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cUniversité Fédérale de Toulouse Midi-Pyrénées, Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT Cedex
09, France

dCNRS, UMR 5302, RAPSODEE, F-81013 Albi, France
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Abstract

We present a technique that permits to increase the efficiency of multidimensional Monte Carlo algorithms when the
sampling of the first, unconditioned random variable consumes much more computational time than the sampling of
the remaining, conditioned random variables while its variability contributes only little to the total variance. This is in
particular relevant for transport problems in complex and randomly distributed geometries. The proposed technique
is based on an new Monte Carlo estimator in which the conditioned random variables are sampled more often than the
unconditioned one. A significant contribution of the present Short Note is an automatic procedure for calculating the
optimal number of samples of the conditioned random variable per sample of the unconditioned one. The technique
is illustrated by a current research example where it permits to increase the efficiency by a factor 100.

Keywords: Monte Carlo integration, Monte Carlo efficiency, Monte Carlo in complex geometry, statistical physics

1. Introduction

Monte Carlo integration is used in many research fields (e.g. radiation transport physics, quantum mechanics,
financial computing [1, 2]) to evaluate multidimensional integrals that can be written as the expectationA of a random
variable W:

A = E[W] =

∫
DX

dx pX(x)
∫
DY (x)

dy pY (y; x) ŵ(x, y) (1)

where X and Y are (vector) random variables (defined by their domains DX and DY (x) as well as their associated
probability densities pX and pY (y; x)), and W is the random variable defined by the function ŵ that to X and Y
associates W = ŵ(X,Y). Monte Carlo integration permits to evaluate an unbiased estimator of A by sampling n
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independent and identically distributed (IID) random variables Xi and Yi (where all the Xi are IID as X, and all the
Yi(x) are IID as Y(x)). The plain Monte Carlo estimator An is defined by

A = E[An] with An =
1
n

n∑
i=1

ŵ(Xi,Yi). (2)

The practical use of Monte Carlo integration is sometimes limited by the prohibitive computational cost required to
obtain an estimate with the required precision (the standard deviation σAn of the Monte Carlo estimate being inverse
proportional to

√
n). This has motivated research to increase the efficiency, which is a quality measure for a Monte

Carlo estimator taking into account both its precision and its computational cost [3]:

εAn =
1

σ2
An

CAn

(3)

where σ2
An

is the variance of An, and CAn the computational cost required to calculate An. Depending on the specific
problem, several variance reduction techniques might permit to increase the efficiency (e.g., importance sampling,
stratified sampling, control variates and antithetic sampling [2]). The present Short Note presents a technique that
increases the Monte Carlo efficiency for problems where the sampling of the unconditioned random variable X is
computationally expensive (compared to the sampling of the conditioned random variable Y) whereas the variability
of X contributes only little to the variance of W (compared to the variability of Y). This will be quantified in Sec. 2.
Such a situation is encountered, e.g., in transport problems in complex geometries where the geometry is statistically
distributed (see Sec. 3 for a practical example). The principle is to consider a new Monte Carlo estimator in which Y
is sampled more often than X. To our knowledge, despite the simplicity of this technique, it has never been explicitly
reported in the Monte Carlo literature. Its formal investigation in the present Short Note permits us in particular to
provide an easy-to-implement procedure to automatically compute the optimal number of samples of Y per sample of
X (at the end of Sec. 2).

2. Efficiency-optimized Monte Carlo algorithm

We propose to use the new estimator An,nY ofA defined by

A = E[An,nY ] with An,nY =
1
n

n∑
i=1

1
nY

nY∑
j=1

ŵ(Xi,Yi j). (4)

where all the Yi j(x) are IID as Yi(x). An,nY is indeed an estimator ofA since E[ŵ(Xi,Yi j)] = E[ŵ(Xi,Yi)] for all j. Note
that the plain Monte Carlo estimator An corresponds to nY = 1 in Eq. 4. The Monte Carlo algorithm corresponding to
Eq. 4 is:

1. repeat n times (for i from 1 to n):
(a) realize a sample xi of Xi;
(b) repeat nY times (for j from 1 to nY ):

i. realize a sample yi j of Yi j;
ii. calculate ŵi j = ŵ(xi, yi j);

(c) calculate the Monte Carlo weight f̂i = 1
nY

∑nY
j=1 ŵi j;

2. calculate the Monte Carlo estimate an,nY = 1
n
∑n

i=1 f̂i and the standard errorσAn,nY
= 1
√

n−1

√
1
n
∑n

i=1 f̂ 2
i −

(
1
n
∑n

i=1 f̂i
)2

.

Let us now determine the efficiency increase permitted by this technique. Therefore we first have to express the
contributions of X and Y to the total variance σ2

An,nY
and the total computational cost CAn,nY

of the proposed Monte
Carlo estimator An,nY . Denoting σ2

X = VarX[EY [W |X]] the explained variance (which is the contribution of X) and
σ̃2

Y = EX[VarY [W |X]] the unexplained variance (which is the contribution of Y) of the random variable W, and then
applying successively the law of total variance and the Lindeberg-Levy central limit theorem, leads to

σ2
An,nY

=
1
n

(
σ2

X +
1
nY
σ̃2

Y

)
. (5)
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Moreover, denoting CX and CY the computational costs associated, respectively, with a single sampling of X and Y ,
we can write

CAn,nY
= n (CX + nYCY ) . (6)

Then, the Monte Carlo efficiency εAn (defined by Eq. 3) can be expressed as function of nY using Eqs. 5 and 6, leading
to

εAn,nY
=

1(
σ2

X + 1
nY
σ̃2

Y

)
(CX + nYCY )

, (7)

which is maximal for

n∗Y =
σ̃Y

σX

√
CX

CY
=

1
rσ rC

(8)

where we have introduced the ratios rσ = σX
σ̃Y

and rC =

√
CY
CX

. Therefore, the maximal possible efficiency gain obtained
thanks to the proposed technique, that we define as the ratio between the maximal efficiency εAn,n∗Y

of the new Monte
Carlo estimator An,nY and the efficiency εAn,nY =1 of the plain Monte Carlo algorithm An, is 1

GAn,n∗Y
=

(
1 + r2

σ

) (
1 + r2

C

)
(rσ + rC)2 . (9)

Eq. 9 also shows that the here-proposed technique permits to greatly increase the Monte Carlo efficiency in all situa-
tions where both rσ � 1 and rC � 1.

We finally propose a procedure to determine n∗Y , the optimal number of samples of Y per sample of X. In Eq. 8 we
have expressed n∗Y as a function of the ratios rσ and rC . These ratios cannot be easily computed directly, but they can be
estimated using two runs of the reformulated Monte Carlo algorithm (Eq. 4), one with n = n1 and nY = nY,1, the other
with n = n2 and nY = nY,2. nY,1 and nY,2 must be different, and the choice of n1 and n2 is a trade-off between required
precision and computation time. 2 The obtained standard deviations σ1 and σ2, and the observed total computational
times C1 and C2, permit to compute σX and σ̃Y (using Eq. 5), CX and CY (using Eq. 6), and finally rσ and rC:

rσ ≈

√√ n1
nY,2
σ2

1 −
n2

nY,1
σ2

2

n2σ
2
2 − n1σ

2
1

rC ≈

√
n1nY,1C2 − n2nY,2C1

n2C1 − n1C2
. (10)

Note that the number of Monte Carlo samples required to obtain an estimator with a relative standard error σ∗r can
also be easily deduced from Eq. 5 (by replacing σAn,nY

= σ∗ and nY = n∗Y ) 3.

3. Validation of the efficiency increase technique on a test case

Test case. We plan to use the efficiency increase technique presented in this short note to calculate the differential
scattering cross section Ws(θs) of complex-shaped particles using the Monte Carlo implementation of Schiff’s ap-
proximation presented in [4]. The Monte Carlo integral formulation of the problem is given by Eq. D.9 of [4] 4. This

1Note that GAn,n∗Y
→rσ→0,rC→0

1
(rσ+rC )2 in the most favorable situation (rσ � 1 and rC � 1), i.e. the efficiency gain cannot be higher than 1

r2
C

or 1
r2
σ

. In the example of Sec. 3 GAn,n∗Y
≈ 1

r2
C

because rσ � rC .
2The user should be able to make a first guess rC,guess concerning rC and rσ,guess concerning rσ as this is the starting-point of the present note.

We then suggest to retain nY,1 = 1
rσ,guessrC,guess

and nY,2 = max
(
1, nY,1

100

)
, increasing n1 and n2 until σ1 and σ2 are below 10% of the estimated

quantity.
3This leads to n∗ =

σ̃2
Y

σ∗r
2A2 rσ (rσ + rC), where σ̃2

Y ≈
n2σ

2
1−n1σ

2
2

1
nY,2
− 1

nY,1

can be deduced from the two Monte Carlo runs already used for rσ and rC .

4The corresponding computer implementation is freely available online at http://edstar.lmd.jussieu.fr/codes.
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computation requires to sample the orientation of the particle, its size and two positions on its projected surface. Here
we want to take into account the variability of the shapes of the particles (thinking, e.g. of biological cells), which
corresponds to additionally sampling the shape. This is associated with a high computational cost (because it requires
to mesh the bounding surface of the particle) whereas it contributes only little to the total variance. As simple example
we here consider a spheroidal shape 5, that is defined by a single parameter: its elongation R that we assume to be
log-normally distributed (median R̄ and width parameter sR). We used the Monte Carlo reformulation (Eq. 4) where
the unconditioned random variable is the elongation of the spheroid (i.e. X = R) and where the conditioned one
contains its orientation, its size and two positions on its projected surface (i.e. ~Y = (Θo,Req, ρ1,Φ1, ρ2,Φ2) with the
notations of [4]), to compute a Monte Carlo estimator of Ws(θs), demanding a relative standard error σ∗r = 0.01.

Results and analysis. Two runs of the Monte Carlo algorithm with n1 = 103, nY,1 = 104, n2 = 105 and nY,2 = 102

permitted to estimate σ̃Y ≈ 1.3 · 103 µm−2 sr−1, rσ ≈ 1.2 · 10−3 and rC ≈ 0.1 (Eq. 10), leading to n∗Y ≈ 8 · 103 and
n∗ ≈ 2 · 104 (Eq. 8). The expected efficiency gain is therefore GAn,n∗Y

≈ 100 (Eq. 9). We then computed the Monte

Carlo estimator and found Ŵs(θs) = 10.5 ± 0.1 µm−2 sr−1 (which is compatible with the imposed relative standard
error of 1%). The computation time was 7 min (on a MacBook Pro, 2. GHz Intel Core i5 processor, without using
parallelization). Note that, with the plain Monte Carlo algorithm, the same computation would take 11 h. We then
carried out a sensitivity study to understand the impact of the precision of the estimated value of rC (denoted rC,estim)
on the obtained Monte Carlo efficiency gain GAn,n∗Y,estim

6. This sensitivity study is interesting because a higher required
precision signifies a longer computation time for the two runs of the Monte Carlo algorithm used to compute rC,estim.
When n∗Y,estim is different from the optimal value n∗Y , then GAn,n∗Y,estim

is lower than the maximal possible efficiency gain
GAn,n∗Y

(Eq. 9). However, Fig. 1 (left panel), that displays the ratio of GAn,n∗Y,estim
to GAn,n∗Y

as function of the exact rC ,
shows that the loss of efficiency is less than 1% if the error on the estimation of rC is less than a factor 2. Therefore it
is not necessary to have a very precise estimation of rC

7. We finally applied our technique to a parametric study. In
such a context, recalculating n∗Y for each parameter value can be quite time-consuming. Therefore we have tested the
impact of using the same estimated value n∗Y,estim (e.g., the value of n∗Y for the average value of the parameter) on the
resulting Monte Carlo efficiency. We used as parameter the imaginary part κr of the refraction index of the spheroid,
and chose to take n∗Y,estim = n∗Y (κr = 4 · 10−3) = 8 · 103. Fig. 1 (mid panel) again displays the ratio of GAn,n∗Y,estim

to GAn,n∗Y
,

showing that the loss of efficiency is always lower than 0.5% in the considered parameter range. Therefore it is here
pertinent to use the same value of n∗Y for the whole parameter study. Finally, Fig. 1 (right panel) displays the results
of the parametric study with n = 2 · 104 Monte Carlo samples.

4. Conclusion

The Monte Carlo efficiency technique presented in this Short Note consists in sampling nY realizations of the
conditioned random variable Y for each realizations of the first, unconditioned random variable X. An automatic
procedure to determine the optimal number of samples nY is provided. This technique might be extended in different
directions:

• Considering nY as a function of x (note that the expression of the Monte Carlo estimator An,nY given by Eq. 4
remains valid), or combining the efficiency increase technique with stratified sampling, allows to further in-
crease the efficiency in situations where the convergence is not uniform over DX (e.g., in the above example
the convergence is slower for strong elongations R, therefore the efficiency will be increased by using a higher
value of nY in these zones).

5The choice of the spheroid is also motivated by the fact that our computational tools permitting to address complex shapes are still under
development. For a spheroid, all geometrical computations are analytical and therefore no mesh is required. To obtain realistic values of the Monte
Carlo efficiency, the computational cost associated to the generation of the mesh – estimated 100 times greater than the cost associated with the
sampling of all the other variables – is simulated by an informatic loop.

6Eq. 7 permits to write GAn,n∗Y,estim
=

ε(n∗Y,estim)
ε(nY =1) =

n∗Y,estim

(
1+r2

σ

)(
1+r2

C

)(
1+n∗Y,estimr2

σ

)(
1+nY r2

C

) where rC is the exact rC and n∗Y,estim is the value of n∗Y calculated with Eq. 8

on the basis of the estimated rC,estim.
7Note that the sensitivity to an error on the estimation of rσ is the same as for rC because n∗Y is a symmetric function of both ratios (Eq. 8).
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Figure 1: Test case described in Sec. 3. Left panel: ratio of the obtained efficiency gain G(n∗Y,estim) (where n∗Y,estim was computed using the estimated
value rC,estim = 0.1) to the maximal possible efficiency gain G(n∗Y ) (obtained with the exact value rC) as function of rC . Mid panel: ratio of the
obtained efficiency gain G(n∗Y,estim) (where n∗Y,estim = 8 ·103 was computed for κr = 4 ·10−3) to the maximal possible efficiency gain G(n∗Y ) (obtained
with the value n∗Y corresponding to κr) as function of κr . Right panel: differential scattering cross section Ws(θs) as function of κr (for n = 2 · 104).
Error bars indicate the Monte Carlo standard error σA. The used parameter values are θs = 0.244, R̄ = 0.5, sR = 1.2, r̄eq = 2.38 µm, s = 1.18,
ke = 14.0 µm−1, nr = 1.08 and, for the left panel, κr = 4.10−3.

• Distinguishing more than two random variables (e.g. X, Y and Z) and sampling Z nZ times per sample of Y ,
which is itself sampled nY times per sample of X, might permit to obtain even further efficiency increase for
calculating higher-dimensional integrals.

• Because of its genericity and simplicity, the technique could be included in software making use of Monte
Carlo integration or in common computational libraries (e.g., the GNU Scientific Library (GSL) that already
contains Monte Carlo integration routines with automated importance or stratified sampling). In this regard, the
computation of n∗Y (the optimal number of samples of Y per sample of X) can be easily automated (as a pre-
computation) because it only requires two runs of the same Monte Carlo algorithm as the one used to evaluate
the estimator An (only the number of samples n and nY changes).
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the IMobS3 and SOLSTICE Laboratories of Excellence (ANR-10-LABX-16-01 and ANR-10-LABX-22-01), by the
European Union through the program ”Regional competitiveness and employment” 2007-2013 (ERDF Auvergne
region), and by the Auvergne region. It is also founded by the CNRS through the PIE program PHOTORAD (2010-
11) and the PEPS program ”Intensification des transferts radiatifs pour le développement de photobioréacteurs a haute
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