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ABSTRACT  
The hydraulic state of a water distribution network is governed by a large number of uncertain 
parameters. These parameters may be given by uncertain consumer demand, valves states, the 
value of pipe diameters or the roughness of the pipes. In practice, the influence of parameter 
variations is important in the decision-making process of water utilities, which emphasizes the need 
for proper quantification of the resulting uncertainties in head and flow. The central step in 
uncertainty quantification is the propagation of uncertainties through the system. In the past, the 
influence of parameter uncertainties on the system state has been studied using perturbation 
methods, stochastic collocation and interval state estimation. This paper presents the results of an 
alternative spectral approach that has been examined as part of the French-German research 
project ResiWater. The generalized Polynomial Chaos Expansion is applied to a small looped water 
distribution network with multiple uncertain input parameters using a non-intrusive projection 
method. These results are compared to the Monte Carlo simulation as representative of stochastic 
collocation methods. It is demonstrated that the Polynomial Chaos Expansion is capable to capture 
a high order of non-linear effects like the Monte Carlo simulation for a considerably lower 
computational effort. 
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1 Introduction 
he modelling and state calculation of water distribution networks is an important task for water 
utilities and has been used for a number of practical applications in the past. A small selection is 
given by, but not limited to: Network design [5,8] , modelling water leakage [11], optimal sensor 
placement [3,4] and water quality simulation [7]. In all of these applications, parameters of the 
network model play an important role in determining accurate and reliable results. But, due to 
limited accessibility and sparse availability of sensors inside the network they cannot always be 
measured directly and many of the parameters may vary over time. One may assume that, even 
though considerable effort is put into the calibration of network models [6,9], the estimated 
parameters are still uncertain. The objective of uncertainty quantification (UQ) is the evaluation of 
the influence of parameter uncertainties on the Quantities of Interest (QoI) in a mathematical model 
and it contains three major steps: 

• The survey and classification of parameter/measurement uncertainties in the system 
(sources, range, importance). 

• Development of a concept for the estimation of parameter uncertainty and their impact on 
the reliability of simulation results. 

• Estimating of confidence intervals for hydraulic and water quality model results. 
Central part of the process and focus of the research done as part of the collaborative French-
German project ResiWater [1] is the second step which deals with the propagation of errors and 
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uncertainties by means of the mathematical model. In the literature a wide spectrum of methods is 
proposed with their individual benefits and shortcomings. Three of the most common general 
approaches are given by perturbation methods, sampling methods and a relatively new approach 
with the stochastic spectral methods. 

• Perturbation Methods: These methods calculate the mean, variance and other stochastic 
moments for the distribution of the quantity of interest directly from the system equations by 
means of a truncated Taylor expansion. Typically, the expansions employed are limited to 
first- or second-order expansions. This limits their accuracy for highly non-linear models. 

• Sampling Methods: With Monte Carlo Simulations as one of the most prominent 
representatives for this group, sampling methods are often applied for the propagation of 
uncertainties in non-linear models. Although, in general, implementation of the method is a 
straightforward task, its rate of convergence is defined as 1/√ M, where M is the number of 
simulations [2,13]. 

• Stochastic Spectral Methods: The objective of spectral approaches like stochastic Galerkin 
and stochastic collocation methods is the calculation of a spectral representation of the 
random quantity of interest. Utilizing the smoothness requirement of the polynomial basis 
leads to an efficient convergence behaviour [10,13]. 

The interval state estimation is an alternative approach that is popular in control applications. It 
concentrates on the propagation of the confidence intervals which makes it computationally 
efficient enough for real-time application. However, unlike the previously mentioned methods it 
does not provide the same amount of detailed information on the resulting random variable. 
This article explores the application of spectral methods for uncertainty quantification in water 
distribution networks. The Polynomial Chaos expansion is applied to model uncertain demands at 
consumption nodes in the hydraulic network equations. To evaluate the results classical methods are 
compared to the spectral approach. Section 2 gives a short introduction to the deterministic 
hydraulic model, followed by some details on random variables that will be used for the definition 
of the stochastic hydraulic model. Then, the Polynomial Chaos Expansion is introduced with some 
detail on the derivation of the stochastic equations. In section 3 the small looped demonstration 
network will be introduced with details on the uncertainty in this scenario and the evaluation. The 
results will be presented followed by a discussion on the methods in section 4. 
 

2 METHODS 
2.1 Hydraulic Model  
In hydraulic modelling the simplified topological structure of a water distribution network is 
described by a directed graph as the one shown in Figure 1. In this graph links represent pipe 
sections and nodes the pipe junctions and connections. The mathematical description of this graph 
is given by the incidence matrix 𝑨	 ∈ ℳ%&×%( ℝ , where 𝑛𝑗 is the number of nodes and 𝑛𝑝 is the 
number of links. It is defined as 𝑨 = {𝐴	0,2}450562;452568. The coefficients are defined as follows: 

𝐴	0,2 =
−1			,	if	pipe	𝑗	enters	node	𝑖																								
			0			,	if	pipe	𝑗	is	not	connected	to	node	𝑖
+1			,	if	pipe	𝑗	exits	node	𝑖.																											
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Figure 1. Network graph of a small looped water distribution system. 

 
Water distribution networks in general have a looped structure and the system state is described by 
the potential at the nodes (head) and the current on the links (flow). The system equations are given 
by two sets of equations. First the mass balance at the nodes: 

𝑨𝒒	 + 	𝒅	 = 	𝟎	
where 𝑨 is linked to the part of the network that only contains junctions with known demands, 𝒒 ∈
ℝ68 is the vector containing the flow rates and 𝒅	 ∈ 	ℝ62 is the vector of demands at consumption 
nodes. Second the energy equation: 

∆𝒉(𝒓, 𝒒) 	−	𝑨S		𝒉	 −	𝑨TS			𝒉T 		= 	𝟎. 

where A f describes the nodes with fixed potential like reservoirs or tanks and 𝒉 ∈ ℝ62	 is the vector 
containing the piezometric heads. Parameters are given by the potential vector 𝒉T ∈ ℝ62	describing 
fixed head at special nodes like reservoirs or tanks and the vector 𝒓 ∈ ℝ68	 containing the friction 
coefficients for each link. The function ∆𝒉(𝒓, 𝒒) describes the loss in head along a pipe and is 
defined by: 

∆𝒉:	ℝ68	×	ℝ68	 	⟶	ℝ68	 
																												(𝒓, 𝒒) 	⟼	∆𝒉(𝒓, 𝒒).	

It is usually termed the head-loss function. For medium and large Reynolds numbers the head-loss 
in general is a non-linear function of a friction coefficient 𝒓 and flow 𝒒. In the following application 
the state vector 𝒖 consists of the flow rates 𝒒 and the head 𝒉 and the system parameters are 
combined in the vector 𝜶. 

2.2 Uncertain Parameters and Variables 
Above it has been assumed that the values of model parameters are known with their exact value. In 
real applications it is more likely that they are known by their expected value and a joint probability 
distribution. As a result it is prudent to assume that the results are also no longer deterministic. To 
accurately model this in uncertainty quantification, parameters and results are defined by random 
variables. 
A random variable 𝑋 = 𝑋(𝜔) assigns a number to each outcome ω of a random experiment. The 
sample space Ω of such an experiment is defined as the set of all possible outcomes Ω	 = 	 {𝜔}. In 
many technical applications like the one presented in this paper the sample space is directly defined 
as a random variable. The 𝜎-field or 𝜎-algebra ℱ is a subset of the sample space that contains all 
relevant events. In this context an event may be defined as a set of outcomes, including the empty 
set ∅ and all combinations of other events in the 𝜎-field. Probability is a concept to measure the 
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likelihood of occurrence for a certain event 𝑃:ℱ	 → 	 [0,1]. It has to satisfy the definitions 𝑃(∅) =
0, 𝑃(Ω) = 1 and if 𝐴0 	∈ 	ℱ and 𝐴0 ∩ 𝐴2 = ∅, 𝑃 	𝐴0	e

0f4 = 𝑃(𝐴0	)e
	0f4 	. With these components 

it is possible to define a probability space by the triple (Ω, ℱ, 𝑃). 
A common tool in working with random variables is the cumulative distribution function (cdf). It is 
defined for𝐹h → [0,1] by 

𝐹h(𝑥) = 𝑃{𝜔 ∈ Ω|𝑋(𝜔) ≤ 𝑥}	
and describes the probability that a realization of the random variable has a value lower than 𝑥. 
 
2.3 Polynomial Chaos Expansion 
The polynomial chaos expansion constructs a spectral representation of the uncertain variables of 
the mathematical model using orthogonal basis polynomial based on a basis random variable Z. 
Each variable may be represented by the infinite expansion 

𝒖 𝒁 = 𝑢nΦn 𝒁
e

p

, (5)	

where Φn are the orthogonal polynomials. In practical applications a truncated expansion with a 
total number of 𝑁 + 1 elements is used to approximate random variables 

𝒖s 𝒁 = 𝑢nΦn 𝒁
s

p

. (6)	

The number of terms in this finite polynomial chaos expansion is dependent on the dimension of the 
parameter space 𝑛 and the order of the expansion 𝑝. It is calculated as: 

𝑁 + 1 =
(𝑛	 + 	𝑝)!
𝑛! 𝑝! . (7) 

Polynomial chaos expansion as introduced by Wiener [12] uses orthogonal Hermite polynomials to 
model arbitrarily distributed random variables based on a Gaussian distribution. Xiu and 
Karniadakis [14] generalized the method to the use of a wider variety of random processes by 
introducing broader classes of polynomials defined by the Askey scheme. For each choice of 
polynomials Φn(𝑍) a weighted inner product 𝐿y Ω  is defined as 

Φ0,Φ2 	= Φ0(𝑍)	Φ2(𝑍)𝑑𝑃(𝑍) 	= Φ0(𝑍)	Φ2(𝑍)𝑑𝑃(𝑍)𝑤(𝑍)𝑑𝑍	 = 	𝛿02 Φ0
y (8)	

with respect to the probability density function 𝑤(𝑍). 
The first step in any application of the polynomial chaos expansion is the projection of the known 
random input parameters α on the chosen polynomial basis. The coefficients 𝛼n of their truncated 
PC expansion 

𝛼s(𝒁) = 𝛼nΦn(𝒁)
s

nfp

	(9)	

are calculated using the definition in Equation 8 

𝛼n =
	𝛼 𝑋 ,Φn

Φn
y . (10)	

The existence and convergence of this projection follows from the classical approximation theory. 
A general system of coupled non-linear equations like Equations 1 and 2 can be represented in 
operator form as 𝒫[𝒖, 𝜶] − 𝒬[𝜶] = 𝟎. Here, the dependent random state variables are given by u 
and the random input parameters by α. Substituting the random components by their PC expansion 
results in the stochastic system 𝒫[𝒖s, 𝜶s] − 𝒬[𝜶s] = 𝟎. Projecting these stochastic system 
equations on the basis polynomials Φn for 𝑘 = 0…𝑃 gives a new set of equations that allows for 
the direct calculation of the stochastic expansion coefficients 𝒖n for the random representation of 
the state variable. This Galerkin approach is also known as intrusive spectral projection. This name  
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Figure 2. Network graph of a small looped water distribution system. 

 
has been given since the equations of the original problem have to be reformulated. The system of 
equations depends on a number of factors like the order of the expansion and the dimension of the 
parameter space and has to be restated if they change. This makes the application in practical 
applications complicated. 
This is one of the main benefits for non-intrusive spectral projection (NISP) approaches. Since the 
inner product 𝑢 𝑋 ,Φn  is evaluated by sampling the solution space for different realizations 𝒁 
these methods are more adaptable to changes. In contrast to the intrusive approach the coefficients 
are determined by repeated solutions of the original problem. 

3 Uncertainty Propagation in a Small Network 
This is the For the following demonstration the small looped network shown in Figure 1 will be 
used. A one dimensional parameter space for the uncertain input is chosen to be represented by the 
demand 𝑑� at node 5. It is modelled by a Gaussian distribution with a mean of the deterministic 
demand and a variance of about 20 percent of the mean to make sure that the non-linear effects are 
strong enough to influence the result. This parameter may be developed exactly by a first order PCE 
based on the Hermit polynomials. The main method for the propagation of this random parameter is 
the PCE. To validate the results a Monte Carlo simulation of the same example will be performed 
with a sample size of 𝑁�� = 1𝑒5 simulations. For the calculation of the PCE coefficients a total 
number of 𝑁��� = 1𝑒3 simulations have been performed. The evaluation of the PCE can be done 
following two different methods. The expansion of the random variable allows for the direct 
calculation of the first four stochastic moments of its probability distribution through numerical 
quadrature. Using these moments it is possible to reconstruct the probability density function by the 
means of the Pearson Distribution. A more general approach is the sampling of the PCE through the 
basic random variable. This is in general computationally more efficient than the MC simulation 
since each sample evaluates the polynomial instead of solving the complete system. For the 
evaluations shown in this section the PCEs are evaluated 𝑁��� = 1𝑒6 times. In sum the calculation 
of the PCE coefficients and the evaluation of the polynomials is considerably faster than the Monte 
Carlo approach. 
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Figure 3. Probability density function for the pressure at node 7 based on the uncertain demand. 

 
Both the Monte Carlo simulation and the PCE produce results for all QoIs in the system. For the 
discussion of the results a closer look is taken at the flow 𝑞� at pipe 8 and the head ℎ� at node 7 in 
Figures 2 and 3. Although these two values have been chosen, they are representative for the 
behaviour of the other variables. In both figures the result of the Monte Carlo simulation is given by 
the histogram. The red curve shows the kernel density approximation based on the results from 
sampling the PCE of the random flow. The yellow curve displays the Pearson approximation based 
on the first four moments. 
Figure 2 shows the approximate probability distribution for the flow rate through link 7 𝑃(𝑞�) for 
the flow value 𝑞� in 𝑑𝑚� 𝑠, whereas Figure 3 displays the approximate probability distribution for 
the head at node 7 𝑃(ℎ�) for the head ℎ� in 𝑚. It can be seen that the Monte Carlo simulation and 
the PCE are in good agreement, but also that the spectral approach gives a smoother solution even 
so it uses fewer sampling points. Both methods are capable to capture the non-linear influences 
from the system on the results which distort the distribution into a skewed form. From the view of 
an system operator it is interesting to see that the head distribution is skewed in the direction of 
lower heads. This means that due to the uncertainty in the demands it is far more likely to 
experience a head deficiency than too high heads. 

4 Discussion 
Regarding the results presented in the previous section two important questions have to be 
answered. First, a closer look will be taken on the computational complexity of the Monte Carlo  

 
Figure 4. Estimated standard deviation of the pressure at node 7, based on N Samples for classical 

Monte Carlo and a 4th order Polynomial Chaos expansion. 
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Figure 5. Coefficients for a 5 th -order PC expansion for flow and pressure. 

 
simulation compared to the Polynomial Chaos expansion. Second, the evaluation of the necessary 
order for the Polynomial Chaos expansion will be discussed. Looking at the fact that both the 
Monte Carlo simulation and the non-intrusive spectral projection may be classified as sampling 
methods one may ask why the application of the Polynomial Chaos expansion is beneficial. From 
literature the answer to this question lays in the fact that PC methods use the smoothness of the 
orthogonal basis polynomials and in effect have a superior convergence behaviour [10]. To illustrate 
this, Figure 4 shows the value for the standard deviation of the pressure at node 7 over the number 
of sampling points evaluated. For a low dimensional problem as the one discussed in this article a 
very small number of points is sufficient to get a good estimation of the PCE coefficients. 
An important task for any application of a expansion approach is the evaluation of accuracy for the 
chosen development order. Since it is not possible to do so a priori this section shows the measures 
that have been taken based on the estimated coefficients. In a first iteration the expansion order is 
chosen due to experience. Based on the evaluation it has to be adapted. The appropriate expansion 
order depends on factors like the non-linear properties of the modelled system and the desired 
accuracy for the application. Similar to other examples from polynomial approximation theory it is 
assumed that the expansion converges to the true solution and that the theoretical infinite series may 
be represented by a truncated series of order N. From this it follows that coefficient values of higher 
order polynomials should be small and go to zero. Figure 4 illustrates the convergence behaviour of 
the coefficients for a fourth order PC expansion. The coefficients are shown for the flow through 
pipe 7 and the pressure at node 7. As expected, their values decline rapidly and are close to zero for 
higher orders. 

5 Conclusion 
This paper showed the application of the polynomial chaos expansion on a small water distribution 
network. The results have been compared to state of the art methods given by the Monte Carlo 
simulation. It can be concluded that the PCE is capable to capture the non-linear effect of the 
equations making it superior to sensitivity based perturbation methods. At the same time it is 
computationally more efficient than the straight forward MC simulation. 
For a more efficient evaluation of the PCE in future applications a closer look will be taken at more 
efficient sampling strategies for the numerical projection and adaptive sparse representations that 
drastically reduce the number of coefficients in the expansion. As an alternative path more efficient 
solution methods will be investigated. This includes fast algorithms for the resolution of the 
hydraulic equations as well as the application of methods used in model order reduction. 
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