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a b s t r a c t

The objective of this study is to examine several optimization problems in the batch mixing of segregating
particulate solids that can be set up and solved using Markov chain models. To improve the adequacy of
such models and exclude some physical contradictions that arise in the linear form, a non-linear Markov
chain model for the mixing of segregating components is proposed. Optimal solutions are obtained by
controlling the particle flow outside the mixing operating volume while the components are being loaded,
modifying particle circulation inside the mixing zone during the process, and by structuring the load in
the mixing zone. Solutions are found that not only reduce the negative influence of segregation, but
also exclude it altogether. The gain resulting from optimization grows with the rate of segregation. The
optimal solutions presented here can be used to improve the design of mixers.

Introduction

The mixing of solids is a complex process involving particles
migrating inside the operating volume of a mixer. A feature of
this process is that the components to be mixed often have a
tendency to segregate within each other. The segregation occurs
because of differences in the physical properties of the components,
such as particle size, density, shape, etc. The action of gravity is
always present in mixing, but affects different particles in different
ways, leading to segregation. It is practically impossible to achieve
a homogeneous mixture of segregating components, at least in
industrial-scale apparatus. However, it is possible to decrease the
negative influence of segregation by controlling the flow of particles
in the components to be mixed.

Modeling the process mathematically enables a better under-
standing, which in turn allows us to search for methods of
improvement. Different approaches have been used to model the
mixing of solids. In early studies of the mixing development,
analytical models based on the continuous convection–diffusion
equation were widely used (for example, Danckwerts (1953) and
Sommer (1996)). Despite the fact that it is still sometimes used, the
analytical results obtained with this approach are mostly of aca-
demic interest, because unrealistic assumptions must be imposed
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to obtain analytical solutions, and important physical features of
the process appear to be missed. Iddir, Arastoopour, and Hrenya
(2005) extended the kinetic theory to granular mixtures of different
mechanical properties (size, density, and/or restitution coefficient),
where each particle group was considered as a separate phase with
different average velocity and granular energy. This model was
applied to the simple shear flow of binary and ternary mixtures
of particles. However, their paper did not consider optimization
problems.

Bridgwater (2010, 2012) emphasized that the design and oper-
ation of the mixing process are very difficult, being largely based
on judgments rather than science. The next stage of development
is to build on emerging knowledge and methods so that the basics
for design can be formulated. Design will then become predictable,
with operation effectively controlling performance. Thus, the goal
should be to take the designer through a sequence of steps to the
most appropriate mixer size, configuration, and operating condi-
tions for a given process. The author sees the discrete element
method (DEM) simulation as an effective tool for this problem.
However, this method is very time consuming, which presents a
serious problem when it is necessary to calculate and compare a
lot of variants in the process regime and internal configuration of a
mixer.

Thus, despite the fact that many approaches have been used to
model the mixing process, the problem of theoretical optimization
is in the early stages of development. At this stage, it is impor-
tant to choose an appropriate mathematical tool that allows the



Nomenclature

D dispersion coefficient, m2/s
d probability of diffusion transition
k transition number
K period of segregating component loading
m number of cells for segregating component load
n number of cells in a chain
P, Pij matrix of transition probabilities and its entries
S, Sj state vector and its entries
Sm feed matrix
V rate of segregation, m/s
v probability of segregation transition

Greek symbols
! standard deviation
"t transition duration, s
"x height of a cell, m

optimization problems to be clearly defined and attains optimal
solutions that are not too far from practical realization.

According to the authors’ viewpoint, the theory of Markov
chains is such a tool. This theory is naturally related to the pro-
cess of mixing, because both concern the evolution of the state of
a stochastic system. The basic idea of the Markov chain approach
is to separate the operating volume of the mixer into small but
finite zones (cells), and then observe the evolution of the key com-
ponent concentrations in these zones at discrete points in time.
The application of this approach to describe the state of a mixture
after passing through a static mixer was reported by Wang and Fan
(1976). However, in their work, the evolution of process parameters
and the physical features of the mixing zone were not described.
Their model, which only allows transitions to neighboring cells,
was further developed by Wang and Fan (1977) and Fan, Lai, Akao,
Shinoda, and Yoshizawa (1978).

The general strategy of applying the theory of Markov chains to
model different processes in powder technology was described in
our previous papers (Ammarcha et al., 2013; Berthiaux & Mizonov,
2004; Berthiaux, Marikh, Mizonov, Ponomarev, & Barantzeva,
2004; Berthiaux, Mizonov, & Zhukov, 2005; Marikh, Berthiaux,
Mizonov, Barantseva, & Ponomarev, 2006). However, these reports
generally use the theory to describe the process, rarely to optimize it.
An attempt to use Markov chains to optimize the mixing process via
the optimal control of segregating component flows is presented
below.

A non-linear chain model of batch mixing

Detailed studies of the physical bases of the Markov chain mod-
els and the limits of their applicability were given by Berthiaux
and Mizonov (2004) and Berthiaux et al. (2005). It is necessary
to state the following concerning segregation. Since the objective
of this study is a binary mixture of particulate solids, the down-
ward segregation of a key component always goes together with
the upward segregation of a basic component, in accordance with
the continuity equation. In each cell, the relative content of the
basic component is equal to one minus the relative content of the
key component. Thus, to estimate the mixture quality, it is enough
to know how the key component is distributed over the operating
volume of a mixer. Namely, this distribution and its characteristics
will be the objective function of optimization.

To set up optimization problems on the basis of more or less
realistic models of the mixing process, let us examine the com-
mon linear Markov chain model, and identify some contradictions.

Fig. 1. Scheme of the cell model and structure of transitions from the j-th cell.

Suppose that a batch mixing zone is presented as a one-dimensional
array of n perfectly mixed cells, as shown in Fig. 1.

The key component distribution over the cells can be described
by the column state vector S = {Sj} of size n × 1. Assume that we
can observe the state of the process at discrete moments of time
tk = (k − 1)"t, where "t is the transition duration and k is the tran-
sition number, which can be interpreted as the discrete analog of
time. In this case, the evolution of the key component state (i.e.,
mixing kinetics) can be described by the recurrent matrix equation

Sk+1 = PSk, (1)

where P is the matrix of transition probabilities that distributes S
over the cells at each time step, or transition. The j-th column of P
belongs to the j-th cell, and contains the probabilities of transition-
ing to the neighboring cells, as shown in Fig. 1. These probabilities
have a symmetrical part d that is related to pure quasi-diffusion,
which always leads to a flattening of the distribution, and a non-
symmetrical part v that is related to segregation, which leads to
non-homogeneity. The values of d and v can be calculated as:
d = D"t/"x2, v = V"t/"x, where D is the dispersion coefficient, V
is the rate of segregation, and "x is the cell height. Thus, the matrix
P has the following form

P =

⎡

⎢⎢⎢⎢⎣

1 − d − v d 0 0 ...

d + v 1 − 2d − v d 0 ...

0 d + v 1 − 2d − v d ...

0 0 d + v ... ...

... ... ... ... ...

⎤

⎥⎥⎥⎥⎦
. (2)

Usually, V (or v) is held constant during the process, and the
model described by Eq. (1) is linear. However, this is a very rough
assumption that can lead to both quantitative errors and qualitative
contradictions. Indeed, a segregating component cannot segregate
inside itself, and, if the (j + 1)-th cell is filled with this component
(i.e., contains Smax of it), the value of v should be equal to zero. On
the contrary, if the (j + 1)-th cell does not contain any of the segre-
gating component, the value of v should be maximal. It is natural to



Fig. 2. Evolution of the key component distribution due to linear (a) and non-linear (b) cell model and mixing kinetics for both the models (c) at d = 0 and v = 0.3.

introduce the assumption that the dependence between v and Sk
j+1

is linear:

vk
j = v0

(
1 −

Sk
j+1

Smax

)
. (3)

Thus, the model becomes non-linear, because the matrix P
depends on the current state vector Sk and varies at each time
transition. Under this assumption, the matrix P takes the form

P(Sk) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − d − v(Sk
2) d 0 0 ...

d + v(Sk
2) 1 − 2d − v(Sk

3) d 0 ...

0 d + v(Sk
3) 1 − 2d − v(Sk

4) d ...

0 0 d + v(Sk
4) ... ...

... ... ... ... ...

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

A comparison of the process descriptions given by the linear
and non-linear models is shown in Fig. 2. At the initial point in
time, the two upper cells are filled with the segregating component
(hereinafter, it is supposed that Smax = 1). As a practical example, the
segregating component could be fine sand on top of coarse particles.
The input of energy and progress of time cause the fine particles to
trickle through the coarse particles and accumulate at the bottom
of the vessel as a result of gravity.

The linear model (Fig. 2(a), v = 0.3 = const.) gives an asymptotic
distribution, in which these two upper portions appear in one and
the same bottom cell, which is impossible. The asymptotic state
of the mixture becomes more non-homogeneous than the initial
one. On the contrary, the asymptotic distribution in the non-linear
model gives two lower cells filled with the component, which is
realistic. Fig. 2(c) shows the evolution of the non-homogeneity of
the mixture in terms of the standard deviation of the key com-
ponent content distribution, !. In the linear model, ! reaches a
minimum earlier, but this is greater than the minimum attained by
the non-linear model, i.e., this model reaches a higher maximum
mixing quality.

Formulation of the optimization problem

The technological objective of mixing solids is to obtain a
mixture in which a key component is distributed over the
mixture volume as homogeneously as possible, or meets the
technological requirements of mixture non-homogeneity. If the
non-homogeneity is characterized by the standard deviation of
a key component distribution !, this condition can be formu-
lated as ! → !min, or ! ≤ !c. A common way to begin the mixing

process is to place a segregating key component at the top of a
mixing zone (as shown in Fig. 1), and to run the mixer, i.e., to agi-
tate the mixture by mechanical action (vibration, blades, etc.). If
the agitation parameters are given (i.e., the values of d and v are
defined), the only way to optimize the process is to find the opti-
mal mixing time (see, for example, Fig. 2(c)) at which ! = !min.
However, what can be done if !min is greater than !c and does
not meet the technological requirements? According to the kinetic
Eq. (1), there are two possibilities: control the load of a key com-
ponent into a mixer (outside the matrix), or control the matrix of
transition probabilities at the same values of v and d (inside the
matrix).

Optimal control of load flow

Time-distributed load of a key component

Suppose that the total volume of a key component is such that
it occupies m upper cells of total n cells (see Fig. 1). At the point at
which the key component is loaded into the mixer, the initial state
vector of its distribution is

S0
j =
{

1, 1 ≤ j ≤ m

0, m < j ≤ n
, (5)

and its further transformation, in terms of segregating the upper
particles downward over the total time, is described by Eq. (1). It
is obvious that the negative influence of segregation will be miti-
gated if the segregation time decreases with growing level of the
particles. This can be achieved by means of the time-distributed
loading of the segregating component into the mixer, as shown in
Fig. 3.

In this case, we have something very similar to continuous mix-
ing that goes on until the key component is fully loaded, after
which we deal with pure batch mixing. Such a process can be called
semi-batch (or semi-continuous) mixing. The kinetics of continu-
ous mixing can also be described by the recurrent matrix equation

Sk+1 = PSk + Sk
f , (6)

where Sk
f is the feed vector that describes the amount of particles

added to the cells of the chain at each time transition.
Let us suppose that the cells m, m − 1, m − 2, . . . are filled with

the segregating key component after K time transitions. In this case,
the value of 1/K is the analog of the feed flow rate of a feeder that
fills the mixer during mK time transitions. The feed vector for such



Fig. 3. Scheme of the cell model with time-distributed load of segregating compo-
nent.

a process can be extracted from the feed matrix. An example for
m = 3 and K = 3 is shown below

Smk
f =

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 0 0 ...

0 0 0 1 0 0 0 0 0 ...

1 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 ...

... ... ... ... ... ... ... ... ... ...

⎤

⎥⎥⎥⎥⎦
. (7)

The n × 1 matrix of transition probabilities must be written for
the whole chain. However, the cells that are not involved in the
process at the current time transition must be locked to prevent
particles entering. This can be done as follows

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − d − vk
1 ek

2d 0 0 ...

d + vk
1 1 − d − ek

2d − vk
2 ek

3d 0 ...

0 d + vk
2 1 − d − ek

3d − vk
3 ek

4d ...

0 0 d + vk
3 ... ...

... ... ... ... ...

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

(8)

where the coefficient ek
j blocks the upper part of the chain if it is

equal to zero, and opens it up when equal to one. This coefficient
can also be extracted from the following matrix (example for m = 3
and K = 3)

e =

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 ...

0 0 0 0 0 0 1 1 1 ...

0 0 0 1 1 1 1 1 1 ...

1 1 1 1 1 1 1 1 1 ...

... ... ... ... ... ... ... ... ... ...

⎤

⎥⎥⎥⎥⎦
. (9)

It is easy to build algorithms to generate these matrices for any
n, m, and K.

An example showing the evolution of mixture non-homogeneity
for different variants of key component loading at d = 0.1 and v0 = 0.3
is illustrated in Fig. 4. Each curve begins at the point corresponding
to complete loading of the key component.

The bold curve shows the evolution for one-time loading, the
thin ones represent time-distributed loading with various periods
K. It is obvious that the thin curves should only be examined after
the number of transitions corresponding to complete loading of the

Fig. 4. Evolution of mixture non-homogeneity for different variants of key compo-
nent loading at d = 0.1 and v = 0.3.

key component (the left edge of the curves marked by dark circles).
There clearly exists an optimal value of K = 12, which gives a value of
!min that is almost half the magnitude of that for one-time loading.

Fig. 5 shows the generalization of numerical results for different
values of d and v. Each point of the surface for the time-distributed
load corresponds to the optimal value of K found in the numerical
experiments. The gain resulting from optimization increases with
the magnitude of v, and decreases with a rise in d. These findings
are obvious from a physical perspective. It is interesting that the
influence of d and v on !min in optimized regimes is much less
than in the non-optimized ones. However, such phenomena are
often found in optimization problems when the influence of process
parameters is “washed out” after the optimization.

Structured load

If a segregating component is loaded into a mixer as several
layers over its height, it is obvious that !min can be reached faster,
and will be smaller, in comparison to loading the component at the
very top of the mixer. However, loading the segregating component
layer by layer increases the duration of the loading operation, and
it is important to estimate the gain of this loading method in terms
of mixing time and mixture quality. To examine this, it is sufficient
to run the procedure given by Eq. (1) with different initial state
vectors. An example of this operation is shown in Fig. 6, where the
mixing kinetics for two initial state vectors are shown in the graph

Fig. 5. Minimal reachable ! at various v and d for one-time load of a key component
(1) and optimized time-distributed load (2) for n = 20 and m = 5.



Fig. 6. Influence of the initial vector structure on mixing kinetics.

field. Initially, the key component occupies the two upper cells, and
then separates into two parts, one being placed in the top cell, the
other in the middle of the mixer. It can be seen from the graphs that
the structured load attains !min twice as fast, and that the value of
!min itself is about half the size. Thus, it can be concluded that the
structured load is worthy of attention in mixing technology and
mixer design.

Optimal control of particle flows inside a mixer

It can be easily shown that the matrix of transition probabilities
provides an asymptotically homogeneous distribution if

m∑

i=1

Pij = 1, i = 1, . . ., m (10)

i.e., the sum of the entries in each row is equal to one. The matrix
given by Eq. (2) meets this condition only if v = 0 when there is
no segregation. The homogeneous distribution becomes unreach-
able if v /= 0, and we can speak only about when, or how, !min is
reached. However, modifying the particle flows inside the mixer
can improve the situation.

Let us make the following simple (and seemingly artificial)
transformation in the last column of the matrix

(11)

Condition (10) is now automatically satisfied, and the homo-
geneous asymptotic distribution becomes possible, even in the
presence of segregation. The matrix transformation given by Eq.
(11) means that the part v of the segregating component must be
taken from the bottom cell and moved to the top one. If segrega-
tion results from differences in component particle size, this can be
realized in practice. It is sufficient to place a sieve near the bottom
to separate small particles, and direct these particles to the top by
an elevator. This is called mixing with internal circulation of the
segregating component.

In the non-linear model described by the matrix in Eq. (4), the
values of v are unknown in advance, and numerical experiments

Fig. 7. Influence of circulation rate on ! at various v and d = 0.2.

are required to determine the optimal value of the circulation rate
vc. An example is shown in Fig. 7 for the value of ! versus the cir-
culation rate vc at different segregation rates. The optimal values of
vc providing asymptotically homogeneous distributions are lower
than the corresponding segregation rates. It was also found that the
value of d influences the curve of ! versus vc, but has no influence
on the optimal value vc. Thus, the circulation of the segregating
component in a mixer allows the development of an asymptoti-
cally homogeneous mixture that would be impossible in principle
without circulation.

Conclusions

The theory of Markov chains is well suited to the mixing process
so that the matrix of transition probabilities can be considered as a
mathematical image of a mixer, with the state and feed vectors
representing the current state of the mixture and the feed pro-
cess to the mixer. This allows some formal optimization problems
to be described that are directly related to mixing practice. Sev-
eral optimal solutions were obtained for the time-distributed load
of segregating components to a batch mixer, one-time structured
load to a batch mixer, and mixing with internal circulation of seg-
regating components. All these solutions can be more or less easily
implemented by new mixer designs, or by reconstructing exist-
ing ones. Although there is no detailed experimental validation of
the results obtained, the concept of time-distributed loading was
implemented in an industrial-scale batch blade mixer with a vol-
ume of 300 L and a vertical shaft, and equipped with a screw feeder
for pigment on its upper cover. The components to be mixed were
sand, ground PVC waste, and fine-ground heavy pigment, with a
strong tendency for segregation. The reconstruction of the mixer
enabled a reduction in the pigment ! value from 0.04 to 0.015 under
the same mixing time. Future developments of this approach will
examine the transition to 2D and 3D chain models to account for
more features of local particle migration, as well as applications to
continuous mixing.
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