR
deletion (16). When the deletion was paternally inherited (Fig.
6A), no interaction peak was detected between the fragments
containing the MAR4 and the remaining maternally inherited
IG-DMR (fragment 7); the interaction level falls to the basal
level of random interaction. In contrast, when the deletion was
maternally inherited, the interaction is kept to the same level as
observed for wild-typemice. Themeasured value of the relative
cross-linking frequency for fragment 7 is 4 for both wild-type
and maternal heterozygous mice (Fig. 6B). We conclude that

the MAR4/IG-DMR interaction occurs exclusively on the
methylated paternal allele.
Uponmaternal inheritance of the deletion, novel interaction

peaks are also observed between the MAR4 and fragments 6
and 9 (containing the Gtl2-MAR). Because such interactions
are not detected upon paternal inheritance or even in the wild-
type mouse, we conclude that, when maternally inherited, the
deletion chromosome adopts a peculiar genomic organization
where the MAR4 is not only interacting with the IG-DMR but
also with other regions including the Gtl2-MAR.

DISCUSSION

We provide the first detailed analyses of genomic MAR and
3C-qPCR assays at the Dlk1-Gtl2 locus. We experimentally
investigate matrix attachment of five evolutionarily conserved
in silico predicted MARs at the Dlk1/Gtl2 locus in mouse liver,
at two stages where the genes are either strongly expressed
(E15.5/E16.5) or fully repressed (D30). We show that four
MARs (MAR1, MAR2, MAR3, and Gtl2-MAR) display a con-
stitutive attachment that is independent of gene expression.
We also identify MAR4, an intergenic A/T-rich sequence that
displays an expression-related attachment. Previously reported
conserved sequences (cs) (19) were only mildly attached. Most
interestingly, the G/C-rich IG-DMR, which controls imprint-
ing at this locus, displays high matrix attachment levels exclu-
sively on the methylated paternal copy.
MAR sequences have been operationally defined in in vitro

assays as being able to attach to a purified nuclear matrix or
scaffold. Therefore, most analysis of genomicMAR assays have
focused on classical A/T-rich MAR sequences. However, after
having adapted the sensitive real time PCR technology to the
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analysis of genomicMAR assays, it now clearly appears that not
only such classical A/T-rich MAR sequences can be retained
but also other very important regulatory sequences like
enhancers (3) or G/C-rich differentially methylated regions/
imprinting control regions (thiswork). In genomicMARassays,
such genomic sequences have the potential to be trapped (in a
tissue- or developmental stage-specific manner) into the so-
called nuclearmatrix uponhigh salt treatment of nuclei and can
thus be recovered. Therefore, we propose a strict and wider
operational definition and to rename such sequences theHRSs.
Here, we show that, at the mouse Dlk1/Gtl2 locus, the IG-

DMR is an intergenicHRS specific to the paternal chromosome
and that its attachment reflects epigenetic features related to
allele-specific expression and imprinting. Such epigenetic fea-

tures may simply result from par-
ent-specific histone modifications
or from the paternal-specific allelic
methylation. However, we previ-
ously showed at the Igf2/H19 locus
that the methylation status does not
systematically reflect retention into
the nuclearmatrix. For example, the
placenta-specific Igf2MAR0, which
is located next to the maternally
methylated DMR0, is preferentially
attached on the unmethylated pater-
nal allele, whereas the endodermic-
specific MAR2, which is located next
to the paternally methylated DMR2,
is preferentially attached on the
hypermethylated paternal allele (3).
In the liver, the paternal-specific
retention of the IG-DMR into the
nuclear matrix compartment likely
reflects (and perhaps contributes to)
its inactivation on this chromosome.
Altogether, these findings lead us

to conclude that, just like the DNase
sensitivity assays, the HRS assays
reveal epigenetic features of the
chromatin. Because the only feature
in common with all the HRS identi-
fied so far is that they appear to act
at a long distance (several tens to a
few hundred kb), we propose that
the HRS assays most likely reflect
epigenetic features involved in
higher order chromatin organiza-
tion of the mammalian genome.
Because of technical limitations, the
organization of the mammalian
genome at that scale remains largely
unknown. However, a recent tech-
nological breakthrough allowed the
identification of chromatin loops of
several hundred kb in the mamma-
lian genome (21). Such chromatin
loops appear to be linked to gene

expression, and therefore it was suggested that specific higher
order chromatin architectures should be associated with gene
activity or repression. Furthermore, it becomes increasingly
clear that A/T-rich sequences and factors binding such regions
play important roles in tissue-specific higher order organiza-
tion (22). Therefore, MARs, as other HRS, appear as versatile
regulatory elements that could combine with differentially
methylated regions and other imprinting control regions to
confer cell-specific higher order chromatin organization and to
control monoallelic expression (3, 23). As proposed previously,
it may well be that such higher order chromatin architecture
corresponds to a real “genome format” that specifies the tran-
scriptional status of the genes in a tissue- and developmental
stage-specific manner (24).
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Interestingly, we also identified a 79-bp A/T-rich sequence
thatwe calledMAR4 as a novel putative regulatory element that
possesses an intrinsic activity that favors transcription. This
element is located 9136 bp upstream from a conserved
dodecamer motif that contains a single nucleotide polymor-
phism causing the Callipyge phenotype in sheep (29, 33). Inter-
estingly, the Callipygemutationwas recently shown to enhance
bidirectional long range Dlk1-Gtl2 intergenic transcription in
cis (25). Therefore, because the novel MAR4 activity appears to
be stronger when the MAR4 is inserted in the antisense direc-
tion (with respect to the endogenous locus) in a reporter con-
struct, its action may potentially favor transcription of anti-
sense transcripts. Antisense transcripts have been found at
numerous loci, and they play important roles in several
imprinting mechanisms (26–28); however, such antisense
RNAs are very weakly expressed and, although they have been
described in the sheep (CLPG1 transcript) (25, 29), they remain
to be identified at the Dlk1/Gtl2 locus in mouse. We also show
that the MAR4 sequence does not physically interact with the
Dlk1/Gtl2 promoters. This element could therefore be similar
to the DMR2/MAR2 sequence that maintains high Igf2 tran-
scription levels on mouse chromosome 7 (30). The DMR2/
MAR2 was not found to interact with the Igf2 promoters but
was rather proposed to act through a paternal-specific interac-
tion with the imprinting control region (31) and endodermic
enhancers (3). Similarly, we could propose that the MAR4 ele-
ment, which interacts with the IG-DMR on the paternal allele
(Figs. 5 and 6), may act at the endogenous Dlk1/Gtl2 locus by
recruiting distant enhancers. However, none of the 3C assays
performed at the MAR4 sequence revealed interaction peaks
that may correspond to such interactions. Therefore, we spec-
ulate that sequestering of the IG-DMR by MAR4 may help to
ensure the activity of the Dlk1 gene on the paternal chromo-
some. Alternatively, paternally specific MAR4/IG-DMR inter-
action might contribute to the repression of MAR4-mediated
transcriptional activation of the Gtl2 gene on that chromo-
some, thus contributing to the process of genomic imprinting
at this locus. Inactivation ofMAR4 by homologous recombina-
tion in themouse is now required to prove the functional role of
this element in vivo.
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