Bioremediation and phytoremediation of PAH-polluted soils

Christian P. Mougin

INRA, Phytopharmacy and Semiochemicals Unit Route de Saint-Cyr, F-78026 Versailles Cedex email: mougin@versailles.inra.fr

INRA

- INRA: National Institute for Agronomic Research
- 9500 researchers, engineers, technicians and administrative staff, 1200 students
- Spread over 21 regional research centers, 280 research and 85 experimental units
- Keywords: food, environment, agriculture and society
- Phytopharmacy and Semiochemicals Unit
 - improving pesticide uses within an integrated crop protection context
 - studying intoxication processes in target and non-target organisms, pesticide resistance development and the environmental fate of xenobiotics
 - studying chemical communication between organisms as an alternative methods to classical chemical control
- http://www.inra.fr

Outcome of the course

I-PAHs: a family of environmental pollutants with hazardous potential (PAH properties and hazard, interactions with soil components)

II-Bacteria, fungi and plants: their potential for PAH biotransformation (principles of PAH transformation, PAH transformation pathways)

III-Bioremediation processes: a way to reduce the environmental hazard of PAHs (mainly used methods, case studies)

IV-Future prospects

(improving the biovailability of PAH, as well as the ability of organisms to transform PAHs, phytoremediation)

Ι

PAHs: a family of environmental pollutants with hazardous potential

-PAH properties and hazard - interactions with soil components

Physicochemical properties of PAHs: a basis for recalcitrance

- 2 or more fused benzene rings and/or pentacyclic moieties in linear, angular and cluster arrangement (MW = 128.2 to 278.4)
- thermodynamically stable because of large resonance energy
- very low aqueous solubility (<<1 mg/l), highly hydrophobic (logKow = 3.3 to 6.75)
- neutral
- strongly associated with particle surfaces in the environment (Koc = 2×10^3 to 3.47×10^6)
- in general, poor volatilization, photolysis and biodegradation

Origin of PAHs

- continuous release into air, soil and water
- contaminate feed and food, and the food chain
- **natural** origin
 - biogenic:components of living organisms
 - geochemical: pyrolysis of organic substances, aromatization of
 - biological compounds during humification processes
 - petrogenic: petroleum, coal, ancient sediments
 - pyrogenic: vegetation fires
- anthropogenic origin
 - point sources: spills or mismanaged industrial operations
 - low-level imputs: atmospheric depositions

Biological effects of PAHs on living organisms

- carcinogenicity: increases with ring number and condensation degree
- mutagenicity: form DNA adducts
- teratogenicity
- immunodepressive effects
- high potential to biomagnification

Environmental hazard

- persistent organic pollutants (POP) in the environment
 - long half-lives: phenanthrene: 16-126 d; benzo[a]pyrene: 229-1400 d
 - rate of deposition > rate of degradation \rightarrow accumulation
- can enter the food chain
- biological adverse effects

 \Rightarrow persistence + biological effects \Rightarrow hazard

 \Rightarrow bio- and phytoremediation of soils may reduce this hazard

PAHs/soil interactions (1)

⇒ determine transport, fate and bioavailability of PAHs

sorption/desorption kinetics

- mainly due to binding with natural organic matter (humic acids), affinity expressed as Koc
- function of PAH hydrophobicity (Kow) and molecular size
- PAHs also exist as non-aqueous phase liquids (NAPLs)

sequestration

- time-dependent entrapment within the micropores of soil humic materials
- mechanisms not fully understood

PAHs/soil interactions (2)

formation of bound residues

- complexes formed from parent compounds or derived metabolites with organic constituents of soils, or living organisms
- attachment of PAHs to reactive sites (amines, phenols, quinones) on the surfaces or the organic colloids, or incorporation of the compound into the structure of humic and fulvic acids, or cells

characteristics of polluted soils

Characteristics of PAH-polluted soils

	Wood-preserving	Manufactured gas	Oilfield battery
	facility	plant	
PAH contamination (mg/kg)	<5000	<25000	<5000
fluoranthene/pyrene ratio	>1	>1	<1
3-ring (%)	50-60	10-30	30-45
4-ring	35-45	40-50	35-45
5-ring	3-5	15-30	10
6-ring	<5	5-15	5-15
Additional chemicals	cresols, phenols,	cyanides, heavy	methylated PAHs
	chromated	metals, sulfates	BTEX
	copper arsenate		
Soil organic carbon content	low	high (>10%)	$_\pm$ high
Aging	30 years	100 years	±
Potential for bioremediation	++		+

Polluted soils

II

Bacteria, fungi and plants: their potential for PAH biotransformation

principles of PAH transformation
PAH transformation pathways

Agents involved in biotransformation reactions

- All living organisms: micro-organisms, higher plants and animals
- The soil micro-organisms

 Number (/g of soil)
 Biomass (ton DM/ha)
 Bacteria
 10⁸
 0.5
 Actinomycetes
 10⁷
 1.0
 Fungi
 10⁶
 1.5

Total biomass: 2 to 4% of carbon, 5 to 8% of nitrogen

Functions

- mineralization and humification of organic matter
- biogeochemical cycles: C, N, P, S (1 to 2 tons of organic carbon mineralized/year/ha)
- production of toxins or interesting compounds (antibiotics)
- degradation of xenobiotics

Soil micro-organisms

	Prokaryotic organisms		Eukaryotic organisms	
	Bacteria	Ascomycetes	Fungi	
	The most numerous		The largest biomass	
Morphology	Unicellular	Elongated single cells	Pluricellular	
	Coccoidal, rod-shaped, helical,	Branched into filaments	Extensive filament forms,	
	1-10 <i>µ</i> m	or hyphae		
Liquid cultures	+, turbidity +, pelle		ellets	
Cellular organization	A few organelles	s, no cytoskeleton	Numerous organelles,	
			cytoskeleton	
Metabolism	Aerobic or anaerobic	Mostly aerobic	Aerobic (yeasts excepted)	
DNA	Cytoplasmic and circular + plasmidic		Chromosomes in nuclear	
			membrane	
RNA and proteins	Synthesized in the same cell compartment		Distinct compartments	
Reproduction	Division by binary fission	asexual spores: conidia	Sexual spores, except	
			deuteromycetes	
Competitive pH	6-8	>8	<5	
Competitiveness	All soils	Dominate dry, high-pH soils	Dominate low-pH soils	
Interactions	Symbiotic, pathogenic		Mycorrhizal, pathogenic	
	Arthobacter (40%)	Streptomyces (10% of bacteria)	Penicillium, Aspergillus, Fusarium,	
Common genera	Pseudomonas (10-20%)		Rhizoctonia, Alternaria, Rhizopus	
	Bacillus (10%)			
Production		Antibiotics: chloramphenicol,	Antibiotics: penicillin	

Biodegradation = mineralization

• Complete breakdown of the xenobiotic which become a substrate

• Carbon and energy are used for cellular growth and division

biomass + $C_6H_{12}O_6$ + NH₃ + $O_2 \Rightarrow$ new biomass + CO_2 + H₂O ($C_5H_7NO_2$)

• The most interesting process from an environmental viewpoint

Cometabolism

- Partial and fortuitous transformation of the compound
- Carbon and energy are not used for cellular growth and division
- A cosubstrate is needed to supply carbon and energy

Parent and daughter cells

- Cometabolism involves enzymes with low substrate specificity
- It induces mainly minor modifications of the compound
- It may lead to the total degradation of the compound during sequential attacks by several organisms
- It represents the main transformation process in the environment, with a possible accumulation of intermediate hazardous products

Synthesis

- Partial transformation leading to metabolites more complex and stable than the parent compound
- Conjugation => linkage of the compound with hydrophilic substrates, followed by excretion or storage

- Oligomerization => linkage of the compound with itself, or with residues
 of xenobiotics or natural products
 - incorporation in cellular components or in soil constituents

Xenobiotic metabolism

Outcome of the metabolic reactions

Initial	Phase I	Phase II	Phase III
xenobiotic	oxidation reduction hydrolysis	conjugation	oligomerisation incorporation
lipophilic	amphiphilic	hydrophilic	hydrophilic insoluble
mobile	+/- mobile	little mobile immobile	immobile
toxic	+/- toxic	little or not toxic	not toxic

(from Atlas and Cerniglia, 1995)

Institut National de la Recherche Agronomique

(from Sutherland, 1992)

PAH activation

DNA-BP-7,8-dihydrodiol-9,10-epoxide adduct

(from Atlas and Cerniglia, 1995)

Actual knowledge on bacterial metabolism of PAHs

David T. Gibson, the pioneer

- a wide variety of bacteria metabolize PAHs
- bacteria utilize PAHs as a sole source of carbon and energy
- bacteria are able to cleave the aromatic rings and to mineralize them rapidly
- bacteria generally metabolize PAHs to dihydrodiols and to aliphatic chains
- dioxygenases are mainly involved
- the initial ring oxidation reaction is often the rate-limiting step

Actual knowledge on fungal metabolism of PAHs (1)

main data from Carl E. Cerniglia's work

- a wide variety of fungi among zygomycetes, ascomycetes and basidiomycetes (white rot or brown rot) metabolize PAHs
- they need an additional carbon source to metabolize them
- non-basidiomycetes generally oxidize PAHs without mineralization
- ligninolyic basidiomycetes are able to cleave the aromatic rings and mineralize them
- non-ligninolytic fungi generally metabolize PAHs to:
 - cis-dihydrodiols, phenols \rightarrow conjugated = detoxification
 - quinones, dihydrodiol epoxides \rightarrow bioactive and toxic = activation

Actual knowledge on fungal metabolism of PAHs (2)

• several enzymatic systems are involved

- fungal metabolism is highly regio- and stereoselective and is in some cases similar to mammalian metabolism
- fungal metabolism is important as it produced ring-oxidized products, the rate-limiting step for bacterial degradation
- fungal metabolites have high water solubility and enhanced chemical reactivity
- fungi also detoxify PAHs by forming **bound residues** during humification

Actual knowledge on higher plant metabolism of PAHs

- our actual knowledge is scarce, but plants may offer a great potential
 whole plants:
 - adsorption onto roots and uptake is significant, but translocation of PAHs with more than 4 rings from roots to leaves is negligible
 - plant germination and growth are strongly inhibited by PAHs with less than 3 rings
 - incorporation of PAHs into cellular components has been reported
- cell suspensions:
 - PAHs are oxidized to phenols or quinones, then conjugated
- actual areas of research:
 - rhizosphere ⇒ bacterial metabolism
 - arbuscular mycorrhizal fungi \Rightarrow fungal metabolism

Anaerobic degradation of PAHs

- occurs in anoxic environments
- concerns naphthalene, acenaphthene, fluorene, phenanthrene, fluoranthene
- terminal electron acceptors: CO₂, SO₄²⁻, NO₃⁻, Fe₃⁺
- theoretical equations for naphthalene

(Rockne and Strand, ESET, 1998, 32 3962-3967)

 $1/48 C_{10}H_8 + 1/5 NO_3^- + 1/5 H^+ \rightarrow 5/24 CO_2 + 1/10 N_2 + 11/60 H_2O$

 $1/48 \ C_{10} H_8 + 1/8 \ SO_4^{2-} + 3/16 \ H^{\scriptscriptstyle +} \rightarrow 5/24 \ CO_2 + 1/16 \ H_2 S + 1/160 \ HS^{\scriptscriptstyle -} + 1/12 \ H_2 O$

Dioxygenases

Equation: $R + O_2 + NADH + H^+ \rightarrow R(OH)_2 + NAD^+$

Distribution: bacteria

Function: xenobiotic metabolism

Structure: naphthalene dioxygenase multi-component system of 3 proteins including a flavoprotein terminal dioxygenase: iron-sulfur protein of 158 kDa with two subunits of 20 and 55 kDa

Regulation: ?

inducible by PAHs

Cytochrome P450 mixed-function oxidases

Equation: $RH + O_2 + NADPH + H^+ \rightarrow ROH + H_2O + NADP^+$

Distribution: widely distributed among living organisms

Function: xenobiotic metabolism, cellular metabolism

Structure: multi-enzymatic complex (P450 + reductase), mostly microsomal membrane-bound proteins (ER), exposed to the cytosol P450: heme-thiolate protein of 400 to 525 aa, 45 to 65 kDa N-terminal segment: anchor signal

Regulation: complex

numerous inhibitors (mechanism-based inactivators) inducible by physiological, physico-chemical and xenobiotic agents

Molecular data: http://drnelson.utmem.edu/homepage.html superfamily of genes, 500 being cloned

Laccases

Equation: $2RH + \frac{1}{2}O_2 \rightarrow 2R^{\bullet} + H_2O$

Distribution: fungi, bacteria, higher plants, insects

Function: lignin degradation, morphogenesis, pathogenesis

Structure: dimeric or tetrameric glycoprotein, with 4 Cu, exocellular, 520 to 550 aa, 60 to 80 kDa secreting a N-terminal peptide

Regulation:

inhibitors: small anions, metals, fatty acids, chelating agents inducers: culture medium, lignin and related compounds, xenobiotics

III

Bioremediation processes: a way to reduce the environmental hazard of PAHs

> -mainly used methods -case studies

How to select a remediation method?

- pollutant: type, concentration, extent, ageing
- type of soil: hydrogeology, texture, permeability
- local constraints: space, noise, smell, dust (urban areas)
- cost
- time limit
- threshold

Bioremediation

- use of the natural or engineered capacity of micro-organisms to transform PAHs
- incubation conditions are optimized by aeration, agitation, moistening, addition of nutrients
- case studies: Federal Remediation Technologies Roundtable http://www.frtr.gov/cost/

The ex situ bioremediation methods

- Many advantages:
 - optimized monitoring ensured by mixing, heating, ventilation and moistening
 - optimized biotransformation due to the supply of electron acceptors and nutrients, (micro-organisms)
- \rightarrow reduction of the heterogeneous structure of the soil

 \rightarrow 3 main methods: bioslurry, biopile, landfarming

The bioslurry

Schematic of a bioslurry bioremediation system. Source: Adapted from the U.S. EPA (8).

Bioslurry

- Pollutants: recalcitrant compounds, PAHs (2,500 to 250,000 mg/kg)
- Type of soil: heavy soils, with high clay content
- Duration of the treatment: 1 to 6 months
- Operating conditions: pH 4.5 to 8.8

temperature 15 to 35 °C

fixed or rotative

nutrients and surfactants

- Soil native microflora or engineered strains
- Cost: 50 to 250 \$/m³
- Efficiency: 3-ring PAHs 98-99%
 - 4-ring PAHs 85-95%
 - > 4-ring PAHs 55-85%
- Emerging technology: Fenton's reagent to oxidize heavy PAHs
- http://www.epa.gov/ORD/SITE/reports

The bioslurry reactor: ECOVA

Bioslurry: case study (1)

• Operating conditions

raw materials: 12,630 tons of soil containing up to 10 g PAH/kg after sifting, wettering and centrifuging: 8,925 tons of slurry (<80 μ m) treated in four bioreactors

Parameters of the bioreactors

Volume	750,000 L
Shaking	900 rpm
Air	$350\pm170~\text{m}^3/\text{h}$
Solid particle ratio	20% by weight
Antifoam	200 mg/L
Dispersing agent	1000 mg/L
Temperature	30 ± 10 °C
рН	$\textbf{7.2} \pm \textbf{1.0}$
Dissolved O ₂	> 2.0 mg/L
NH4⁺	60 ± 20 mg/L
PO4 ²	20 ± 10 mg/L

Southeastern Wood Preserving Superfund Site Canton, Mississipi

Bioslurry: case study (2)

 Results 	Initial amou	int (mg/kg)	Efficiency (%)
3-ring PAH ₁	4613 ± 1	785	94
4-ring PAH ₁	3432 ± 1	13	95
5 and 6 ring PAH_1	$\textbf{729} \pm \textbf{3}$	29	62
•Financial Data (\$/ton)	Slurry makina	Biotreatment	Slurry drvina
Plant material and labor	25-30	8-12	4-8
Supplies, electricity,	16-20	20-25	12-16
Analysis	< 4	4-8	< 4
Total	42-50	32-46	16-25

+ treatment of water in wastewater treatment plant

Biopile

- Pollutants: all organic pollutant, PAHs <5,000 mg/kg
- Type of soil: permeable
- Duration of treatment: 6 to 24 months
- Operating conditions: height: 0.9 to 3 m

cover: textile or green house ambient temperature moistening 40 to 75 % of MHC soil piled in mounds static (forced venting) or dynamic (soil reversal) nutrients and surfactants collection of leachates

- Soil native micro-flora or exogenous micro-organisms
- Cost: \$ 40 to 220 / ton of soil
- Efficiency: 80 %
- Similar method: composting with addition of fertilizers such as manure
- http://www.epa.gov/OUST/cat/biopiles.htm

Biopile

Biopile: case study (1)

Operating conditions: laboratory scale study

sifted sandy loam (15 mm) containing 2800 mg PAH/kg, 220 mg cyanide/kg 17 g heavy metal/kg, ...

Parameters of the "biopiles"

Jars containing 6 kg polluted soil Static in the dark Air: forced venting 3 L/h Temperature: $25 \pm 5 °C$ Moistening: 80% of the MHC pH: 6.9 C/N/P ratio: 100/5/1, agricultural fertilizers Inoculation: the fungus Trametes versicolor pregrown on wheat bran pellets (0.6g pellets/jar) Surfactant: Montanox 80 (non ionic), 2 % by weight Duration: 50 weeks

GDF Manufactured Gas Plant Rouen, France

Biopile: case study (2)

Biopile: case study (3)

Results

 \rightarrow a 40% decrease of PAH amounts extracted from the soil after 50 weeks in the presence of the pellets, the fungus, nutrients and surfactant

Rama et al., PAC, 2001, 18(4), 397-414

Landfarming

Landfarming

Landfarming

- Pollutants: all organic pollutant, PAHs <10,000 mg/kg
- Type of soil: all
- Duration of treatment: 6 to 24 months
- Operating conditions: soil layered on a specific area, sometimes incorporated

in the top layer of an agricultural soil

soil periodically tilled

ambient temperature

nutrients and moisture may be added

collection of leacheates may be necessary

- Soil native micro-flora or exogenous micro-organisms
- Cost: \$ 30 to 60 / ton of soil
- Efficiency: 90 %

Landfarming: case study

Treatek, Blackburn, United Kingdom

Operating conditions

30,000 m³ of soil polluted with tar, phenolics, cyanides, heavy metals, PAHs sifting < 30 mm soil treated in several layers

soil moistened by a solution of micro-organisms and nutrients

 Results 	Initial amount	Removal efficiency
	(mg/kg)	(after 30 months)
PAHs	22,050	99
Phenolics	205	98

IV

Future propects

-improving the biovailability of PAHs -improving the ability of organisms to transform PAHs -phytoremediation

Improving the bioavailability of PAHs

- Use of synthetic surfactants and biosurfactants to facilitate the partitioning of PAHs from the solid phase of the soil or from NAPL to the water phase
- A considerable literature has been obtained at a laboratory scale, but a few results are usable in industrial processes
 - a variety of ionic and nonionic surfactants enhance the solubilization of PAHs
 - the enhancement varies with surfactant structure, concentration in solution, hydrophobicity of the PAHs, degree and age of contamination
 - → cationic agents, adsorbed onto soil, solubilize PAHs at supra-CMC levels, but they are toxic for micro-organisms
 - nonionic compounds disperse the soil particles, and also solubilize PAHs, with a reduced toxicity
 - limitations: high concentrations of PAHs are required to solubilize low amounts of PAHs, in the presence of a high water-content of the soil → most successful results are obtained in bioslurry reactors

Improving the ability of organisms to transform PAHs

The problems

- The complete breakdown of a pollutant requires a sequence of metabolic reactions
- Xenobiotics often include unusual chemical bonds or substitutions
- Organisms have not had enough time to evolve appropriate pathways

The solutions

- Development of a microbial community
- Development of the capabilities of given strains by genetic construction
 - \rightarrow genetically modified organisms: GMOs

engineered micro-organisms: GEMs

The limitations

- Ecological problem: risk of rambling genes
- World-wide regulation by legislation
- The ways of research
 - Improvement of the metabolic properties of the organism (Abstract N°58)
 - Development of suicidal elements for biological containment of organisms

Phytodecontamination ex planta

A chemical present in the soil induces a plant response, which increases or changes its exudation, modifying then rhizospheric microflora composition or activity

Other effects:

- improvement of physical and chemical soil conditions
- increase of humification and adsorption

→ dissipation of PAHs impact of each process not elucidated

Plant species: fescue (Festuca), alfalfa (Medicago), sudangrass (Sorghum) ryegrass (Lolium), corn (Zea), soybean (Glycine),...

