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CAUCHY THEORY AND EXPONENTIAL STABILITY FOR

INHOMOGENEOUS BOLTZMANN EQUATION FOR HARD

POTENTIALS WITHOUT CUT-OFF

FRÉDÉRIC HÉRAU, DANIELA TONON, AND ISABELLE TRISTANI

Abstract. In this paper, we investigate both the problems of Cauchy theory and ex-
ponential stability for the inhomogeneous Boltzmann equation without angular cut-off.
We only deal with the physical case of hard potentials type interactions (with a moder-
ate angular singularity). We prove a result of existence and uniqueness of solutions in
a close-to-equilibrium regime for this equation in weighted Sobolev spaces with a poly-
nomial weight, contrary to previous works on the subject, all developed with a weight
prescribed by the equilibrium. It is the first result in this more physically relevant frame-
work for this equation. Moreover, we prove an exponential stability for such a solution,
with a rate as close as we want to the optimal rate given by the semigroup decay of the
linearized equation.
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equation; 47H20 Semigroups of nonlinear operators; 35B40 Asymptotic behavior of solu-
tions.
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1. Introduction

1.1. The model. In the present paper, we investigate the Cauchy theory and the asymp-
totic behavior of solutions to the spatially inhomogeneous Boltzmann equation without
angular cut-off, that is, for long-range interactions. Previous works have shown that there

exist solutions in a close-to-equilibrium regime but in spaces of type Hq(e|v|
2/2) which are

very restrictive. Here, we are interested in improving this result in the following sense:
we enlarge the space in which we develop a Cauchy theory in several ways, we do not
require any assumption on the derivatives in velocity and more importantly, our weight
is polynomial. We thus only require a condition of finite moments on our data, which is
more physically relevant. Moreover, we jointly obtain a convergence to equilibrium for the
solutions that we construct with an exponential and explicit rate.

We consider particles described by their space inhomogeneous distribution density f =
f(t, x, v) with t ∈ R

+ the time, x ∈ T
3 the position and v ∈ R

3 the velocity. We hence
study the so-called spatially inhomogeneous Boltzmann equation:

(1.1) ∂tf + v · ∇xf = Q(f, f).

The Boltzmann collision operator is defined as

Q(g, f) :=

∫

R3×S2

B(v − v∗, σ)
[
g′∗f

′ − g∗f
]
dσ dv∗.

Here and below, we are using the shorthand notations f = f(v), g∗ = g(v∗), f ′ = f(v′)
and g′∗ = g(v′∗). In this expression, v, v∗ and v′, v′∗ are the velocities of a pair of particles
after and before collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical law of elastic collisions):

v + v∗ = v′ + v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2,
so that the pre-collisional velocities are given by:

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S

2.

The Boltzmann collision kernel B(v− v∗, σ) only depends on the relative velocity |v− v∗|
and on the deviation angle θ through cos θ = 〈κ, σ〉 where κ = (v − v∗)/|v − v∗| and 〈·, ·〉
is the usual scalar product in R

3. By a symmetry argument, one can always reduce to the
case where B(v − v∗, σ) is supported on 〈κ, σ〉 ≥ 0 i.e. 0 ≤ θ ≤ π/2. So, without loss of
generality, we make this assumption.

In this paper, we shall be concerned with the case when the kernel B satisfies the
following conditions:
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• it takes product form in its arguments as

(1.2) B(v − v∗, σ) = Φ(|v − v∗|) b(cos θ);
• the angular function b is locally smooth, and has a nonintegrable singularity for
θ → 0: it satisfies for some cb > 0 and s ∈ (0, 1/2) (moderate angular singularity)

(1.3) ∀ θ ∈ (0, π/2],
cb

θ1+2s
≤ sin θ b(cos θ) ≤ 1

cb θ1+2s
;

• the kinetic factor Φ satisfies

(1.4) Φ(|v − v∗|) = |v − v∗|γ with γ ∈ (0, 1),

this assumption could be relaxed to assuming only that Φ satisfies Φ(·) = CΦ | · |γ
for some CΦ > 0.

Our main physical motivation comes from particles interacting according to a repulsive
potential of the form

(1.5) φ(r) = r−(p−1), p ∈ (2,+∞).

The assumptions made on B throughout the paper include the case of potentials of the
form (1.5) with p > 5. Indeed, for repulsive potentials of the form (1.5), the collision kernel
cannot be computed explicitly but Maxwell [24] has shown that the collision kernel can be
computed in terms of the interaction potential φ. More precisely, it satisfies the previous
conditions (1.2), (1.3) and (1.4) in dimension 3 (see [13, 14, 33]) with s := 1

p−1 ∈ (0, 1)

and γ := p−5
p−1 ∈ (−3, 1).

One traditionally calls hard potentials the case p > 5 (for which 0 < γ < 1), Maxwell
molecules the case p = 5 (for which γ = 0) and soft potentials the case 2 < p < 5 (for
which −3 < γ < 0). We can hence deduce that our assumptions made on B include the
case of hard potentials.

Let us give a weak formulation of the collision operator Q. For any suitable test function
ϕ = ϕ(v), we have:
(1.6)∫

R3

Q(f, f)(v)ϕ(v) dv =
1

4

∫

R3×R3×S2

B(v− v∗, σ) [f ′∗f ′− f∗f ] (ϕ+ϕ∗−ϕ′−ϕ′
∗) dσ dv∗ dv.

From this formula, we can deduce some features of equation (1.1): it preserves mass,
momentum and energy. Indeed, at least formally, we have:

∫

R3

Q(f, f)(v)ϕ(v) dv = 0 for ϕ(v) = 1, v, |v|2;

from which we deduce that a solution ft to equation (1.1) is conservative, meaning that
(1.7)

∀ t ≥ 0,

∫

T3×R3

f(t, x, v)ϕ(v) dv dx =

∫

T3×R3

f0(x, v)ϕ(v) dv dx for ϕ(v) = 1, v, |v|2.

We introduce the entropy H(f) =
∫
T3×R3 f log(f) dv dx and the entropy production

D(f) defined through:

(1.8)

D(f) := − d

dt
H(f)

=
1

4

∫

T3×R3×R3×S2

B(v − v∗, σ) (f
′f ′∗ − ff∗) log

f ′f ′∗
ff∗

dσ dv∗ dv dx.
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Boltzmann’s H theorem asserts that

(1.9)
d

dt
H(f) = −D(f) ≤ 0

and states that any equilibrium (i.e. any distribution which maximizes the entropy) is a
Maxwellian distribution. Moreover, it is known that global equilibria of (1.1) are global
Maxwellian distributions that are independent of time t and position x. In this paper, we
shall only consider the case of an initial datum satisfying

(1.10)

∫

T3×R3

f0 dv dx = 1,

∫

T3×R3

f0 v dv dx = 0,

∫

T3×R3

f0 |v|2dv dx = 3,

and therefore consider µ the Maxwellian with same mass, momentum and energy as f0:

(1.11) µ(v) := (2π)−3/2e−|v|2/2.

1.2. Notations. Let X,Y be Banach spaces and consider a linear operator Λ : X → X.
When defined, we shall denote by SΛ(t) = etΛ the semigroup generated by Λ. Moreover we
denote by B(X,Y ) the space of bounded linear operators from X to Y and by ‖ · ‖B(X,Y )

its norm operator, with the usual simplification B(X) = B(X,X).

For simplicity of notations, hereafter, we denote 〈v〉 = (1 + |v|2)1/2; a ≈ b means that
there exist constants c1, c2 > 0 depending only on fixed numbers such that c1b ≤ a ≤ c2b;
we shall use the same notation C for positive constants that may change from line to line
or abbreviate “ ≤ C ” to “ . ”, where C is a positive constant depending only on fixed
number.

In what follows, we denote m(v) := 〈v〉k with k > 0, the range of admissible k will be
specified throughout the paper. We also introduce χ ∈ D(R) a truncation function which
satisfies 1[−1,1] ≤ χ ≤ 1[−2,2] and we denote χa(·) := χ(·/a) for a > 0.

1.3. Function spaces. Through all the paper, we shall consider functions of two variables
f = f(x, v) with x ∈ T

3 and v ∈ R
3. Let ν = ν(v) be a positive Borel weight function and

1 ≤ p ≤ ∞. We define the space Lpx,v(ν) as the Lebesgue space associated to the norm,
for f = f(x, v),

‖f‖Lp
x,v(ν) :=

∥∥‖f‖Lp
v(ν)

∥∥
Lp
x
:=
∥∥‖ν f‖Lp

v

∥∥
Lp
x

which writes if p <∞:

‖f‖Lp
x,v(ν) =

(∫

T3
x

‖f(x, ·)‖p
Lp
v(ν)

dx

)1/p

=

(∫

T3
x

∫

R3
v

|f(x, v)|p ν(v)p dv dx
)1/p

.

We define the high-order Sobolev spaces Hn
xH

ℓ
v(ν), for n, ℓ ∈ N:

(1.12) ‖f‖2Hn
xH

ℓ
v(ν)

:=
∑

|α|≤ℓ, |β|≤n, |α|+|β|≤max(ℓ,n)

‖∂αv ∂βx (fν)‖2L2
x,v
.
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This definition reduces to the usual weighted Sobolev space Hn
x,v(ν) when ℓ = n. We use

Fourier transform to define the general space Hr
x,v(ν) for r ∈ R

+:

(1.13) ‖f‖2Hr
x,v(ν)

:= ‖fν‖2Hr
x,v

=
∑

ξ∈Z3

∫

η∈R3

(1 + |ξ|2 + |η|2)r |f̂ ν(ξ, η)|2 dη

where the hat corresponds to the Fourier transform in both x (with corresponding variable
ξ ∈ Z

3) and v (with corresponding variable η ∈ R
3). In this case, the norms given by (1.12)

and (1.13) are equivalent. We won’t make any difference in the notation and will use one
norm or the other at our convenience. It won’t have any impact on our estimates since it
will only add multiplicative universal constants.

We also introduce the fractional Sobolev space Hr,ς
x,v(ν) for r, ς ∈ R

+ associated to the
norm:

(1.14) ‖f‖2Hr,ς
x,v(ν)

:= ‖fν‖2Hr,ς
x,v

=
∑

ξ∈Z3

∫

R3

(1 + |ξ|2)r (1 + |η|2)ς |f̂ ν(ξ, η)|2 dη.

When r ∈ N, we can also define the space Hr,ς
x,v(ν) through the norm:

(1.15) ‖f‖2Hr,ς
x,v(ν)

:=
∑

0≤j≤r

∫

T3
x

‖∇j
xf‖2Hς

v(ν)
=
∑

0≤j≤r
‖∇j

xf‖2L2
xH

ς
v(ν)

.

As previously, when r ∈ N, the norms given by (1.14) and (1.15) are equivalent and we
will use one norm or the other at our convenience. Finally, denoting for ς ∈ R

+,

‖f‖2
Ḣς

v(ν)
:= ‖fν‖2

Ḣς
v
=

∫

R3

|η|2ς |f̂ ν(η)|2 dη,

we introduce the space Ḣn,ς
x,v (ν) for (n, ς) ∈ N× R

+ defined through the norm:

(1.16) ‖f‖2
Ḣn,ς

x,v (ν)
:=

∑

0≤j≤n

∫

T3
x

‖∇j
xf‖2Ḣς

v(ν)
dx =

∑

0≤j≤n
‖∇j

xf‖2L2
xḢ

ς
v(ν)

.

Notice also that in the case ς = 0, the spaces Hn
xL

2
v(ν) and H

n,0
x,v (ν) associated respectively

to the norms given by (1.12) and (1.15) are the same.
We now introduce some “twisted” Sobolev spaces (useful for the development of our

Cauchy theory in Section 4), we denote them Hn,ς
x,v(ν) for (n, ς) ∈ N × R

+ and they are
associated to the norm:

(1.17) ‖f‖2Hn,ς
x,v(ν)

:=
∑

0≤j≤n

∫

T3
x

‖∇j
xf‖2Hς

v(〈v〉−2jsν) =
∑

0≤j≤n
‖∇j

xf‖2L2
xH

ς
v(〈v〉−2jsν)

where s is the angular singularity of the Boltzmann kernel introduced in (1.3) and 〈v〉 =
(1 + |v|2)1/2. For the case ς = 0, since the notation is consistent, we will use the notation

Hn
xL

2
v(ν) or Hn,0

x,v(ν) indifferently.
Finally, following works from Alexandre et al. (see [6]), we introduce an anisotropic

norm that we denote ‖ · ‖Ḣs,∗
v

(the notation will be explained by Lemma 2.1) and which is
defined through

‖f‖2
Ḣs,∗

v
:=

∫

R3×R3×S2

bδ(cos θ)µ∗〈v∗〉−γ(f ′〈v′〉γ/2 − f〈v〉γ/2)2 dσ dv∗ dv.

In this definition, γ is the power of the kinetic factor in (1.4) and µ is given by (1.11).
Moreover, we recall that b is the angular function of the Boltzmann kernel which satis-
fies (1.3) and we define bδ as the following truncation of b: bδ(cos θ) := χδ(θ)b(cos θ) with
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δ fixed so that the conclusion of Lemma 3.2 holds. Since the constant δ is fixed, we do
not mention the dependency of the norm defined above with respect to δ. Let us also
introduce the space Hs,∗

v (ν) associated with the norm

(1.18) ‖f‖2Hs,∗
v (ν) = ‖f‖2

L2
v(〈v〉γ/2ν)

+ ‖fν‖2
Ḣs,∗

v
.

For n ∈ N, we also define the space Hn,s,∗
x,v (ν) associated with the norm

(1.19) ‖f‖2Hn,s,∗
x,v (ν) :=

∑

0≤j≤n

∫

T3

‖∇j
xf‖2Hs,∗

v (〈v〉−2jsν) dx

where s is still the angular singularity in (1.3).

1.4. Main results and known results.

1.4.1. Cauchy theory and convergence to equilibrium. We state now the main result on
the fully nonlinear problem (1.1). Let m(v) = 〈v〉k with

k >
21

2
+ γ + 22s.

We then denote X := H3
xL

2
v(m) and we introduce Y ∗ := H3,s,∗

x,v (m) (see (1.17) and (1.19)
for the definition of the spaces).

Theorem 1.1. We assume that f0 has same mass, momentum and energy as µ (i.e.
satisfies (1.10)). There is a constant ε0 > 0 such that if ‖f0 − µ‖X ≤ ε0, then there exists
a unique global weak solution f to the Boltzmann equation (1.1), which satisfies, for some
constant C > 0,

‖f − µ‖L∞([0,∞);X) + ‖f − µ‖L2([0,∞);Y ∗) ≤ Cε0.

Moreover, this solution satisfies the following estimate: for any 0 < λ2 < λ1 there exists
C > 0 such that

∀ t ≥ 0, ‖f(t)− µ‖X ≤ C e−λ2t ‖f0 − µ‖X ,
where λ1 > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem 3.1.

We refer to Remark 4.1 in which the imposed condition on the power k of our weight is
explained. Let us now comment our result and give an overview on the previous works on
the Cauchy theory for the inhomogeneous Boltzmann equation. For general large data, we
refer to the paper of DiPerna-Lions [17] for global existence of the so-called renormalized
solutions in the case of the Boltzmann equation with cut-off. This notion of solution has
been extended to the case of long-range interactions by Alexandre-Villani [8] where they
construct global renormalized solutions with a defect measure. We also mention the work
of Desvillettes-Villani [16] that proves the convergence to equilibrium of a priori smooth
solutions for both Boltzmann and Landau equations for general initial data.

In a close-to-equilibrium framework, Gressman and Strain [18] in parallel with Alexan-
dre et al. [6] have developed a Cauchy theory in spaces of type Hn

xH
ℓ
v(µ

−1/2). One of the
famous difficulty of the Boltzmann equation without cut-off is to well understand coerciv-
ity estimates. In both papers [6] and [18], the gain induced is seen and understood through
a non-isotropic norm. Our strategy uses this type of approach but we also exploit the
fact that the linearized Boltzmann operator can be seen as a pseudo-differential operator
in order to understand the gain induced by the linearized operator. It allows us to obtain
regularization estimates (quantified in time) on the semigroup associated to the linearized
operator. We refer to the paper of the same authors [22] for more details on the subject.
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To end this brief review, we also refer to a series of papers by Alexandre et al. [3, 4, 5, 6, 7]
in which the Boltzmann equation without cut-off is studied in various aspects (different
type of collision kernels, Cauchy theory in exponentially weighted spaces, regularity of the
solutions etc...).

Let us underline the fact that Theorem 1.1 largely improves previous results on the
Cauchy theory associated to the Boltzmann equation without cut-off for hard potentials
in a perturbative setting. Indeed, we have enlarged the space in which the Cauchy theory
has been developed in the sense that the weight of our space is much less restrictive (it is
polynomial instead of the inverse Maxwellian equilibrium) and we also require few assump-
tions on the derivatives, in particular no derivatives in the velocity variable. However, we
need three derivatives in the space variable (Gressman and Strain only require two deriva-
tives in x in [18]): this is the counterpart of the gain in weight we have obtained. Indeed,
our framework is less favorable and needs more attention due to the lack of symmetry
of the operator in our spaces to obtain nonlinear estimates on the Boltzmann collision
operator. And thus, to close our estimates, we require regularity on three derivatives in x.

Our strategy is based on the study of the linearized equation. And then, we go back
to the fully nonlinear problem. This is a standard strategy to develop a Cauchy theory
in a close-to-equilibrium regime. However, we point out that our study of the nonlinear
problem is very tricky. Indeed, usually (for example in the case of the non-homogeneous
Boltzmann equation for hard spheres in [19]), the gain induced by the linear part of the
equation is enough to directly control the loss due to the nonlinear part of the equation so
that the linear part is dominant and thus dictates the dynamics of the equation. In our
case, it is more difficult because the gain induced by the linear part is not strong enough
and it is not possible to conclude using only natural estimates on the Boltzmann collision
operator (this fact was for example pointed out by Mouhot and Neumann in [29]). As a
consequence, we establish some new very accurate estimates on the Boltzmann collision
operator (see Lemma 2.4). We also have to study very carefully the regularization prop-
erties of the semigroup associated to the linearized operator: to this end, we use results
by the same authors [22] in which the linearized Boltzmann operator is seen as a pseudo-
differential operator, following the framework introduced in [2] by Alexandre, Li and the
first author. Also, in the spirit of what was done in [12] by Carrapatoso, Wu and the
third author, we work in Sobolev spaces in which the weights depend on the order of the
derivative in the space variable. Those key elements allow us to close our estimates and
thus, to develop our Cauchy theory in our “twisted” Sobolev spaces.

1.4.2. The linearized equation. The linearized operator around equilibrium is defined at
first order through

Λh := Q(µ, h) +Q(h, µ)− v · ∇xh.

We study spectral properties of the linearized operator Λ in various weighted Sobolev
spaces of type Hn

xH
ℓ
v(〈v〉k) up to L2

x,v(〈v〉k) for k large enough. It is important to high-
light the fact that, in order to take advantage of symmetry properties, most of the previous
studies have been made in Sobolev weighted spaces of type Hq

x,v(µ−1/2). We largely im-
prove theses previous results in the sense that we are able to get similar spectral estimates
in larger Sobolev spaces, with a polynomial weight and with less assumptions on the
derivatives. Here is a rough version of the main result (Theorem 3.1) that we obtain on
the linearized operator Λ:
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Theorem 1.2. Let E be one of the admissible spaces defined in (3.4). Then, there exist
explicit constants λ1 > 0 and C ≥ 1 such that

∀ t ≥ 0, ∀h ∈ E , ‖SΛ(t)h−Π0h‖E ≤ C e−λ1t ‖h−Π0h‖E ,

where SΛ(t) is the semigroup associated to Λ and Π0 the projector onto the null space of Λ
defined by (1.22).

As mentioned above, the operator Λ (and its homogeneous version Lh := Q(µ, h) +
Q(h, µ)) has already been widely studied. Let us first briefly review the existing results
concerning spectral gap estimates for the homogeneous case. Pao [31] studied spectral
properties of the linearized operator L for hard potentials by non-constructive and very
technical means. This article was reviewed by Klaus [23]. Then, Baranger and Mouhot
gave the first explicit estimate on this spectral gap in [9] for hard potentials (γ > 0). If
we denote D the Dirichlet form associated to −L:

D(h) :=

∫

R3

(−Lh)hµ−1,

and N (L)⊥ the orthogonal of the null space of L, N (L) which is given by

N (L) = Span{µ, v1µ, v2µ, v3µ, |v|2µ},

the Dirichlet form D satisfies

(1.20) ∀h ∈ N (L)⊥, D(h) ≥ λ0 ‖h‖2L2(µ−1/2)
,

for some constructive constant λ0 > 0. This result was then improved by Mouhot [27] and
later by Mouhot and Strain [30]. In the last paper, it was conjectured that a spectral gap
exists if and only if γ+2s ≥ 0. This conjecture was finally proven by Gressman and Strain
in [18]. Finally, let us point out that the analysis that we carry on can be seen as the
sequel of the one handled in [32] by the third author which focuses on the homogeneous
linearized operator L. We also improve it in several aspects: we are able to deal with
the spatial dependency and we are able to do computations in L2 (only the L1-case was
treated in the latter).

Concerning the non-homogeneous case, we state here a result coming from Mouhot
and Neumann [29] (which takes advantage of the results proven in [9] by Baranger and

Mouhot), it gives us a spectral gap estimate inHq
x,v(µ−1/2), q ∈ N

∗, thanks to hypocoerciv-
ity methods. Let us underline the fact that it provides us the existence of spectral gap and
an estimate on the semigroup decay associated to Λ in the “small” space E = Hq

x,v(µ−1/2),
which is a crucial point in view of applying the enlargement theorem of [19]. It is also
important to precise that Mouhot and Neumann [29] only obtain a result on the linearized
operator, they are not able to go back to the nonlinear problem.

Theorem 1.3 ([29]). Consider E := Hq
x,v(µ−1/2) with q ∈ N

∗. Then, there exists a
constructive constant λ0 > 0 (spectral gap) such that Λ satisfies on E:

(i) the spectrum Σ(Λ) ⊂ {z ∈ C : ℜe z ≤ −λ0} ∪ {0};
(ii) the null space N(Λ) is given by

(1.21) N(Λ) = Span{µ, v1µ, v2µ, v3µ, |v|2µ},
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and the projection Π0 onto N(Λ) by

(1.22)

Π0h =

(∫

T3×R3

hdv dx

)
µ+

3∑

i=1

(∫

T3×R3

vihdv dx

)
viµ

(∫

T3×R3

|v|2 − 3

6
hdv dx

)
(|v|2 − 3)

6
µ;

(iii) Λ is the generator of a strongly continuous semigroup SΛ(t) that satisfies

(1.23) ∀ t ≥ 0, ∀h ∈ E, ‖SΛ(t)h−Π0h‖E ≤ e−λ0t‖h−Π0h‖E .
To prove Theorem 1.2, our strategy follows the one initiated by Mouhot in [28] for

the homogeneous Boltzmann equation for hard potentials with cut-off. This argument
has then been developed and extended in an abstract setting by Gualdani, Mischler and
Mouhot [19], and Mischler and Mouhot [26]. Let us describe in more details this strategy.
We want to apply the abstract theorem of enlargement of the space of semigroup decay
from [19, 26] to our linearized operator Λ. We shall deduce the spectral/semigroup esti-
mates of Theorem 1.2 on “large spaces” E using the already known spectral gap estimates
for Λ on Hℓ

x,v(µ
−1/2), for ℓ ≥ 1, described in Theorem 1.3. Roughly speaking, to do

that, we have to find a splitting of Λ into two operators Λ = A + B which satisfy some
properties. The first part A has to be bounded, the second one B has to have some dissi-
pativity properties, and also the operator (ASB(t)) is required to have some regularization
properties.

1.5. Outline of the paper. We end this introduction by describing the organization
of the paper. In Section 2, we prove nonlinear estimates on the Boltzmann collision
operator. In Section 3 we consider the linearized equation and prove a precise version of
Theorem 1.2. In Section 4, we come back to the nonlinear equation and prove our main
result Theorem 1.1.

Acknowledgments. The third author has been partially supported by the Fondation
Mathématique Jacques Hadamard. This research has been supported by the École Normale
Supérieure through the project Actions incitatives Analyse de solutions d’équations de
la théorie cinétique des gaz. The first author thanks the Centre Henri Lebesgue ANR-
11-LABX-0020-01 for its support and the third author thanks the ANR EFI: ANR-17-
CE40-0030. The authors thank Stéphane Mischler and Kleber Carrapatoso for fruitful
discussions.

2. Preliminaries on the Boltzmann collision operator

In this part, we give estimates on the trilinear form 〈Q(g, h), f〉 in our physical frame-
work (meaning that the collision kernel B satisfies conditions (1.2), (1.3), (1.4)). We
start by recalling some homogeneous estimates and then establish some new estimates in
weighted Sobolev (or Lebesgue) non homogeneous spaces. These new estimates will be
used both in the linear (Section 3) and nonlinear (Section 4) studies.

For sake of clarity, we recall that m(v) = 〈v〉k with k > 0 and that we will specify the
range of admissible k in each result.
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2.1. Bound on the anisotropic norm. In this subsection, we compare the anisotropic
norm defined in (1.18) with usual Sobolev norms.

Lemma 2.1. Let k ≥ 0. We have the following estimate: for g ∈ Hs
v(〈v〉γ/2+sm),

δ2−2s‖g‖Hs
v (〈v〉γ/2m) . ‖g‖Hs,∗

v (m) . ‖g‖Hs
v (〈v〉γ/2+sm).

Proof. Adapting the proof of [21, Theorem 3.1], we know that there exist c0 and c1 such
that

‖gm‖2
Ḣs,∗

v
≥ c0 δ

2−2s‖g‖2
Hs

v(〈v〉γ/2m)
− c1 δ

2−2s‖g‖2
L2(〈v〉γ/2m)

.

As a consequence, we have for λ ∈ (0, 1),

‖g‖2Hs,∗
v (m) = ‖g‖2

L2
v(〈v〉γ/2m)

+ ‖gm‖2
Ḣs,∗

v

≥ ‖g‖2
L2
v(〈v〉γ/2m)

+ λ‖gm‖2
Ḣs,∗

v

≥ ‖g‖2
L2
v(〈v〉γ/2m)

(1− λ c1 δ
2−2s) + λ c0 δ

2−2s‖g‖2
Hs

v (〈v〉γ/2m)
.

Taking λ > 0 small enough, we obtain the bound δ2−2s‖g‖Hs
v (〈v〉γ/2m) . ‖g‖Hs,∗

v (m). The

reverse bound is directly given by [6, Lemma 2.4] since
∫

R3×R3×S2

bδ(cos θ)µ∗〈v∗〉−γ(g′m′〈v′〉γ/2 − gm〈v〉γ/2)2 dσ dv∗ dv

≤
∫

R3×R3×S2

b(cos θ)µ∗〈v∗〉−γ(g′m′〈v′〉γ/2 − gm〈v〉γ/2)2 dσ dv∗ dv.

�

We will use the fact that our lower bound in the previous lemma depends on δ in the
proof of Lemmas 3.2 and 3.3. However, in the next subsection, δ is fixed so that the
conclusion of Lemma 3.2 is satisfied, we thus do not mention anymore the dependency of
constants with respect to δ.

2.2. Homogeneous estimates.

Lemma 2.2 ([20]). For smooth functions f , g, h, one has:

|〈Q(f, g), h〉L2
v
| . ‖f‖L1

v(〈v〉γ+2s) ‖g‖Hς1
v (〈v〉N1 ) ‖h‖Hς2

v (〈v〉N2 )

with ς1, ς2 ∈ [0, 2s] satisfying ς1 + ς2 = 2s and N1, N2 ≥ 0 such that N1 +N2 = γ + 2s.

The goal of what follows is to extend this type of estimates to weighted Lebesgue spaces.
Lemma 2.3 is a “weighted version” of Lemma 2.2.

Lemma 2.3. Assume k > γ/2 + 3 + 2s.

(i) For any ℓ > γ + 1 + 3/2, there holds

(2.1)
〈Q(f, g), h〉L2

v(m) . ‖f‖L2
v(〈v〉ℓ) ‖g‖Hς1

v (〈v〉N1m) ‖h‖Hς2
v (〈v〉N2m)

+ ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖h‖L2
v(〈v〉γ/2m)

with ς1, ς2 ∈ [0, 2s] satisfying ς1 + ς2 = 2s and N1, N2 ≥ 0 such that N1 + N2 =
γ + 2s.

(ii) For any ℓ > 4− γ + 3/2, there holds

(2.2) 〈Q(f, g), g〉L2
v(m) . ‖f‖L2

v(〈v〉ℓ) ‖g‖
2
Hs,∗

v (m) + ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖g‖L2
v(〈v〉γ/2m).
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Proof of (i). We write

〈Q(f, g), h〉L2
v (m) =

∫

R3×R3×S2

B(v − v∗, σ) (f
′
∗g

′ − f∗g)hm
2 dσ dv∗ dv

=

∫

R3×R3×S2

B(v − v∗, σ) (f
′
∗g

′m′ − f∗g m)hmdσ dv∗ dv

+

∫

R3×R3×S2

B(v − v∗, σ) f
′
∗g

′hm (m−m′) dσ dv∗ dv

=: I1 + I2.

We deal with the first term I1 using Lemma 2.2:

I1 = 〈Q(f, gm), hm〉L2
v
. ‖f‖L1

v(〈v〉γ+2s) ‖g‖Hς1
v (〈v〉N1m) ‖h‖Hς2

v (〈v〉N2m)

. ‖f‖L2
v(〈v〉ℓ) ‖g‖Hς1

v (〈v〉N1m) ‖h‖Hς2
v (〈v〉N2m)

because ℓ > γ + 2s+ 3/2, with ς1, ς2 ∈ [0, 2s] satisfying ς1 + ς2 = 2s and with N1, N2 ≥ 0
such that N1 +N2 = γ + 2s. To deal with I2, we use the following estimate on |m′ −m|
(see the proof in [3, Lemma 2.3]):

(2.3) |m′ −m| . sin(θ/2)
(
m′ + 〈v′∗〉 〈v′〉k−1 + sink−1(θ/2)m′

∗
)
.

Notice that |v − v∗| = |v′ − v′∗| . |v − v′∗| which implies

(2.4) |v − v∗|γ . |v′ − v′∗|γ/2 |v − v′∗|γ/2 . 〈v〉γ/2 〈v′〉γ/2 〈v′∗〉γ .
Also, we have,

(2.5) |v − v∗|γ . |v′ − v|γ/2 sin−γ/2(θ/2) |v′ − v′∗|γ/2 . sin−γ/2(θ/2) 〈v′〉γ 〈v〉γ/2 〈v′∗〉γ/2.
This bound induces the appearance of a singularity in θ. However, we notice that in the
third term of the estimate (2.3) we have a gain in the power of sin(θ/2) depending on the
value of k, the power of our polynomial weight. As a consequence, if k is large enough,
we can keep a power of sin(θ/2) that is large enough to remove the singularity of b(cos θ)
at θ = 0. Consequently, we have:

I2 .

∫

R3×R3×S2

b(cos θ) sin(θ/2) |v − v∗|γ |f ′∗||g′||h|m
(
m′ + 〈v′∗〉 〈v′〉k−1 + sink−1(θ/2)m′

∗
)
dσ dv∗ dv

=: I21 + I22 + I23.

The two first terms I21 and I22 are treated in the same way using the estimate (2.4), we
obtain:

I21 + I22 .

∫

R3×R3×S2

b(cos θ) sin(θ/2) |f ′∗|〈v′∗〉γ+1 |g′|m′〈v′〉γ/2 |h|m〈v〉γ/2 dσ dv∗ dv

.

(∫

R3×R3×S2

b(cos θ) sin(θ/2) |f ′|〈v′〉γ+1 (g′∗)
2(m′

∗)
2〈v′∗〉γ dσ dv∗ dv

)1/2

×
(∫

R3×R3×S2

b(cos θ) sin(θ/2) |f ′|〈v′〉γ+1 h2∗m
2
∗〈v∗〉γ dσ dv∗ dv

)1/2

=: J1 × J2.
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The term J1 is easily handled just using the pre-post collisional change of variable:

J2
1 . ‖f‖L1

v(〈v〉γ+1) ‖g‖2L2
v(〈v〉γ/2m)

. ‖f‖L2
v(〈v〉ℓ) ‖g‖

2
L2
v(〈v〉γ/2m)

since ℓ > γ + 1 + 3/2. To deal with J2, we use the regular change of variable v → v′

meaning that for each σ, with v∗ still fixed, we perform the change of variables v → v′.
This change of variables is well-defined on the set {cos θ > 0}. Its Jacobian determinant
is ∣∣∣∣

dv′

dv

∣∣∣∣ =
1

8
(1 + κ · σ) = (κ′ · σ)2

4
,

where κ := (v−v∗)/|v−v∗| and κ′ := (v′−v∗)/|v′−v∗|. We have κ′ ·σ = cos(θ/2) ≥ 1/
√
2.

The inverse transformation v′ → ψσ(v
′) = v is then defined accordingly. Using the fact

that

cos θ = κ · σ = 2(κ′ · σ)2 − 1 and sin(θ/2) =
√

1− cos2(θ/2) =
√

1− (κ′ · σ)2,
we obtain ∫

R3×S2

b(cos θ) sin(θ/2) |f ′|〈v′〉γ+1 dσ dv

=

∫

R3×S2

b(2(κ′ · σ)2 − 1)
√

1− (κ′ · σ)2 |f ′|〈v′〉γ+1 dσ dv

=

∫

κ′·σ≥1/
√
2
b(2(κ′ · σ)2 − 1)

√
1− (κ′ · σ)2 |f ′|〈v′〉γ+1 dσ

4 dv′

(κ′ · σ)2

.

∫

S2

b(cos 2θ) sin θ dσ

∫

R3

|f |〈v〉γ+1 dv.

We deduce:

J2
2 . ‖f‖L1

v(〈v〉γ+1) ‖h‖2L2
v(〈v〉γ/2m)

. ‖f‖L2
v(〈v〉ℓ) ‖h‖

2
L2
v(〈v〉γ/2m)

.

In summary, gathering the three previous estimates, we have

I21 + I22 . ‖f‖L2
v(〈v〉ℓ) ‖g‖L2

v(〈v〉γ/2m) ‖h‖L2
v(〈v〉γ/2m).

Concerning I23, we take advantage of the bound given by (2.5):

I23 .

∫

R3×R3×S2

b(cos θ) sink−γ/2(θ/2) |f ′∗|m′
∗〈v′∗〉γ/2 |g′|〈v′〉γ |h|m 〈v〉γ/2 dσ dv∗ dv

.

(∫

R3×R3×S2

b(cos θ) sink−γ/2(θ/2) |g′|〈v′〉γ |f ′∗|2m′
∗
2〈v′∗〉γ dσ dv∗ dv

)1/2

×
(∫

R3×R3×S2

b(cos θ) sink−γ/2(θ/2) |g′|〈v′〉γ h2m2 〈v〉γ dσ dv∗ dv
)1/2

=: T1 × T2.

As far as T1 is concerned, a simple pre-post collisional change of variable allows us to get

T 2
1 . ‖g‖L1

v(〈v〉γ ) ‖f‖
2
L2
v(〈v〉γ/2m)

. ‖g‖L2
v(〈v〉ℓ) ‖f‖

2
L2
v(〈v〉γ/2m)

since ℓ > γ + 3/2. The second term requires more attention since we have to perform a
singular change of variable v∗ → v′ showed for example in the proof of Lemma 2.4 in [3].
Recall that the Jacobian of this transform is∣∣∣∣

dv∗
dv′

∣∣∣∣ =
4

sin2(θ/2)
≤ 16 θ−2, θ ∈ (0, π/2],
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therefore, this change of variable gives rise to an additional singularity in θ around 0.
However, we can take advantage of the fact that we have a power k in sin(θ/2), indeed
taking k large enough allows us to control this singularity. Notice that θ is no longer the
good polar angle to consider, we set ψ = (π − θ)/2 for ψ ∈ [π/4, π/2] so that

cosψ =
v′ − v

|v′ − v| · σ and dσ = sinψ dψ dφ.

This measure does not cancel any of the singularity of b(cos θ) unlike in the case of the
usual polar coordinates but it will be counterbalanced taking k large enough. We then
have:∫

R3×S2

b(cos θ) sink−γ/2(θ/2) |g′|〈v′〉γ dσ dv∗ .
∫

R3×S2

(π − 2ψ)k−γ/2−4−2s |g′|〈v′〉γ dσ dv′

.

∫ π/2

π/4
(π − 2ψ)k−γ/2−4−2s sinψ dψ

∫

R3

|g| 〈v〉γ dv .

∫

R3

|g| 〈v〉γ

since k > γ/2 + 3 + 2s. We deduce that

T 2
2 . ‖g‖L1

v(〈v〉γ ) ‖h‖
2
L2
v(〈v〉γ/2m)

. ‖g‖L2
v(〈v〉ℓ) ‖h‖

2
L2
v(〈v〉γ/2m)

and thus
I23 . ‖f‖L2

v(〈v〉γ/2m) ‖g‖L2
v(〈v〉ℓ) ‖h‖L2

v(〈v〉γ/2m),

which concludes the proof of estimate (2.1).
Proof of (ii). We have:

〈Q(f, g), g〉L2
v(m)

= 〈Q(f, gm), gm)〉L2
v
+

∫

R3×R3×S2

B(v − v∗, σ)f
′
∗g

′g m (m−m′) dσ dv∗ dv

=: I + J.

The term J is done in the first step of the proof, it corresponds to the term I2 replacing h
by g, we thus have

J . ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖g‖L2
v(〈v〉γ/2m).

In order to deal with the term I, we denote G := gm. We also recall that

bδ(cos θ) = χδ(θ) b(cos θ)

and we introduce the notations

bcδ(cos θ) := (1− χδ(θ)) b(cos θ),

Bδ(v − v∗, σ) := bδ(cos θ) |v − v∗|γ and Bc
δ(v − v∗, σ) := bcδ(cos θ) |v − v∗|γ .

The two previous kernels correspond respectively to grazing collisions and non grazing
collisions (which encodes the cut-off part of the operator). We also denote Qδ (resp. Qcδ)
the operator associated with the kernel Bδ (resp. B

c
δ). We have for G = gm:

I = 〈Qδ(f,G), G〉L2
v
+ 〈Qcδ(f,G), G〉L2

v
=: Iδ + Iδ,c.

We start by dealing with the cut-off part:

Iδ,c =

∫

R3×R3×S2

Bc
δ(v − v∗, σ)f∗G(G

′ −G) dσ dv∗ dv

.

∫

R3×R3×S2

|v − v∗|γ bcδ(cos θ) |f∗| (G2 + (G′)2) dσ dv∗ dv.
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Using that bcδ(cos θ) ≤ Cδ on S
2 and |v − v∗|γ . |v′ − v∗|γ , we get

Iδ,c .

∫

R3×R3×S2

|f∗|〈v∗〉γ G2 〈v〉γ dσ dv∗ dv +
∫

R3×R3×S2

|f∗|〈v∗〉γ G′2 〈v′〉γ dσ dv∗ dv.

The first term is directly bounded from above by ‖f‖L1
v(〈v〉γ )‖G‖2L2

v(〈v〉γ/2)
and for the

second one, we use the regular change of variable v → v′ explained in the proof of (i). We
thus get

Iδ,c . ‖f‖L1
v(〈v〉γ )‖G‖

2
L2
v(〈v〉γ/2)

. ‖f‖L2
v(〈v〉ℓ)‖g‖

2
L2
v(〈v〉γ/2m)

.

Concerning the grazing collisions part, we write

Iδ =

∫

R3×R3×S2

Bδ(v − v∗, σ)f∗G (G′ −G) dσ dv∗ dv

= −1

2

∫

R3×R3×S2

Bδ(v − v∗, σ)f∗ (G
′ −G)2 dσ dv∗ dv

+
1

2

∫

R3×R3×S2

Bδ(v − v∗, σ)f∗ ((G
′)2 −G2) dσ dv∗ dv =: Iδ1 + Iδ2 .

The second term Iδ2 is treated thanks to the cancellation lemma [1, Lemma 1]:

Iδ2 =

∫

R3

(Sδ ∗G2) f dv,

where (for details, see [32, proof of Lemma 2.2])

(2.6) Sδ(z) := 2π

∫ π/2

0
sin θ bδ(cos θ)

( |z|γ
cosγ+3(θ/2)

− |z|γ
)
dθ . δ2−2s |z|γ .

We deduce that

Iδ2 . ‖f‖L1
v(〈v〉γ )‖G‖

2
L2
v(〈v〉γ/2)

. ‖f‖L2
v(〈v〉ℓ)‖g‖

2
L2
v(〈v〉γ/2m)

.

It now remains to handle Iδ1 . First, using that |v − v∗| . |v′ − v∗|, we have

Iδ1 .

∫

R3×R3×S2

bδ(cos θ)|v − v∗|γ |f∗| (G′ −G)2 dσ dv∗ dv

.

∫

R3×R3×S2

bδ(cos θ)|v′ − v∗|γ |f∗| (G′ −G)2 dσ dv∗ dv

.

∫

R3×R3×S2

bδ(cos θ)|f∗|〈v∗〉γ (G′〈v′〉γ/2 −G〈v〉γ/2)2 dσ dv∗ dv

+

∫

R3×R3×S2

bδ(cos θ)|f∗|〈v∗〉γ G2 (〈v〉γ/2 − 〈v′〉γ/2)2 dσ dv∗ dv =: Iδ11 + Iδ12.

To deal with Iδ12, we first note that

|〈v〉γ/2 − 〈v′〉γ/2| . |v′ − v|
∫ 1

0
〈v′ + τ(v − v′)〉γ/2−1 dτ . |v − v∗| sin(θ/2)

∫ 1

0
〈vτ 〉γ/2−1 dτ

where vτ := v′ + τ(v − v′). Moreover, for any τ ∈ [0, 1], we have

〈v〉 ≤ 〈v − v∗〉+ 〈v∗〉 ≤
√
2〈vτ − v∗〉+ 〈v∗〉 . 〈vτ 〉〈v∗〉

which implies (since γ/2− 1 ≤ 0)

〈vτ 〉γ/2−1 . 〈v〉γ/2−1〈v∗〉1−γ/2.



INHOMOGENEOUS BOLTZMANN EQUATION WITHOUT CUT-OFF 15

Consequently, we deduce

(2.7) (〈v〉γ/2 − 〈v′〉γ/2)2 . |v − v∗|2 sin2(θ/2)〈v〉γ−2〈v∗〉2−γ . sin2(θ/2)〈v〉γ〈v∗〉4−γ

so that

Iδ12 . ‖f‖L1
v(〈v〉4−γ )‖G‖2L2

v(〈v〉γ/2)
. ‖f‖L2

v(〈v〉ℓ)‖g‖
2
L2
v(〈v〉γ/2m)

.

For the analysis of Iδ11, we introduce the following notations: f̃ := f〈·〉γ , µ̃ := µ〈v〉−γ and

G := G〈v〉γ/2 so that

Iδ11 =

∫

R3×R3×S2

bδ(cos θ)|f̃ |(G′ − G)2 dσ dv∗ dv.

We then use Bobylev formula [11] (see also [1, Proposition 2]), denoting ξ± = (ξ±|ξ|σ)/2,
we have:

Iδ11 =
1

(2π)3

∫

R3×S2

bδ

(
ξ

|ξ| · σ
)(

|̂f̃ |(0)|Ĝ(ξ)− Ĝ(ξ+)|2

+ 2ℜe
(
|̂f̃ |(0) − |̂f̃ |(ξ−)

)
Ĝ(ξ+)Ĝ(ξ)

)
dσ dξ.

Similarly, we have

‖G‖2
Ḣs,∗

v
=

1

(2π)3

∫

R3×S2

bδ

(
ξ

|ξ| · σ
)(

̂̃µ(0)|Ĝ(ξ)− Ĝ(ξ+)|2

+ 2ℜe
(
̂̃µ(0)− ̂̃µ(ξ−)

)
Ĝ(ξ+)Ĝ(ξ)

)
dσ dξ.

Since |̂f̃ |(0) = ‖f̃‖L1
v
and ̂̃µ(v) = ‖µ̃‖L1

v
, we deduce that

Iδ11 =
1

(2π)3

∫

R3×S2

bδ

(
ξ

|ξ| · σ

)
2ℜe

(
|̂f̃ |(0) − |̂f̃ |(ξ−)

)
Ĝ(ξ+)Ĝ(ξ) dσ dξ

− 1

(2π)3
‖f̃‖L1

v

‖µ̃‖L1
v

∫

R3×S2

bδ

(
ξ

|ξ| · σ

)
2ℜe

(
̂̃µ(0) − ̂̃µ(ξ−)

)
Ĝ(ξ+)Ĝ(ξ) dσ dξ

+
‖f̃‖L1

v

‖µ̃‖L1
v

‖G‖2
Ḣs,∗

v
=: Iδ111 + Iδ112 + Iδ113.

Using then results from the proof of [6, Lemma 2.8] combined with Lemma 2.1, we get
that

Iδ111 . ‖f̃‖L1
v(〈v〉2s)‖G‖

2
Hs

v
. ‖f‖L2

v(〈v〉ℓ)‖g‖
2
Hs,∗

v (m)

and

Iδ112 . ‖f̃‖L1
v
‖G‖2Hs

v
. ‖f‖L2

v(〈v〉ℓ)‖g‖
2
Hs,∗

v (m).

We also clearly have

Iδ113 . ‖f‖L2
v(〈v〉ℓ)‖g‖

2
Hs,∗

v (m).

Gathering all the previous estimates, we are able to deduce that (2.2) holds. �
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2.3. Non homogeneous estimates. We now prove non homogeneous estimates on the
trilinear form 〈Q(f, g), h〉 in order to get some accurate estimates on the terms coming
from the nonlinear part of the equation. Basically, we give a non homogeneous version of
Lemma 2.3. We introduce the spaces

(2.8)





X := H3
xL

2
v(m)

Y := H3,s
x,v(〈v〉γ/2m)

Y ∗ := H3,s,∗
x,v (m)

Ȳ := H3,s
x,v(〈v〉γ/2+2sm)

that are defined through their norms by (1.17) and (1.19). We also introduce Y ′ the
dual space of Y with respect to the pivot space X, meaning that the Y ′-norm is defined
through:

(2.9) ‖f‖Y ′ := sup
‖φ‖Y ≤1

〈f, φ〉X = sup
‖φ‖Y ≤1

∑

0≤j≤3

〈∇j
xf,∇j

xφ〉L2
x,v(〈v〉−2jsm).

Lemma 2.4. The following estimates hold:

(i) For k > γ/2 + 3 + 8s,

〈Q(f, g), h〉X . ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y ;

therefore,

‖Q(f, g)‖Y ′ . ‖f‖X ‖g‖Ȳ + ‖f‖Y ‖g‖X .
(ii) For k > 4− γ + 3/2 + 6s,

〈Q(f, g), g〉X . ‖f‖X ‖g‖2Y ∗ + ‖f‖Y ‖g‖X ‖g‖Y .

(iii) For k > 4− γ + 3/2 + 6s,

〈Q(f, f), f〉X . ‖f‖X ‖f‖2Y ∗ .

Proof. In this proof, we use Lemma 2.3-(i) and (ii) together with the following inequalities
when integrating in x ∈ T

3,

(2.10) ‖u‖L∞(T3
x)

. ‖u‖H2(T3
x)
, ‖u‖L6(T3

x)
. ‖u‖H1(T3

x)
, ‖u‖L3(T3

x)
. ‖u‖H1(T3

x)
.

Proof of (i). We write

〈Q(f, g), h〉H3
xL

2
v(m) = 〈Q(f, g), h〉L2

x,v(m) +
∑

1≤|β|≤3

〈∂βxQ(f, g), ∂βxh〉L2
x,v(m〈v〉−2|β|s),

and

∂βxQ(f, g) =
∑

β1+β2=β

Cβ1,β2 Q(∂β1x f, ∂
β2
x g).

In the following steps we will always consider ℓ ∈ (γ + 1 + 3/2, k − 6s] which is possible
since k > γ/2 + 3 + 8s, γ ≤ 1 and s ≥ 0.
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Step 1. Using Lemma 2.3-(i) applied with ς1 = ς2 = s, N1 = γ/2+2s, N2 = γ/2 and (2.10)
we have

〈Q(f, g), h〉L2
x,v(m)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖g‖Hs
v (〈v〉γ/2+2sm) ‖h‖Hs

v (〈v〉γ/2m)

+ ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖h‖L2
v(〈v〉γ/2m)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖g‖L2

xH
s
v(〈v〉γ/2+2sm) ‖h‖L2

xH
s
v(〈v〉γ/2m)

+ ‖f‖L2
x,v(〈v〉γ/2m) ‖g‖H2

xL
2
v(〈v〉ℓ) ‖h‖L2

x,v(〈v〉γ/2m)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
Step 2. Case |β| = 1. Arguing as in the previous step,

〈Q(f, ∂βxg), ∂
β
xh〉L2

x,v(〈v〉−2sm)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇xg‖Hs
v(〈v〉γ/2m) ‖∇xh‖Hs

v (〈v〉γ/2−2sm)

+ ‖f‖L2
v(〈v〉γ/2−2sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇xh‖L2
v(〈v〉γ/2−2sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖L2

xH
s
v(〈v〉γ/2m) ‖∇xh‖L2

xH
s
v(〈v〉γ/2−2sm)

+ ‖f‖L2
x,v(〈v〉γ/2−2sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇xh‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

Moreover,

〈Q(∂βxf, g), ∂
β
xh〉L2

x,v(〈v〉−2sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖g‖Hs
v(〈v〉γ/2m) ‖∇xh‖Hs

v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−2sm) ‖g‖L2

v(〈v〉ℓ) ‖∇xh‖L2
v(〈v〉γ/2−2sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖g‖L2

xH
s
v(〈v〉γ/2m) ‖∇xh‖L2

xH
s
v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−2sm) ‖g‖H2

xL
2
v(〈v〉ℓ) ‖∇xh‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
Step 3. Case |β| = 2. When β2 = β, we have

〈Q(f, ∂βx g), ∂
β
xh〉L2

x,v(〈v〉−4sm)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
2
xg‖Hs

v(〈v〉γ/2−2sm) ‖∇2
xh‖Hs

v(〈v〉γ/2−4sm)

+ ‖f‖L2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

2
xh‖L2

v(〈v〉γ/2−4sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xh‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖f‖H2
xL

2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L2
x,v(〈v〉ℓ) ‖∇

2
xh‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
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When β1 = β, we have

〈Q(∂βxf, g), ∂
β
xh〉L2

x,v(〈v〉−4sm)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2−2sm) ‖∇2
xh‖Hs

v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−4sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

2
xh‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇2
xf‖L2

x,v(〈v〉ℓ) ‖g‖H2,s
x,v(〈v〉γ/2−2sm)

‖∇2
xh‖L2

xH
s
v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−4sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
Finally, when |β1| = |β2| = 1, we obtain

〈Q(∂β1x f, ∂
β2
x g), ∂

β
xh〉L2

xL
2
v(〈v〉−4sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇xg‖Hs
v(〈v〉γ/2−2sm) ‖∇2

xh‖Hs
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−4sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇
2
xh‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖L2

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xh‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−4sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇

2
xh‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
Step 4. Case |β| = 3. When β2 = β we obtain

〈Q(f, ∂βx g), ∂
β
xh〉L2

x,v(〈v〉−6sm)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
3
xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v(〈v〉γ/2−6sm)

+ ‖f‖L2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xh‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖f‖H2
xL

2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
x,v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
If |β1| = 1 and |β2| = 2 then

〈Q(∂β1x f, ∂
β2
x g), ∂

β
xh〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇
2
xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v(〈v〉γ/2−6sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xh‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖∇xf‖H2
xL

2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L2
x,v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
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When |β1| = 2 and |β2| = 1 then we get

〈Q(∂β1x f, ∂
β2
x g), ∂

β
xh〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖∇xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−6sm) ‖∇xg‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇2
xf‖L2

x,v(〈v〉ℓ) ‖∇xg‖H2,s
x,v(〈v〉γ/2−4sm) ‖∇

3
xh‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−6sm) ‖∇xg‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

Finally, when β1 = β, it follows

〈Q(∂βxf, g), ∂
β
xh〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇3

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v (〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

v(〈v〉γ/2−6sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇3
xf‖L2

x,v(〈v〉ℓ) ‖g‖H2,s
x,v(〈v〉γ/2−4sm)

‖∇3
xh‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

x,v(〈v〉γ/2−6sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

Proof of (ii). As in the proof of (i), we write

〈Q(f, g), g〉H3
xL

2
v(m) = 〈Q(f, g), g〉L2

x,v(m) +
∑

1≤|β|≤3

〈∂βxQ(f, g), ∂βx g〉L2
x,v(m〈v〉−2|β|s),

and

∂βxQ(f, g) =
∑

β1+β2=β

Cβ1,β2 Q(∂β1x f, ∂
β2
x g).

In the following steps, we will always consider ℓ ∈ (4− γ + 3/2, k − 6s]. Notice that since
γ ≤ 1 and s ≤ 1/2, the condition k > 4 − γ + 3/2 + 6s implies k > γ/2 + 3 + 8s so that
we can apply results from Lemma 2.3.
Step 1. Using Lemma 2.3-(ii) and (2.10), we have

〈Q(f, g), g〉L2
x,v (m)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖g‖
2
Hs,∗

v (m) + ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖g‖L2
v(〈v〉γ/2m)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖g‖

2
L2
xH

s,∗
v (m) + ‖f‖L2

x,v(〈v〉γ/2m) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖g‖L2

x,v(〈v〉γ/2m)

. ‖f‖X ‖g‖2Y ∗ + ‖f‖Y ‖g‖X ‖g‖Y .
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Step 2. Case |β| = 1. Arguing as in the previous step,

〈Q(f, ∂βx g), ∂
β
x g〉L2

x,v(〈v〉−2sm) .

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇xg‖2Hs,∗
v (〈v〉−2sm)

+ ‖f‖L2
v(〈v〉γ/2−2sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇xg‖L2
v(〈v〉γ/2−2sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖2L2

xH
s,∗
v (〈v〉−2sm)

+ ‖f‖L2
x,v(〈v〉γ/2−2sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇xg‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖2Y ∗ + ‖f‖Y ‖g‖X ‖g‖Y .
Moreover, we also have using Lemma 2.3-(i),

〈Q(∂βxf, g), ∂
β
x g〉L2

x,v(〈v〉−2sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖g‖Hs
v (〈v〉γ/2m) ‖∇xg‖Hs

v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−2sm) ‖g‖L2

v(〈v〉ℓ) ‖∇xg‖L2
v(〈v〉γ/2−2sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖g‖L2

xH
s
v(〈v〉γ/2m) ‖∇xg‖L2

xH
s
v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−2sm) ‖g‖H2

xL
2
v(〈v〉ℓ) ‖∇xg‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .
Step 3. Case |β| = 2. When β2 = β, we have

〈Q(f, ∂βx g), ∂
β
x g〉L2

x,v(〈v〉−4sm) .

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
2
xg‖2Hs,∗

v (〈v〉−4sm)

+ ‖f‖L2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

2
xg‖L2

v(〈v〉γ/2−4sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖2L2

xH
s,∗
v (〈v〉−4sm)

+ ‖f‖H2
xL

2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L2
x,v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖2Y ∗ + ‖f‖Y ‖g‖X ‖g‖Y .
When β1 = β, we have

〈Q(∂βxf, g), ∂
β
x g〉L2

x,v(〈v〉−4sm)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2−2sm) ‖∇2
xg‖Hs

v (〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−4sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

2
xg‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇2
xf‖L6

xL
2
v(〈v〉ℓ) ‖g‖L3

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xg‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−4sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖∇2
xf‖H1

xL
2
v(〈v〉ℓ) ‖g‖H1,s

x,v(〈v〉γ/2−2sm) ‖∇
2
xg‖L2

xH
s
v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−4sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .
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Finally, when |β1| = |β2| = 1, we obtain

〈Q(∂β1x f, ∂
β2
x g), ∂

β
x g〉L2

xL
2
v(〈v〉−4sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇xg‖Hs
v(〈v〉γ/2−2sm) ‖∇2

xg‖Hs
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−4sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇
2
xg‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖L2

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xg‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−4sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Step 4. Case |β| = 3. When β2 = β we obtain

〈Q(f, ∂βx g), ∂
β
x g〉L2

x,v(〈v〉−6sm) .

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
3
xg‖2Hs,∗

v (〈v〉−6sm)

+ ‖f‖L2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
v(〈v〉ℓ) ‖∇

3
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖2L2

xH
s,∗
v (〈v〉−6sm)

+ ‖f‖H2
xL

2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
x,v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y ∗ + ‖f‖Y ‖g‖X ‖g‖Y .

If |β1| = 1 and |β2| = 2 then

〈Q(∂β1x f, ∂
β2
x g), ∂

β
x g〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇
2
xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xg‖Hs

v(〈v〉γ/2−6sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

3
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xg‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖∇xf‖H2
xL

2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L2
x,v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .
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When |β1| = 2 and |β2| = 1, we get

〈Q(∂β1x f, ∂
β2
x g), ∂

β
x g〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖∇xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xg‖Hs

v (〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−6sm) ‖∇xg‖L2
v(〈v〉ℓ) ‖∇

3
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇2
xf‖L6

xL
2
v(〈v〉ℓ) ‖∇xg‖L3

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xg‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−6sm) ‖∇xg‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖∇2
xf‖H1

xL
2
v(〈v〉ℓ) ‖∇xg‖H1,s

x,v(〈v〉γ/2−4sm) ‖∇
3
xg‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−6sm) ‖∇xg‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Finally, when β1 = β, it follows

〈Q(∂βxf, g), ∂
β
x g〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇3

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2−4sm) ‖∇3
xg‖Hs

v (〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

v(〈v〉γ/2−6sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

2
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇3
xf‖L2

x,v(〈v〉ℓ) ‖g‖H2,s
x,v(〈v〉γ/2−4sm)) ‖∇

3
xg‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

x,v(〈v〉γ/2−6sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

We conclude noticing that ‖g‖2Y . ‖g‖2Y ∗ from Lemma 2.1.
Proof of (iii). The result is immediate from (ii) and the fact that ‖f‖2Y . ‖f‖2Y ∗ . �

3. The linearized equation

We linearize the equation around the equilibrium µ. If we set f = µ+ h, h satisfies the
equation

{
∂th = Q(µ, h) +Q(h, µ)− v · ∇xh+Q(h, h)

h|t=0 = h0 = f0 − µ.

We recall the notations

(3.1) Lh = Q(h, µ) +Q(µ, h) and Λh = Lh− v · ∇xh.

The aim of the present section is to prove that the semigroup associated to Λ enjoys
exponential decay properties in various Sobolev spaces.
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3.1. Functional spaces. We recall that m is a polynomial weight m(v) = 〈v〉k. We in-
troduce the spaces Hn

xHℓ
v(m) and Hn

xHℓ
v(m), (n, ℓ) ∈ N

2 which are respectively associated
to the following norms:

(3.2) ‖h‖2Hn
xHℓ

v(m) :=
∑

|α|≤ℓ, |β|≤n, |α|+|β|≤max(ℓ,n)

‖∂αv ∂βxh‖2L2
x,v(m〈v〉−2|α|s)

,

and

(3.3) ‖h‖2Hn
xHℓ

v(m) :=
∑

|α|≤ℓ, |β|≤n, |α|+|β|≤max(ℓ,n)

‖∂αv ∂βxh‖2L2
x,v(m〈v〉−2|α|s−2|β|s)

.

We want to establish exponential decay of the semigroup SΛ(t) in various Lebesgue and
Sobolev spaces that we will denote E :

(3.4)
E :=

{
Hn
xHℓ

v(m), (n, ℓ) ∈ N
2, n ≥ ℓ

Hn
xHℓ

v(m), (n, ℓ) ∈ N
2, n ≥ ℓ

with k >
γ

2
+ 3 + 2(max(1, n) + 1)s.

Notice that those definitions include the case L2
x,v(m) obtained taking n = ℓ = 0 in one

or the other type of space.

3.2. Main results on the linearized operator. The main result of this section is a
precise version of Theorem 1.2 and reads

Theorem 3.1. Let us consider E be one of the admissible spaces defined in (3.4) and

introduce E = H
max(1,n)
x,v (µ−1/2) where n ∈ N is the order of x-derivatives in the definition

of E. Then, for any λ < λ0, where we recall that λ0 > 0 is the spectral gap of Λ on E
(see (1.23)), there is a constructive constant C ≥ 1 such that the operator Λ satisfies on
E:

(i) Σ(Λ) ⊂ {z ∈ C | ℜe z ≤ −λ} ∪ {0};
(ii) the null-space N(Λ) is given by (1.21) and the projection Π0 onto N(Λ) by (1.22);
(iii) Λ is the generator of a strongly continuous semigroup SΛ(t) on E that verifies

∀ t ≥ 0, ∀h ∈ E , ‖SΛ(t)h−Π0h‖E ≤ C e−λt ‖h−Π0h‖E .
To prove this theorem, we exhibit a splitting of the linearized operator into two parts,

one which is regular and the second one which is dissipative. We shall also study the
regularization properties of the semigroup. The latter point is based on the paper [22] in
which a precise study of the short time regularization properties of the linearized operator
are studied. We can then use the abstract theorem of enlargement of the functional
space of the semigroup decay from Gualdani et al. [19] using the result of Mouhot and
Neumann [29] (Theorem 1.3) as a starting point.

3.3. Splitting of the linearized operator. We recall that χ ∈ D(R) is a truncation
function which satisfies 1[−1,1] ≤ χ ≤ 1[−2,2] and we denote χa(·) := χ(·/a) for a > 0. We
then introduce

Ah :=MχRh and Bh := Λh−Ah = −v · ∇xh+ Lh−Ah
for some positive constants M and R to be chosen later. In the next subsection, we are
going to prove a coercivity-type inequality of the following form: for δ small enough,

〈Lh, h〉L2
v(m) ≤ −c0,δ‖h‖2∗ + c1,δ‖h‖2L2

v
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where ‖ · ‖∗ is a stronger norm than the L2
v(m)-norm and c0,δ , c1,δ are positive constants

depending on δ. Then, choosing suitable constants M and R, we will be able to deduce
that our operator B is indeed dissipative in L2

x,v(m) and that it provides us a gain of

regularity coming from the term −c0,δ‖h‖2∗.

3.4. Dissipativity properties.

Lemma 3.2. Let k > γ/2 + 3 + 2s. For δ > 0 small enough, we have:

〈Lh, h〉L2
v(m) ≤ −c0 δ2−2s‖h‖2

Ḣs,∗
v (m)

− c0 δ
−2s‖h‖2

L2
v(〈v〉γ/2m)

+Cδ‖h‖2L2
v
.

where c0 is a universal positive constant and Cδ is a positive constant depending on δ.

Proof. In what follows, we denote H := hm. We start by spliting the scalar product
〈Q(µ, h), h〉L2

v (m) into two parts:

〈Q(µ, h), h〉L2
v (m) =

∫

R3×R3×S2

B(v − v∗, σ)
[
µ′∗ h

′ − µ∗ h
]
hm2 dσ dv∗ dv

=

∫

R3×R3×S2

B(v − v∗, σ)
[
µ′∗H

′ − µ∗H
]
H dσ dv∗ dv

+

∫

R3×R3×S2

B(v − v∗, σ)µ
′
∗ h

′ hm (m−m′) dσ dv∗ dv

=: 〈Q(µ,H),H〉L2
v
+R.

We recall that for δ > 0, bδ and b
c
δ are given by

bδ(cos θ) = χδ(θ) b(cos θ) and bcδ(cos θ) = (1− χδ(θ)) b(cos θ)

and we denote Bδ, B
c
δ (resp. Qδ, Q

c
δ) the associated kernels (resp. operators). We then

write that

(3.5) 〈Q(µ, h), h〉L2
v(m) = 〈Qδ(µ,H),H〉L2

v
+ 〈Qcδ(µ,H),H〉L2

v
+R

and we are going to estimate each part of this decomposition. First, concerning grazing
collisions, using the pre-post change of variables, we have:

〈Qδ(µ,H),H〉L2
v
=

∫

R3×R3×S2

Bδ(v − v∗, σ)µ∗H (H ′ −H) dσ dv∗ dv

= −1

2

∫

R3×R3×S2

Bδ(v − v∗, σ)µ∗
(
H ′ −H

)2
dσ dv∗ dv

+
1

2

∫

R3×S2

Bδ(v − v∗, σ)µ∗
(
(H ′)2 −H2

)
dσ dv∗ dv =: −I1 + I2.

Using the cancellation lemma [1, Lemma 1], we have that

I2 =
1

2

∫

R3

(Sδ ∗H2)µdv

with Sδ defined in (2.6) which satisfies Sδ(z) . δ2−2s|z|γ . We deduce that

(3.6) I2 . δ2−2s‖h‖2
L2
v(〈v〉γ/2m)

.

We now treat I1. To do that, we first notice that for ε ∈ (0, 1/2), we have

|v − v∗|γ ≥ ε〈v − v∗〉γ − ε1|v−v∗|γ≤ε/(1−ε).
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Together with the fact that

〈v − v∗〉γ & 〈v′ − v∗〉γ & 〈v∗〉−γ〈v′〉γ ,
we deduce that

I1 ≥ ε

∫

R3×R3×S2

bδ(cos θ) 〈v − v∗〉γ µ∗(H ′ −H)2 dσ dv∗ dv

− ε

∫

R3×R3×S2

bδ(cos θ)1|v−v∗|γ≤ε/(1−ε) µ∗(H
′ −H)2 dσ dv∗ dv

≥ Cε

∫

R3×R3×S2

bδ(cos θ)µ∗〈v∗〉−γ(H ′〈v′〉γ/2 −H〈v′〉γ/2)2 dσ dv∗ dv

− ε

∫

R3×R3×S2

bδ(cos θ)1|v−v∗|γ≤ε/(1−ε) µ∗(H
′ −H)2 dσ dv∗ dv

≥ C
ε

2

∫

R3×R3×S2

bδ(cos θ)µ∗〈v∗〉−γ(H ′〈v′〉γ/2 −H〈v〉γ/2)2 dσ dv∗ dv

− Cε

∫

R3×R3×S2

bδ(cos θ)µ∗〈v∗〉−γ H2 (〈v〉γ/2 − 〈v′〉γ/2)2 dσ dv∗ dv

− ε

∫

R3×R3×S2

bδ(cos θ)1|v−v∗|γ≤ε/(1−ε) µ∗(H
′ −H)2 dσ dv∗ dv =: I11 − I12 − I13.

First, we clearly have

I11 & ε‖h‖2
Ḣs,∗

v (m)
.

For I12, we can use (2.7) to get

I12 . ε δ2−2s‖h‖2
L2
v(〈v〉γ/2m)

.

Concerning I13, we use that for ε ≤ 1/2, 1|v−v∗|γ≤ε/(1−ε) ≤ 1|v−v∗|≤1 so that

I13 . ε

∫

R3×R3×S2

bδ(cos θ)1|v−v∗|≤1 µ∗(H
′ −H)2 dσ dv∗ dv

. ε

∫

R3×R3×S2

b(cos θ)1|v−v∗|≤1 µ∗(H
′ −H)2 dσ dv∗ dv.

From the proof of [15, Theorem 1.2], we get

I13 . ε ‖h‖2Hs
v (m).

We thus have obtained

1

2
I1 ≥ c1 ε‖h‖2Ḣs,∗

v (m)
− c2 ε‖h‖2Hs

v (〈v〉γ/2m)
, c1, c2 > 0.

On the other hand, as already mentioned in the proof of Lemma 2.1, adapting the proof
of [21, Theorem 3.1], we can get that

1

2
I1 ≥ c3 δ

2−2s‖h‖2
Hs

v (〈v〉γ/2m)
− c4 δ

2−2s‖h‖2
L2
v(〈v〉γ/2m)

, c3, c4 > 0.

Combining the two previous inequalities, we get that there exist positive constants ci,
i = 1, . . . , 4 such that

(3.7)
I1 ≥ c1 ε ‖h‖2Ḣs,∗

v (m)
+ (c3 δ

2−2s − c2 ε)‖h‖2Hs
v (〈v〉γ/2m)

− c4 δ
2−2s‖h‖2

L2
v(〈v〉γ/2m)

.
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Gathering (3.6) and (3.7), up to changing the value of c4, we have obtained:

(3.8)
〈Qδ(µ,H),H〉L2

v

≤ −c1 ε ‖h‖2Ḣs,∗
v (m)

− (c3 δ
2−2s − c2 ε)‖h‖2Hs

v (〈v〉γ/2m)
+ c4 δ

2−2s ‖h‖2
L2
v(〈v〉γ/2m)

.

We now deal with the cut-off part 〈Qcδ(µ,H),H〉L2
v
. In this term, grazing collisions are

removed, we can thus separate gain and loss terms:

〈Qcδ(µ,H),H〉L2
v
≤
∫

R3×R3×S2

Bc
δ(v − v∗, σ)µ∗ |H ′| |H| dσ dv∗ dv

−
∫

R3×R3×S2

Bc
δ(v − v∗, σ)µ∗ dσ dv∗H

2 dv.

The loss term is multiplicative and can be rewritten as∫

R3×R3×S2

Bc
δ(v − v∗, σ)µ∗ dσ dv∗H

2 dv = Kδ

∫

R3

(µ ∗ | · |γ)H2 dv

with

(3.9) Kδ :=

∫

S2

bcδ(cos θ) dσ ≈
∫ π/2

δ
b(cos θ) sin θ dθ ≈ δ−2s −

(π
2

)−2s
−−−→
δ→0

+∞

using the spherical coordinates to get the second equality and (1.3) to get the final one.
Since we also have

(µ ∗ | · |γ)(v) ≈ 〈v〉γ ,
we can deduce that there exists ν0 > 0 such that

(3.10) −
∫

R3×R3×S2

Bc
δ(v − v∗, σ)µ∗ dσ dv∗H

2 dv ≤ −ν0 δ−2s ‖h‖2
L2
v(〈v〉γ/2m)

.

Concerning the gain term, following ideas from [25], we are going to split it into two parts.
To do that, we denote w := v + v∗ and ŵ := w/|w|. We then have∫

R3×R3×S2

Bc
δ(v − v∗, σ)µ∗ |H ′| |H| dσ dv∗ dv

=

∫

R3×R3×S2

1|ŵ·σ|≥1−δ3 B
c
δ(v − v∗, σ)µ∗ |H ′| |H| dσ dv∗ dv

+

∫

R3×R3×S2

1|ŵ·σ|≤1−δ3 B
c
δ(v − v∗, σ)µ∗ |H ′| |H| dσ dv∗ dv =: J1 + J2.

We first deal with J1: using Young inequality, we have

J1 . δ−1/2

∫

R3×R3×S2

1|ŵ·σ|≥1−δ3 B
c
δ(v − v∗, σ)µ∗H

2 dσ dv∗ dv

+ δ1/2
∫

R3×R3×S2

1|ŵ·σ|≥1−δ3 B
c
δ(v − v∗, σ)µ

′
∗H

2 dσ dv∗ dv =: J11 + J12

where we have used the pre-post collisional change of variables noticing that ŵ′ = ŵ (with
obvious notations). Using that bcδ(cos θ) . δ−2−2s on the sphere and (µ ∗ | · |γ)(v) . 〈v〉γ ,
we get

J11 . δ−5/2−2s

∫

R3

∫

S2

1|ŵ·σ|≥1−δ3 dσ H
2 〈v〉γ dv.

Then, since for any z ∈ S
2, we have

∫
S2

1|z·σ|≥1−δ3 dσ . δ3, we obtain

(3.11) J11 . δ1/2−2s‖h‖2
L2
v(〈v〉γ/2m)

.
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As far as J12 is concerned, we roughly bound it from above as:

J12 . δ1/2
∫

R3×R3×S2

Bc
δ(v − v∗, σ)µ

′
∗H

2 dσ dv∗ dv.

We then perform the regular change of variable v∗ → v′∗ as shown in the proof of Lemma 2.3
and notice that |v − v∗|γ . |v − v′∗|γ to obtain:

(3.12) J12 . δ1/2
∫

S2

bcδ(cos θ) dσ

∫

R3×R3

µ∗|v − v∗|γ H2 dv∗ dv . δ1/2−2s‖h‖2L2
v(〈v〉γ/2m).

The analysis of J2 starts similarly as the one of J1 using Young inequality:

J2 . δ1/2
∫

R3×R3×S2

1|ŵ·σ|≤1−δ3 B
c
δ(v − v∗, σ)µ∗H

2 dσ dv∗ dv

+ δ−1/2

∫

R3×R3×S2

1|ŵ·σ|≤1−δ3 B
c
δ(v − v∗, σ)µ

′
∗H

2 dσ dv∗ dv =: J21 + J22.

The treatment of J21 is simple and similar as the one of J12, we get:

(3.13) J21 . δ1/2−2s‖h‖2
L2
v(〈v〉γ/2m)

.

For J22, we are going to use the following computation: denoting u := v − v∗ the relative
velocity, we have

|v′∗|2 =
1

4
(|w|2 + |u|2)− |w||u|

2
ŵ · σ

so that if |ŵ · σ| ≤ 1− δ3, then

|v′∗|2 ≥
1

4
(|w|2 + |u|2)− (1− δ3)

|w||u|
2

≥ δ3

4
(|w|2 + |u|2) = δ3

2
(|v|2 + |v∗|2).

From this, we deduce that

µ′∗ ≤ e−δ
3|v|2/4e−δ

3|v∗|2/4.

Consequently,

(3.14) J22 . δ−5/2−2s

∫

R3×R3

|v − v∗|γ e−δ
3|v∗|2/4H2 e−δ

3|v|2/4 dv∗ dv . Cδ‖h‖2L2
v
.

Combining (3.10), (3.11), (3.12), (3.13) and (3.14), we obtain

(3.15) 〈Qcδ(µ,H),H〉L2
v
≤ δ−2s

(
c5δ

1/2 − ν0

)
‖h‖2

L2
v(〈v〉γ/2m)

+ Cδ‖h‖2L2
v
, c5 > 0.

Coming back to (3.5), it remains to analyse the rest term:

R =

∫

R3×R3×S2

B(v − v∗, σ)µ
′
∗ h

′ hm (m−m′) dσ dv∗ dv.

First, let us remark that

|m′ −m| ≤
(

sup
z∈B(v,|v′−v|)

|∇m| (z)
)

|v′ − v|,

with

|v′ − v| . |v − v∗| sin(θ/2).
Then, we use the fact that

sup
z∈B(v,|v′−v|)

|∇m| (z) . 〈v〉k−1 + 〈v′〉k−1 . 〈v′〉k−1 〈v′∗〉k−1,
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which implies that

|m′ −m| . sin(θ/2) |v − v∗| 〈v′〉k−1 〈v′∗〉k−1.

Consequently, we have:

R .

∫

R3×R3×S2

b(cos θ) sin(θ/2)µ′∗ 〈v′∗〉k−1 |v − v∗|γ+1 |h′| 〈v′〉k−1 |h|mdσ dv∗ dv

.

∫

R3×R3×S2

b(cos θ) sin(θ/2)µ′∗ 〈v′∗〉k−1 |v − v∗|γ+2 (h′)2〈v′〉2k−2 dσ dv∗ dv

+

∫

R3×R3×S2

b(cos θ) sin(θ/2)µ′∗ 〈v′∗〉k−1 |v − v∗|γ h2m2 dσ dv∗ dv.

For the first part, we use the pre-post collisional change of variables and for the second
one, we use the regular change of variable v∗ → v′∗ explained in the proof of Lemma 2.3.
It gives us

(3.16) R ≤ c6‖h‖2L2
v(〈v〉γ/2m)

, c6 > 0.

Gathering (3.8), (3.15) and (3.16) yields

〈Q(µ, h), h〉L2
v (m) ≤ −(c3 δ

2−2s − c2 ε)‖h‖2Hs
v (〈v〉γ/2m)

− c1 ε‖h‖2Ḣs,∗
v (m)

+
(
c6 + δ−2s

(
c4 δ

2 + c5 δ
1/2 − ν0

))
‖h‖2

L2
v(〈v〉γ/2m)

+ Cδ‖h‖2L2
v
.

We also have from Lemma 2.3-(i) applied with ς1 = 2s, ς2 = 0, N1 = γ+2s and N2 = 0:

〈Q(h, µ), h〉L2
v (m) ≤ c7‖h‖2L2

v(〈v〉γ/2m)
, c7 > 0.

The two previous inequalities imply

〈Lh, h〉L2(m) ≤ −(c3 δ
2−2s − c2 ε)‖h‖2Hs

v (〈v〉γ/2m)
− c1 ε‖h‖2Ḣs,∗

v (m)

+
(
c6 + c7 + δ−2s

(
c4 δ

2 + c5 δ
1/2 − ν0

))
‖h‖2

L2
v(〈v〉γ/2m)

+ Cδ‖h‖2L2
v
.

Taking δ small enough and then ε small enough of the order of δ2−2s, we obtain the wanted
estimate:

〈Lh, h〉L2
v(m)

≤ −c0 δ2−2s‖h‖2
Ḣs,∗

v (m)
− c0 δ

2−2s‖h‖2
Hs

v(〈v〉γ/2m)
− c0 δ

−2s‖h‖2
L2
v(〈v〉γ/2m)

+ Cδ‖h‖2L2
v

for some c0 > 0. �

We can now prove the dissipativity properties of B = −v · ∇x + L −MχR in L2
x,v(m).

Lemma 3.3. Let us consider k > γ/2+3+2s and a < 0. There exist M and R > 0 such
that B − a is dissipative in L2

x,v(m), namely

∀ t ≥ 0, ‖SB(t)h‖L2
x,v(m) ≤ eat‖h‖L2

x,v(m).

We even have the following estimate (which is better that simple dissipativity as stated
above), for any h ∈ L2

x,v(m):

∀ t ≥ 0,
1

2

d

dt
‖SB(t)h‖2L2

x,v(m) ≤ −c1 ‖SB(t)h‖2L2
xH

s,∗
v (m) + a ‖SB(t)h‖2L2

x,v(〈v〉γ/2m)

for some constant c1 > 0.
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Proof. Consider a < 0 and δ > 0 small enough so that the conclusion of Lemma 3.2 holds
and such that c0 δ

−2s > −a. We are going to estimate the integral
∫
R3×R3(Bh)hm2 dv dx.

We first notice that the term coming from the transport operator gives no contribution:
∫

T3×R3

(v · ∇xh)hm
2 dv dx =

1

2

∫

T3×R3

(v · ∇xh
2)m2 dv dx = 0.

Then, using Lemma 3.2 and integrating in x, we obtain
∫

T3×R3

(Lh)hm2 dv dx

≤ −c0 δ2−2s‖h‖2L2
xH

s,∗
v (m) − c0 δ

−2s‖h‖2
L2
x,v(〈v〉γ/2m)

+ Cδ‖h‖2L2
x,v
.

In summary, we have obtained
∫

R3×R3

(Bh)hm2 dv dx ≤ −c0 δ2−2s‖h‖2L2
xH

s,∗
v (m)

+

∫

T3×R3

h2m2〈v〉γ
(
−c0 δ−2s + Cδ〈v〉−γ −MχR(v)

)
dv dx.

Since −c0 δ−2s + Cδ〈v〉−γ goes to −c0 δ−2s < a as |v| goes to infinity, we can choose M
and R large enough so that for any v ∈ R

3, −c0 δ−2s + Cδ〈v〉−γ − MχR ≤ a, which
concludes the proof. �

The goal of the next lemma is to generalize previous dissipativity results to higher order
derivatives spaces of type Hn

xHℓ
v(m) and Hn

xHℓ
v(m) defined through their norms in (3.2)

and (3.3). Notice that, in order to get our dissipativity result, it is necessary to have less

weight on v-derivatives (which is induced by the weight 〈v〉−2|α|s in the definitions of the

norms of Hn
xHℓ

v(m) and Hn
xHℓ

v(m)). However, the introduction of the weight 〈v〉−2|β|s in
order to have less weight on the x-derivatives in the space Hn

xHℓ
v(m) is not needed at this

point but dissipativity results still hold true doing that and we will make use of it in the
nonlinear study in Section 4.

Lemma 3.4. Let us consider (n, ℓ) ∈ N
2 with n ≥ ℓ. In what follows, E = Hn

xHℓ
v(m) with

k > γ/2 + 3 + 2(n + 1)s or E = Hn
xHℓ

v(m) with k > γ/2 + 3 + 2(n + 1)s. Then for any
a < 0, there exist M , R > 0 such that B − a is hypodissipative in E in the sense that

∀ t ≥ 0, ‖SB(t)h‖E . eat‖h‖E .
Proof. The case n = ℓ = 0 is nothing but Lemma 3.3. Let us notice that the operator ∇x

commutes with the operator B, the treatment of x-derivatives is thus simple and one can
always reduce to the case n = ℓ. Moreover, we only handle the case E = Hn

xHℓ
v(m),

the other case being similar. We now deal with the case n = ℓ = 1, the higher-order
derivatives being treatable in the same way. To do that, we introduce the following norm
on H1

xH1
v(m):

|||h|||2H1
xH1

v(m) := ‖h‖2L2
x,v(m) + ‖∇xh‖2L2

x,v(m) + ζ ‖∇vh‖2L2
x,v(m0)

where ζ > 0 is a positive constant to be chosen later and m0(v) := 〈v〉−2sm(v) = 〈v〉k0
with k0 := −2s + k. This norm is equivalent to the classical norm on H1

xH1
v(m) defined

through (3.2).
In the subsequent proof, η is a positive constant that will be fixed later on. Let us introduce
ht := SB(t)h with h ∈ H1

xH1
v(m).
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Coming back to the proof of Lemma 3.3, we have that

(3.17)

∀ t ≥ 0,
1

2

d

dt
‖ht‖2L2

x,v(m) ≤ −c0 δ2−2s ‖ht‖2L2
xH

s,∗
v (m)

+

∫

T3×R3

(
−c0 δ−2s + Cδ〈v〉−γ −MχR(v)

)
h2t m

2〈v〉γ dv dx.

Moreover, since the x-derivatives commute with B,

(3.18)

∀ t ≥ 0,
1

2

d

dt
‖∇xht‖2L2

x,v(m) ≤ −c0 δ2−2s ‖∇xht‖2L2
xH

s,∗
v (m)

+

∫

T3×R3

(
−c0 δ−2s + Cδ〈v〉−γ −MχR(v)

)
|∇xht|2m2〈v〉γ dv dx.

Therefore, it remains to consider the v-derivatives. In what follows ∂x and ∂v stand for
∂x1 ,∂x2 or ∂x3 and ∂v1 ,∂v2 or ∂v3 , respectively.
We have

∂t(∂vht) = B(∂vht)− ∂xht −M (∂vχR) ht +Q(ht, ∂vµ) +Q(∂vµ, ht),

thus, we can split 1
2
d
dt‖∂vht‖2L2

x,v(m0)
into five terms, according to the previous computation,

1

2

d

dt
‖∂vht‖2L2

x,v(m0)
:= I1 + · · ·+ I5.

For the first term we can use again Lemma 3.3, obtaining

(3.19)

∀ t ≥ 0, I1 ≤ −c0 δ2−2s ‖∂vht‖2L2
xH

s,∗
v (m0)

+

∫

T3×R3

(
−c0 δ−2s + Cδ〈v〉−γ −MχR(v)

)
|∂vht|2m2

0 〈v〉γ dv dx.

For the second term, we have

(3.20) I2 = −
∫

T3×R3

(∂xht) (∂vht)m
2
0 dv dx ≤ 1

2
‖∂vht‖2L2

x,v(m0)
+

1

2
‖∂xht‖2L2

x,v(m0)
.

The term I3 is simply handled as follows:

(3.21)

I3 .
M

R

∫

T3×R3

1R≤|v|≤2R ht (∂vht)m
2
0 dx dv

.
M

R

∫

T3×R3

1R≤|v|≤2R h
2
t m

2
0 dx dv +

M

R

∫

T3×R3

1R≤|v|≤2R (∂vht)
2m2

0 dx dv.

Let us now consider I4. Using Lemma 2.3-(i), we have

(3.22)

I4 =

∫

T3

〈Q(ht, ∂vµ), ∂vht〉L2
v(m0) dx . ‖ht‖L2

x,v(〈v〉γ/2m0)
‖∂vht‖L2

x,v(〈v〉γ/2m0)

.
1

η
‖ht‖2L2

x,v(〈v〉γ/2m0)
+ η‖∂vht‖2L2

x,v(〈v〉γ/2m0)
.

Concerning I5, still using Lemma 2.3-(i), we have:

(3.23)

I5 =

∫

T3

〈Q(∂vµ, ht), ∂vht〉L2
v(m0) dx . ‖ht‖L2

xH
s
v(〈v〉γ/2+2sm0)

‖∂vht‖L2
xH

s
v(〈v〉γ/2m0)

.
1

η
‖ht‖2L2

xH
s
v(〈v〉γ/2m)

+ η‖∂vht‖2L2
xH

s
v(〈v〉γ/2m0)

.
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Before concluding, let us remark that from Lemma 2.1,

‖h‖2L2
xH

s,∗
v (m) & δ2−2s‖h‖2

L2
xH

s
v(〈v〉γ/2m)

.

Combining this fact with estimates (3.17), (3.18) and (3.19) to (3.23), we get:

1

2

d

dt
|||ht|||2H1

xH1
v(m) =

1

2

d

dt
‖ht‖2L2

x,v(m) +
1

2

d

dt
‖∇xht‖2L2

x,v(m) + ζ
1

2

d

dt
‖∇vht‖2L2

x,v(m0)

≤ −c0
2
δ2−2s

(
‖ht‖2L2

xH
s,∗
v (m) + ‖∇xht‖2L2

xH
s,∗
v (m) + ζ‖∇vht‖2L2

xH
s,∗
v (m0)

)

+

(
−c0

2
δ4−4s +

Cζ

η

)
‖ht‖2L2

xH
s
v(〈v〉γ/2m)

+ ζ
(
−c0

2
δ4−4s +Cη

)
‖∇vht‖2L2

xH
s
v(〈v〉γ/2m0)

+

∫

T3×R3

(
− c0 δ

−2s + Cδ〈v〉−γ

+
CζM

R
1R≤|v|≤2R〈v〉−γ−4s −MχR(v)

)
h2t m

2〈v〉γ dv dx

+

∫

T3×R3

(
− c0 δ

−2s + Cδ〈v〉−γ + Cζ〈v〉−γ−4s −MχR(v)

)
|∇xht|2m2〈v〉γ dv dx

+ ζ

∫

T3×R3

(
− c0 δ

−2s +Cδ〈v〉−γ + C〈v〉−γ

+
CM

R
1R≤|v|≤2R〈v〉−γ −MχR(v)

)
|∇vht|2m2

0 〈v〉γ dv dx

for a constant C > 0. Consider now a < 0 and δ small enough such that c0 δ
−2s > −a.

We can then choose, in this order, η and ζ small enough and then M and R large enough
such that

1

2

d

dt
|||ht|||2H1

xH1
v(m) ≤ a ‖ht‖2L2

x,v(〈v〉γ/2m)
+ a ‖∇xht‖2L2

x,v(〈v〉γ/2m)
+ ζa ‖∂vht‖2L2

x,v(〈v〉γ/2m0)

− c1

(
‖ht‖2L2

xH
s,∗
v (m) + ‖∇xht‖2L2

xH
s,∗
v (m) + ‖∇vht‖2L2

xH
s,∗
v (m0)

)

for some c1 > 0, which concludes the proof. �

3.5. Regularization properties of ASB. In this part, we focus on the regularization
properties of the semigroup SB which are crucial in order to get a result on the linearized
equation. To do that, we first introduce some notations and tools.

We define the convolution of two semigroups S1 ∗ S2 by

(S1 ∗ S2)(t) :=

∫ t

0
S1(τ)S2(t− τ) dτ,

and, for p ∈ N
∗, we define S(∗p) by S(∗p) = S ∗ S(∗(p−1)) with S(∗1) = S. For ς ∈ R

+ and
ν a polynomial weight, we also introduce intermediate spaces

Xς(ν) :=
[
H⌊ς⌋
x H⌊ς⌋

v (ν),H⌊ς⌋+1
x H⌊ς⌋+1

v (ν)
]
ς−⌊ς⌋,2

.

The notation used below is the classical one of real interpolation (see [10]). For sake of
completeness, we briefly recall the meaning of this notation. For C and D two Banach



32 FRÉDÉRIC HÉRAU, DANIELA TONON, AND ISABELLE TRISTANI

spaces which are both embedded in the same topological separating vector space, for any
z ∈ A+B, we define the K-function by

K(t, z) := inf
z=c+d

(‖c‖C + t‖d‖D) , ∀ t > 0.

We then give the definition of the space [C,D]θ,p for θ ∈ (0, 1) and p ∈ [1,+∞]:

[C,D]θ,p :=
{
z ∈ C +D, t 7→ K(t, z)/tθ ∈ Lp

(
dt/t1/p

)}
.

Notice that by standard results of interpolation, if B− a is hypodissipative in both spaces

H
⌊ς⌋
x H⌊ς⌋

v (ν) and H
⌊ς⌋+1
x H⌊ς⌋+1

v (ν), it is also in Xς(ν). Notice also that we have the fol-
lowing continuous embeddings:

(3.24) Xς(ν〈v〉2(⌊ς⌋+1)s) →֒ Hς
x,v(ν) →֒ Xς(ν).

Let us now state a lemma on the regularization properties of the semigroup SB(t).

Lemma 3.5. Let r ∈ N
∗, k′ > (1 − γ)/2 and k > k′ + γ + 5/2 + 2(⌊(r − 1)s⌋ + 2)s. We

consider a < 0 and the operator B is defined such that the conclusion of Lemma 3.4 is

satisfied in H
⌊(r−1)s⌋+1
x H⌊(r−1)s⌋+1

v (〈v〉k). Then, we have:

‖SB(t)h‖Xrs(〈v〉k′ ) .
eat

1 ∧ t1/2+s ‖h‖X(r−1)s(〈v〉k), ∀ t ≥ 0.

Proof. Step 1. In the first step, we focus on the short time regularization properties
of SB(t): we are going to prove that

‖SB(t)h‖Xrs(〈v〉k′ ) .
1

t1/2+s
‖h‖X(r−1)s(〈v〉k), ∀ t ∈ (0, 1].

This estimate yields the conclusion of the lemma for short times t ∈ (0, 1]. To do that, we
start by stating a few estimates coming from [22]. We first split Λ as in Subsection 5.1

from [22]: to do that, we introduce B̃δ and B̃
c
δ defined through

B̃δ(v − v∗, σ) := χδ(|v′ − v|) b(cos θ) |v − v∗|γ

and
B̃c
δ(v − v∗, σ) := (1− χδ(|v′ − v|)) b(cos θ) |v − v∗|γ .

Then, we split Λ as

Λh =

(
−K〈v〉γ+2s − v · ∇xh+

∫

R3×S2

B̃δ(v − v∗, σ)µ
′
∗(h

′ − h) dσ dv∗

)

+

(
K〈v〉γ+2s +

∫

R3×S2

B̃δ(v − v∗, σ)(µ
′
∗ − µ∗)hdσ dv∗

+

∫

R3×S2

B̃c
δ(v − v∗, σ)(µ

′
∗h

′ − µ∗h) dσ dv∗ +Q(h, µ)

)

=: Λ̃1h+ Λ̃2h.

We have from [22] Theorem 5.1 that for q ≥ 0,

(3.25) ‖S
Λ̃1
(t)h‖Hrs

x,v(〈v〉q ) .
1

t1/2+s
‖h‖

H
(r−1)s
x,v (〈v〉q ), ∀ t ∈ (0, 1]

and for any ς ∈ R
+

(3.26) ‖Λ̃2h‖Hς
x,v(〈v〉q′ ) . ‖h‖Hς

x,v(〈v〉q ), q > q′ + γ + 5/2.
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We now show how to propagate the regularization properties of S
Λ̃1
(t) to SB(t), using the

Duhamel formula. We write:

B = Λ̃1 + (Λ̃2 −A)

so that we have:

SB(t) = SΛ̃1
(t) +

(
SΛ̃1

∗ (Λ̃2 −A)SB
)
(t).

For the first term, using (3.24) and (3.25), we have:

‖SΛ̃1
(t)h‖Xrs(〈v〉k′ ) . ‖SΛ̃1

(t)h‖Hrs
x,v(〈v〉k

′ ) .
1

t1/2+s
‖h‖

H
(r−1)s
x,v (〈v〉k′ )

.
1

t1/2+s
‖h‖X(r−1)s(〈v〉k′+2(⌊(r−1)s⌋+1)s) .

1

t1/2+s
‖h‖X(r−1)s(〈v〉k).

For the second one, we introduce k′′ such that

k ≥ k′′ + 2(⌊(r − 1)s⌋+ 1)s > k′ + γ + 5/2 + 2(⌊(r − 1)s⌋+ 1)s

and we use (3.24), (3.25) and (3.26):
∥∥∥
(
SΛ̃1

∗ (Λ̃2 −A)SB
)
(t)h

∥∥∥
Xrs(〈v〉k′ )

.

∫ t

0

∥∥∥SΛ̃1
(t− τ)(Λ̃2 −A)SB(τ)h

∥∥∥
Hrs

x,v(〈v〉k
′ )
dτ

.

∫ t

0

1

(t− τ)1/2+s

∥∥∥(Λ̃2 −A)SB(τ)h
∥∥∥
H

(r−1)s
x,v (〈v〉k′ )

dτ

.

∫ t

0

1

(t− τ)1/2+s
‖SB(τ)h‖H(r−1)s

x,v (〈v〉k′′ ) dτ . ‖h‖X(r−1)s(〈v〉k).

Step 2. In this step, we use Lemma 3.4 and interpolation combined with the previous
estimates for short times to prove the final estimate which holds for all times. If t ≥ 1, we
have

‖SB(t)h‖Xrs(〈v〉k′ )

= ‖SB(1)SB(t− 1)h‖Xrs(〈v〉k′ ) . ‖SB(t− 1)h‖X(r−1)s(〈v〉k) . eat‖h‖X(r−1)s(〈v〉k),

which concludes the proof. �

To apply Theorem 2.13 from [19], we study the regularization properties of (ASB)(∗p) for
p ∈ N in the following corollary. We recall that the “large” space E is given by (3.4) and the

associated “small” one by E = H
max(1,n)
x,v (µ−1/2). Let a < −λ0 where λ0 > 0 is the spectral

gap of Λ on E (see (1.23)). We then consider B such that the conclusion of Lemma 3.4 is

satisfied in H
max(1,n)
x Hmax(1,n)

v (m) (resp. Hmax(1,n)
x Hmax(1,n)

v (m)) if E = Hn
xHℓ

v(m) (resp.
E = Hn

xHℓ
v(m)). Let us mention that it in particular implies that the conclusion of

Lemma 3.4 is also satisfied in E and the one of Lemma 3.3 is also true in L2
x,v(m).

Corollary 3.6. There exists p ∈ N such that

‖(ASB)
(∗p)(t)h‖E . eat‖h‖E , ∀ t ≥ 0.

Proof. Let us treat the case E = L2
x,v(m) and E = H1

x,v(µ
−1/2) which is indicative of all the

difficulties since we need to regularize both in space and velocity variables. We consider
r0 ∈ N

∗ the smallest positive integer such that ⌊r0s⌋ = 1. Using then the fact that A is a
truncation operator, Lemma 3.4 and Lemma 3.5, we get that for any 1 ≤ r ≤ r0,

‖(ASB)(t)‖B(X(r−1)s(m),Xrs(m)) .
eat

t1/2+s ∧ 1
.
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To conclude, we use Lemmas 3.3, 3.4 combined with the last estimate. Indeed, all those
results allow us to use the criterion given in [19, Lemma 2.17] and gives us the conclusion.

�

3.6. Proof of Theorem 3.1. Thanks to the estimates proven in the previous subsections,
we now turn to the proof of Theorem 3.1. Let E be one of the admissible space (3.4) and

E = H
max(1,n)
x,v (µ−1/2) so that in all the cases, we have E ⊂ E and we already have the decay

of the semigroup SΛ(t) in E from Theorem 1.3. We then apply Theorem 2.13 from [19]
whose assumptions are fulfilled thanks to Lemmas 3.3, 3.4 and Corollary 3.6. �

4. The nonlinear equation

This section is devoted to the proof of Theorem 1.1: we develop a Cauchy theory in a
perturbative framework. Our proof is based on the study of the linearized equation that
we made in previous sections. The idea is to prove that, using suitable norms, there exists
a neighborhood of the equilibrium in which the linear part of the equation is dominant
and thus dictates the dynamic. Consequently, taking an initial datum close enough to the
equilibrium, one can construct solutions to the equation and prove exponential stability.

4.1. Functional spaces. In what follows, we use notations of Subsection 2.3. More
precisely, we define the spaces X, Y , Y ∗, Ȳ and Y ′ as in (2.8) and (2.9) with a weight

m(v) = 〈v〉k, k >
21

2
+ γ + 22s.

Similarly, for i = 0, . . . , 3, we define the spaces Xi, Yi, Ȳi and Y ′
i as in (2.8) and (2.9)

associated to the weights mi(v) = 〈v〉ki . The exponents k0 and k1 satisfy the following
conditions:

k0 := k − 2s and 8 + 14s < k1 < k0 − γ − 5

2
− 6s.

Concerning k2 and k3, we set:

k2 := k1 − 2s and 4− γ +
3

2
+ 6s < k3 < k2 − γ − 5

2
− 6s.

Remark 4.1. Notice first that

k > k0 > k1 > k2 > k3.

Let us also comment briefly the conditions imposed on the weights and explain the intro-
duction of so many spaces.

• First, in the proof of Proposition 4.5, we need to be able to apply the result from
Proposition 4.2 in X1, this explains the introduction of the spaces X2 and X3.

• The last condition

k3 > 4− γ +
3

2
+ 6s

comes from the fact that we want to apply Theorem 3.1 and Lemma 2.4 in X3.
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• In our argument explained in the two next subsections, there are two levels in which
we have a loss of weight. The first one comes from the regularization estimate (4.2)
(m0 to m1 and m2 to m3), which explains the conditions: k1 < k0 − γ − 5/2 − 6s
and k3 < k2−γ−5/2−6s. The second one comes from the nonlinear estimates in
Lemma 2.4 (m to m0 and m1 to m2), which explains the conditions: k0 := k − 2s
and k2 := k1−2s (a key element is that we have ‖f‖Ȳ0 . ‖f‖Y and ‖f‖Ȳ2 . ‖f‖Y1).

• The two first conditions

k1 > 8 + 14s

and

k > γ +
21

2
+ 22s

are then naturally induced.

4.2. Dissipative norm for the whole linearized operator. Before going into the
proof of an a priori estimate which is going to be the cornerstone of our Cauchy theory, we
introduce a norm which is (better than) dissipative for the whole linearized operator Λ.

Proposition 4.2. Define for any η > 0 and any λ1 < λ (where λ > 0 is the optimal rate
in Theorem 3.1) the equivalent norm on X for Π0h = 0,

(4.1) |||h|||2X := η‖h‖2X +

∫ ∞

0
‖SΛ(τ)e

λ1τh‖2X1
dτ.

Then there is η > 0 small enough such that the solution SΛ(t)h to the linearized equation
satisfies, for any t ≥ 0 and some constant K > 0,

1

2

d

dt
|||SΛ(t)h|||2X ≤ −λ1|||SΛ(t)h|||2X −K‖SΛ(t)h‖2Y ∗ , ∀h ∈ X, Π0h = 0.

Proof. First we remark that the norm ||| · |||H3
xL

2
v(m) is equivalent to the norm ‖ · ‖H3

xL
2
v(m)

defined in (1.17) for any η > 0 and any λ1 < λ. Indeed, using Theorem 3.1, we have

η‖h‖2H3
xL

2
v(m) ≤ |||h|||2H3

xL
2
v(m) = η‖h‖2H3

xL
2
v(m) +

∫ ∞

0
‖SΛ(τ)e

λ1τh‖2H3
xL

2
v(m1)

dτ

≤ η‖h‖2H3
xL

2
v(m) +

∫ ∞

0
C2e−2(λ−λ1)τ‖h‖2H3

xL
2
v(m1)

dτ ≤ C‖h‖2H3
xL

2
v(m).

We now compute, denoting ht = SΛ(t)h,

1

2

d

dt
|||ht|||2H3

xL
2
v(m) = η〈Λht ht〉H3

xL
2
v(m) +

1

2

∫ ∞

0

∂

∂t
‖SΛ(τ)e

λ1tht‖2H3
xL

2
v(m1)

dτ =: I1 + I2.

For I1 we write Λ = A+B. Using the fact that A is a truncation operator, we first obtain
that

〈Aht, ht〉H3
xL

2
v(m) ≤ C‖ht‖2

H3
xL2

v(m1)
.

Moreover, repeating the estimates for the hypodissipativity of B in Lemmas 3.3 and 3.4
we easily get that for some K > 0,

〈Bh, h〉H3
xL

2
v(m) ≤ −λ‖h‖2H3

xL
2
v(m) −K‖h‖2H3,s,∗

x,v (m)
,

therefore it follows

I1 ≤ −λη‖ht‖2H3
xL

2
v(m) − ηK‖ht‖2H3,s,∗

x,v (m)
+ ηC‖ht‖2H3

xL
2
v(m1)

.
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The second term is computed exactly

I2 =
1

2

∫ ∞

0

∂

∂t
‖SΛ(τ + t)eλ1τh‖2H3

xL
2
v(m1)

dτ

=
1

2

∫ ∞

0

∂

∂τ
‖SΛ(τ + t)eλ1τh‖2H3

xL
2
v(m1)

dτ − λ1

∫ ∞

0
‖SΛ(τ)e

λ1τht‖2H3
xL

2
v(m1)

dτ

=
1

2

[
‖SΛ(τ)e

λ1τht‖2H3
xL

2
v(m1)

]τ=+∞

τ=0
− λ1

∫ ∞

0
‖SΛ(τ + t)eλ1τht‖2H3

xL
2
v(m1)

dτ

= −1

2
‖ht‖2H3

xL
2
v(m1)

− λ1

∫ ∞

0
‖SΛ(τ)e

λ1τht‖2H3
xL

2
v(m1)

dτ

where we have used the semigroup decay from Theorem 3.1.
Gathering previous estimates and using that λ ≥ λ1, we obtain

I1 + I2 ≤ −λ1
{
η‖ht‖2H3

xL
2
v(m) +

∫ ∞

0
‖SΛ(τ)e

λ1τht‖2H3
xL

2
v(m1)

dτ

}

− ηK‖ht‖2H3,s,∗
x,v (m)

+ ηC‖ht‖2H3
xL

2
v(m1)

− 1

2
‖ht‖2H3

xL
2
v(m1)

.

We complete the proof choosing η > 0 small enough. �

4.3. Regularization properties of SΛ. In this subsection, we state a result on the
regularization properties of SΛ which is a key point for having a priori estimates on the
nonlinear problem in the next subsection.

Lemma 4.3. We have the following estimate:

(4.2) ‖SΛ(t)h‖X1 .
1

t1/2
‖h‖Y ′

0
, ∀ t ∈ (0, 1].

Proof. Let us start this proof noticing an embedding property:

(4.3) ∀ q1 ≤ q2, ς ∈ R
+, Hς

v(〈v〉q2) →֒ Hς
v(〈v〉q1).

This property is clear in the case ς ∈ N. It is less evident in the case ς ∈ R
+ \ N. This

case can be shown using real interpolation (see Subsection 3.5 for the notations). Indeed,
since the weighted space Hς

v(〈v〉qi) is defined through

h ∈ Hς
v(〈v〉qi) ⇔ h〈v〉qi ∈ Hς

v ,

we can use that (see Subsection 3.5):

Hς
v =

[
H⌊ς⌋
v ,H⌊ς⌋+1

v

]
ς−⌊ς⌋,2

to prove that

Hς
v(〈v〉qi) =

[
H⌊ς⌋
v (〈v〉qi),H⌊ς⌋+1

v (〈v〉qi)
]
ς−⌊ς⌋,2

, i = 1, 2.

From this, since Hℓ
v(〈v〉q2) →֒ Hℓ

v(〈v〉q1) for ℓ ∈ N, we deduce the desired embedding result:
Hς
v(〈v〉q2) →֒ Hς

v(〈v〉q1).
The result that we want to prove is a twisted version of Theorem 1.2 from [22], the only

difference being in the weights. First, we notice that

‖SΛ(t)h‖X1 . ‖SΛ(t)h‖H3,0
x,v(〈v〉k1 ).
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The result from [22] gives us that for k′ > k1 + γ + 5/2, we have:

‖SΛ(t)h‖H3,0
x,v(〈v〉k1 ) .

1

t1/2
‖h‖(H3,s

x,v(〈v〉k′ ))′ , ∀ t ∈ (0, 1]

where (H3,s
x,v(〈v〉k′))′ is the dual space of H3,s

x,v(〈v〉k′) with respect to H3,0
x,v(〈v〉k′). It remains

to show that if k0 = k′ + 6s > k1 + γ + 5/2 + 6s, we have

‖h‖(H3,s
x,v(〈v〉k′ ))′ . ‖h‖(H3,s

x,v(〈v〉k0 ))′ .

Indeed,

‖h‖(H3,s
x,v(〈v〉k′ ))′ = sup

∑3
j=0 ‖∇

j
x(ϕ〈v〉k′ )‖

H
0,s
x,v

≤1

3∑

j=0

〈
∇j
xh〈v〉k0−2js,∇j

xϕ〈v〉2k
′−(k0−2js)

〉
L2
x,v

= sup
∑3

j=0 ‖∇
j
x(ψ〈v〉2(k0−2js)−k′ )‖

H
0,s
x,v

≤1

3∑

j=0

〈
∇j
xh〈v〉k0−2js,∇j

xψ〈v〉k0−2js
〉
L2
x,v

≤ sup
∑3

j=0 ‖∇
j
x(ψ〈v〉k0−2js)‖

H
0,s
x,v

≤1

3∑

j=0

〈
∇j
xh〈v〉k0−2js,∇j

xψ〈v〉k0−2js
〉
L2
x,v

= sup
‖ψ‖

H
3,s
x,v(〈v〉

k0 )
≤1
〈h, ψ〉H3,0

x,v(〈v〉k0 )

≤ ‖h‖
(H3,s

x,v(〈v〉k0 ))′ ,

where we used (4.3) to obtain the third bound and this concludes the proof of (4.2). �

4.4. Proof of Theorem 1.1. We consider the Cauchy problem for the perturbation h
defined through h = f − µ. The equation satisfied by h = h(t, x, v) is

(4.4)

{
∂th = Λh+Q(h, h)

h|t=0 = h0 = f0 − µ.

From the conservation laws (see (1.7)), for all t > 0, Π0ht = 0 since Π0h0 = 0, more
precisely

∫
T3×R3 ht(x, v) dv dx =

∫
T3×R3 vjht(x, v) dv dx =

∫
T3×R3 |v|2ht(x, v) dv dx = 0 for

j = 1, 2, 3. Note that we also have Π0Q(ht, ht) = 0.

4.4.1. A priori estimates.

Proposition 4.4. Any solution h = ht to (4.4) satisfies, at least formally, the following
differential inequality: for any λ1 < λ (where λ > 0 is one rate given by Theorem 3.1),
there holds

1

2

d

dt
|||h|||2X ≤ −λ1|||h|||2X −

(
K − C|||h|||X

)
‖h‖2Y ∗ ,

for some constants K,C > 0 and where we recall that the norm ||| · ||| is defined in Propo-
sition 4.2.
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Proof. We compute the evolution of |||h||| where h = ht is solution of (4.4):

1

2

d

dt
|||h|||2X = η〈h,Λh〉H3

xL
2
v(m) +

∫ ∞

0
〈SΛ(τ)e

λ1τh,SΛ(τ)e
λ1τΛh〉H3

xL
2
v(m1) dτ

+ η〈h,Q(h, h)〉H3
xL

2
v(m) +

∫ ∞

0
〈SΛ(τ)e

λ1τh,SΛ(τ)e
λ1τQ(h, h)〉H3

xL
2
v(m1) dτ

=: I1 + I2 + I3 + I4.

For the linear part I1 + I2, we already have from Proposition 4.2 that, for any λ1 < λ,

I1 + I2 ≤ −λ1|||h|||2X −K‖h‖2Y ∗ .

We now deal with the nonlinear part, using first Lemma 2.4:

I3 . 〈Q(h, h), h〉X . ‖h‖X ‖h‖2Y ∗ . |||h|||X ‖h‖2Y ∗ .

For the last term I4, we use the fact that Π0ft = 0 and Π0Q(ft, ft) = 0 for all t ≥ 0,
together with the estimate (4.2) from Lemma 4.3. More precisely, if Π0h = 0, using
Theorem 3.1 in X1, we have:

∀ t ≥ 0, ‖SΛ(t)h‖X1 . e−λt‖h‖X1 .

Combined with the estimate (4.2) from Lemma 4.3, we deduce that for Π0h = 0,

∀ t > 0, ‖SΛ(t)h‖X1 .
e−λt

1 ∧
√
t
‖h‖Y ′

0
.

It implies ∫ ∞

0
〈SΛ(τ)e

λ1τh,SΛ(τ)e
λ1τQ(h, h)〉X1 dτ

≤
∫ ∞

0
‖SΛ(τ)e

λ1τh‖X1 ‖SΛ(τ)e
λ1τQ(h, h)‖X1 dτ

. ‖h‖X1 ‖Q(h, h)‖Y ′
0

∫ ∞

0
e−(λ−λ1)τ e

−(λ−λ1)τ

1 ∧√
τ

dτ

. ‖h‖X1 ‖Q(h, h)‖Y ′
0
.

To conclude, we use Lemma 2.4:

I4 . ‖h‖X1 ‖h‖X0 ‖h‖Ȳ0 . |||h|||X ‖h‖2Y . |||h|||X ‖h‖2Y ∗ .

�

We prove now an a priori estimate on the difference of two solutions to (4.4).

Proposition 4.5. Consider two solutions g and h to (4.4) associated to initial data g0
and h0, respectively. Then, at least formally, the difference g − h satisfies the following
differential inequality

1

2

d

dt
|||g − h|||2X1

≤ −K‖g − h‖2Y ∗
1
+ C

(
‖g‖X1 + ‖h‖X1) ‖g − h‖2Y ∗

1

+C
(
‖h‖Y1 + ‖g‖Y

)
‖g − h‖X1 ‖g − h‖Y1 ,

for some constants K,C > 0 and where ||| · |||X1 is defined as ||| · |||X in (4.1):

|||h|||2X1
:= η‖h‖2X1

+

∫ ∞

0
‖SΛ(τ)e

λ1τh‖2X3
dτ.
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Proof. We write the equation safisfied by g − h:
{
∂t(g − h) = Λ(g − h) +Q(h, g − h) +Q(g − h, g),

(g − h)|t=0 = g0 − h0.

We compute

1

2

d

dt
|||gt − ht|||2X1

= η〈(g − h),Λ(g − h)〉X1 +

∫ ∞

0
〈SΛ(τ)e

λ1τ (g − h),SΛ(τ)e
λ1τΛ(g − h)〉X3 dτ

+ η〈(g − h), Q(h, g − h)〉X1 +

∫ ∞

0
〈SΛ(τ)e

λ1τ (g − h),SΛ(τ)e
λ1τQ(h, g − h)〉X3 dτ

+ η〈(g − h), Q(g − h, g)〉X1 +

∫ ∞

0
〈SΛ(τ)e

λ1τ (g − h),SΛ(τ)e
λ1τQ(g − h, g)〉X3 dτ

=: T1 + T2 + T3 + T4 + T5 + T6.

Since the proof follows closely the one of Proposition 4.4, we do not give too much details
here (notice that the spaces indexed by 2 are implicitly used in the following estimates as
the spaces indexed by 0 were used in Proposition 4.4). We have:

T1 + T2 ≤ −K‖g − h‖2Y ∗
1
,

and also

T3 + T4 . ‖h‖X1 ‖g − h‖2Y ∗
1
+ ‖h‖Y1 ‖g − h‖X1 ‖g − h‖Y1 .

Moreover, for the last part T5 + T6, using Lemma 2.4-(i), we get

T5 + T6 . ‖g − h‖X1 ‖g‖Ȳ1 ‖g − h‖Y1 + ‖g‖X1‖g − h‖2Y1
. ‖g − h‖X1 ‖g‖Y ‖g − h‖Y1 + ‖g‖X1‖g − h‖2Y1 ,

which completes the proof. �

4.4.2. End of the proof. The end of the proof of Theorem 1.1 is classical and we do not enter
into details here. It follows a standard argument by introducing an iterative scheme whose
convergence and stability is shown thanks to Propositions 4.4 and 4.5. The framework
being exactly the same, we refer to Subsections 3.4.2. and 3.4.3 from [12] in which a more
precise proof is given.
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