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REGULARIZATION ESTIMATES AND CAUCHY THEORY FOR
INHOMOGENEOUS BOLTZMANN EQUATION FOR HARD
POTENTIALS WITHOUT CUT-OFF

FREDERIC HERAU, DANIELA TONON, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we investigate the problems of Cauchy theory and exponential
stability for the inhomogeneous Boltzmann equation without angular cut-off. We only
deal with the physical case of hard potentials type interactions (with a moderate angular
singularity). We prove a result of existence and uniqueness of solutions in a close-
to-equilibrium regime for this equation in weighted Sobolev spaces with a polynomial
weight, contrary to previous works on the subject, all developed with a weight prescribed
by the equilibrium. It is the first result in this more physically relevant framework for
this equation. Moreover, we prove an exponential stability for such a solution, with
a rate as close as we want to the optimal rate given by the semigroup decay of the
linearized equation. Let us highlight the fact that a key point of the development of our
Cauchy theory is the proof of new regularization estimates in short time for the linearized
operator thanks to pseudo-differential tools.
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1. INTRODUCTION

1.1. The model. In the present paper, we investigate the Cauchy theory and the asymp-
totic behavior of solutions to the spatially inhomogeneous Boltzmann equation without
angular cut-off, that is, for long-range interactions. Previous works have shown that there
exist solutions in a close-to-equilibrium regime but in spaces of type H q(e|”|2/ 2) which are
very restrictive. Here, we are interested in improving this result in the following sense:
we enlarge the space in which we develop a Cauchy theory in several ways, we do not
require any assumption on the derivatives in velocity and more importantly, our weight
is polynomial. We thus only require a condition of finite moments on our data, which is
more physically relevant. Moreover, we jointly obtain a convergence to equilibrium for the
solutions that we construct with an exponential and explicit rate.

We consider a system of particles described by its space inhomogeneous distribution
density f = f(t,x,v) with ¢t € RT the time, 2 € T? the position and v € R3 the velocity.
We hence study the so-called spatially inhomogeneous Boltzmann equation:

(1.1) Ohf+v-Vauf =Q(f, f)

The Boltzmann collision operator is defined as

Qo1 = [ Blo=v.0) (6L~ g.f) dodo.,
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Here and below, we are using the shorthand notations f = f(v), g« = g(vs), [/ = f(V')
and g, = g(v.). In this expression, v, v, and v’, v/, are the velocities of a pair of particles
after and before collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical law of elastic collisions):

v v, =0+ U;,
[0 + Jvu® = [o'7 + [0},
so that the pre-collisional velocities are given by:

v+ v vV —0 v+ U v —v
v = 2*+| 2*|a, vl = 2*—| 2*|a, oe S

The Boltzmann collision kernel B(v — v,, o) only depends on the relative velocity |v — v.|
and on the deviation angle 6 through cosf = (k,0) where k = (v — vy)/|v — vi| and (-, -)
is the usual scalar product in R?. By a symmetry argument, one can always reduce to the
case where B(v — vy, 0) is supported on (k,0) > 0 ie. 0 <6 < 7/2. So, without loss of
generality, we make this assumption.

In this paper, we shall be concerned with the case when the kernel B satisfies the
following conditions:

e It takes product form in its arguments as
(1.2) B(v —vy,0) = ®(Jv — vi]) b(cos 0);

e The angular function b is locally smooth, and has a nonintegrable singularity for 6 — 0:
it satisfies for some ¢, > 0 and s € (0,1/2) (moderate angular singularity)

Cp 1

(1.3) Ve e (0,m/2], ST < sinfb(cosf) < W;

e The kinetic factor ® satisfies
(1.4) D(lv —wvi]) = |v—w|" with ~€(0,1),

this assumption could be relaxed to assuming only that ® satisfies ®(-) = Cy |- |7 for
some Cg > 0.

Our main physical motivation comes from particles interacting according to a repulsive
potential of the form

(1.5) o(r) = r_(p_l), p € (2,+00).

The assumptions made on B throughout the paper include the case of potentials of the
form (L)) with p > 5. Indeed, for repulsive potentials of the form (L), the collision kernel
cannot be computed explicitly but Maxwell [28] has shown that the collision kernel can be
computed in terms of the interaction potential ¢. More precisely, it satisfies the previous
conditions (L2)), (L3]) and (L4) in dimension 3 (see [13| [14], B9]) with s := p%l € (0,1)
and vy := g%‘rl’ € (-3,1).

One traditionally calls hard potentials the case p > 5 (for which 0 < v < 1), Mazwell
molecules the case p = 5 (for which v = 0) and soft potentials the case 2 < p < 5 (for
which —3 < v < 0). We can hence deduce that our assumptions made on B include the
case of hard potentials.
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Let us give a weak formulation of the collision operator (). For any suitable test func-
tion ¢ = p(v), we have:

/Qf, ) o(v) d

(1.6)
= Z/ B(v — v, 0) (fif/_f*f) (90+(P* _90,_90;) do dv, dv.
R3xR3xS2

From this formula, we can deduce some features of equation (IIJ): It preserves mass,
momentum and energy. Indeed, at least formally, we have:

[, QU-D@e)dr =0 for o) = Lo, ol

from which we deduce that a solution f to equation (I.I]) is conservative, meaning that
for any t > 0,

(1.7) / flt,z,v)p(v)dvde = / fo(z,v)p(v)dvdz for ¢(v)=1,v,v|>.
T3 xR3 T3 xR3

We introduce the entropy H(f) = [13,ps [ 10g(f) dvdz and the entropy production D(f)
defined through:

d
D(f) i= =L H()
(18) _ 1/ B(v — v, 0) (f'f — ff*)logff* do dv, dv dz.
4 T3 xR3 xR3 xS2 ’ ) ff*

Boltzmann’s H theorem asserts that

(1.9 GHD =-D() <0

and states that any equilibrium (i.e. any distribution which maximizes the entropy) is a
Maxwellian distribution. Moreover, it is known that global equilibria of (L]) are global
Maxwellian distributions that are independent of time ¢ and position x. In this paper, we
shall only consider the case of an initial datum satisfying

(1.10) / fodvdxr =1, / fovdvdz =0, / folvPdvdz = 3,

T3 xR3 T3 xR3 T3 xR3
and therefore consider p the Maxwellian with same mass, momentum and energy as fy:
(1.11) (o) = (2m) 327 101*/2,

1.2. Notations and function spaces. Let X,Y be Banach spaces and consider a linear
operator A : X — X. When defined, we shall denote by Sx(t) = e the semigroup
generated by A. Moreover we denote by Z(X,Y") the space of bounded linear operators
from X to Y and by || - ||(x,y) its norm operator and we shall use the usual simplifica-
tion Z(X) = A(X, X).

For simplicity of notations, hereafter, we denote (v) = (1 + |[v]?)/2; a ~ b means that
there exist constants cq,co > 0 depending only on fixed numbers such that ¢16 < a < ¢9b;
we shall use the same notation C for positive constants that may change from line to line
or abbreviate “ < C' 7 to “ <7, where C is a positive constant depending only on fixed
number.
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In what follows, we denote m(v) := (v)* with k& > 0, the range of admissible k will be
specified throughout the paper. We also introduce x € D(R) a truncation function which
satisfies 1|_; ;) < x < 1|_p9) and we denote x4 (-) := x(-/a) for a > 0.

Through all the paper, we shall consider functions f = f(z,v) with € T3 and v € R3.
Let v = v(v) be a positive Borel weight function and 1 < p < oco. We then define the
space L% ,(v) as the Lebesgue space associated to the norm, for f = f(z,v),

12z, 0) = Nzl e = [l Fllcel]

which writes if p < oo:

1/p
1fllze o) = </Ti 1£ (@, e dx)

_ </T3 /RB (2, 0)[P v(v)? dvd:z:) Up.

We define the high-order Sobolev spaces H? H:(v), for n, ¢ € N:

(1.12) B = > 108022 .
la|<¢, [B|<n
|| +| 8| <max(¢,n)
This definition reduces to the usual weighted Sobolev space Hy ,(v) when £ = n. We use
Fourier transform to define the general space Hy, ,(v) for r € R*:

13 W= W, = 3 [ IR+ P ot dn

ez’

where the hat corresponds to the Fourier transform in both z (with corresponding vari-
able ¢ € Z3) and v (with corresponding variable € R?). In this case, the norms given
by (LI2) and (II3]) are equivalent. We won’t make any difference in the notation and will
use one norm or the other at our convenience. It won’t have any impact on our estimates
since it will only add multiplicative universal constants.

Let us remark that by classical results of interpolation (see for example [10]), for ev-
ery r € RT, one can write

H (m) = [ ), B )|
’ ’ ’ r—|r],2

The notation used above is the classical one of real interpolation. For sake of completeness,
we briefly recall the meaning of this notation. For C' and D two Banach spaces which are
both embedded in the same topological separating vector space, for any z € C' 4+ D, we
define the K-function by

K(t.2) = int (lelc+ldlp), vi>0
We then give the definition of the space [C, D]y, for § € (0,1) and p € [1, +oo]:

[C, D]y, == {z €C+D, tes K(t,2)/t? € LP (dt/tl/p>} .
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We also introduce the fractional Sobolev space H;%(y) for r, ¢ € R™ associated to the
norm:

(1.14) 1 s ) = 1o l3ms = > / (LR @+ ) frEn) dn.
£ezs Ry
When r € N, we can also define the space Hy'5(v) through the norm:
(1.15) 11y = D / VLI soydz = D IVEFIT2 a5
o<j<r /T2 0<j<r

As previously, when r € N, the norms given by ([L14]) and (II5]) are equivalent and we
will use one norm or the other at our convenience. Finally, denoting for ¢ € R,

2 o 2 _ 25 177 (m) |2
2= 101 = [ 1o (Tt an
n
we introduce the space Hys(v) for (n,s) € N x Rt defined through the norm:

(1’16) ”f”?q;:qj(u) = Z /11‘3 “Vif“?qg(u) dr = Z “Vg;f“iggg(y)’

0<j<n 0<j<n

Notice also that in the case ¢ = 0, the spaces H?L2(v) and H:?B (v) associated respectively
to the norms given by (L.12) and (L.I3]) are the same.

We now introduce some “twisted” Sobolev spaces (useful for the development of our
Cauchy theory in Section []), we denote them Hy3(v) for (n,¢) € N x RT and they are
associated to the norm:

w1 W Bmsey = > /TS VL s y-230mdz = D V3 FIT2 15 (o205

0<j<n 0<j<n
where s is the angular singularity of the Boltzmann kernel introduced in (L3]). For the
case ¢ = 0, since the notation is consistent, we will use the notation H?L2(v) or 7-[2,’8 (v)
indifferently.
Finally, following works from Alexandre et al. (see [6]), we introduce an anisotropic

norm that we denote || - [| =~ (the notation will be explained by Lemma 2.T) and which is
defined through

(1.18) £ 1 = /RSXRSXS2 bs(cos 0) g (0,) 77 (F (W) — f0)/?)? do du, dv.

In this definition, 7 is the power of the kinetic factor in (I4]) and p is given by (LII)).
Moreover, we recall that b is the angular function of the Boltzmann kernel which sat-
isfies (3] and we define by as the following truncation of b: bs(cos®) := x5(0)b(cos 0)
with ¢ fixed so that the conclusion of Lemma holds. Since the constant ¢ is fixed, we
do not mention the dependency of the norm defined above with respect to §. Let us also
introduce the space H, " (v) associated with the norm

(1.19) ||f||?qgv*(y) = ||f||ig(<v>w/2y) + ||fV||25*

For n € N, we also define the space Hj " (v) associated with the norm

(1-20) ”f”ig;g’*(y) = Z /11‘3 Hvif“%{j*(@})*sty) dx
0<j<n ™ "=

where s is still the angular singularity in ([I3]).
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In what follows, we shall state our main results as well as some known results on the
subject.

1.3. Cauchy theory and convergence to equilibrium. We state now the main result
on the fully nonlinear problem (). Let m(v) = (v)* with

21
k’>7+’7+228.

We then denote X := H3L2(m) and we introduce Y* := H25*(m) (see (LIT) and (L20)
for the definition of the spaces).

Theorem 1.1. We assume that fo has same mass, momentum and energy as p (i.e.
satisfies (LIQ) ). There is a constant £g > 0 such that if || fo — p||x < €0, then there exists
a unique global weak solution f to the Boltzmann equation (1), which satisfies, for some
constant C > 0,

I1f = 1l oo ([0,00);%) + I1f = el 20,0007 %) < Ceo-
Moreover, this solution satisfies the following estimate: For any 0 < Ay < A there ex-
ists C > 0 such that

Vi>0, | f(t) = ullx < Ce 2| fo— plx,

where A1 > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem [{.1]

We refer to Remark [5.1] in which the imposed condition on the power k of our weight
is explained.

Let us now comment our result and give an overview on the previous works on the
Cauchy theory for the inhomogeneous Boltzmann equation. For general large data, we
refer to the paper of DiPerna-Lions [I7] for global existence of the so-called renormalized
solutions in the case of the Boltzmann equation with cut-off. This notion of solution has
been extended to the case of long-range interactions by Alexandre-Villani [8] where they
construct global renormalized solutions with a defect measure. We also mention the work
of Desvillettes-Villani [16] that proves the convergence to equilibrium of a priori smooth
solutions for both Boltzmann and Landau equations for large initial data. Let us point
out the fact that a consequence of our result combined with the one of Desvillettes and
Villani is a proof of the exponential H-theorem: We can show exponential decay in time of
solutions to the fully nonlinear Boltzmann equation, conditionnally to some regularity and
moment bounds (the assumption on the exponential lower bound can be removed thanks
to the work of Mouhot [31]). As noticed in [I9] for example in Theorem 5.19, the result of
Desvillettes and Villani which is expressed in terms of relative entropy can be translated
into stronger norms. This fact allows to do the link between their result and ours.

In a close-to-equilibrium framework, Gressman and Strain [18] in parallel with Alexan-
dre et al. [6] have developed a Cauchy theory in spaces of type H*H.(u~'/?). One of the
famous difficulty of the Boltzmann equation without cut-off is to well understand coerciv-
ity estimates. In both papers [6] and [I8], the gain induced is seen and understood through
a non-isotropic norm. Our strategy uses this type of approach but we also exploit the fact
that the linearized Boltzmann operator can be seen as a pseudo-differential operator in
order to understand the gain of regularity induced by the linearized operator. It allows
us to obtain regularization estimates (quantified in time) on the semigroup associated to
the linearized operator (see Theorem [[2). To end this brief review, we also refer to a
series of papers by Alexandre et al. [3, 4, 5] [0}, [7] in which the Boltzmann equation without
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cut-off is studied in various aspects (different type of collision kernels, Cauchy theory in
exponentially weighted spaces, regularity of the solutions etc...).

Let us underline the fact that Theorem [[.I] largely improves previous results on the
Cauchy theory associated to the Boltzmann equation without cut-off for hard potentials
in a perturbative setting. Indeed, we have enlarged the space in which the Cauchy theory
has been developed in the sense that the weight of our space is much less restrictive (it is
polynomial instead of the inverse Maxwellian equilibrium) and we also require few assump-
tions on the derivatives, in particular no derivatives in the velocity variable. However, we
need three derivatives in the space variable (Gressman and Strain only require two deriva-
tives in  in [I8]): This is the counterpart of the gain in weight we have obtained. Indeed,
our framework is less favorable and needs more attention due to the lack of symmetry
of the operator in our spaces to obtain nonlinear estimates on the Boltzmann collision
operator. And thus, to close our estimates, we require regularity on three derivatives in .

1.4. Strategy of the proof. Our strategy is based on the study of the linearized equation.
And then, we go back to the fully nonlinear problem. This is a standard method to develop
a Cauchy theory in a close-to-equilibrium regime. However, we point out that both studies
of the linear and the nonlinear problems are very tricky.

Usually, for example in the case of the non-homogeneous Boltzmann equation for hard
spheres in [19], the gain induced by the linear part of the equation is quite easy to un-
derstand and directly controls the loss due to the nonlinear part of the equation so that
the linear part is dominant and thus dictates the dynamics of the equation. In our case,
it is more difficult because the gain induced by the linear part is at first sight not strong
enough to control the nonlinear loss and it is not possible to conclude using only rough
estimates on the Boltzmann collision operator (this fact was for example pointed out by
Mouhot and Neumann in [34]). As a consequence:

e We establish some new very accurate nonlinear estimates on the Boltzmann collision
operator (see Lemma [2.4]) (notice that in the spirit of what was done in [12] by Carrap-
atoso, Wu and the third author, we work in Sobolev spaces in which the weights depend
on the order of the derivative in the space variable).

e We analyze precisely the gain induced by the linear part of the equation in both z and v
variables. It is crucial for two reasons: First, to get the large time behavior of the
semigroup associated to the linearized operator in our large Banach space in which we
want to develop our Cauchy theory (Theorem [[3]); secondly, to be sure that the linear
gain exactly compensates the nonlinear loss identified in Lemma 24l This analysis is
based on two different points of view: The one already adopted by Alexandre et al. in [5]
using the anisotropic norm defined in (LLI8]) (we use it in our dissipativity estimates in
Lemma and in our nonlinear estimates in Lemma 2.3]); but also a new one which is
detailed in the next paragraph and consists in new short time regularization estimates
for the linearized operator (we use it in Section [B] to conclude the proof of Theorems
and [L1]).

Those key elements allow us to close our estimates and thus, to develop our Cauchy theory

in our “twisted” Sobolev spaces.

Concerning the above second point, notice that one could probably improve our analysis
in the sense that we do not clearly make the link between the regularization properties
studied in Section Bl and the gain of regularity provided by the norm (ILI8]). Doing the
link between those two type of estimates would require to be more accurate in Section Bl
Indeed, in the latter section, we authorize ourselves not to be optimal in our estimates in
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terms of weights because we have some leeway in the use of Theorem that we make
in Subsections and (.31 Conversely, we have to get sharp estimates on the gain of
regularity in the coercivity estimates because it has to match exactly the loss of regularity
and weights coming from the nonlinear part of the equation (see Subsection [5.4]).

1.5. Regularization properties. In this paragraph, we state our main result about the
short time regularization properties of the linearized Boltzmann operator. A keypoint
is that the linearized operator is seen as a pseudo-differential operator, following the
framework introduced in [2] by Alexandre, Li and the first author.

The linearized operator around equilibrium is defined at first order through

and we denote Sy (t) the semigroup associated with A. In the following statement, we de-
note (Hy5((w)F)) (resp. (Huh*°((0)¥))) the dual space of Hy5((v)*) (resp. Hib™((v)F))
with respect to Hy9((v)¥). Here is our main regularization result (the condition on the

weights in this result are made in order to be sure that our operator A generates a semi-
group in the spaces that we consider - see the conditions in Theorem [[.3)).

Theorem 1.2. Let r € N, k' > 0, k > max(y/2 + 3 + 2(max(1,7) + 1)s, k' + v + 5/2).
Consider hg € HS((0)%), resp. ho € (Hys((w)F). Then, there exists C\. > 0 independent
of ho such that for any t € (0,1],

Cy
ISA@)holl grs (wyry < mHhOHH;:%(@)’“)’

respectively

Cr
HSA(t)hOHH;:%«@k’) < mHhOH(H;:f}((v)k))"
Consider hg € HyS((v)%), resp. ho € (HiL ™ ((0)%)). Then, there exists C. > 0 indepen-
dent of hg such that for any t € (0,1],
!

1Sa ol grre0 ey < F7ars 1ol gz oy,

respectively
C/
T
158 ERoll g0 oy < 57275 IR0l ez opeyy-

First, we have to underline that it is the first result of regularization quantified in
time on the Boltzmann equation without cutoff. It is well-known that the singularity of
the Boltzmann kernel in the non cutoff case implies that the Boltzmann operator without
cutoff (that we will describe later on) roughly behaves as a fractional Laplacian in velocity:

Q(g,h) = —Cy(—Ay)°h + lower order terms

with Cy depending only on the physical properties of g. This type of result has already
been studied in the homogeneous and non-homogeneous cases. As mentioned above, the
gain in velocity is quite obvious to observe even if it is complicated to understand it
precisely: Up to now, the most common way to understand it is through an anisotropic
norm (see [I8] by Gressman and Strain and [5] by Alexandre et al.). It is then natural
to expect that the transport term allows to transfer the gain in velocity to the space
variable. We refer to the references quoted in [2] for a review of this type of hypoelliptic
properties. Let us mention that the paper [2] by Alexandre et al. is the first one in which
the hypoellipticity features of the operator have been deeply analyzed.
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Our strategy here is to use the same method as for Kolmogorov type equations intro-
duced in [22] by the first author. In short, except from the fact that the use of pseu-
dodifferential tools is required and thus there are many additional technical difficulties,
the spirit of the method is the same as for the fractional Kolmogorov equation in [23].
For purposes of comparison, we can also mention that this type of strategy has also been
applied successfully to the Landau equation in [12] by Carrapatoso et al.. However, the
study of this kind of properties is much harder in the case of the Boltzmann equation
without cutoff since the gain in regularity is less clear and consists in an anisotropic gain
of fractional derivatives: We have to exploit the fact that one can write a part the Boltz-
mann linearized operator as a pseudo-differential operator, in the spirit of what has been
done in [2].

Indeed, we adapt here some ideas from there allowing to do computations for operators
- including the Boltzmann one - whose symbols are in an adapted class called here Sk,
where K is a large parameter. Let us point out that those classes are complicated partly
because the order of the symbols does not decrease with derivation, which induces some
great technical difficulties. The computations are done using the Wick quantization, widely
studied in particular by Lerner (see [26] and [27]), which has very nice positivity properties.
This allows to adapt to the Boltzmann case the Lyapunov strategy already introduced
in [22] for the Kolmogorov case and in [23] for the fractional Kolmogorov one.

It is also important to underline the fact that this pseudo-differential study is not done
on the whole linearized operator but only on a well-chosen part of it (this is the object of
Subsection B.)). Indeed, thanks to Duhamel formula, we will then be able to recover an
estimate on the whole semigroup, the one associated to A (see Lemma B.3]).

Even if we do not investigate this problem in this paper, let us finally mention that we
believe that the solution that we construct in Theorem [[.T] immediately becomes smooth.
Indeed, we think that the regularization estimates on the linearized operator performed
thanks to the Lyapunov functional introduced in Paragraph [3.2.4] could be propagated to
the whole nonlinear equation: The additional nonlinear terms would be treated using our
nonlinear estimates and the fact that our solutions are close to the equilibrium. This may
be the aim of a future work.

1.6. Exponential decay of the linearized semigroup. We study spectral properties
of the linearized operator A in various weighted Sobolev spaces of type HPH((v)*) up
to L2 ,((v)*) for k large enough. It will provide us the large time behavior of the semigroup
in all those spaces and in particular in the one in which we want to develop our Cauchy
theory. It is important to highlight the fact that, in order to take advantage of symmetry
properties, most of the previous studies have been made in Sobolev weighted spaces of
type Hg,v(,u_l/ 2). We largely improve theses previous results in the sense that we are
able to get similar spectral estimates in larger Sobolev spaces, with a polynomial weight
and with less assumptions on the derivatives. Here is a rough version of the main result
(Theorem [A.T]) that we obtain on the linearized operator A:

Theorem 1.3. Let £ be one of the admissible spaces defined in [A3)). Then, there exist
explicit constants Ay > 0 and C > 1 such that

Vt>0, Vhoe€&, |Sa(t)ho—Tlghgle < Ce ! ||hg — Hoholle,
where Iy the projector onto the null space of A defined by (1.23).

As mentioned above, the non homogeneous linearized operator A (and its homogeneous
version Lh = Q(u,h) + Q(h,u)) has already been widely studied. Let us first briefly
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review the existing results concerning spectral gap estimates for the homogeneous case.
Pao [306] studied spectral properties of the linearized operator £ for hard potentials by non-
constructive and very technical means. This article was reviewed by Klaus [24]. Then,
Baranger and Mouhot gave the first explicit estimate on this spectral gap in [9] for hard
potentials (y > 0). If we denote D the Dirichlet form associated to —L:

D(h) := /RB (—Lh) hp~t do,

and N (£)* the orthogonal of the null space of £, N'(£) which is given by

N (L) = Span{p, vip, vap, v3p, o] 1}
the Dirichlet form D satisfies
(1.21) Yhe N(L)E, D) > X Hh”iz(/fw),
for some constructive constant Ao > 0. This result was then improved by Mouhot [32]
and later by Mouhot and Strain [35]. In the last paper, it was conjectured that a spectral
gap exists if and only if v + 2s > 0. This conjecture was finally proven by Gressman
and Strain in [I8]. Finally, let us point out that the analysis that we carry on can be
seen as the sequel of the one handled in [37] by the third author which focuses on the
homogeneous linearized operator £. We improve it in several aspects: We are able to deal
with the spatial dependency and we are able to do computations in L? (only the L!-case
was treated in the latter).

Concerning the non-homogeneous case, we state here a result coming from Mouhot
and Neumann [34] (which takes advantage of the results proven in [9] by Baranger and
Moubhot), it gives us a spectral gap estimate in H. g,v(/fl/ 2), ¢ € N*, thanks to hypocoerciv-
ity methods. Let us underline the fact that it provides us the existence of spectral gap and
an estimate on the semigroup decay associated to A in the “small” space F = Hg,v(u_l/ 3,
which is a crucial point in view of applying the enlargement theorem of [19]. It is also
important to precise that Mouhot and Neumann [34] only obtain a result on the linearized
operator, they are not able to go back to the nonlinear problem.

Theorem 1.4 ([34]). Consider E := Hi,(u=Y?) with ¢ € N*. Then, there exists a
constructive constant Ao > 0 (spectral gap) such that A satisfies on E':

(i) The spectrum X(A) C {z € C:Re z < =)o} U{0};
(i) The null space N(A) is given by

(1.22) N(A) = Span{p, vi s, vapt, vap, [v]*
and the projection Iy onto N(A) by

3
Hoh:</ hdvd:z:),u+z</ vﬂzdvdx)vi,u
T3 xR3 i—1 T3 xR3

2 _ 2 _
[ 0P =3 e (P =3)
T3 xR3 6 6

(iii) A is the generator of a strongly continuous semigroup Sa(t) that satisfies

(1.24) Vt>0,Vhy € E, |[Sa(t)ho — ohol|lp < e_AOtHho — ohol -

(1.23)

To prove Theorem [[L3], our strategy follows the one initiated by Mouhot in [33] for
the homogeneous Boltzmann equation for hard potentials with cut-off. This argument
has then been developed and extended in an abstract setting by Gualdani, Mischler and
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Mouhot [19], and Mischler and Mouhot [30]. Let us describe in more details this strat-
egy. We want to apply the abstract theorem of enlargement of the space of semigroup
decay from [19] 30] to our linearized operator A. We shall deduce the spectral/semigroup
estimates of Theorem [[.3] on “large spaces” £ using the already known spectral gap es-
timates for A on Hg,v(,u_lp), for ¢ > 1, described in Theorem [[4 Roughly speaking,
to do that, we have to find a splitting of A into two operators A = A + B which satisfy
some properties. The first part A has to be bounded, the second one B has to have some
dissipativity properties (see Subsection [£.4]), and also the operator (ASg(t)) is required
to have some regularization properties (which will be satisfied thanks to Theorem in
our case). Note that, compared to the work by the third author [37], a new splitting of
the linearized operator is exhibited and both the dissipativity and regularity estimates are
completely new.

1.7. Outline of the paper. We end this introduction by describing the organization of
the paper. In Section Bl we prove various estimates on the Boltzmann collision operator.
Section [Blis dedicated to the proof of Theorem (note that the pseudodifferential study
is confined to Subsection B.2]). In Section @], we study the linearized equation and develop
our dissipativity estimates before proving Theorem Finally, in Section Bl we end the
proof of our main result Theorem 11

Acknowledgments. This research has been supported by the Ecole Normale Supérieure
through the project Actions Incitatives Analyse de solutions d’équations de la théorie
cinétique des gaz. The first author thanks the Centre Henri Lebesgue ANR-11-LABX-
0020-01 for its support and the third author thanks the ANR EFI: ANR-17-CE40-0030.
The authors thank Stéphane Mischler and Kleber Carrapatoso for fruitful discussions.

2. PRELIMINARIES ON THE BOLTZMANN COLLISION OPERATOR

In this part, we give estimates on the trilinear form (Q(g, h), f) in our physical frame-
work (meaning that the collision kernel B satisfies conditions ([2), (L3), (L4])). We
start by recalling some homogeneous estimates and then establish some new estimates in
weighted Sobolev (or Lebesgue) non homogeneous spaces. These estimates will be used
in the linear (Section M) and nonlinear (Section [l) studies. At the end of this section, we
also give some estimates that will be useful in the study of regularization properties of the
linearized operator (see Section []).

For sake of clarity, we recall that m(v) = (v)* with k > 0 and that we will specify the
range of admissible &k in each result.

2.1. Bound on the anisotropic norm. In this subsection, we compare the anisotropic
norm defined in (LI9) with usual Sobolev norms.

Lemma 2.1. Let k > 0. We have the following estimate: For g € H3((v)¥/**5m),
829l prs (oyrr2my S Nl ez my S NGl ars (oyorz+5my-

Proof. Adapting the proof of [2I, Theorem 3.1], we know that there exist ¢y and ¢; such
that

”gmH?{g* 2 Co 52_25”9”?{3(@)%2@ —a 52_28”9“%2«@#2"1)-



BOLTZMANN EQUATION WITHOUT CUT-OFF 13

As a consequence, we have for A € (0, 1),
”gH?{;‘»*(m) = Hg”i%(@)wﬂm) + HgmH?ﬁ*
> Hg”i%(@)wﬂm) + )‘Hgm”iﬁ,*
> H9||i%(<v>w/2m)(1 —Aa 52_28) + Aco 52_28||9H§{5(<v>w/2m)-

Taking A > 0 small enough, we obtain the bound 52_28||g\|H5(<v>7/2m) S N9l g (my- The
reverse bound is directly given by [0, Lemma 2.4] since

/ bs (cos 0) s (v2) ™7 (g'm! (V)% — gm(v)7/?)? do du, dv
R3XxR3xS?

< / b(cos 0) s (v,) " (g'm! (W')1/? — gm(v)??)? do dv, dv.
R3xR3xS2
U

We will use the fact that our lower bound in the previous lemma depends on ¢ in the
proof of Lemmas and 431 However, in the next subsection, ¢ is fixed so that the
conclusion of Lemma is satisfied, we thus do not mention anymore the dependency of
constants with respect to 9.

2.2. Homogeneous estimates.
Lemma 2.2 ([20]). For smooth functions f, g, h, one has:
QU 9), M) 2l S Il 2oy 191l st coymny 1PN sz oy vy
with <1, ¢ € [0,2s] satisfying 1 + 2 = 2s and Ny, No > 0 such that Ny + No = v + 2s.

The goal of what follows is to extend this type of estimates to polynomial weighted
Lebesgue spaces: Lemma 23] is a “weighted version” of Lemma 2.2]

Lemma 2.3. Assume k > v/2+ 3 + 2s.
(i) For any ¢ >~ + 1+ 3/2, there holds

2.1) KQUf9), Lz )l S I Lz cwyey 191 st oy™amy 1PN 52 (oynamy

+ 1l 22 wyrr2my 19112 (yey 1211 L2 () /2m)

with <1, s2 € [0,2s] satisfying 1 + 2 = 2s and N1, No > 0 such that Ny + No = v+ 2s.
(it) For any £ >4 —~ + 3/2, there holds

(22) Q(£.9): 9) 2| S IF 22wy 191z oy I 22 0yr720m) 191 22 0)2) 190 22 g0y 721m)-
Proof of (i). We write

QU Wiz = [ B v,0) (Sl ~ fug) hm? dodu, do
R3xR3xS?
:/ B(v —v.,0) (fig'm' — fegm) hmdo dv, dv
R3xR3xS?

+/ B(v —v.,0) fighm (m —m')do dv, dv
R3 xR3xS2

=11 + Is.
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We deal with the first term 7 using Lemma
I = (Q(f, gm)vhm>L% S ”f”L}J((v)W?S) |’9HH31(<U>N1m) Hh”H?((v)sz)
SN2y N9l Erst oy™amy 1P Es2 (o) V2 imy

because £ > vy 4 2s + 3/2, with ¢, ¢ € [0, 2s] satisfying ¢; + ¢o = 2s and with Ny, Ny > 0
such that Ny + No = v + 2s. To deal with I, we use the following estimate on |m’ — m)|
(see the proof in [3, Lemma 2.3]):

(2.3) im’ — m| < sin(6/2) <m (W) (0)EL 4 sink1(9/2) m;) .
Notice that |[v — v,| = [v/ — v)| < |v — v)| which implies
(2.4) o — .| S 0 =Vl o — 72 S ()2 ) ()

Also, we have,
(25) [o— v S = o["? sinT2(0/2) [ — wl[V/? S sin2(0/2) (o) (o) ()72,

This bound induces the appearance of a singularity in #. However, we notice that in the
third term of the estimate (2.3]) we have a gain in the power of sin(f/2) depending on the
value of k, the power of our polynomial weight. As a consequence, if k is large enough,
we can keep a power of sin(f/2) that is large enough to remove the singularity of b(cos )
at 0 = 0. Consequently, we have:

125/ b(cos ) sin(0/2) v — v | fLl|d ||h] m
R3 xR3 xS2

(m' + (0l) (W)L + sinf1(0/2) m;) do dv, dv
=: Ip1 + Ipo + Io3.

The two first terms I and Iy are treated in the same way using the estimate (2.4]), we
obtain:

Ioy 4+ Ipp < / b(cos B) sin(0/2) | f2|(w" )+ g |m! ()72 |k m(v)/? do du,, dv
R3 xR3xS2

1/2
S </ blcos 0) sin(8/2) |f'|(v')7 (gl)*(m!)*(v})” do do. dv)
R3 xR3xS?2
1/2
X </ b(cos §) sin(0/2) | /| ()T h2 m?2(v,)Y do du, dv>
R3xR3xS?

=: Jl X JQ.
The term Jj is easily handled just using the pre-post collisional change of variable:

J12 5 ||f||L11}((u)w+1) ||9||%g((v>w/2m) 5 ||f||Lg((u)Z) ||9||%%(<v>v/zm)

since £ > v+ 1+ 3/2. To deal with Jy, we use the regular change of variable v — v’

meaning that for each o, with v, still fixed, we perform the change of variables v — v'.
This change of variables is well-defined on the set {cos# > 0}. Its Jacobian determinant
is

dv’
dv

1 (K- 0)?
—g(l+/€0)— 1 s
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where k1= (v—1,)/|v—v.| and &' := (v —v,)/|v' — v4|. We have k"-c = cos(0/2) > 1//2.
The inverse transformation v/ — 1,(v') = v is then defined accordingly. Using the fact
that

cos=r-0=2(K-0)2—=1 and sin(6/2) = /1 —cos2(0/2) = /1 — (k' -0)2

we obtain

/ b(cos 0) sin(0/2) |F'|(/)"*+! do du

R3xS2
/ (K- 0)? = 1)1 — (& -0)2|f () dodv
R3 xS2

/ (K -0)? = 1)1 — (& -0)2|f ()T d 4d1)2
a>1/f (/1~a)

5/ b(cos 20) sin@da/ |f](v)7 L do.
S2 R3
We deduce:

I3 S Iy 1B 2 quyrrzamy S 12 qwpe) 112 (uyrrzmy-

In summary, gathering the three previous estimates, we have

Ioy + Ioo S 1l 22wy 191 22 oyrr2my 1] 22 oy /2m) -

Concerning I»3, we take advantage of the bound given by (Z.3)):

B S [ beost) sint 6/ fm (012 | ()7 Bl m (02 dordo. do
R3 xR3 xS2

1/2
N </ b(cos 0) sin®=/2(0/2) |/ |(v/)7 | £L1*m.* (v))" do do, dv)
R3 xR3 xS2

1/2
X (/ b(cos 0) sin*=772(6/2) |¢'|(v")Y K2 m? (v)Y do du, dv)
R3 xR3 xS2
=: T1 X Tg.
As far as Ty is concerned, a simple pre-post collisional change of variable allows us to get

T? < Ngllza o IF T2 oyrrzmy S Nallzz ey 1172 qoprr2my

since ¢ > ~ + 3/2. The second term requires more attention since we have to perform a
singular change of variable v, — v’ showed for example in the proof of Lemma 2.4 in [3].
Recall that the Jacobian of this transform is

dv 4

= <166072%,60¢(0,7/2],

do’ sin?(0/2) — (0,/2

therefore, this change of variable gives rise to an additional singularity in # around O.
However, we can take advantage of the fact that we have a power k in sin(6/2), indeed
taking k large enough allows us to control this singularity. Notice that # is no longer the
good polar angle to consider, we set 1) = (m — 0)/2 for ¢ € [r/4,7/2] so that

/_
S -0 and do =sinydyde.

COS¢ = m
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This measure does not cancel any of the singularity of b(cos#) unlike in the case of the
usual polar coordinates but it will be counterbalanced taking k& large enough. We then
have:

/ b(cos 0) sinF=1/2(8/2) |¢'| (/)" dor dv, < / (70 — 2)E=1/271=25 | /| (/VT dr o
R3xS? R3xS2

< [ gy [l oraos [ ol an
/4 R3 R3
since k > /2 4+ 3 + 2s. We deduce that
T3 S Mgl ey IRl oyrrzmy S 19022 ey 10122 oy
and thus
Ios S N2 qoyrrzmy 191 L2 (0)ey 111 22 ((oyr/2imy

which concludes the proof of estimate (2.1]).
Proof of (ii). We have:

<Q(f7 9)7 g>L%(m)

= (Q(f, gm), gm)) 12 + / B(v — ve,0) flg'gm (m —m') do dv, dv
R3xR3 xS2
=1+ J

The term J is done in the first step of the proof, it corresponds to the term I replacing h
by g, we thus have

I SNl ez wyrzmy 191122 (yey 1911 22 () r/2m) -
In order to deal with the term I, we denote G := gm. We also recall that
bs(cos @) = xs(0) b(cos 0)
and we introduce the notations
bS(cos ) := (1 — xs(0)) b(cos ),
Bs(v — vy, 0) :=bs(cos ) |[v —v,|” and  B§(v — vy, 0) = b§(cos0) v — v, |".

The two previous kernels correspond respectively to grazing collisions and non grazing
collisions (which encodes the cut-off part of the operator). We also denote Qs (resp. Qf)
the operator associated with the kernel Bs (resp. B§). Note that this splitting of the
collision kernel will be used in Section @l We have for G = gm:

I=(Qs(f,G), Gz +(Q5(f,G), Gz =: I° + I°°.
We start by dealing with the cut-off part:

e — / BS(v — v, 0) f G(G — G) do dv, du
R3xR3 xS2
< / o — v, B(cos 0) | ] (G2 + (G')?) do o, do.
R3XxR3xS2
Using that b$(cos ) < Cs on S? and v — v.|7 < v/ — v.|7, we get

e < / £l (02)7 G2 (6)" dor v, dv + / £l (0207 G (W)Y dor o, do.
R3xR3xS? R

3xR3xS?
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The first term is directly bounded from above by || f[/11(( HGH (0)7/2) and for the

second one, we use the regular change of variable v — v/ explamed in the proof of (i). We
thus get

9
1% S oy IG I yrrzy S 1F 12y 1972 (qoprr2my -

Concerning the grazing collisions part, we write

15:/ Bs(v — v,0) f. G (G — G)do dv, dv
R3 xR3 xS2

:—1/ Bs(v — v, 0)f, (G' — G)*do dv, dv
2 Jr3xR3xS?
+1/ Bs(v — ve,0) fu ()2 — G2) dor du, dv —: TP + I,
2 Jr3xRIxS?

The second term I3 is treated thanks to the cancellation lemma [I, Lemma 1]:

I = / (S5« G?) f dv,
R3
where (for details, see [37, proof of Lemma 2.2])
(2.6) S5(2) S 7% |27
We deduce that
I S s 1G22 vy S Mz 19072 oz my-

It now remains to handle I?. First, using that |v — v, ,§ |v" — vy, we have

< / bs(cos ) v — v, 7| fu| (G' — G)? do dv, dv
R3XxXR3xS2
< / bs(cos 0)[v — v, || f+] (G' — G)? do dv, dv
R3XxR3xS2
< / bs(cos 0|l (0) (G/ (/Y772 — G(u)/2)2 dor v, du
R3xR3 xS2

+ / bs(cos 0)| f.| (vx)? G2 ((0)7/? — (")) do dv, dv =: I} + I{,.
R3 xR3xS2
To deal with I?,, we first note that

1
)2 — (Y2 < Jof o / (W +7(o— o)) dr
0

< v — vy sin(6/2) /Ol(vTW/Q_l dr
where v; := v’ + 7(v —v'). Moreover, for any 7 € [0,1], we have
() < (v — o) + (o) < V2o — o) + (o) S (vr)(os)
which implies (since v/2 —1 < 0)
()27 S ()P ) 2
Consequently, we deduce

(27 (@72 = @)P)? S o — o sin?(0/2) () (0?77 S sin(0/2)(0)7 (i)
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so that
Iy Sl MHGHLz yrizy S 2 HgHLz 0)1/2m)"

For the analysis of Ifl, we introduce the following notations: f := f N, o= o)™
and G := G(v)?/? so that

I, = / bs(cos 0)|f(G' — G)* do du, dv.
R3xR3 xS?

We then use Bobylev formula [I1] (see also [I, Proposition 2]), denoting £+ = (£ £[¢|0)/2,
we have:

1 £ - ~ .

e o) (s
= Lo (e <|f|( 1G(6) — ("))
+2re (1710 - 7€) é(s*)%) dodt.

Similarly, we have

161 = o [, () (ﬁ(oné(s) ~G(en)P

Since |f|(0) = HfHL% and [i(v) = 172l 1, we deduce that

=y [t (s ) 2Re (1710 = 171 ) BBt o e

- #Hg%/wxgzb <|£|§ >2Re < W )—ﬁ(f_)) §(£+)§(£) do d¢

£l Ly
[l

Using then results from the proof of |6 Lemma 2.8] combined with Lemma 2], we get
that

+

HGH%{;* =: I)y1 + Iip + I3

1111 ”f”Ll 28)”9”%15 S ”f”L%((v)Z)Hg”iﬁ’*(m)
and
Iy S 1710160 < 17 ey 9 o
We also clearly have
s S Az 19l e

Gathering all the previous estimates, we are able to deduce that (22]) holds. (]
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2.3. Non homogeneous estimates. We now state non homogeneous estimates on the
trilinear form (Q(f,g),h) (the proof, which is a consequence of Lemma 23] and Sobolev
embeddings in x, is given in Appendix [A]) in order to get some accurate estimates on
the terms coming from the nonlinear part of the equation. Basically, we give a non
homogeneous version of Lemma 2.3 We introduce the spaces

X = HEL%(m)

Y = S (0)?m)

Y = 1 (m)

Y = ()2 2m)

that are defined through their norms by ([I7) and (L20). We also introduce Y’ the

dual space of Y with respect to the pivot space X, meaning that the Y’-norm is defined
through:

(2.8)

(29) HfHY' = sup <f7 Q0>X = sup Z <V:’,]Cf7 V';:90>Lg’v(<v>*2jsm)'
lelly <1 lellv <1 0<5<3

Lemma 2.4. The following estimates hold:
(i) For k> ~/2+ 3+ 8s,

Q(f9), mx S flIx llglls 1Ry + £y lgllx 1Allv;
therefore,
1QU, Dy < (I flIx lglle + 11f1lv lgllx-

(ii) For k>4 —~+3/2+ 6s,
Qf,9),9)x S IflIx lglx- +11£1v lgllx llglly-
(iii) For k>4 —~+3/2+ 6s,
QU1 Fx SIFIx IR+

2.4. Some estimates on the linearized operator. Let us now introduce another type
of splitting for the collision kernel (which will be used in Section B where we study the reg-
ularization properties of the Boltzmann linearized operator). We denote ()1 the operator
associated to the kernel:
By (v — vy, 0) := x(Jv/ — v]) b(cos ) [v — v,|7
and @f the one associated to the remainder part of the kernel:
BS(v—vy,0) = (1= x(Jv/ = v])) b(cos 8) |v — v,

In the next lemma, we only give estimates on parts of the linearized Boltzmann operator
(one of the variable is the Maxwellian ) which are “almost bounded” in the sense that
there is no loss of regularity in terms of derivative. Denote

Aof = K (o)7H2f + /R o B0 =00 o) — ) (f 4 f) dodv, + Qi ) + QUF )

where K is a positive parameter to be chosen later on (the notation used here is the one
used in Paragraph B.2.T).
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Lemma 2.5. Let k > 0. For any K > 0 and for any ¢ > 3/2, we have the following
estimate:

(2.10) 182 fllazs yomy S W Fllms, (preitemys Vs € RT

Proof. We only look at the case ¢ € N and conclude that the result also holds for ¢ € RT
by an interpolation argument. Let us begin with the case ¢ = 0 i.e. the L?-case. We have

hof =K@ f 4 [ Bu(v—v,0)(pl — ) f dodo,
R3xS2

+/ El(v_v*va)(/i; _N*)dadv*f+/ Ef(’u—v*,a)u;f'dadv*
R3xS? R

3xS2
_/ Ef(v—U*,U),u*dadv*f—i—Q(f,,u)
R3xS2
=: No1 f + Aoof + Aoz f + Aoaf + Aosf + Aos f-
The estimate on As; is obvious:
[A21fllzz ,om) S I llz2, (yr+2em)-

The analysis of Agg is also easy to perform using the cancellation lemma from [I], we
have:

Aosf = (S *p)f
with S:satisfying the estimate [S(2)| < |2[772572 (see Lemma 2.3 from [2]). We deduce
that [S * u|(v) < (v)7+2572 and thus

HA23f”L%w(m) 5 ”f”L%m(<v>“/+2sfzm).

To treat Aoy and Aoy, we use the fact that the kernel Ef is not singular because the
grazing collisions are removed. Since [v/ — v| ~ [v — v,|sin(f/2), we have:

|BS (v — vy, 0)| < blcosO)|v — V| Ty —y>1 S b(cos 0) v — v, | sin(0/2).

Consequently, we obtain using that m < m/m/, that for ¢ > 3/2:
2
it s 0 5 [, ([ beos)sin@r2l — 0. dodu. ) e dvda
o T3xR3 \JR3xS?
< / b(cos 0) sin(0/2)|v — v, 20D (ulm)? (f'm')? (v,)** do dv, dv da
T3 xR3 xR3xS?

where we have used Jensen inequality with the finite measure b(cos)sin (/2)do and
Cauchy-Schwarz inequality with the measure (v,)‘dv,. Then, using the basic inequal-
ity (vi) < (v')(v.) and the pre-post collisional change of variable, we get:

1A24£11Z2 )
< / b(cos ) sin(0/2)|v — v, |20 (nemy)? (Fm)? (0)% (v,)%¢ do dv, dv da
T3 xR3 xR3 xS2

S ”f”ngv(@wﬂum) with ¢ > 3/2.
The treatment of Ags is easier and we directly obtain:

[A25f N2z ,(m) S Iz, ((wyr+1m)-
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Concerning Agg, we have for any ¢ > 3/2:

1QUE 1l zzmy S 1 Lz yreesenmy
where we used [3, Theorem 2.1]. We deduce that

[A26 fllzz , m) S Nf Mz, coyrrzstemys  €> 3/2.

It now remains to deal with Ags. We have:

Anf< [ B = ona)ViE = VR, + VIS do .
X
S [, Heososin/2)0 v [V + VRIF| do do.
R3 xS2

where we used that the gradient of /i is bounded on R?. Then we use that m < m/m/,
and m < (v — v*>km* to get:

2
\|A22f||%% ) S / (/ b(cos 0) sin(0/2)|v — v 7T /E | f] do dv*> m?dv dz
’ T3 xR3 R3xS2
2
+/ </ b(cos ) sin(0/2)|v — v, "/, || do dv*> m?dv dz
T3 xR3 R3 xS?
2

< / (/ b(cos ) sin(0/2)|v — v 7T/ ml | f'|m/ do dv*> dvdz

T3 xR3 R3xS2

2
+ / </ b(cos 0) sin(0/2) (v — v.) TR my | f| do dv*> dvdzx
T3 xR3 R3xS2
=11 + I.
Using Jensen inequality and Holder inequality as previously, we obtain for ¢ > 3/2:

1A22£117 ()

< / b(cos 0) sin(0/2)|v — v, 2T L (mL )22 (m))? (0,)* do dv, dv da
T3 xR3XR3 xS?

+ / b(cos 0) sin(0/2) (v — v,) 2R L m?| 112 (0,)?¢ do dv, dv da
T3 xR3XR3 xS2

=11+ Is.
The first term I is treated as Ags and we thus have:
L S ||f||2L%,u((v)”““m)'

Concerning I3, we first look at the integral
J = / b(cos 0) sin(0/2) (v — v,) 20T+ | 12 do dw.
R3xS2

and we use the regular change of variable v — v’ explained in the proof of Lemma 23} (i).
We get

J < [ b(cos(20))sin(@)do [ f2m?0)20FD du (v,)20F D 2
S? R3
and thus

IS ”f”%gm«@wlm)a

which concludes the proof in the case ¢ = 0.
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Let us now explain briefly how to treat higher order derivatives: We only deal with
the H'-case, the other cases being handled similarly. For the derivative in z, we have
immediately that for any ¢ > 3/2,

||VwA2f||L§’v(m) = ||foHL%7U(<’U>’Y+1+Zm)

since the operators V, and As commute (Ag acts only in velocity). Concerning the deriv-
ative in v, we have to be more careful and in what follows, we only give the key points to
obtain the final estimate. For the first term, we have:

Voo f| S @)F27HF + )7V, £
For Asg, using the cancellation lemma, we have
Vo(A2sf) = (8% Vo) f + (S p)Vo f
and we also have |S * Vyu| < (v)772572. For Agg we can use the classical result (see [38])

that tells us
VoQ(f, 1) = Q(Vuf, 1) + Q(f, Vi)

In the same spirit that the latter formula is proven, one can show that

Vohaof = [ Bi(v=ve,0)((Vo)s = (Vo)) f dodvs + A (V. f),
R?x

Vohouf = B§(v — vs,0) (Vo) f' do dvs + Aoy(V, f)
R3xS2

and
Vohasf == [ Bi(v = veo)(Tom)dodv. ] + AV
R3xS2

The key elements to prove those relations are that val = —V,, El and that we have for
any suitable function f:

(Vo + Vo )(f) = (Vof) and  (Vy+ Vo,)(f) = (Vof), -

Gathering the previous remarks, we are then able to obtain that for any ¢ > 3/2:

Vo2 fllzz my S Iz, (wyrtrtem) + 1V fllzz (wyrrtem)

which allows us to conclude. O

3. REGULARIZATION PROPERTIES

This section is devoted to the proof of Theorem[I.2l We start by making a few comments
on this theorem:

e As already mentioned, the result is not optimal in the sense that there is a loss in
weight in our estimates. But we strongly believe that one could obtain a better estimate
(concerning the weights) carrying out a more careful study of the operator A. Indeed,
in our proof, we perform a rough splitting of it and we use Duhamel formula to recover
an estimate on the whole semigroup Sx(¢). We could have not split the operator and
study it completely, that would certainly provides us a better result. However, the proof
would be much more complicated and we are here interested in the gain of regularity in
terms of derivatives (not in terms of weights) and in getting quantitative estimates in
time.
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e Another important fact is that Theorem [[.2] provides a “primal” and a “dual” result of
regularization, roughly speaking, from L? into H® and from H~* into L?. The fact that
we develop a primal and a dual result is directly related to the use of this theorem that
we make in Subsections and 5.3 We will only present the proof of the dual result
into full details, we just explain how to adapt it in the primal case (which is easier to
handle) in Section

3.1. Steps of the proof of the main regularization result. In this part, we give the
main steps of the proof of Theorem

3.1.1. Splitting of the operator for the dual result. We are going to study the regularization
properties only of a part of A, we thus start by splitting it into two parts. Note that in this
paper, we consider two types of splittings to separate grazing and non-grazing collisions
cutting the small 6 or the small [v/ — v|. For our purpose in this part, we will work with
the second option which is more adapted to the study of hypoelliptic properties of the
linearized Boltzmann operator. We recall that ()1 is the operator associated to the kernel:

Bi(v—v,,0) = x(|v — v|) b(cos 8) [v — v,|7
and @f the one associated to the remainder part of the kernel:
B (v —v,,0) = (1 — x(|v" — v])) b(cos 0) |v — v, .
We then have:

Ah = —v - Vh 4+ Q1(, h) + QS (1, h) + Q(h, )

= <—K<v>7+2sh—v'vxh—|—/

El(v — Vs, 0) (psh) — plh) do dv*>
R3 xS2

+ <K<v>7+2sh + / Bi(v — vy, 0) (1. — ) (W + h) do du,
R3xS?

[ B v @)l ) dor v+ QB p)
R3xS2
=: A h+ Ash
where K is a large positive parameter to be fixed later. Notice that As had already been
defined in Subsection 2:4] and recall that Lemma tells that this part of the linearized

operator do not induce a loss of regularity in terms of derivatives. Note also that in Ay,
we have a term which is going to provide us some regularization

/ El(v — Vs, 0) (psh’ — plh) do do,
R3 xS2

and another one which provides us some dissipativity: —K (v)7+2%h.
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3.1.2. Regularization properties of Ay in the dual case. The main result of this Subsection
is Proposition B.1] and is about the regularization features of the semigroup associated
to Ay. Here, we just state the result and we postpone its proof to Subsection in which
we develop pseudo-differential arguments.

Functional spaces. In the remainder part of this section, we consider three weights:
m(v) = (v)! with 1 >0,
(3.1) mo(v) = (V) with Iy > /2 + 3 + 4s
my(v) = () with Iy =lp+v+ 1+ £ and £ > 3/2.
We then denote for i = 0,0, 1:
(F; = L3, (mi)
Gi = Hy0((v)*m;)
H; = HY5((0)my)) N L3, ((0) 0722 my)
G’ the dual of G; w.r.t. F;
kH{ the dual of H; w.r.t. F;.

We also introduce the (almost) flat spaces:

o2,

G = H0(w)/?)

B = HOS((0)"/2) N L2, ()0+29)2)
G’ the dual of G wr.t. F

H' the dual of H w.r.t. F.

Remark on the dual embeddings. First, we notice that
(3.2) Va1 < go, ¢ €RT, O HY((0)®) = H((0)™).

This property is clear in the case ¢ € N. Let us now treat the case ¢ € R* \ N. Since the
weighted space HS((v)?) is defined through

h e HS((1)%) < h{v)% € HS

and that we have, using the standard real interpolation notations (recalled in the intro-
duction):

HS = [HKJ,HBJH] ,

v v v o—[c],2
one can prove that
H(( H ), H\ LeJ+1 = 1,2.
) = |HE (@], i=1

From this, since H:((v)%2) — H.Y((v)?) for £ € N, we deduce the desired embedding
result: Hg(( )92) — HS((v)1).

We can now prove that the standard inclusions for dual spaces do not hold here. Indeed,
we have for example G; C Gy and also G C Gj, (the same for “H-spaces” hold). This
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2

70 as usually. Indeed, using

is due to the fact that the pivot spaces are F; and not L
that k1 > ko and ([B:2]), we have

Ihllgy = sup (h,¢)R,
lellay<t
2

— ()

llomollg<1 F
= sup  (hmyi,Ymi) g
[lvm? /moll g <1

< sup  (hmy,pma)p = sup (h,¢)r = [|hlla
lymag<1 lpll, <1

Reduction of the problem to a “simpler” framework. We start by explaining how to avoid
some difficulties coming from the spaces in which we are working. First, in order to
simplify the problem, since we work in weighted spaces, we are going to “include” the
weight in our operator. For this purpose, we define the operator A" by

g = mAl(m_lg).

We notice that if h satisfies 9;h = Ajh, then g := mh satisfies d,g = AT'g and we thus
have Sam(t)go = mSa, (t)ho if go = mho. Then, in order to avoid having to work in dual
spaces, we introduce formal dual operators for which we prove regularization properties in
“positive” Sobolev spaces. To this end, we introduce the (formal) adjoint operator (w.r.t.
the scalar product of wa) of AT that we denote A7"" and which is defined by:

AT = /R3 . Bi(v = vy, 0) i (¢'m’ — om)dodv,m™ — K ()77 o+ v - V.
X

The advantage of working with this operator is that we can work in flat and positive
Sobolev spaces. We now write our main regularization estimate:

Proposition 3.1. For K large enough, we have the following estimates for any ¢g € F:
1 1
33) Vi1, Sy Oelg S Zlells and ISy Ocolle S szl

The proof of Proposition B]is to be compared with the one developed in the article [23]
to study regularization properties of the fractional Kolmogorov equation. Indeed, it is the
same strategy of proof: We introduce a functional which is going to be an entropy for
our equation for small times. However, it is much more complicated in this case and our
approach requires refined pseudo-differential tools, Subsection [3.2]is dedicated to its proof.
Before that, we explain how to use Proposition [B.1] to get our final result in Theorem

3.1.3. Proof of the dual result of Theorem [L.2. The goal is first to prove the dual result
in Theorem in the case r = 0. The proof will be exactly the same for other values
of 7 since the operator (1 — A,)"/? commutes with the Boltzmann operator. We can thus
apply the result obtained for r = 0 to (1 — A,)"/2hg to recover the result for r # 0.

From Proposition 3.1l we can deduce an estimate on the semigroup associated to Ay in
the “original” (non flat) spaces:

Corollary 3.2. For K large enough, for any hg € H', resp. hg € G’, there holds:

1 1
B4 vEe 01, [Sm®holle s ZZlihollar,  resp- lISx Ohollr S w5 lloller
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Proof. Let us consider K large enough so that the conclusion of Proposition B.1] holds.
Using [B3) and denoting gy = mhg, we have for any ¢ € (0, 1]:

15a: () hollp=I[Sap (W) goll = sup (Sap(t)go,) = sup (go, Spm=(t)¢)

llooll <1 lloll <1

1 1
< Sup. HQOHH/HSA’"*( ollg S —=llgoll g =—=1holla
lll < Vi Vi

which is exactly the first part of ([34]). The second one is proven in the same way. O

Let us finally prove that the regularization properties of A are enough to conclude that
the whole operator A has some good regularization properties: Even if we have a loss
of weight in the final estimate, A inherits regularization properties from A; in terms of
fractional Sobolev norms.

Lemma 3.3. For any hg € Hy, resp. hg € G, we have:

1 1
(3.5) Vte(0,1], [[Sathollr S %HhoHHp resp- [[Sa(®hollr S a5 Iholler-

Proof. We have:
(3.6) Vie (0,1, [ISa)hollr < llhollr-

Then, we write Duhamel formula:

Sa(t) = Su, (1) /SA JAoSa, (t — 7) dr

from which we deduce, combining ([B.6]), [B.4) and (ZI0) applied with the appropriate
weights, that for t € (0, 1],

t
1Sa(®)hollro S [1Sa: (8)holl 7 +/ [Sa(T)A2Sn, (8 = T)hollry AT

ﬂmm'/m&ﬁwmmw

g

wwm(ﬁmwwmmw

t
h h d
Nwmm+/ﬁfwwHT

1
< —||h / —||h rdr < —||h ,.
~ \/%” 0”H0+/0 \/F” OHH1 T \/%H O”H1

This concludes the proof of the first part of ([8.5]). Concerning the second one, we proceed
as before using that 1/2 4+ s < 1 since s < 1/2 and we obtain for any t € (0, 1]:

15a@®hollr < S5 llholley
(]

Remark 3.4. In the previous results, we skipped the proof that the operators we consider
generate continuous semigroups. In Proposition [Z1), the fact that AT"" generates a semi-
group in the large space F could be either proved directly either using the general strategy
of enlargement proposed in [19]. Similarly, in Lemma [3.3, we skipped the proof of the
fact that A also generates a semigroup, let us just note that the conditions on the weights
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entering in the definitions of the functional spaces in ([BJ]) are here needed to close the
enlargement argument.

3.2. Pseudodifferential study. The aim of this Subsection is the proof of Proposi-
tion Bl about the regularization properties of the operator

A p = /3 . Bi(v — v,,0) fi, (¢'m! — em)dodv, m™" — K)o+ v V0.
R3 xS

This will be done with a pseudodifferential version of the Lyapunov trick developed in the
fractional Fokker-Planck case in [23] and special classes of symbols that we recall in the
Appendix

3.2.1. Pseudodifferential formulation of the operator AT"". The operator A7"" is very sim-
ilar to the operator £; 2 5 defined in [2, Proposition 3.1]. We shall thus take advantage of
the analysis of the pseudo-differential operator £ 95 and its symbol in [2]. If we extract
the collision part of the operator A7"" (forgetting the transport one and the addition of
the multiplicative term), we obtain

Agm*,collision(p — / B, (v — vy, 0) pil (@'m' — pm) do dv, mt
R3xS?

In the case m = 1, this operator is actually the main one studied in [2]:
A%,*,collision _ £17271 _. —do(U,Dv),

where ag is a real symbol in (v,7) defined through

_ dv ~ <

ao(v,n) = /R TP /E dab(e,9) 1 a9 X(9) pla +v) |+ 9 HF2 (1 = cos(n - 9))
9 0,9

thanks to Carleman representation (see Lemma [B]). We recall below the main result
from [2] concerning the symbol agy (be careful, this symbol is denoted without tilde there).
The notations are those from Appendix [C] where the definitions of objects concerning the
pseudo-differential calculus are recalled.

Proposition 3.5 (Propositions 3.1 and 3.4 in [2]). The symbol ag satisfies the following
properties:
(i) ao € S((v)” (L + [nf* + [v Anf?)*,T),
(i) Ve >0, Vyag € S(e(v)? (L+ >+ v An?) + &1 (V)72 T,
(i1i) Fc >0, —c ()T + (W) (1+ 2+ o An?) Sao < @) (L4 )2 +[vAn?)?,
where T := |dv|? + |dn|? is the flat metric.
For convenience we denote by ag the Weyl symbol of operator ag(v, D,), so that

ag = ap(v, Dy).

Everywhere in what follows, any symbol with a tilde will refer to a classical quantization,
and when no tilde is present, the symbol will refer to the Weyl quantization. Both quan-
tizations are recalled in the beginning of Subsection in the Appendix. Note that ag is
not real anymore, anyway we shall see later that it conserves good ellipticity properties.
Denoting then

a(v, 1) := (m~'gaotm) (v,n) + K (v)77*,
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where f denotes the usual Weyl composition and we omit the dependency of a with respect
to K in our notation, we have:

A" = —ad¥ + vV,
For sake of simplicity, we introduce the following notation
A:=a",
so that the collision part of operator A" writes
A" =—-A+0v-V,

(recall that they depend on K). In order to study the symbolic properties of a, we now
introduce the main weights. We pose for (v,n) € R®

M(v,n) = (77>2 + (v A 77>2 + <v>2 and  p(v,n) == (V)TN + K <v>7+28

which will be the main reference symbol of our study (note that this symbol is denoted ax
in [2]). Although p depends on K, we will omit in the following any subscript or reference
to this dependence. It will be shown in the next subsection that p is a good weight in
the sense of Appendix [Cl The following Lemma shows that a has good properties in the
class Sk (p), the main class of symbols whose definition is recalled in full generality in
Appendix

Lemma 3.6. Let m(v) = (v)k for k > 0. Then uniformly in K sufficiently large, we have
that Rea >0, a € Sk(p) and Rea is elliptic positive in this class.

Proof. We shall take profit of the estimates from [2] recalled above in Propostion We
first note that because of the symbolic estimates on ag we can take ¢ = K ~/2 in (ii) and,
using Lemma [C4] we get that ao € Sk (p) and then ag € Sk (p). Adding K (v)77%* does
not change the computation and we also get that

ap + K (v)7*° € Sk(p).

Now we can do the conjugation with m. We first note that clearly, with the same notations
as before, we have m € Si(m) and m™' € Sg(m™'). This can be checked directly by
noticing that the derivatives of m in 7 are zero. The stability of the class Sk from
Lemma implies then that

a = m Haotm + K ()72 = m~l (ao T K <v>”+25> tm e Sk (p).

We can also notice that looking at the main terms in the asymptotic development of
the § product (see in particular Lemma and its proof), we have

a=ag+ K ) 4 r=ay+ K @) 4/

with 7 and r’ € K~/25(p) (note that r is exactly the Weyl symbol of m~![al,m]). Since
from Propostion BB} (iii), we have do + K (v)?772 > p (uniformly in K), we get that

Rea 2 p

so that Rea is non-negative and elliptic for K large (note that this proof is very close to
the one of Lemma in Appendix [C]). O
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3.2.2. Reference weights. We now introduce some weights involving the constant K where K
is a large constant to be defined later. Formally, 1/v/K plays the role of a small semiclas-
sical parameter. We recall that for (v,7n) € RS

Xon) =2+ wAni+ @? and plv,n) = ()7 A2 + K (0)7725

We shall need their counterparts in the £ variable (considered as a parameter) instead of 7
and thus also introduce

Na(v,m) = (€7 + (0N E) + (v)?
and

q(v,m) = (V)T N2 + K (0)7F2,
where we omit the dependance on K and £ again in the notations. We eventually introduce
a mixed symbol

w(v,m) = =) AN (- €4+ (v Am) - (0 AE))
which will be crucial in the analysis. Following Appendix [C] we have in particular:

Lemma 3.7. The symbols p, q and more generally <U>Cp9q< for ¢, 0 and ¢ € R are
temperate with respect to I' uniformly w.r.t. K and &.

Proof. These computations are done for e.g. in [2 Section 3.3]. 0

The symbols p, ¢, and w are then good symbols w.r.t. these classes, as the following
lemma shows.

Lemma 3.8. We have p € Sk(p), q € Sk(q), w € Sk(\/pq) and more generally, we also
have <v><109qg € S;d(v)cp@qg) for ¢, 0 and ¢ € R, all this uniformly in K and &.

Proof. We only do the proof for p, the other being similar. We just have to differentiate
the symbol p. We study first the gradient with respect to n. We notice that

Vup = 5 ()7 X229, (X2).
We also have that
IV,(A2)| < 2X, (v)
from which we deduce that
V| < 25 (v) 7T A

= 2sK 1?2 <K1/2 <v>’7/2+8) <v>'y/2+1—s )\12}3—1

< 2sK12pH2 ()72 N8 < 25K 1%

which is the desired result. We skip the other similar computations. O

3.2.3. Technical lemmas. The main idea in the proof of the regularization result in Propo-
sition B.11is to use the positivity preserving property of the Wick quantization.

In what follows, we state a series of lemmas (from to BI3)) which are crucial to be
able to “compare” our operator A with quantizations of the simpler symbols p and g we
introduced in the preceding subsection. The following statements are given for sufficiently
large and fixed K (see [2] and Appendix [C]).

Lemma 3.9. There exists ¢, > 0 such that

9Re (Ah,h) > ca <pWickh, h) .
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Proof. We first notice that
Re (Ah,h) = Re (a”h,h) = ((Rea)”h,h)

thanks to the properties of the Weyl quantization. Using (C12]) for Rea, we therefore get
that
Re (Ah, h) = ((Rea)”h, h) ~ ((Re a)Wickp, h) — Re <aWickh, h) :

Moreover, Rea ~ p uniformly in K from Lemma[3.6l This implies that there exists ¢, > 0
such that Rea — ¢op > 0. Using the positivity property of the Wick quantization gives
Re (a)Wick — ¢,pWik > () in the sense of operators. This proves the result. O

Lemma 3.10. There ewists ¢, > 0 such that
<pWickAh+A*pWickh7 h> > ¢, <(p2)Wickh7 h).
Proof. We have from the definition of the Wick quantization (see (C.3]))
pVEA+ ATPVEE = ((px Nt + ag(px N))".

Using now Lemmal[C.4, we have that p € Sk (p) implies px N € Sk (p) and from the second
point in Lemma [C.3] we get that (px N)fa + af(p x N) is elliptic, real and positive (from
selfadjointness) in Sk (p?). We therefore get from (CI12) that

(((p* N)ta+ at(p N))" b ) = (0% N)ga+ at(p N) V¥ b, )
Since (px N)fa + af(px N) ~ p? (uniformly in K), the positivity properties of the Wick
quantization imply the result. U

Lemma 3.11. There exists ¢, > 0 such that
<quckAh + A*quCkh, h) 2 ¢ <(pq)WiCkh, h> )

Proof. The proof is almost the same as the one of Lemma B0, the main difference being
that the symbol ¢ now depends on a parameter £, with respect to which all estimates have
to be uniform. We write

¢V A+ ATV = (g% Nt + (g N))”
where again a denotes the Weyl symbol of A. We have that ¢ € Sk (¢) uniformly in K and £
and this implies ¢x N € Sk (q). From a € Sk (p) and the second point in Proposition [C.3]
we get that (¢xN)fa+at(gxN) is elliptic, real and positive in Sk (pq). Together with (C.12)),
this implies that there exists ¢, > 0 s.t.

(((a N)ta+atlax N))" hoh) = (((ax N+ atlax N)Vhh) = ¢ ((pa)"Vh, )
where the last inequality comes from the positivity properties of the Wick quantization. [
Lemma 3.12. There exist ¢, > 0 such that

‘(mekAh + ArWiky, h)‘ <e, ((p3/2q1/2)Wickh’ h) ‘
Proof. We begin by denoting n := p3/4¢*/* so that n? = p*/2¢'/2. Using Lemma B8, we
get that n is elliptic positive in Sk (n). Note also that
wWick A 4 A* Wik — (% N)a + af(w x N))¥

using the definitions of the Wick quantization and still denoting again a the Weyl symbol
of operator A. From Lemma B8 w € Sk(\/pq) so that w x N is also in Sk (y/pq) by
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Lemma On the other hand, a € Sk (p) and using the stability Proposition [C.3] we
therefore get that
(3.7) (w* N)ta+ agw* N) € S (p*¢'/?) = Sk (n?).
We then write
‘(wWickAh_‘_A*wWickh’ h)‘

_ ‘ <(n—l)WiCk ((w *N)ﬁa + (_ztt(w *N))w (n—l)Wick((n—l)Wick)—lh’ ((n—l)Wick)—lh> ‘

Operator 2

Let us prove that operator € is bounded. For this, we first note that (n=1)Wick = (n=1 &
N)¥ and recall that n is elliptic positive. Lemma [C.3] implies that n~! is positive elliptic
in Sg(n~!) too and from Lemma [C4] the same is true for n=! x N. The Weyl symbol

of €} can be written
symb(Q) = (07 % N ((w * N)ta + afi(w+ N)) f(n~! « N)

and from the stability Lemma and (B1), this symbol is in Sk(1). In particular, the
operator €2 is bounded on L?. We have that

(3.8) ‘(Q((n_l)wick)—lh,((n—l)WiCk)—lh)‘ < C’H((n—l)WiCk)—th2
| <C HnWiCth2 <C <(n2)Wickh’ h> ‘

The first inequality comes from the fact that 2 is bounded. The last inequality is just a
consequence of ((C.IT]). Let us precise the arguments used for proving the second inequality:
we have

(39) H((n—l)WiCk)—th2 _ H((n_l *N)w)—thQ ~ H((n—l *N)—l)whH2

using the definition of the Wick quantization and (C9)). We also check by direct com-
putation that (n=! % N)~! is elliptic positive in in Sk (n) using Lemmas (see also
Remark and Lemma [C3}(ii). This implies by (CI0) applied with 7 = (n=!x N)~!
that

. 1w |2 w
(3.10) 1t % )R] = )2,
and we get then by (C.IIJ)
(3.11) n®h|? ~ ((n2)WiCkh, h) .
The estimates ([B.9)-(B.11)) yield the second inequality in (B.8]). O

To conclude this subsection, we state a lemma which will be useful in the sequel, and
whose proof is direct using positivity properties of the Wick quantization.

Lemma 3.13. We have the following estimates:
<(<U>27)\35)Wickh7 h> < ((p2)Wickh7 h> <21+ K2) ((<v>27)\35)\7vickh7 h) 7
<pWickh’ h) _ <(<,U>~/)\12)5)Wickh’ h) K <(<U>7+23)Wickh’ h) 7
<(<U>2’y)\12)8)\i8)WiCkh’ h) < ((pq)Wickh, h) <1+ K)2 ((<U>27/\12)8)\:2(:5)Wickh, h) .
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3.2.4. The Lyapunov functional. From now on, we fix once and for all the constant K
so that the conclusions of Lemmas to B.I3] are true. We build below a Lyapunov
functional corresponding to the following equation

Orp=v-Vyp — Ap,

and we consider ¢ a solution. Then, since A acts only on the velocity variable, we can
take the Fourier transform of our equation in z € T2 and see the associated Fourier
variable ¢ € Z3 as a parameter in our equation. We thus consider ¢ = F,o to be a
solution of

Op—iv - &P + Ay =0
with initial data 1/y. We introduce an adapted entropy functional defined for all ¢ > 0 by

(3.12) H(t) = C|¢|* + Dt <pWick¢7¢> 1 pilts <wWickw’w) 42 <quck¢,w)

for large constants C', D, E to be chosen later, where ||-|| is the usual L2 , norm and (-, -)
is the usual (complex) L2, scalar product.

Lemma 3.14. If E < /D then for all t > 0, we have H(t) > 0. Precisely, we have

0<C ”1/1”2 4 gt <pWickw7w) I %t1+2s (quckw7w> < H(1).

Proof. The first part of the inequality comes from the positivity property (C4l). For the
bound on H(t), we start by noticing that using Cauchy-Schwarz inequality:

n-&+ (wAn) - (WAL < AsAw.
Then, the time-dependent Cauchy-Schwarz inequality gives
E? 1

BTN 0 €4 (0 Am) - (A ) () TAB + 2 ()TN,

The positivity of the Wick quantization and the fact that E? < D imply that
. D . 1 .
Et1+s (wW1ck¢’¢> > _Et <pW1ck¢’¢> _ §t1+2s <qW1Ck7;Z)77;Z))
which proves the statement. O

We now show that # is indeed a Lyapunov function (entropy functional).

Lemma 3.15. For well chosen (arbitrarily large) constants C', D and E, we have

d
S <0, Vie (01

Proof. Let us define
P .= pWickA + A*pWiCk, Q= wWiCkA + A*wWiCk, Q — quckA + A*quCk.
Then, we have

(313) Sl = ~20Re (46,9),

(314) (Dt (%0, w)) = D (0", 0) — Dt (P, ) +Dt ({p.0- €V 0)
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oo % (Etl+8 (wWiCkw7w))
— (14 5)Bt* (wvvic%’w) — Bt (), ) + Bt ({w,v ) S}Wickw7w> 7

o) % (tms <quckw7w))
— (14 28)% <quCkw7w) 12 (Qyp, ) RS <{q7v . g}WiCka’w) 7

where, in the first term we used the skew-adjointness of the transport operator and in the

last term of (B.14), (B.IH), B.I6), we used (C.H).

The right hand side in (3I3)) is non-positive (thanks to the property of positivity of the
Wick quantization (C4))) and using Lemma B.9 and Lemma B.13], it can be estimated as
~2CRe (49, %) < —eC (¥, )
< = € (WX, ) — O K (((0)7+2) ¥k, )

1 11

Analogously, we can deduce a bound for the first term in (314]). Indeed, we recover two
non-negative terms

D (p™ky, ) < D ()22 W%, ) + DI (((0)772) Wik, )

Moreover, using the positivity of the Wick quantization (C4]), the second term in (314
is non-positive and, using Lemma 310 and Lemma B.13], it can be estimated as

— Dt (P¢7¢) < —Cth ((p2)Wickw7w> < — Cth <(<U>2fy)\33)Wickw7w) )

117

Concerning the third term in [BI4]), let us compute {p,v - £}:
[0 € = Vp- Vo(v-€) = Vip- Uy (0-6) = (0)(V,02) - €
= 25(0) A2 (-4 (VA - (v AE))
< 25(0) T AGAZ L

where we used the fact that [n-&+ (v An) - (vAE)] < A\A,. Hence, for any &1 > 0, we
obtain two non-negative terms

Dt ({p,v- €%y, )
< 25017 D ()22 VK0, 1) + 2881 DI () AT Wikep ).

i i
Let us now consider ([BI5]). Using the fact that w < (v)YAZA5, we can bound the first
term in ([B.I3)), for any €2 > 0, with two non-negative terms

Bt (wWickw7w> < az_lE ((<v>w)\7213)wwkwj¢> —|—a§/5Et1+s <(<U>w)\;+1)\i—1)w1ckij> .

v vl
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For the second term in (B.I5]), Lemma 312 implies

(20,0) < e (0722 W%, )
and, for any €3 > 0, we have
thsp?2qH2 < e lip? 4 5t pg.
Therefore, we can bound the second term in ([B3.1I5]), using Lemma BI3], for any 3 > 0, by
— Bt (29,4)
< coe; ' Bt <(p2)w1ck¢7¢) + cpes BT <(pq)Wickw7w>

< 201+ K)euez Bt (o) X5) Wik, )

vig

(14 K)Peueg B2 ((0)2A202) Wik, )

viii
where (vii) and (viii) are non-negative.
Let us now observe that

(VoA2) € =2(n-&+ (vAn) - (vAE)),
and
Vo -E+@AnD) - (vAE))-&= A2 — (v)*.
We then compute
{wvv ’ f}
=Vyw-Vy(v-& —Vyw - Vy(v-§) =Vyw- ¢
— ()N S+ (0AD) - (v AE)) €
— @A e+ (wAn) - (AN VRATY) €
= (@A A @A = (s = D) (- €+ (Am) - (0 AE))

In the last expression of {w, v-£}, we first notice that since s—1 < 0 and min(A,, A,) > (v),
the second term is bounded as follows:

YFIASTINTL < ()7 H2s,
Gathering the first and third terms, we use Cauchy-Schwarz inequality and s < 1 to find:
— (WA = (s = D@IATINT - €+ (vAm) - (0 AE))?
< — AN 4 (1= ) ) TATIATIOZ — ()2) (2 + o Anf?)
— AT (1= ) (@) ASFAT (2 + o A nf2)
= (L= )@ 2NN (Il + o Anl?)
—()IATFINT (1= 8) () AT = (1= ) (0) AT
—s(v)TASTINSTL

IN A

Thus we have:
{w,v- &} < —s@)ATINT o ()72
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Hence, the third term in (B3] can be estimated as

Es+l ({w,v ) g}Wick¢’¢>
< _ sEpst ((<U>7)\;+1)\15}—1)Wickw7w)) 1 gt ((<U>7+2S)Wickw7w>7

1A% i

where (—IV') is non-positive and (ix) is non-negative.
It remains to consider (B.I6]). Observing that, for any 4 > 0,

1-s
t28 <,U>-y)\:2cs < EZl<v>fy)\12)s + 6423 tl-l—s <v>'y)\1s)—1)\§+17
we have that the first term in ([BI6) can be bounded for any €4 > 0, by

(1+ 2s)t23 <qw1ck¢7¢)

< (14 23)&7;1 (((UWAZS)W“%, ¢) + (14 23)5?151“ (((UY’)\Z_I)\;H)WEI‘#;, 1/})

x Tl

4 K(l + 23)t2s <(<U>7+23)Wickw7w)

it
where (), (x1), (xii) are non-negative terms.

Moreover, using Lemma 311l and Lemma [3.13] the second term in ([B:I6]) can be estimated
as

—t(Qu, ) < et ((pa) ViF, 1) < — gt ()T AZAZ) Wiy, )

v

where (—V') is non-positive. Finally, since ¢ does not depend on 7, we deduce that the
Poisson bracket {q, v - £} vanishes, hence the third term in (3I6]) is null.

We now show that with a good choice of the constants C, D and E the sum of the terms
in 313), BI4), (BI%) and (BI0) is non-positive. Indeed, we have to choose C, D and FE
so that:

1
—T+it+iti+v+ax< _EI’

—II+iii+ix+ it < —%OII,
1

—III i < ——1I1I1

+ v < 10 ,
1

—IV +iv+vi+xi < _EIV’

1
-V i < ——V.
+ v < 10
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Restricting the study to ¢ € (0,1], and thanks to the fundamental posivity preserving
property (C.4]) of the Wick quantization, the above conditions are satisfied if
9

D+2se; 'D+ ey ' B+ (14 2s)e,! < 1540

9
DK+E+K(1+2s)< 1—OCACK,

9
2(1 + K?)eye3 ' E < 0%

1—s 9
2seiD + Eé/sE + (14 2s)g,> < 1—03E,

) c
10"
The above are satisfied if the constants C, D, E and €1, €9, €3 and g4 verify

1 B 1 1 L1
D < ECAC, 2351 lD < ECAca €9 E < ECAC7 (1 + 28)64 < ECAC’
1 1
E < — K 14+2s) < —
< 7gaCK,  (1+2s) < 5eaC

cwsglE < —¢pD,

D,

(14 K)?c,e3E <

2s5e1D < i.sE es® < is 1+ 23)61; < isE
1) R T =107

1
nggE < 1—0Cq.
This is possible by choosing first F, then ¢4, €3 and €9 small enough, then D large enough,

then £ small enough and finally C' as large as needed. Once this choice is done we get
that

1
%%(t) < g+ +IIT+1V+V) <0
and the proof is complete. Note that D and C' can be taken arbitrarily large at the end
of this procedure. O

3.2.5. Proof of Proposition[31. We can now prove Proposition[Bl Consider ¢ the solution
of

dp=v-Vzp—Ap,
with initial data ¢g and ¥ = F,¢ to be the solution of
Opp—iv - {Y + Ay =0
with initial data g = Fr¢o. From Lemma B.15, we know that
H(t) <H(0) = C 7ol
and using Lemma B.I4] this gives for all ¢ € (0, 1]

ic 201 icl 2C
@17 (V) < Solvel? and (V) < o ol

where we used the fact that both left members are non-negative according to Proposi-
tion Working in the class Sk (p) again, gives through Proposition [C.7]and Lemma [C.6]
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(see there the definition of Hpg)
2 w. w 2
07 (Duy || = [ (Do) (7)) )

= [ @2 o (@) Hr ) |

bounded operator
3 CEOR ¥
where we used that the operator (v)?/? (D,)* has its Weyl symbol in S (p*/2) (this Weyl

symbol is (v)"/2 4 (n)*), and that (101/2)_1 € Sk(p~1/?) , so that (v)"/?(D,)* ((pl/z)_l)w
is a bounded operator. Using then (CI1)) and BI7), we get

|y o o] < ) ]~ (0,0) < 5 vl

9

Similarly,
2 1
=" 5 S ol
and working in Sk (q) gives, in the same way,

|y & )" < o ol

Taking the inverse Fourier transform in the x variable finally yields

s Pl s Pl
[ Do) s Sleol®s @ || S S ol
s |12 1
and [0 (D2) || S 7 ol
This is exactly the statement of Proposition Bl the proof is thus complete. O

3.3. Adaptation of the proof for the primal result and generalization.

3.3.1. Adaptation of the proof for the primal result. If we want to prove the “primal”
regularization property in Theorem [[L2] as in Subsection .3] we split A into two parts:
(3.18)

Ah = <_K(U>V+28h —v-Vh+ / By(v — vy, 0)pil (W — h)dor d“*)
R

3%S2

+ | K@) +/ Bi(v —vy,0) (1. — ps)hdo du,
R3 xS?

+ / Bi(v — ve, 0) (Wl — ) do dv, + Q(’W))
R3 x§2

=: th + KQh,

note that this splitting will also be used in Subsection[Z5l Then, the study of K’f” is totally
similar to the one of A7 (the only differences being in the fact that the roles of m and
m~! are inverted and the sign in front of the transport operator is opposite). We thus
just have to adapt the signs in the Lyapunov functional: The sign of w has to be changed
in Paragraph The other part A, is controlled as well as As. The proof is thus done

in the same way and we do not enter into details.
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3.3.2. Generalization to higher order estimates. Theorem [[.2] deals with regularization in
close to L? spaces: For example, it says that that the semigroup associated to A goes
from L? to H® type spaces, with suitable weights and explicit norms. One can wonder if
an higher order quantitative regularization is also available. This is the aim of the following
Theorem, for which we give a condensed statement in the primal case and in H® spaces
(see notation (LI3]) and below).

Theorem 3.16. Let £ € N*, k' > 0 and k > max(y/2 + 3 + 2({ + 1)s,k" +~v + 5/2).
Consider also hgy € Hf,sv((wk) Then, there exists Cy; > 0 independent of hy such that, we
have:

Cy
Vte (07 1]7 ||SA(t)h0||H£sv(<v>k’) < tl/T—l—sHhOHH:(f;DS(@W)

In this Section we shall not give the complete proof of this result, since this is very
close to the one of Theorem [I.2], but only elements of it. The remaining of this Section is
devoted to these elements. B B

As a first step we split the operator A into two parts following (BI8): A = A1 + As.
Adapting the proof of Lemma 2.5 we have for suitable functions A

(3.19) \|K2h\|Hg;1)s(<v>k,) S Ml e gy

where k and k" are given in the statement of Theorem B.I6l We also have the following
result:

Proposition 3.17. We have for all k > 0 and all t € (0,1],

1
) <
HSAI(t)hOHHﬁfu(@)k) S g7z Moll o ey

FElements of proof of Proposition[3.17. ~ Similarly to the beginning of Paragraph B.1.2] we
define for £ € N (here in the primal case):

-t

Ge = Hy((0)7%)
Hy = H (0)7%) 0 L, ((0)0F29/2)

and INfol = m~LAym. We notice that it is sufficient to prove the following two estimates:
1

1
620)  ||sg@ho] g S s ollz o |[Sipm @] S 7 kol
In fact by interpolation, estimates (3.20]) are direct consequences of the following estimates:
1
(321)  |[Sgpe Ohol|, S iy Mol Sk Oho < 7 kol -

The proof is very close to the one given in the dual case: As already mentioned, we
essentially have to replace m there by m ~! here, change the sign in front of the transport
term v -V, we also have to work in Gg or H ¢ instead of G (= Gl) and H (= H 1) introduced
in Paragraph [3 for getting Proposition Bl To be more precise, let us recall that a
fundamental large parameter K is involved there and enters here in the definition of A?fl
Following the strategy of Subsection 3.2, we get that

A =y v,
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where b has exactly the same properties as a in Subsection In particular as in
Lemma [B:6] Reb > 0 and Re () is elliptic positive in the class Sk (p) as there. We
then pose B = b“ and recall the definitions of the symbols in Paragraph [3.2.2]

p(v,n) = ()TN + K ()77 g(o,n) = (0)7 N + K ()71,

and
w(v,n) = =(WINTINT -+ (vAn) - (VAE)).
Since we are in the primal and not dual case (the sign in front of the transport term is
opposite), we have to take the opposite of w that we call @ := —w.
The main point of the analysis is then to introduce, such as in Paragraph B.2.4] a
suitable functional which is here:

Wick
0<a+p<l-1

Wick
n Ea,6t1/2+a+(1/2+5)(1+28) <<paqﬁ®> ¢7¢>

‘Wick
+ Fa’ﬁta+(1+5)(1+2s) <<paq1+5) ¢,¢>

for well chosen constants C, D, 3, E, 3 and F, g. We note that for £ =1, we get H; = H
defined in (B12). The computations exactly follow the ones done in Subsection B2 4 using
estimates similar to the ones given in Paragraph B.22.3] with the same roles of each term as
there in the preceding decomposition. Note that we were note able to restrict the analysis
to a+ 5 =4£—1 due to too high order terms after time derivation, this explains that the
full range of o and [ is needed to close the estimates and conclude that for a good choice
of constants,

d

— t) <O0.

3 t?-lz( ) <
We omit the details of the computation as well as the last parts of the proof of ([B.21)
which leads to Proposition B.I7, since it follows the end of Subsection . O

It is now straightforward to come back to the proof of Theorem [3.16!
Elements of proof of Theorem[310. Taking this result into account and together with (319])
we can write

Sa(t) = S5 (1) + /0 S(t = m)(RaS5 ) () dr

for t € (0,1]. Arguing as in the proof of Lemma we easily get the Theorem (this
strongly uses s < 1/2). We omit the details. O

4. EXPONENTIAL DECAY OF THE LINEARIZED SEMIGROUP

4.1. Functional spaces. We recall that m is a polynomial weight m(v) = (v)*. We in-
troduce the spaces HH!(m) and H2HE (m), (n,€) € N? which are respectively associated
to the following norms:

lal<¢, |8|<n, |al+|8|<max(¢;n)
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and

(4.2) 1R e oy = > 10307172 muy-21ele-21510)-
laf <L, |8|<n, |al+|B8|<max(f,n)

We want to establish exponential decay of the semigroup Sy (t) in various Lebesgue and
Sobolev spaces that we will denote &:

HHE(m), (n,0) e N, n>/
(43) &:=

; ) with &> 2 +3+ 2(max(1,n) + 1)s.
HEH,(m), (n,l) e N* n>/¢ 2

Notice that those definitions include the case L%U(m) which can be obtained in one or the
other type of space taking n = ¢ = 0.

4.2. Main result on the linearized operator. The main result on the linearized equa-
tion is a precise version of Theorem and reads

Theorem 4.1. Let us consider £ be one of the admissible spaces defined in ([E3) and
introduce F = HE}S"“’") (/Fl/z) where n € N is the order of x-derivatives in the definition
of £.  Then, for any A < Ao, where we recall that Ao > 0 is the spectral gap of A on FE
(see ([L24)) ), there is a constructive constant C' > 1 such that the operator A satisfies on E:
(i) X(A) C{ze€ C|Re z < -A}U{0};
(ii) The null-space N(A) is given by (L22]) and the projection Iy onto N(A) by (L23));
(iii) A is the generator of a strongly continuous semigroup Sa(t) on £ that verifies

Vt>0,Vhye&, |[|Sa(t)ho—Toholle < Ce ™ |hg — Ipho)e.

To prove this theorem, we exhibit a splitting of the linearized operator into two parts,
one which is regular and the second one which is dissipative. We shall also study the
regularization properties of the semigroup. The latter point is based on Section [ in
which a precise study of the short time regularization properties of the linearized operator
is performed. We can then use the abstract theorem of enlargement of the functional
space of the semigroup decay from Gualdani et al. [I9] using the result of Mouhot and
Neumann [34] (Theorem [[4) as a starting point.

4.3. Splitting of the linearized operator. We recall that x € D(R) is a truncation
function which satisfies 1j_; ;) < x < 1|_5 9 and that we denote x,(-) = x(-/a) for a > 0.
We then introduce

(4.4) Ah = Mxrh and Bh:=Ah—Ah = —v -V h+ Lh— Ah

for some positive constants M and R to be chosen later. In the next subsection, we are
going to prove a coercivity-type inequality of the following form: For § small enough,

(Lh,B) 12my < —cosll bl + cish72

where || - ||« is a stronger norm than the L2(m)-norm and cg s, ¢ 5 are positive constants
depending on §. Then, choosing suitable constants M and R, we will be able to deduce
that our operator B is indeed dissipative in L%U(m) and that it provides us a gain of

regularity coming from the term —cg s||h||%.
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4.4. Dissipativity properties. In this subsection, we focus on dissipativity properties
of some well chosen part of the linearized operator. Let us highlight the fact that the main
difficulties are already here in the homogeneous case (Lemma [2]). To go from there to
the inhomogeneous case (Lemma [4]) just consists in introducing an equivalent norm to
the usual one in inhomogeneous Sobolev spaces and is thus relatively simpler.

Lemma 4.2. Let k> ~/2+ 34 2s. For § > 0 small enough, we have:

(Lhh) 1z ny < —co 0272 BlIF e ) = €0 07 Al T2 (yyu/2pmy + CollhIZ:-
where ¢y is a universal positive constant and Cs is a positive constant depending on §.
Proof. In what follows, we denote H := hm. We start by spliting the scalar prod-
uct (Q(p, h), h) 2 (my into two parts:

(Q(ush), h) 2 (my = / B(v —vy,0) [ ' — ps ] hm? do dv, dv
R3xR3xS2

:/ B(v—v.,0) [, H' — po H] Hdo dv, dv
R3 xR3xS?

+/ B(v —vs,0) b hm (m —m')do dv, dv
R3xR3xS2

We recall that for 6 > 0, bs and b§ are given by
bs(cos @) = xs(0) b(cos@) and b§(cos) = (1 — xs5(6)) b(cos )

and we denote Bs, B§ (resp. @5, Q) the associated kernels (resp. operators). We then
write that

and we are going to estimate each part of this decomposition. First, concerning grazing
collisions, using the pre-post change of variables, we have:

<Q5(M,H),H>L2:/ Bs(v — vy, 0) s H (H' — H) do dv, dv
Y R3xR3 xS2
1
:——/ Bs(v — vy, 0) pix (H’—H)2 do dv, dv
2 JR3xR3xS?
1
+ —/ Bs(v — vy, 0) s (H')?> = H?) dodv, dv =: =11 + L.
2 Jraxs2
Using the cancellation lemma [I, Lemma 1], we have that
1
b= [ (SxH?) o
2 R3
with Ss defined in (28] which satisfies S5(z) < 0272%|2|7. We deduce that
(4-6) Iy 5 52_28”}1‘@3(@)#2@'

We now treat I;. To do that, we first notice that for € € (0,1/2), we have
|U - ’U*P 2 5(” - U*>ﬁ/ - 61|v—v*|'V§€/(1—e)-
Together with the fact that

(v =) 2 (0 —0)7 2 {0) ),
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we deduce that

I 25/ b5 (cos 0) (v — v.)7 pe(H' — H)*do dv, dv
R3 xR3xS?
- 6/ bs(cos 0) Ljy_y, [v<e/(1—c) b (H' — H)?do dv, dv
R3 xR3xS2 B
/ (cos 0) iy (v,) Y (H' (W'Y/? — H{@W'Y/?)? do dv, dv
3><[R3><S2
/ (cos 0) Ljy—u. pr<e/1—e) is(H' — H)?do dv, dv
><]R3><S2
o / (cos 0) puy (v, ) ™Y (H' (0')? — H{v)"/*)? do dv, dv
2 ]R3><]R3><S2
- / bs(cos 0) s (0,) ™7 H? ((0)/% — (/Y2 do do, dv
R3 xR3xS?

/ COS 9) ]l‘v vi|7<e/(1—¢) ,u*(H/ — H)2 dO’d’U* dv =: Ill — 112 — 113.
3><R3><S2

First, we clearly have

2
111 2 EHhHHf,’*(m)
For I15, we can use ([Z7) to get

]12 < 652 2s||h||L2 VY/2m)*

Concerning I3, we use that for € < 1/2, 1j,_y, jv<c/(1—¢) < Ljy—o,|<1 5O that

Lz < 6/ bs(cos 0) Tjy_y, <1 b (H' — H)?do dv, dv
R3xR3 xS2 n

< s/ b(cos 0) 1y, <1 pix(H' — H)?do dv, dv.
R3xR3 xS2 n

From the proof of [I5, Theorem 1.2], we get
L Se ||h||%{g(m)
We thus have obtained
1
511 > EHhH?ﬁI5 () €2 E”hHHS y1/2my €1y 2 > 0.
On the other hand, as already mentioned in the proof of Lemma 2 adapting the proof
of [21Il, Theorem 3.1], we can get that

—Il > 367 23Hh|]2s o2 )—C452 2 Hh” o2y €35 €4 > 0.

Combining the two previous inequalities, we get that there exist positive constants c;
for i =1,...,4 such that

Iy > e |[BlfFsm gy + (e3 8772 = c2) [Pl (pyr2m)

(4.7) o
- 5> ||h||%g(<v>w/2m)-
Gathering ([4.6]) and (4.7), up to changing the value of ¢4, we have obtained:
<Q6(/L7H)7H>L%
(4.8)

< —ace ||h||§'157*(m) — (36”7 — ¢ 5)||h||?{5(<v>v/2m) +eg 82 ||h||%g(<v>v/2m)'



BOLTZMANN EQUATION WITHOUT CUT-OFF 43

We now deal with the cut-off part (Q§(u, H), H) 2. In this term, grazing collisions are
removed, we can thus separate gain and loss terms:

Q@ H) )z < [ Bio = veo) ||| H|do do. do
X X

—/ B§(v — vy, 0) py do dus H?dv.
R3 xR3 xS2
The loss term is multiplicative and can be rewritten as
/ Bg(u—v*,a)u*dadu*mdu:K5/ (wx]|-]7) H? dv
R3 xR3xS2 R3
with
m

w/2 —2s
(4.9) Ks:= [ b§(cosf)do ~ / b(cos 0) sinf df ~ 62 — (—) — 400
S2 5 2 6—0

using the spherical coordinates to get the second equality and (3] to get the final one.
Since we also have
(|- ")) = (v)7,

we can deduce that there exists 1y > 0 such that
(4.10) —/ BS(v — vs, 0) pis do dvy H? dv < —149 62 ”hH%?(@)v/?m)'
R3 xR3 xS2 v

Concerning the gain term, following ideas from [29], we are going to split it into two parts.
To do that, we denote w := v + v, and W := w/|w|. We then have

/ B§(v — vs,0) s |H'| |H| do dv, dv
R3xR3xS2
= / 1.o)>1-63 B§(v — v, 0) pu |H'| |H| do dv, dw
R3xR3xS2 B

+ / ]l|ﬁ;,0|<1_53 Bg(v — Uy, O’) s ‘H/’ ’H’ dodv,dv =: J; + Jo.
R3xR3 xS? N
We first deal with Ji: Using Young inequality, we have

Jp <612 /RS i 1g.o>1-5% B5(v — vs, 0) pe H?do dv, dv
X X

i 51/2 /3 3xS§2 ﬂ|@-0\21—53 Bg(v — Uk, J) /L; H2 do d’U* dv =: Jll + J12
R3XR3 xS

where we have used the pre-post collisional change of variables noticing that w’ = w (with
obvious notations). Using that b$(cos ) < §7272% on the sphere and (|- [7)(v) < (v)7,
we get

J11 S 5_5/2_23 / / ]l‘@.g‘>1_53 do H2 (’U>ﬁ/ dv.
R3 J§2 -
Then, since for any z € S?, we have Je2 Lo>1-53do < 53, we obtain
(4.11) Jin S 51/2_2s||h”%g(<v>"f/2m)'
As far as Jqo is concerned, we roughly bound it from above as:

Jio < 51/2/ B§(v — vy, 0) pl. H* do dv, dv.
R3 xR3xS?2
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We then perform the regular change of variable v, — v/, as shown in the proof of Lemma2.3]
and notice that |[v — v,|7 < |[v — v.|7 to obtain:

(4.12)  Jyo §51/2/ b§(cos 0) da/

2 1/2-2 2
2 R3 <R3 pelv = v [T H dv dv S5 0 / S||h||L%(<v>”f/2m

)
The analysis of Jo starts similarly as the one of J; using Young inequality:

Jy < 5172 /R3 o 1 g.0j<1-53 B5(v — Vs, 0) piue H?do dv, dv
X X

+o7Y2 /3 o 1i5.0j<1-03 B§(v — vs, 0) 1} H?do dv, dv =: Jo1 + Joo.
R3xR3 xS

The treatment of Jo; is simple and similar as the one of Jio, we get:
1/2-2 2
(4.13) Jon S0V s||h||Lg(<v>w/2m)'
For Jyo, we are going to use the following computation: Denoting u := v — v, the relative
velocity, we have
wilul
W

2

1
[l = (wl® + Jul?) - o
so that if |@ - 0| < 1 — 2, then

|w[|u] _ &
e 5 7

1 53
N2> 212 2y (1 s3 2 2y _ 9 12 2y
042 = (ol + ) = (1= %) "5 = (ol + ul?) = S (ol + fo. )

From this, we deduce that
/’Lfk é 6—63|’U|2/4€—63‘U*‘2/4‘

Consequently,

(4.14) Jog < 670272 /
R3xR3

Combining (&10), (@11), @I2), EI3) and @I4), we obtain
(4.15)  (Q§(p, H), H)pz <67 (c561/2 - vO) 111125 (a2 + CollRlIT2, 5 > 0.

v — v, [V e 1P/ g2 =1 g, do < C'<S||h||%g-

Coming back to ([43)), it remains to analyse the rest term:
R:/ B(v — vy, 0) pl, k' hm (m — m’) do dv, dv.
R3XR3xS?

First, let us remark that

Im’ —m| < < sup [V (Z)) 0" =],
2€B(v,[v' —v|)
with
[v) — o] < v — v, sin(0/2).
Then, we use the fact that

sup [V (2) S ()" + @) ) )R

~Y *
z€B(v,|v"—v])
which implies that

m —m| < sin(8/2) v — v, ()" ()57



BOLTZMANN EQUATION WITHOUT CUT-OFF 45

Consequently, we have:
R < / b(cos 0) sin(0/2) i’ (WY1 o — 0, 7T R (WY1 R m do du, du
R3XxR3 xS?
< / b(cos ) sin(0/2) i (V)1 o — 0,72 (W) (0) 22 do du, dv
R3XxR3 xS?
+ / b(cos 0) sin(6/2) i’ (VL)1 v — v,]7” K2 m? do do, dv.
R3XR3xS2

For the first part, we use the pre-post collisional change of variables and for the second
one, we use the regular change of variable v, — v/ explained in the proof of Lemma
It gives us

(4.16) R< CGHhH?L%((UWm), cg > 0.
Gathering ([@.8), (@I5) and [@.I8) yields
<Q(:uv h)’ h>L%(m) < _(C3 52_28 ) e)HhH?r{g((U)'yﬂm) - 5||h||?qf}v*(m)
+ <06 + 6—25 <c4 (52 + c5 51/2 _ 1/0>> ”hH%g(@W?m) + C(;Hh”%%
We also have from Lemma 23}(i) applied with ¢; = 2s, ¢o = 0, Ny = v+ 2s and Ny = 0:
<Q(hvu)7 h>L%(m) < 67”}1“%12}((1))7/2771)7 cr > 0.

The two previous inequalities imply

(LD, 1) 2y < —(e30>7 = 2 )3 (uyos2my — €1 €l

b (o or 072 (0% 4 03 0Y2 = 00) ) I3 oy + Collhl2s.

Taking 0 small enough and then e small enough of the order of §2~2¢, we obtain the wanted
estimate:

(Lhy ) 2 (m)
< —¢o 52_28“}1”25,*(@ —Co 52_28”}1‘@{3((1})%2@ —Co 5_28”}1“%3}((1})%2@ + Cé”hH%%
for some co > 0. O
We can now prove the dissipativity properties of B = —v -V, + L — Mxg in Lfc,v(m).

Lemma 4.3. Let us consider k > /2434 2s and a < 0. There exist M and R > 0 such
that B — a is dissipative in L2 ,(m), namely

Vt>0, [[Ss(t)hollz ,m) < ellhollzz ,m)-

We even have the following estimate (which is better that simple dissipativity as stated
above), for any hy € L2, (m):

1d
2dt

for some constant ¢; > 0.

V620, 5 ISahol2s oy < et S5O0 ey + @ ISEEROIZ; (122
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Proof. Consider a < 0 and § > 0 small enough so that the conclusion of Lemma holds
and such that ¢g 672° > —a. We are going to estimate the integral ngng (Bh) hm? dv dz.
We first notice that the term coming from the transport operator gives no contribution:

1
/ (U-Vxh)hm2dvdx:—/ (v-V h?)m?dvdz = 0.
T3 xR3 T3 xR3

Then, using Lemma and integrating in x, we obtain

/ (Lh) hm? dvde
T3 xR3
< =0 0" L e my = 0 8 IRIZ: | (quyrmy + CollBlIZz -

In summary, we have obtained

/11‘3 R3 (BR) hm? dvdz < —co 52_28Hh||2L%H3’*(m)
X

+ / h? m?(v)7 (—co 6725 4 Cs(v) ™ — Mxg(v)) dvdz.
T3 xR3

Since —cq 872 + Cs{v) ™7 goes to —cod~ 2 < a as |v| goes to infinity, we can choose M
and R large enough so that for any v € R3, —cy672* + Cs5(v)™ — Mxgr < a, which
concludes the proof. O

The goal of the next lemma is to generalize previous dissipativity results to higher order
derivatives spaces of type HIHE(m) and HPHE(m) defined through their norms in (1))
and ([2]). Notice that, in order to get our dissipativity result, it is necessary to have less
weight on v-derivatives (which is induced by the weight (v)~2/%l* in the definitions of the
norms of H2H! (m) and H2H! (m)). However, the introduction of the weight (v)~2/#ls in
order to have less weight on the 2-derivatives in the space H?H! (m) is not needed at this
point but dissipativity results still hold true doing that and we will make use of it in the
nonlinear study in Section

Lemma 4.4. Let us consider (n,f) € N? with n > (. In what follows, & = HIH! (m)
with k > v/2 +3+2(n+ 1)s or & = HIH(m) with k > v/2 +3 +2(n + 1)s. Then for
any a < 0, there exist M, R > 0 such that B — a is hypodissipative in £ in the sense that

V>0, [[Sst)holle < e lholle-

Proof. The case n = £ = 0 is nothing but Lemma [£.3] Let us notice that the operator V,
commutes with the operator B, the treatment of z-derivatives is thus simple and one can
always reduce to the case n = £. Moreover, we only handle the case £ = H;‘”Hﬁ(m),
the other case being similar. We now deal with the case n = ¢ = 1, the higher-order
derivatives being treatable in the same way. To do that, we introduce the following norm
on HIHL(m):

10330y = 1012 oy + IR0y + C IV ey

where ¢ > 0 is a positive constant to be chosen later and mg(v) := (v)"2 m(v) = (v)ko
with kg := —2s + k. This norm is equivalent to the classical norm on HH.(m) defined
through (Z1)).

In the subsequent proof, 7 is a positive constant that will be fixed later on. Let us
introduce hy := Sp(t)ho with hg € HIHL(m).
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Coming back to the proof of Lemma 3] we have that

1d 2 2—2 2
Vi > 0, §&Hht||L%w(m) < —605 s HhtHLgH{j’*(m)

(4.17)
+ / (—co 67 4+ Cs5(v)™7 — Mxpg(v)) hi m*(v)? dvdz.
T3 xR3

Moreover, since the z-derivatives commute with B,

1d N
g Vehellzz my < =087 IV ahellzs e

+ / (—co 57 4+ C5(v)™ — Mxp(v)) |[Vohe? m*(v)? dvda.
T3 xRR3

Vit >0,
(4.18)

Therefore, it remains to consider the v-derivatives. In what follows 9, and 0, stand for
Oz, ,0z, OF Oy, and Oy, ,0,, Or Oy, , respectively.
We have

9 (0pht) = B(Ovht) — Oxhe — M (9yXR) ht + Q(he, Oupt) + Q(Oupt, b)),
thus, we can split %% |0y H2L2 (mo) into five terms, according to the previous computation,

1d
2dt
For the first term we can use again Lemma [1.3] obtaining

V>0, I <—cod* 2 |0uhy

Havht”%%m(mo) =1 + -+ I5.

2

122 12 (o)

(4.19) o —y 2,02 [\

+ (=067 + Cs(v)™7 — MxR(v)) [0phe|* m§ (v)7 dv da.
T3 xR3

For the second term, we have
1 1
(4.20) Iy =— /TgXRB(ﬁxht) (Oyhe) m3 dvdr < guavhtniim(mo) + §Hamht||%%m(mo).

The term I3 is simply handled as follows:
M

I3 < — 1 r<jo|<2r he (Buhy) m§ dv da
T3 xR3

M M
5 —/ ]]-RS\U\SZRh% m%dvdx—i— - ]]‘RS‘U‘§2R (8vht)2mg dvdz.
R Jrsxrs R Jsxgs

Let us now consider I;. Using Lemma 2:3}(i), we have

(4.21)

[4 = /3<Q(htyavlu)7avht>l/%(mo) dx S_, ”htHL%,v(@)’Y/QmO)Havht”L%w(<v>’Y/2m0)
(4.22) T

1 2 2
S EHhtHL%’U((U)wmmO) + 77”8vhtHL%’v((v)'v/2mO)’
Concerning T, still using Lemma 23}H(i), we have:

Is = | (QOut, ha), Oul) 12 () AT S el 12 prs () r72425 mo) Ov Pt || L2 s 0y /20

—

(4.23) ’
S el 2 by o2y + MOl L by g2

S|
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Before concluding, let us remark that from Lemma 2.1],

Hh”i%]{j*(m) 2 62 2sHh”L2Hs )W/2m)'

Combining this fact with estimates (£17), (£18) and (£I9) to (23], we get:
1d
2dt’”hthlH1(m) s lellzz  omy + 2dt”v htHLz +C§%HV htHLz

2—2s 2
< =262 (a2 gy + IV el g oy + cuvvhtuw,*(mw)

€0 ga—ds | C¢
# (=207 ) Iy oo

G —4s
e (—50 5+ Cn) V0Pl s (o 21m0)

+/ (—605_254-05(11)_7
T3 xR3

(M

t—r —— 1 pejp<ar(v) T — MXR(U)) hZm?2(v)Y dv dz

+ / ( — 9672 + Cs(v) ™7 + CClu)y 7715 — MXR(’U)> |V ohe? m?(v)? dv dz
T3 xR3

+¢ <—c0 572 + Cs(v) T+ Clv)
T3 xR3
CM

+ G nchicante)™ = Mxr(u) ) [V (o) vz

for a constant C' > 0. Consider now a < 0 and ¢ small enough such that cy6=2° > —a.
We can then choose, in this order,  and ¢ small enough and then M and R large enough
such that

1d
S sy < @ NIy gimmy + @ IRl 2y sy + CalORIES (o2

= e1 (el gy + Vbl gy + Il B 5 )

for some ¢; > 0, which concludes the proof. O

4.5. Regularization properties of ASp(t). Recall that A and B are defined in (@4]). In
this part, we focus on the regularization properties of the semigroup Sg which are crucial
in order to get a result on the linearized equation. To do that, we first introduce some
notations and tools.

We define the convolution of two semigroups Sy * Sy by
(31*32 /31 Sgt—T)

and, for p € N*, we define S*P) by StP) = §x« SHP—1) with S&) = S. For ¢ € RT and v
a polynomial weight, we also introduce intermediate spaces

X,w) = [HEHE @) HE 1 0)]
s—1s],2
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Notice that by standard results of interpolation, if B — a is hypodissipative in both
spaces jiis ’H%(J(V) and H%gJH’HiLfJH(V), it is also in X (v). Notice also that we have
the following continuous embeddings:

(4.24) X ()19 o HS (v) < Xo(v).
Let us now state a lemma on the regularization properties of the semigroup Sg(t).

Lemma 4.5. Let r e N, k' > (1 —v)/2 and k > K +~v+5/2 4+ 2([(r — 1)s] +2)s. We
consider a < 0 and the operator B is defined such that the conclusion of Lemma 18
satisfied in H%(T_I)SJHHE(T_I)SJH((v)k). Then, we have:

at

(&
1588 hollx, .y = T i Ihollx _p.qwyry, Y22 0.

Proof. Step 1. In the first step, we focus on the short time regularization properties
of Sg(t): We are going to prove that
1
1S8R0l ., (uyry S WTHH%HX(T.,I)S(@M’ vt e (0,1].

This estimate yields the conclusion of the lemma for short times ¢ € (0,1]. Recalling the
decomposition ([BI8]), we have from Proposition BTl that for ¢ > 0,

1
(4.25) 155, ®hollmzs, (vya) S mﬂhoHHﬁms«wqy vt e (0,1]
and for any ¢ € R™
(4.26) 1Rohl s oyery S WPl ooy @ > d +7+5/2.

We now show how to propagate the regularization properties of le (t) to Sg(t), using the
Duhamel formula. We write:
B = Kl + (Kg — .A)
so that we have:
Su(t) = S5, (1) + (S5, * (s — A)Ss) (1).
For the first term, using (£.24)) and ([@.25]), we have:

1
155, ®hollx, .oy S 157, Oholl g oyey S a7 1ol g vs

1 1
S qyars 1hollx, yy prvae-naiins) S s hollxg yyu(wye)-

For the second one, we introduce k” such that
E>E"+2([(r—1)s] +1)s > k' +v+5/24+2([(r —1)s] +1)s
and we use (A.24]), (4.25) and ({@F.20):

55 05) 0] < [ 0= 8
g S [ WP | ar
~ 7.)1/2+s 2 B\T)ho (T 1)3 )
t
1
S//O 7—)1/2+8 ‘SB(T)hOHHQ(C':“JDS“U)]C//) dr 5 Hho”X(’,«,l)s«’U)k)'
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Step 2. In this step, we use Lemma [£.4] and interpolation combined with the previous
estimates for short times to prove the final estimate which holds for all times. If t > 1, we
have

||58(t)h0||xm((v)k’)
= 1S8(1)SB(t — Dhollx,, (oyry S 195 = Dhollx,, sy S € Mhollx, o)
which concludes the proof. O

To apply Theorem 2.13 from [19], we study the regularization properties of (ASg)*?)
for p € N in the following corollary. We recall that the “large” space £ is given by (4.3)
and the associated “small” one by E = Hgﬁx(l’n) (n=172).

Let a < —\p where \g > 0 is the spectral gap of A on E (see ([24])). We then

consider B such that the conclusion of Lemma B4l is satisfied in Ha' ax(l’n)’l-lvmax(l’n) (m)

(resp. gymax(in) g max(ln) (m)) if &€ = HI'H! (m) (vesp. € = HPH.(m)). Let us mention
that it in particular implies that the conclusion of Lemma 4] is also satisfied in £ and
the one of Lemma E.3is also true in L2 ().

Corollary 4.6. There exists p € N such that
I(ASE) P (t)hol < e [[holle, ¥t > 0.

Proof. Let us treat the case & = L2 (m) and E = H%,U(,u_l/Q) which is indicative of
all the difficulties since we need to regularize both in space and velocity variables. We
consider ro € N* the smallest positive integer such that |rgs| = 1. Using then the fact
that A is a truncation operator, Lemmal[Z4 and Lemma[H] we get that for any 1 < r < rq,

eat

ICASB) O] 5(X _1ys (m), X s (m)) S A T

To conclude, we use Lemmas [£3] A.4] combined with the last estimate. Indeed, all those
results allow us to use the criterion given in [I9, Lemma 2.17] and gives us the conclusion.
O

4.6. End of the proof of Theorem [4.1l Thanks to the estimates proven in the previous
subsections, we now turn to the proof of Theorem Il Let £ be one of the admissible
space ([A3) and E = H;Z}S"(l’”)(u—l/?) so that in all the cases, we have E C £ and we
already have the decay of the semigroup Sj(¢) in E from Theorem [l We then apply
Theorem 2.13 from [19] whose assumptions are fulfilled thanks to Lemmas [4.3] [£.4] and
Corollary O

5. CAUCHY THEORY FOR THE BOLTZMANN EQUATION

This section is devoted to the proof of Theorem [Tl The idea is to prove that, using
suitable norms, there exists a neighborhood of the equilibrium in which the linear part of
the equation is dominant and thus dictates the dynamic. Consequently, taking an initial
datum close enough to the equilibrium, one can construct solutions to the equation and
prove exponential stability.
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5.1. Functional spaces. In what follows, we use notations of Subsection 2.3 More

precisely, we define the spaces X, Y, Y*, Y and Y’ as in ([Z8) and [29]) with a weight
21
m) = )*, k> 5 + v+ 22s.

Similarly, for i = 0,...,3, we define the spaces X;, Y;, Y; and Y/ as in (28) and ([23)
associated to the weights m;(v) = (v)*. The exponents kg and k; satisfy the following
conditions: 5

ko:=k—2s and 8+ 14s <k <k‘0—’7—§—68.

Concerning ko and ks, we set:

ko := k1 —2s and 4—’y+g+63<k3<k2—’y—g—63.

Remark 5.1. Notice first that
k>k0>k1>k2>k3.

Let us also comment briefly the conditions imposed on the weights and explain the intro-
duction of so many spaces.

e First, in the proof of Proposition[5.3, we need to be able to apply the result from Propo-
sition [5.2 in X1, this explains the introduction of the spaces Xy and Xs.
e The last condition

ks >4 —~v+ ; + 6s
comes from the fact that we want to apply Theorem [{.1] and Lemma mn Xs.

e In our argument explained in the two next subsections, there are two levels in which
we have a loss of weight. The first one comes from the regularization estimate (5.2])
(mo to my and mso to mg), which explains the conditions: k1 < kg —~y — 5/2 — 6s
and ks < ko —~ —5/2 — 6s. The second one comes from the nonlinear estimates in
Lemma (m to my and my to mgy), which explains the conditions: ko = k — 2s
and ky := k1 — 2s (a key element is that we have ||fll¢, S | flly and || fllv, S £y, )-

e The two first conditions

21
ki1 > 8+ 14s and k‘>’7+7+228

are then naturally induced.

5.2. Dissipative norm for the whole linearized operator. Before going into the
proof of an a priori estimate which is going to be the cornerstone of our Cauchy theory, we
introduce a norm which is (better than) dissipative for the whole linearized operator A.

Proposition 5.2. Define for any n > 0 and any \y < X\ (where X\ > 0 is the optimal rate
in Theorem[{.1)) the equivalent norm on X for Ilph =0,

(5.1) Il = nllAl% + /O 1Sa ()M I, dr.

Then there is 1 > 0 small enough such that the solution Sy(t)h to the linearized equation
satisfies, for any t > 0 and some constant K > 0,
1d

=~ ZSA(ORoll < —MlISa(B)holli — KISa@holi-, 7 ho € X, Tlgho = 0.
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Proof. First we remark that the norm || - {33 2(m) is equivalent to the norm || - |33 12 ()
defined in ([LI7) for any n > 0 and any A\; < A. Indeed, using Theorem [4.1] we have

77||h‘|3{ng(m) < |||h|||3{ng(m) = 77Hh||§{ng(m) ‘1‘/0 ||SA(T)eAlTh||3-L§L5(m1) dr

< nllh ez L2 my +/0 C2e 2O R 34g 1 gy A7 < ClRgg 13 )

We now compute, denoting hy = Sp (¢ )ho,

1d

For I1 we write A = A+ B. Using the fact that A is a truncation operator, we first obtain
that
(Ahg, he)ags 12 my < Cllhell?

H3L2(my)
Moreover, repeating the estimates for the hyp0d1881pat1v1ty of B in Lemmas 3] and 4]
we easily get that for some K > 0,

(Bhu, he)asp2my < =MPall3s L2 my — KHhtHig:im(m)’

therefore it follows

L < —>\77||ht‘|3{ng(m) - 77K||ht”3{g;* + UCHhtHg{iL%(ml)'

(m)
The second term is computed exactly
1 [0

=35 | glSat+0e hollg Lz,

/ olISa(m +)e MThol[3g3 12 (my) AT — >\1/ ISA(T)EMT e 13 13 (g AT
0

)dT

T=+400

T > AT

1 °° T
_§Hht‘|3{§L%(m1) B )\1/0 ISa(m)e™ htHgﬁL%(ml) dr

where we have used the semigroup decay from Theorem H.11
Gathering previous estimates and using that A > A;, we obtain

L+ <=\ {thtH%ng(m) +/ ISA (TN hal35 12 () dT}
0

- ?7K”htHH3s ) T 1C | hell3s 12 (mn) — §”ht|’3{ng(m1)-

We complete the proof choosing 1 > 0 small enough. O

5.3. Regularization properties of Sy. In this subsection, we state a result on the
regularization properties of Sy which is a key point for having a priori estimates on the
nonlinear problem in the next subsection.

Lemma 5.3. We have the following estimate:

1
(5.2) [Sa(®)hollx, < mHhOHY(’)a vie (0,1
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Proof. The result that we want to prove is a twisted version of Theorem [[.2] the only
difference being in the weights. First, we notice that

”SA(t)hOHXI 5 HSA(t)hOHngg(@)h)-

Theorem [[2] gives us that for k' > ki + v+ 5/2, we have:

1
||SA(t)h0HHg:g(<v>k1) 5 %HhOH(Hg';((U)k’))H Vit e (0, 1]
It remains to show that if kg = k¥’ + 6s > k; + v + 5/2 + 65, we have

1roll gz qopeyy < W0l a2 (quyroyy-

Indeed,
”hOH(H%f}“@k’))/ = ~sup Z <Vgch0<v>k0_2js7 Vgc90<v>2k _(k0_2]8)> 2
S0 IVA (@) y0.0 <1 50 |
=, ., s > (Viho(w) 2, Vi)l
S50 IV ()* 02397 o,, <1 j=0
< sup > (Viho(w)'om, Vg v) =)

x,v

T3 o IV @02 0.

= sup (ho, ¢>Hi’9j((v)k0)
- :
105035 (uyho) <t

< Mol quyrory-

where we used ([B:2) to obtain the third bound and this concludes the proof of (5.2). O

5.4. Proof of Theorem [I.1l. We consider the Cauchy problem for the perturbation h

defined through h = f — pu. The equation satisfied by h = h(t, x,v) is
Oth = Ah+ Q(h,h
(5.3) { it Q(h, h)
hji—o = ho = fo — p.

From the conservation laws (see (L), for all ¢ > 0, Iph; = 0 since IIghy = 0, more
precisely ngng hi(x,v)dvdx = ngng vihy(z,v)dvde = ngng lv]2he(z,v)dvde = 0
for j =1,2,3. Note that we also have IIoQ(h¢, hy) = 0.

5.4.1. A priori estimates.

Proposition 5.4. Any solution h = hy to (B3) satisfies, at least formally, the following
differential inequality: For any A1 < X (where X > 0 is one rate given by Theorem [{.1)),
there holds

1d
5 gl < =Alllkllx = (K = Clipllx) [A]5-

for some constants K,C > 0 and where we recall that the norm ||| - ||| is defined in Propo-

sition [2.2.
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Proof. We compute the evolution of ||h]|| where h = h; is solution of (5.3]):
1d

thH\hH@c = 1(h, AR)3s 12 (m) +/0 (SA(T)EMTh, SA(T)EMT AR 343 12 (1ny ) AT

+n(h, Q(hy h)) w3 £2(m) + /OOO<SA(T)€A”h7SA(T)emQ(hy P)) 33 L2 (my) AT
=01+ Is + I3+ 14
For the linear part I + Is, we already have from Proposition that, for any A\ < A,
L+ I < =Mk — KAl
We now deal with the nonlinear part, using first Lemma 2.4}
I; S(Q(h.h), xS hlix IR~ < IRl 1705

For the last term 14, we use the fact that IIgh = 0 and IpQ(h, h) = 0 for all t > 0, together
with the estimate (5.2]) from Lemma More precisely, if TIph = 0, using Theorem FA.T]
in X1, we have:

VT 20, [ISa(m)hlx, S eIl
Combined with the estimate (5.2)) from Lemma [5.3] we deduce that for IIph = 0,

e—)\'r

IAVT

V7T >0, [[Sa(mhlx, S 1]l -

It implies

/0 T USA (PN h, Sa(1)eMTQ(h, B))x, AT

S/ ISa(T)eM Thl[x, [|SA(T)eM T Q(R, h)l|x, dr
0

“ i - 0 AT e—()\—)q)'rd
S Il QU Wy [ O S ar

S [Ihllx; QR 2)[lyy -

To conclude, we use Lemma 2.4

I < |Ihllx, 1Bl 11, S MRl IA15 < Rlix (1A]15--

We prove now an a priori estimate on the difference of two solutions to (B.3)).

Proposition 5.5. Consider two solutions g and h to (B3)) associated to initial data go
and hg, respectively. Then, at least formally, the difference g — h satisfies the following
differential inequality

1d
5 gllg = Plix, < =Kllg = hlix; + Clgllx, + IR1x:) llg = ki35
+C (bl + llgly) llg = hllx, [lg = 2llvy,

for some constants K,C > 0 and where || - ||x, is defined as || - ||x in (GI):

IRl1%, = nlhlk, +/O ISa(T)eM TRl %, dr.
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Proof. We write the equation safisfied by ¢; — h;, denoting g = g; and h = hy:
O(g—h)=Ag—h)+Qh,g—h)+ Qg —h,g),
(9 = M=o = go — ho.

We compute

1d 9
§%|||9 - h|||X1

= (g —h), Mg — h))x, + /OOO<5A(T)€A”(9 —h), Sa(T)eMTA(g — h))x, d7

(g — h), QUhg — B))xs + /0 T (SA (M (g — ). SA (MM Qhng — h)x, dr

+n((g — ), Qg — h,g9))x, + /0 (SA(1)eMT (g — 1), Sa(T)eMTQ(g — h, g))x, dT
=T+ T +T5+Ty+T5 + Tg.

Since the proof follows closely the one of Proposition 54, we do not give too much details
here (notice that the spaces indexed by 2 are implicitly used in the following estimates as
the spaces indexed by 0 were used in Proposition [5.4]). We have:

T +To < —Kllg — hll3:,

and also

Ty +To S |Rllx, lg — Bl3s + IRllxy g = Rllx, llg = Pl
Moreover, for the last part T5 + Ty, using Lemma [2.4}(i), we get

Ts+T5 S llg = hlix, lgllg, g = hllv, + llgllx, lg = hll%,

S N9 = hllx, llglly g = hllvy + llglix, llg = Iz,
which completes the proof. O

5.4.2. End of the proof. The end of the proof of Theorem [ Tlis classical and we do not enter
into details here. It follows a standard argument by introducing an iterative scheme whose
convergence and stability is shown thanks to Propositions [£.4] and The framework
being exactly the same, we refer to Subsections 3.4.2. and 3.4.3 from [12] in which a more
precise proof is given.

APPENDIX A. PROOF OF LEMMA [2.4]

In this proof, we use Lemma [23}(:) and (i7) together with the following inequalities
when integrating in x € T3,
(A.1) lullpoo(rsy S Nullazersy,  Nullzeersy S lullgrersy,  lullzsersy S lullarrs)-
Proof of (i). We write
(QUf,9): M zim) = (QUF9) Wiz my T Y (05Q(f19):07h) 12 (mgey-2161s)
1<|81<3

and

05Q(f,9)= D> Cpp Q00 f,079).
B1+p2=0
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In the following steps we will always consider ¢ € (y+ 1 + 3/2,k — 6s] which is possible
since k > v/2+3+48s,v<1and s> 0.
Step 1. Using Lemma 23} (i) applied with ¢; = ¢ = s, Ny = /24 2s, Ny = /2 and (A

we have
(QUF.9):h) 12 my

$ [ (100 19l grassomy Vel

1 2oy MW(HmemQ
S AN ez wyey 190 22 s (oyrr2r2smy 1B L2 23 o)y /2m)

U fllzz , oyrvzm N9l a2z 1PI L2, (wyrrzm)

S flx HQHY HhHY + 1 flly HQHX ”hHY-
Step 2. Case || = 1. Arguing as in the previous step,

(Q(f,079),07h) 2 ((v)—22m)

< [ (10 198ty 19 Bl ey

1 oo V2802 HVmeﬂMQ
S HfHH2L2 HV:c9”L2Hs V/2m, HV h”L2H$ Y7/2=25 )

+||f||L2 W((0)1/2-25) IIVacgllﬂzL2 0 [IVa h||L2 o ((0)772-23m)
S Ifllx ||9||Y 1olly + [f [l llgllx IIhIIY-

Moreover,

(Q(OZ1,9),07h) 2 ((v)—2#m)
S [ (192 Wi Nl 19 B ey

190 2 yrzzom 9l acrey [Vl o W%m>
< Ve l2ace Mmm<w 192 15220
IV 2z oyrro-2em 9l 2z |wmm(wuw

S Iflx gl HhHY + [ fllv llgllx ”hHY-
Step 3. Case |5 = 2. When (35 = 3, we have

(Q(f,079),07h) 2. ((v)-12m)

S [ (17000 1928520 1920t 300

1l paggerosomy 192l 3y 19212 m%m)

S ”f”H2L2( ”vxgHLZHS v)7/2-25 ) ”VthLgHg(@)v/?*%m)
1 222 (oyr2-15m) 1V29N 22, (09 IVERI L2 (oyr72-0m)
Sl gl bl + 1 £l llgllx 1]y -
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When 3 = 3, we have
(Q(agfa 9)7 8£h>L?c,v(<U>74sm)

S [ (192 Wiz 19l gra-semy 1920 ey

192 s gy tom) Dol pes 2l oo w)
S92 A3y 1902 ooy IV 2Byt
v f||L2 rimsem 922300 1920122 prrecsomy

S Il glls IIhIIY + £l llgllx IIhIIY.

Finally, when |31| = |52| = 1, we obtain
(QUOJ f,0729), 07 h) 12 12 ((1)—45m)

S [ (192113000 198t V2l

IVl orsomy Vel 2200y 192 oo 4%))

S IVaflmzea w0 1Vedll 2 msuyprrz—20m) V2PN L2 s (oy1/2-45m)
F Ve fllz , (yrz-1smy Vgl mzrz o NNE Mz, (wyr2-1sm)
S Il llglls ||h||Y +1flv llgllx ||h||Y-
Step 4. Case || = 3. When [ = 3 we obtain

(Q(f,979),07h) 2. ((v)-62m)

$ [ (170000 19285t 1920t g

TR . 1 O 170 (P esm)

SN mzr2 o) 1V39M 12 s (oyrr2=1omy Vol L2 b (qoyr/2-60m)
1 222 (0yr72-60m) 1V291 22, (09 IVRRI L2 ((0y72-00m)
S flx gl Iply + (1 f v llgllx 1]y -
If |f1] =1 and |B2| = 2 then

(Q(OFf,0729), 07B) 12 12 (m(wy-0+)

< [ (1927000 193l 1920 e

1753 -omm 192000 120

S ”fo”mL?( ”vxgHLZHS v)7/2-4s ) ”VthLgHg(@)v/?*%m)
Ve lmzizwyrrz-som V29022, () V2RI 2 (7265 m)
Sl gl bl + 1 £l llgllx 1]y -

57
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When |81] = 2 and |52| = 1 then we get

(QO7 £,029), DI h) 12 12 (1) -6+

SJ /’H‘B <”v§,‘f”L% HVZ'gHH-S 7/2 4.sm Hv h”H‘S 7/2 Ssm)

192 2 yrrz-somy [Vl 2oy 1930 gy GSm)>

S IV llzz, o) 1720 2y 2-semy I3l 2 15 -y
+uv2fuLz opra-somy Itz 3000 1 V3R 3 oo
< 17h Il Wil + 11 el Tl

Finally, when ) = 3, it follows
(Q(971.9): O M) 12 13 miwy )

S [, (198 M0 Dolgn-sem 1920t o

F IV g om0y 19203 oo )
S ”V3f”L2 HQHH“( y7/2=4s ) IV Il L2 15 (o) /255 m)
Y 1 Y A

< Il glly IIhIIY + £l llgllx IIhIIY.

Proof of (ii). As in the proof of (i), we write

(Q(f,9): 91 12(m) = QU 9): 912 )+ D (@?Q(f,9),359>Lgm(m(v>fzws),

1<|B1<3

and

05Q(f,9)= > Cpp, Q00 f,009).
B1+p2=p

In the following steps, we will always consider ¢ € (4 — v+ 3/2,k — 6s]. Notice that since
v < 1and s <1/2, the condition k > 4 — v+ 3/2 + 6s implies k > v/2 + 3 + 8s so that
we can apply results from Lemma

Step 1. Using Lemma 23}(ii) and (AT, we have

<Q(f7 g)7g>L%7v(m)

S [ (102 U9y + Uy oz o ol
<2200 90 gy + 17ty N9l 2z re D22 oy
< 17l gl + 171 gl -
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Step 2. Case || = 1. Arguing as in the previous step,
(QUf,079),079) 12 (()—2+m) S /T3 <HfHLg HngHHs* )~25m)

F W 22 wyrr2-25m) Vgl L2 0y ||V$g||Lg(<v>“f/225m)>

< 1l 2oy 1928032 ey 2oy
15z oprrz-semy 1920 lm22200e) 19812 o220
< Al gl + 11 llolx Nl

Moreover, we also have using Lemma 23} (i),

<Q(ang7 9)7 859>L§,U((U>725m)
5 /]T3 <HVCIZfHL% ”gHHS 'y/2 HV;CQHHS 'y/2 25m)

IV 2 oprre-2em 19l 220000 ||vxg||sz/wm>)

S Ve fllazez e 1901z s wyrrzmy 1V 9l Lz g oyrr2-20m)
HIVaflliz , wyrz-2em) ||9||H2L2( 0 IVadllLz , (yrr2-2m)

Sl gl + 11l gl Nlglly-
Step 3. Case || = 2. When (35 = 3, we have

(Q(f,079),029) 12 (@) -1om) S /T ) <Hf|rLg ) V29013505 (015 m)

F 1122 (oyrr2-1smy 1V 290 22 ((0ye) ||V9259||L%(<v>7/245m)>

S W2z 1920022 oo oy -semy
+ ”f”Hng(@)v/%%m) ”V;ngLg ”V QHLZ )7/2=45 )

Sl gl + 1l lglix llglly-
When 51 = 3, we have

QI £.9),029) 12 (()~+m)

S [ (192N Wl 1920 s

+IVE f 2 oy my 191 220yt ||V9259||L%(<v>7/245m)>

< ||V f||L6L2 ||9||L3Hs ((v)1/2=25m) vazchL?Hs ((v)7/24s )
IV Fllzz, (wyrre-semy |9l 2 220030y 1V 29N 22 (q0yv/2-25m)
S ||V2f||H1L2 0 19l 725 (oyv/2=25m) vagHL?HS (0)/2=43m)
+V: Fllzz , yrre=1smy 9l B2z o 0 V3 9Lz, ((wyr/2=15m)

S IFlIx g3 + 1f 1 llgllx gl -
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Finally, when |31| = |52| = 1, we obtain

Q2 ,029),08 9) 12 12 (o)~ 15 m)

S, /’]1‘3 <||me||Lg ||Vmg||Hs y1/2=25 ) ||ng||Hs y7/2—45 )

+ Va2 (yrr2-somy IVagll 22 (yey 1291 22 oy 4sm>>
S IVafllazr2 ey IVadll L2 iy yrz—20m) 1V 20l 2 115 0yr2-50m)
+ Va2, (wpr-som) IVaglm2ezwye) 1 V290 12 (@oyr/2-15m)

S Il llglli3 + IIfIIY lgllx [lglly-

Step 4. Case |f| = 3. When 85 = 8 we obtain

(QU-020). 080013 (0 oom S [ <||f||Lg 1301 (e

1 oo 19362 oy ||vig||Lg(<vwmm>)

S ||f||H2L2( HV gHLZHS*(( y=65m)
+ ”f”H2L2( 0)7/2=65y) ”VxQHLZ ”V QHLZ v)¥/2=654p)
Sl gl + 1 £l llgllx gy

If |f1] =1 and |B2| = 2 then

Q21 £,029),08 9) 2 12 ()52

< [ (19200 193l 1920 -0

+ ”foHL2 y1/2=65n) ”V gHL2( ”vxgHLz yr/2-= 65m)>

S HV:cfHH%Z HV 9HL2HS ((v)7/2=4sm) vag”mHs ((v)7/2=6sm)
+ HfoHHng oy2-somy V29l 22, (o) 129N L2 (oyr/2-60m)
S IFIIx g3 + 1F 1 llgllx gl -
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When |81] = 2 and |52 = 1, we get
(Q(I7f,0529), 00 9) 12 12 (m(w)-0+)

< [ (19200 1980 1920 -0

IVl ooy Vel 220y 19200 2o es,n))

SAIVEFllze 2 (wye) 1Vegll 2z s oyrr2-smy Va9l 22 s oyr2-00m)
+ V3 Fllzz , (wyrrz=6smy IVagll mzrz oy ||Vm9||L2 V)7/2-65m)
S HvszHle HV:CQHng Y¥/245 ) ”ng”mHs ((v)7/2=6s1)
+ V3 f||L2 (wy2=ssm) IVagll 2z o ||Vx9||L2 0)7/2=65m)

S I Ix lally + 11y llglix llglly-
Finally, when g, = 3, it follows

(QO £,9),029) 12 12 (mv)-5)

5 /11‘3 <Hv§fHL% ”gHHs Vv/2=45 ) HVZ‘QHHs )7/2=65m)

+ V2N 2 uyrsz-ssmy 191122 (o)) 1V 2911 22 (0 v/ZGSm)>

SIVEFlzz,, ) 190 52 uyrz—omy) 1 V29N L2 5 (oyr/2-55m)
+V3 f”L2 o ((0)7/2=63m) Hg”H2L2( HV QHLZ v)7/2=65m)
S I£lIx g3 + 1F 1 llgllx gk -

We conclude noticing that [|g||3 < ||lg/|3~ from Lemma 211
Proof of (iii). The result is immediate from (i) and the fact that ||f||3 < || f]|%-

APPENDIX B. CARLEMAN REPRESENTATION

We state here a classical tool in the analysis of Boltzmann operator, the Carleman
representation. We refer to [2] for more details on the version that we state here.

Lemma B.1 (Carleman representation). Let F' be a measurable function defined on (R3)*.
For any vector 9 € R3, we denote by Eyy the (hyper)vector plane orthogonal to . Then,
when all sides are well defined, we have the following equality :

/ b(cos 0) v — v [T F(v,vs,0",0)) dvy do
R3xS?

~ |a+19|’y+1+28
:/ dl?/ dab(a,ﬁ)]l‘apw‘TF(v,v+a—79,v—19,v+a)
R Eo.9 - [9]3+2s

where b(a, V) is bounded from above and below by positive constants and b(cv, 9) = b(£a, £0).
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APPENDIX C. PSEUDODIFFERENTIAL TOOLS

C.1. Pseudodifferential calculus. We first recall the definitions of the quantizations
we shall use in the following. Let us consider a temperate symbol ¢ € S, we define its
standard quantization o (v, D,) for f € L*(R?) by

1

7(0.D,)f(0) = g [ @ o(wn) ) an

The Weyl quantization is defined by

7 f(0) = g [ [ €070 <” : wm) () dn du.

We recall that for two symbols o and 7 we have

1
(C.1) o1 = (ot7)", ofr =07+ / (Ono 890y — OyollgOyT) df
0
where for V' = (v,n) we have § = 41 and for 6 € (0, 1],
oo (V) = % / / e 2V VIV =Rl l0 6 (V)7 (Vy) AVy AV / (n6)?

with [V4, V3] = vy - 1 — v1 - m2 the canonical symplectic form on R24. We shall also use
the Wick quantization, which has very nice properties concerning positivity of operators
(see [25], 26, 27] for more details on the subject). For this, we first introduce the Gaussian
in phase variables

(02) N(’U, 77) = (Zﬁ)_de_(‘v‘2+‘n|2)/2‘
The Wick quantization is then defined by
(C.3) VI f (v) == (0% N)" f(v),

where x denotes the usual convolution in (v,n) variables. Recall that one of the main
property of Wick quantization is its positivity:

(C.4) Y (v,n) €RS, o(v,n) > 0= oWVick >0,
and that the following relation holds (see e.g. [25] Proposition 3.4)):
(C.5) (g™ v - €] = {g,v- M

The previous definitions extend to symbols in 8’ by duality.

C.2. The weak semiclassical class Sk(g). Let T' := |dv|? + |dn|? be the flat metric
on R?w. The first point is to verify that the introduced symbols and weights are indeed
in a suitable symbolic calculus with large parameter K uniformly in the parameter £. For
this, we first recall that a weight 1 < ¢ is said to be temperate with respect to I' if there
exist N > 1 and Cy such that for all (v,n), (v/,n') € RS

g, n') < Cnglo,n)(L+ W —v|+ 0 =)

We now introduce adapted classes of symbols.
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Definition C.1. Let g be a temperate weight. We denote by S(g) the symbol class of all
smooth functions o(v,n) (possibly depending on parameters K and &) such that

95050(v,m)| < Capg(v,1)

where for any multiindex o and B, Cq g is uniform in K and §. We denote also Si(g) the
symbol class of all smooth functions o(v,n) (possibly depending on K and & again) such
that

lo| < Coog and Y|B|>1,

85‘850‘ < Ca,gK_lpg

uniformly in K and . Note that Sk (g) C S(g) and that these definitions are with respect
to the flat metric.

Eventually, we shall say that a symbol o is elliptic positive in S(g) or Sk(g) if in
addition o > 1 and if there exists a constant C' uniform in parameters such that we
have C’_lg <o <C(Cg.

Before focusing on the class Sk (g), we first recall one of the main results concerning
the class without parameter (and without weight) S(1):

Lemma C.2 (Calderon Vaillancourt Theorem). Let o € S(1), then o is a bounded
operator with norm depending only on a finite number of semi-norms of o in S(1).

The classes Sk and S have standard internal properties:

Lemma C.3. For K sufficiently large, we have the following:

(i) Let g be a temperate weight and consider o an elliptic positive symbol in Sk (g) then
forallv e R, o¥ € Sk(g");

(ii) Let g, h be temperate weights and consider o in Sk(g), 7 in Sk (h), then ot is
in Sk (gh).

Proof. For point a), just notice that if o is an elliptic positive symbol in Sk (g), then o ~ g
so that ¢ ~ ¢g¥. We also have directly for § a multiindex of length 1

B
‘8,7 o’

— |v]o¥ ! ‘850‘ < Cg K2 — K12

using o ~ ¢g. Estimates on higher order derivatives are straightforward.
For point b), the computation is also straightforward using the Leibniz rule. O

Now we can quantize the previously introduced symbols. The main semiclassical idea
behind the introduction of the class Si for K large is that invertibility and powers of
operators associated to symbols are direct consequences of similar properties of symbols,
essentially independently of the quantization.

We first check that the class Sk is essentially stable by change of quantization.

Lemma C.4. Let g be a temperate weight and consider ¢ a positive elliptic symbol
in Sk(g). We denote o the Weyl symbol of the operator &(v, Dy) so that c* = (v, D)
and recall that the Weyl symbol of ™V is o« N. Then o and o« N are both in Sk(g).
If in addition & is elliptic positive, then Reo and Reo x N are elliptic positive.

Proof. We first prove the result for o supposing that & is elliptic positive. From for e.g. [27]
and an adaptation of Lemma 4.4 in [2], we know that

(C.6) c—d6eK25(g).



64 FREDERIC HERAU, DANIELA TONON, AND ISABELLE TRISTANI

Since K~125(g) C Sk(g), this gives that o € Sk(g). If in addition & is elliptic positive,
then let us prove that Reo also is. There exist constants C', ¢’ uniform in K large such
that

Clg—C'K'2g<Res < Cg+C'K %

if C~1g < 0 < Cg. Taking K sufficiently large then gives the result.
We now deal with o x N, supposing that o is in Sk (g). For V = (v,7n) we have

o N(V) = / / o(V — WYN (W)W

and using the temperance property of g, we get uniformly in all other possible parameters
(including K)

lox N(V)| < / Cg(V)A+ [WHNNW) AW < C'g(V).

For the derivatives, we get similarly for multiindex o and 8 with |5] > 1

oo« N(V)| < //

—1/2 _
o <CK / / o(V — W)N (W) dW
<CK—1/2// )1+ W)YV NW) AW

<C'K~ 1/2

(V- W)‘ N(W)dw

Suppose now that in addition & is elliptic positive, then Reo is elliptic positive and
C~1g(V) < Rea(V) < Cg(V) for a constant C' > 0. Since Reo x N is positive, this
implies with the temperance of g that

(©8) o)< [[ CICR )W+ W) YN (W)W
< Reox N(V) < / CONG(VY( + [W)N N(W)AW = C'g(V)

for some positive constants ¢ and C’, so that Reo x NV is indeed elliptic positive. O

Remark C.5. Note that using exactly the same argument as in the proof before, we
also get that if T is a given elliptic positive symbol in Sk(g), with g a temperate weight,
then T x N is also an elliptic positive symbol in Sk (g).

The next technical lemma is also proven in [2]:

Lemma C.6 (Lemma 4.2 in [2]). Let g be a temperate weight and o € Sk (g). Then for K
sufficiently large (depending on a finite number of semi-norms of o), the operator o is
inwertible and there exists Hy, and Hpr bounded invertible operators that are close to identity
as well as their inverse such that

(") = Hy(0™")" = (6~ Hp.

The norms of operators Hy, and Hr and their inverse can be bounded uniformly in param-
eters (including K ).
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Note that by “close to identity uniformly in parameters”, we mean that
IHofl| = | Hrfll = fIl-

with constants uniform in parameters (including K sufficiently large).
Proof. The proof follows exactly the lines of the one given in [2, Lemma 4.2. i)]. O

We now give the main Proposition that will be used in the proof of the technical Lemmas

in Subsection B.2.3]

Proposition C.7. Let g be a temperate weight and consider o an elliptic positive symbol
in Sk (g). Then for K sufficiently large, we have the following

©9) |l 2| = @ | and e = e
In addition, suppose that T is another elliptic positive symbol in Sk (g) then
(C.10) le Fl = 1l fII -

In particular, we have

(C.11) o fI2 ~ HO_Wicka2 N <(O_2)Wickf, f)

and

(C.12) (0" f.5) = (™. f)

uniformly in parameters (in particular K ).

Proof. We first prove (C.9). For the second almost equality, we just have to notice that
from Lemma [C.6l we have

@) = [ Hele™ ) | = e 1]
since Hy is close to identity (uniformly in parameters). For the first part of (C9), we
write that

(C.13) o f11* = ((o80)" £, £) = ((6*)“ f, ) + (r f. f)

where r = oo — 02 € K~1/28 (¢%) by standard symbolic calculus. More precisely, we can

write from (CJ])
r= /1(8vaﬁ98n0 — Opotp0y0) db
and using that d,0 € S(g) and 8?70’ € K~1/258(g) gives the result by stability of the flat
symbol class S(g). We therefore get that
2 f, )l = [((0) 1 (a) o f0™ f)]
= ! (HL(U_l)wrw(J_l)wHRawf, Uwf)|.
Now o~ 'trio~" € K~1/25(1) since o~ € S(g), so that (¢~ 1)“r“(c~1)* is a bounded

operator with norm controlled by a constant times K —1/2_ Since H 1, and Hp are bounded
operators independently of K, there exists a constant such that

(e f. Pl < CE 2 o f .
This estimate and (C.13)), gives that for K sufficiently large,

(1) Lo FI? < (%) F, £) < 200 P
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Taking 0'/2 € Sk (g*/?) (by Lemma [(23) instead of o, we obtain
2 2
|@2es|" = s = |2

and the proof of (C.9) is complete.
Concerning (C.I0), we just have to prove one inequality since the result is symmetric
in 7 and 0. For K sufficiently large, we have

I fll = |7 (") o || = |7 (™) Hro f|| = ||(T4(c ™)) Hro“ f|| < C|lo® f|

since 7#(c~') € S(1), so that (7#(c~!))" is bounded (with bound independent of K). By
symmetry, this proves .

We then prove (C1I)). We first recall that ¢™Vi® = (o« N)* and that o x N is elliptic
positive in Sk (g) by Lemma[C4l From (CIQ), this directly yields

o £l = (o % Ny £ = ™.

By direct computation (02 x N)/2 is also in Sk (g) by point b) of Lemma [(C3 with v = 2
and v = 1/2, respectively, and Lemma [C.4l Using again (C.I0) and (C9)), yields that

o £l = (02 5 N2y | = || (o2 = Ny 2 | = (o % N ) = (03 ).
The proof of the last point (C.I2]) follows exactly the same lines and we skip it. O
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