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CAUCHY THEORY AND EXPONENTIAL STABILITY FOR
INHOMOGENEOUS BOLTZMANN EQUATION FOR HARD
POTENTIALS WITHOUT CUT-OFF

FREDERIC HERAU, DANIELA TONON, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we investigate both the problems of Cauchy theory and ex-
ponential stability for the inhomogeneous Boltzmann equation without angular cut-off.
We only deal with the physical case of hard potentials type interactions (with a moder-
ate angular singularity). We prove a result of existence and uniqueness of solutions in
a close-to-equilibrium regime for this equation in weighted Sobolev spaces with a poly-
nomial weight, contrary to previous works on the subject, all developed with a weight
prescribed by the equilibrium. It is the first result in this more physically relevant frame-
work for this equation. Moreover, we prove an exponential stability for such a solution,
with a rate as close as we want to the optimal rate given by the semigroup decay of the
linearized equation.

Mathematics Subject Classification (2010): 76P05 Rarefied gas flows, Boltzmann
equation; 47TH20 Semigroups of nonlinear operators; 35B40 Asymptotic behavior of solu-

tions.

Keywords: Boltzmann equation without cut-off; hard potentials; Cauchy theory; spec-
tral gap; dissipativity; exponential rate of convergence; long-time asymptotic.
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1. INTRODUCTION

1.1. The model. In the present paper, we investigate the Cauchy theory and the asymp-
totic behavior of solutions to the spatially inhomogeneous Boltzmann equation without
angular cut-off, that is, for long-range interactions. Previous works have shown that there
exist solutions in a close-to-equilibrium regime but in spaces of type H q(e|”|2/ 2) which are
very restrictive. Here, we are interested in improving this result in the following sense:
we enlarge the space in which we develop a Cauchy theory in several ways, we do not
require any assumption on the derivatives in velocity and more importantly, our weight
is polynomial. We thus only require a condition of finite moments on our data, which is
more physically relevant. Moreover, we jointly obtain a convergence to equilibrium for the
solutions that we construct with an exponential and explicit rate.

We consider particles described by their space inhomogeneous distribution density f =
f(t,z,v) with ¢ € RT the time, 2 € T? the position and v € R? the velocity. We hence
study the so-called spatially inhomogeneous Boltzmann equation:

(1.1) Wf+v-Vauf =Qf, f).

The Boltzmann collision operator is defined as
Qo0 = [ Blo=veo) [df ~ guf] dodo.
R3 xS2

Here and below, we are using the shorthand notations f = f(v), g« = g(v), f/ = f(V')
and ¢, = g(v.). In this expression, v, v, and v/, v} are the velocities of a pair of particles
after and before collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical law of elastic collisions):

V+ U = v + vi,
[of? + ou? = 0| + [0l
so that the pre-collisional velocities are given by:

,:U—;U* |v 21)*]0’ v;:U—;U*—’U 21)*]0’ —
The Boltzmann collision kernel B(v — v,, o) only depends on the relative velocity |v — v,
and on the deviation angle 6 through cos = (k,0) where k = (v — vy)/|v — vi| and (-, -)
is the usual scalar product in R?. By a symmetry argument, one can always reduce to the
case where B(v — vy, 0) is supported on (k,0) > 0 ie. 0 <6 < 7/2. So, without loss of
generality, we make this assumption.

In this paper, we shall be concerned with the case when the kernel B satisfies the
following conditions:
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e it takes product form in its arguments as
(1.2) B(v —vy,0) = ®(Jv — vi]) b(cos 0);

e the angular function b is locally smooth, and has a nonintegrable singularity for
0 — 0: it satisfies for some ¢;, > 0 and s € (0,1/2) (moderate angular singularity)

Ch . 1
(1.3) Ve e (0,7/2], g% < sinfb(cosf) < W;
e the kinetic factor ® satisfies
. V— VUg|) = |V — Uy wit v € (0,1),
14 P v ith 0,1

this assumption could be relaxed to assuming only that ® satisfies ®(-) = Cg |- |7
for some C¢ > 0.
Our main physical motivation comes from particles interacting according to a repulsive
potential of the form

(1.5) o(r) =r~P D pe (2, +0).

The assumptions made on B throughout the paper include the case of potentials of the
form ([LA]) with p > 5. Indeed, for repulsive potentials of the form (3], the collision kernel
cannot be computed explicitly but Maxwell [24] has shown that the collision kernel can be
computed in terms of the interaction potential ¢. More precisely, it satisfies the previous
conditions ([2), (L3) and (L4) in dimension 3 (see [13|, 14, 33]) with s := p%l € (0,1)

-5
and v == € (=3,1).

One traditionally calls hard potentials the case p > 5 (for which 0 < v < 1), Mazwell
molecules the case p = 5 (for which v = 0) and soft potentials the case 2 < p < 5 (for
which —3 < v < 0). We can hence deduce that our assumptions made on B include the
case of hard potentials.

Let us give a weak formulation of the collision operator (). For any suitable test function
© = ¢(v), we have:

(1.6
[ QU@ ewd=1 [ Bo—u.o) i~ L) o+ o=~ o) do du do
R3 R3xR3xS2

From this formula, we can deduce some features of equation (LII): it preserves mass,
momentum and energy. Indeed, at least formally, we have:

L QUNWe)d =0 for o) =10, Juf

from which we deduce that a solution f; to equation (I.I) is conservative, meaning that
(1.7)

Vit >0, / flt,z,v)p(v)dvdr = / fo(z,v) p(v)dvdz for ¢(v)=1,v,|v|*
T3 xR3 T3 xR3

We introduce the entropy H(f) = [s,ps [ log(f)dvdz and the entropy production
D(f) defined through:

d
D(f) i= —ZH(f)
(18) — 1 / B(v—v.,0) (f fl. — ff)log I'f do dv, dv dz.
4 T3 xR3 xR3xS2 ’ * ff*
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Boltzmann’s H theorem asserts that

d

(1.9 GH() = =D() <0

and states that any equilibrium (i.e. any distribution which maximizes the entropy) is a
Maxwellian distribution. Moreover, it is known that global equilibria of (LI]) are global
Maxwellian distributions that are independent of time ¢ and position x. In this paper, we
shall only consider the case of an initial datum satisfying

(1.10) / fodvdr =1, / fovdvdx =0, / fo|v|*dvdx =3,

T3 xR3 T3 xR3 T3 xR3
and therefore consider p the Maxwellian with same mass, momentum and energy as fy:
(1.11) (v = (2m) 732 11P/2,

1.2. Notations. Let X,Y be Banach spaces and consider a linear operator A : X — X.
When defined, we shall denote by Sx(t) = e** the semigroup generated by A. Moreover we
denote by #(X,Y) the space of bounded linear operators from X to Y and by | - || z(x,y)
its norm operator, with the usual simplification Z(X) = #(X, X).

For simplicity of notations, hereafter, we denote (v) = (1 + [v|?)"/?; a ~ b means that
there exist constants c1, ¢y > 0 depending only on fixed numbers such that ¢1b < a < cob;
we shall use the same notation C' for positive constants that may change from line to line
or abbreviate “« < C' 7 to “ <7, where C is a positive constant depending only on fixed
number.

In what follows, we denote m(v) := (v)* with k& > 0, the range of admissible k will be
specified throughout the paper. We also introduce x € D(R) a truncation function which
satisfies 1_1 1) < x < 1|_5,9) and we denote x,(-) := x(-/a) for a > 0.

1.3. Function spaces. Through all the paper, we shall consider functions of two variables
f = f(z,v) with € T3 and v € R3. Let v = v(v) be a positive Borel weight function and
1 < p < oco. We define the space L% ,(v) as the Lebesgue space associated to the norm,

for f = f(z,v),

12z o) = Nzl o = Nl Fllce]]

which writes if p < oo:

1/p
J— . p
wmmm—<49ﬂ%wmwm>

_ </w /RB 1f (2, 0) P v(v)? dvda;) l/p.

We define the high-order Sobolev spaces H*H(v), for n, ¢ € N:

(1.12) 17120 e = 3 10502 (f)l7a -

|la[<, |B|<n, |a]+]B]<max(f,n)
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This definition reduces to the usual weighted Sobolev space Hy' ,(v) when ¢ = n. We use
Fourier transform to define the general space Hy, ,(v) for r € R*:

(L13) o= I, = 30 [ I Y (o P dn
’ ’ ¢ezd neRr3

where the hat corresponds to the Fourier transform in both = (with corresponding variable
¢ € Z3) and v (with corresponding variable € R?). In this case, the norms given by (L12])
and (LI3]) are equivalent. We won’t make any difference in the notation and will use one
norm or the other at our convenience. It won’t have any impact on our estimates since it
will only add multiplicative universal constants.

We also introduce the fractional Sobolev space H;%(y) for r, ¢ € R™ associated to the

norm:
(1.14) 1m0y 2= 10 0ms = S / (L IEPY (1+ WPy [Fote, )P dn
£ez3

When r € N, we can also define the space Hy'5(v) through the norm:

(1.15) 1 sy = D /]1‘3 Vi Iy = D IVEFams ).

0<j<r 0<j<r

As previously, when r € N, the norms given by ([L14]) and (II5]) are equivalent and we
will use one norm or the other at our convenience. Finally, denoting for ¢ € R,

1y = 1501 = [ ol [Pl an,

we introduce the space Hy’s(v) for (n,s) € N x Rt defined through the norm:

(1.16) ||f||§{g5(y) = Z /’]1‘3 Hv?;cfH?'{;(,,) dx = Z HVgcin%H;(,,)-

0<j<n 0<j<n

Notice also that in the case ¢ = 0, the spaces H?L2(v) and HQB (v) associated respectively
to the norms given by (LI2) and (LI5) are the same.

We now introduce some “twisted” Sobolev spaces (useful for the development of our
Cauchy theory in Section M), we denote them Hy3(v) for (n,¢) € N x RT and they are
associated to the norm:

(1.17) ||f||3{g;g(y) = Z / ||V?Cf||%—[g(<v>72jsy) = Z ||V?Cf||%%H,g(<v>*2jsy)
0<j<n /T2 0<j<n

where s is the angular singularity of the Boltzmann kernel introduced in (3] and (v) =
(1 + [v[?)1/2. For the case ¢ = 0, since the notation is consistent, we will use the notation
HL2(v) or Hi9(v) indifferently.

Finally, following works from Alexandre et al. (see [6]), we introduce an anisotropic
norm that we denote || - [| =~ (the notation will be explained by Lemma 2.T) and which is
defined through

2o = / bs(cos ). (v.) 77 (f' ()% = F0)?)? do dv, do.
v R3 xR3 xS2

In this definition, ~ is the power of the kinetic factor in (L4 and g is given by (LII)).
Moreover, we recall that b is the angular function of the Boltzmann kernel which satis-
fies (L3) and we define bs as the following truncation of b: bs(cos @) := xs(0)b(cos §) with
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¢ fixed so that the conclusion of Lemma holds. Since the constant ¢ is fixed, we do
not mention the dependency of the norm defined above with respect to . Let us also
introduce the space H, ™ (v) associated with the norm

(1.18) 1y = 12 ey + 1570
For n € N, we also define the space Hj ™ (v) associated with the norm
2 — 12
(1.19) 1B i= 2 [ VAo sy o
0<j<n

where s is still the angular singularity in (I3]).

1.4. Main results and known results.

1.4.1. Cauchy theory and convergence to equilibrium. We state now the main result on
the fully nonlinear problem (LI)). Let m(v) = (v)* with

21
k’>7+’7+228.

We then denote X := H3L2(m) and we introduce Y* := H25*(m) (see (LI7) and (LI9)
for the definition of the spaces).

Theorem 1.1. We assume that fo has same mass, momentum and energy as p (i.e.
satisfies (LIQ) ). There is a constant eg > 0 such that if || fo — pl|x < €0, then there exists
a unique global weak solution f to the Boltzmann equation (L)), which satisfies, for some
constant C > 0,

1 = 1ll oo ([0,00): ) + I1f = #ll £2([0,00):7+) < Ceo-
Moreover, this solution satisfies the following estimate: for any 0 < Ay < Ay there exists
C > 0 such that

V20, [If(t) —ulx < Ce | fo - ullx,

where A1 > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem [Z1.

We refer to Remark 1] in which the imposed condition on the power k of our weight is
explained. Let us now comment our result and give an overview on the previous works on
the Cauchy theory for the inhomogeneous Boltzmann equation. For general large data, we
refer to the paper of DiPerna-Lions [I7] for global existence of the so-called renormalized
solutions in the case of the Boltzmann equation with cut-off. This notion of solution has
been extended to the case of long-range interactions by Alexandre-Villani [§] where they
construct global renormalized solutions with a defect measure. We also mention the work
of Desvillettes-Villani [16] that proves the convergence to equilibrium of a priori smooth
solutions for both Boltzmann and Landau equations for general initial data.

In a close-to-equilibrium framework, Gressman and Strain [18] in parallel with Alexan-
dre et al. [6] have developed a Cauchy theory in spaces of type H;‘Hf(,u_lm). One of the
famous difficulty of the Boltzmann equation without cut-off is to well understand coerciv-
ity estimates. In both papers [6] and [I8], the gain induced is seen and understood through
a non-isotropic norm. Our strategy uses this type of approach but we also exploit the
fact that the linearized Boltzmann operator can be seen as a pseudo-differential operator
in order to understand the gain induced by the linearized operator. It allows us to obtain
regularization estimates (quantified in time) on the semigroup associated to the linearized
operator. We refer to the paper of the same authors [22] for more details on the subject.
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To end this brief review, we also refer to a series of papers by Alexandre et al. [3] 4] [5] 6, [7]
in which the Boltzmann equation without cut-off is studied in various aspects (different
type of collision kernels, Cauchy theory in exponentially weighted spaces, regularity of the
solutions etc...).

Let us underline the fact that Theorem [[.I] largely improves previous results on the
Cauchy theory associated to the Boltzmann equation without cut-off for hard potentials
in a perturbative setting. Indeed, we have enlarged the space in which the Cauchy theory
has been developed in the sense that the weight of our space is much less restrictive (it is
polynomial instead of the inverse Maxwellian equilibrium) and we also require few assump-
tions on the derivatives, in particular no derivatives in the velocity variable. However, we
need three derivatives in the space variable (Gressman and Strain only require two deriva-
tives in z in [I8]): this is the counterpart of the gain in weight we have obtained. Indeed,
our framework is less favorable and needs more attention due to the lack of symmetry
of the operator in our spaces to obtain nonlinear estimates on the Boltzmann collision
operator. And thus, to close our estimates, we require regularity on three derivatives in .

Our strategy is based on the study of the linearized equation. And then, we go back
to the fully nonlinear problem. This is a standard strategy to develop a Cauchy theory
in a close-to-equilibrium regime. However, we point out that our study of the nonlinear
problem is very tricky. Indeed, usually (for example in the case of the non-homogeneous
Boltzmann equation for hard spheres in [19]), the gain induced by the linear part of the
equation is enough to directly control the loss due to the nonlinear part of the equation so
that the linear part is dominant and thus dictates the dynamics of the equation. In our
case, it is more difficult because the gain induced by the linear part is not strong enough
and it is not possible to conclude using only natural estimates on the Boltzmann collision
operator (this fact was for example pointed out by Mouhot and Neumann in [29]). As a
consequence, we establish some new very accurate estimates on the Boltzmann collision
operator (see Lemma 24]). We also have to study very carefully the regularization prop-
erties of the semigroup associated to the linearized operator: to this end, we use results
by the same authors [22] in which the linearized Boltzmann operator is seen as a pseudo-
differential operator, following the framework introduced in [2] by Alexandre, Li and the
first author. Also, in the spirit of what was done in [I2] by Carrapatoso, Wu and the
third author, we work in Sobolev spaces in which the weights depend on the order of the
derivative in the space variable. Those key elements allow us to close our estimates and
thus, to develop our Cauchy theory in our “twisted” Sobolev spaces.

1.4.2. The linearized equation. The linearized operator around equilibrium is defined at
first order through

Ah = Q(:uv h) + Q(ha /L) —v-Vzh.

We study spectral properties of the linearized operator A in various weighted Sobolev
spaces of type H H((v)*) up to L2 ,((v)¥) for k large enough. It is important to high-
light the fact that, in order to take advantage of symmetry properties, most of the previous
studies have been made in Sobolev weighted spaces of type Hgm(,u_l/ 2). We largely im-
prove theses previous results in the sense that we are able to get similar spectral estimates
in larger Sobolev spaces, with a polynomial weight and with less assumptions on the
derivatives. Here is a rough version of the main result (Theorem [B]) that we obtain on
the linearized operator A:
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Theorem 1.2. Let £ be one of the admissible spaces defined in [B4). Then, there exist
explicit constants Ay > 0 and C > 1 such that

V20, Vhe&, [Sa(t)h—Tohle < Ce M b —Tohle,

where Sp(t) is the semigroup associated to A and Iy the projector onto the null space of A

defined by (I.22).

As mentioned above, the operator A (and its homogeneous version Lh := Q(u,h) +
Q(h, 1)) has already been widely studied. Let us first briefly review the existing results
concerning spectral gap estimates for the homogeneous case. Pao [3I] studied spectral
properties of the linearized operator £ for hard potentials by non-constructive and very
technical means. This article was reviewed by Klaus [23]. Then, Baranger and Mouhot
gave the first explicit estimate on this spectral gap in [9] for hard potentials (y > 0). If
we denote D the Dirichlet form associated to —L:

D= [ (~Lhyhu
R3
and N(£)* the orthogonal of the null space of £, N/(£) which is given by

N(ﬁ) = Spa‘n{u7 U1, V2L, V3 L, ‘0‘2,“}7
the Dirichlet form D satisfies

(1.20) YheNL)E D(h) = Xl
for some constructive constant Ag > 0. This result was then improved by Mouhot [27] and
later by Mouhot and Strain [30]. In the last paper, it was conjectured that a spectral gap
exists if and only if v+ 2s > 0. This conjecture was finally proven by Gressman and Strain
in [I§]. Finally, let us point out that the analysis that we carry on can be seen as the
sequel of the one handled in [32] by the third author which focuses on the homogeneous
linearized operator £. We also improve it in several aspects: we are able to deal with
the spatial dependency and we are able to do computations in L? (only the L!-case was
treated in the latter).

Concerning the non-homogeneous case, we state here a result coming from Mouhot
and Neumann [29] (which takes advantage of the results proven in [9] by Baranger and
Mouhot), it gives us a spectral gap estimate in H. g,v(u_l/ 2), ¢ € N*, thanks to hypocoerciv-
ity methods. Let us underline the fact that it provides us the existence of spectral gap and
an estimate on the semigroup decay associated to A in the “small” space F = Hg,v(u_l/ 3,
which is a crucial point in view of applying the enlargement theorem of [19]. It is also
important to precise that Mouhot and Neumann [29] only obtain a result on the linearized
operator, they are not able to go back to the nonlinear problem.

Theorem 1.3 ([29]). Consider E := Hi,(u="?) with ¢ € N*. Then, there exists a
constructive constant Ao > 0 (spectral gap) such that A satisfies on E':

(1) the spectrum L(A) C {z € C:Rez < —Ao} U{0};
(ii) the null space N(A) is given by

(1.21) N(A) = Span{p, vi s, vapt, vap, [v]*



INHOMOGENEOUS BOLTZMANN EQUATION WITHOUT CUT-OFF 9

and the projection Ily onto N(A) by

Hoh:</ hdvdx)u—i—Z(/ vihdvdaz>vm
T3 xR3 ; T3 xR3

=1

2 2 _
(ARC==TrA =D
T3 xR3

(iii) A is the generator of a strongly continuous semigroup S (t) that satisfies

(1.23) Vt>0,YVheE, |Sxt)h—TIh|s < e 0 h — k| s.

(1.22)

To prove Theorem [[L2, our strategy follows the one initiated by Mouhot in [28] for
the homogeneous Boltzmann equation for hard potentials with cut-off. This argument
has then been developed and extended in an abstract setting by Gualdani, Mischler and
Mouhot [19], and Mischler and Mouhot [26]. Let us describe in more details this strategy.
We want to apply the abstract theorem of enlargement of the space of semigroup decay
from [19, 26] to our linearized operator A. We shall deduce the spectral/semigroup esti-
mates of Theorem [[21on “large spaces” £ using the already known spectral gap estimates
for A on Hfg,v(,u_l/Q), for £ > 1, described in Theorem [[.3] Roughly speaking, to do
that, we have to find a splitting of A into two operators A = A + B which satisfy some
properties. The first part A has to be bounded, the second one B has to have some dissi-
pativity properties, and also the operator (ASp(t)) is required to have some regularization
properties.

1.5. Outline of the paper. We end this introduction by describing the organization
of the paper. In Section [2, we prove nonlinear estimates on the Boltzmann collision
operator. In Section Bl we consider the linearized equation and prove a precise version of
Theorem In Section @] we come back to the nonlinear equation and prove our main
result Theorem 11

Acknowledgments. The third author has been partially supported by the Fondation
Mathématique Jacques Hadamard. This research has been supported by the Ecole Normale
Supérieure through the project Actions incitatives Analyse de solutions d’équations de
la théorie cinétique des gaz. The first author thanks the Centre Henri Lebesgue ANR-
11-LABX-0020-01 for its support and the third author thanks the ANR EFI: ANR-17-
CE40-0030. The authors thank Stéphane Mischler and Kleber Carrapatoso for fruitful
discussions.

2. PRELIMINARIES ON THE BOLTZMANN COLLISION OPERATOR

In this part, we give estimates on the trilinear form (Q(g, h), f) in our physical frame-
work (meaning that the collision kernel B satisfies conditions (L2), (L3), (L4])). We
start by recalling some homogeneous estimates and then establish some new estimates in
weighted Sobolev (or Lebesgue) non homogeneous spaces. These new estimates will be
used both in the linear (Section B]) and nonlinear (Section M) studies.

For sake of clarity, we recall that m(v) = (v)* with k > 0 and that we will specify the
range of admissible &k in each result.
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2.1. Bound on the anisotropic norm. In this subsection, we compare the anisotropic
norm defined in (I8]) with usual Sobolev norms.

Lemma 2.1. Let k > 0. We have the following estimate: for g € HZ({(v)1/*F*m),
6% 28”9”1{5 Y1/2m < ||9||H5 S ||9||Hs Yv/2+s ) -

Proof. Adapting the proof of [2Il Theorem 3.1], we know that there exist ¢y and ¢; such
that

||9m‘|§{3* > Co 52_28”9”?{5((@)w/2m) —a 52_28||9H%2(<v>w/2m)-
As a consequence, we have for A € (0, 1),
191z (my = 1972 (roprrzmy + llgmml e
> HgHLz y2/2my + Allgml|Fs
> Hg”Lz yr/2 )( —Aer 677 28)‘*‘)\6052 28”9HH3 Y1/2m)

Taking A > 0 small enough, we obtain the bound &~>*||gll s (p)/20m) S 9l mr5* (my- The
reverse bound is directly given by [0, Lemma 2.4] since

/R3 R3xS2 bs (cos 0) s <”*>_7(glm,<vl>7/2 - gm<v>7/2)2 do dvy dv
X X

< / b(cos )i (0,) "7 (g'm! (W')/% — gm(v)?/?)? do dv, dv.
R3XxR3xS?
]

We will use the fact that our lower bound in the previous lemma depends on ¢ in the
proof of Lemmas and However, in the next subsection, ¢ is fixed so that the
conclusion of Lemma is satisfied, we thus do not mention anymore the dependency of
constants with respect to 4.

2.2. Homogeneous estimates.
Lemma 2.2 ([20]). For smooth functions f, g, h, one has:
(Q(f: 9), B2l S Ly 2oy Mgl st oynny 1Pl gz (v
with <1, ¢ € [0,2s] satisfying 1 + 2 = 2s and Ny, No > 0 such that Ny + No = v + 2s.

The goal of what follows is to extend this type of estimates to weighted Lebesgue spaces.
Lemma 2.3]is a “weighted version” of Lemma 2.2

Lemma 2.3. Assume k > v/2+ 3 + 2s.
(i) For any £ >~ + 1+ 3/2, there holds

2.1) (QCf,9): M r2my S Il 22wye) 1911 st oy ™imy 11 2 oy vaim)
' W ez wyrr2my 190 22 (o) ||h||L2 V1/2m)
with <1, so € [0,2s] satisfying 1 + so = 2s and Ny, Ny > 0 such that Ny + Ny =
v+ 2s.

(ii) For any € >4 —~+ 3/2, there holds
(22) Q(f.9),9)r2(m) S N2 (wye) 19105 (my + 1F 1 L2 oyr72m) 9l 22 cyey 1911 22 goyr/2m)-
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Proof of (i). We write
QU9 Wz = [ Blo—0.,0) (1lg ~ fug) b dordv. do
R3xR3 xS2
:/ B(v —vs,0) (flgm' — fegm) hmdo dv, dv
R3xR3 xS2

+/ B(v —vs,0) fig hm (m —m') do dv, dv
R3 xR3 xS2
=11 + I5.
We deal with the first term I; using Lemma
I = (Q(f, gm), hm) 2 S | Fll e wyrr2s) 190 st oy my 1P a2 oy m)
Sz ey 191 s (oymmy 10l 52 oy vam)

because ¢ > v + 2s + 3/2, with ¢, ¢2 € [0, 2s] satisfying ¢; + ¢o = 2s and with Ny, No >0
such that Ny + No = v + 2s. To deal with I, we use the following estimate on |m’ — m)|
(see the proof in [3, Lemma 2.3]):

(2.3) Im’ — m| < sin(6/2) (m’ (W) (W)L 4 sink1(9/2) m;) .
Notice that |[v — v,| = [v/ — v)| < |v — v)| which implies
(2.4) o — .| S 0 =Vl o — 72 S ()2 ) ()

Also, we have,
(25) [o— v S = o[? sinT2(8/2) [of — wl[V/? S sin2(0/2) (o) (o) ()72,

This bound induces the appearance of a singularity in #. However, we notice that in the
third term of the estimate (2.3]) we have a gain in the power of sin(6/2) depending on the
value of k, the power of our polynomial weight. As a consequence, if k is large enough,
we can keep a power of sin(f/2) that is large enough to remove the singularity of b(cos )
at 0 = 0. Consequently, we have:

I < / b(cos0) sin(0/2) |v — v |7 | f1l|g'[|h| m
R3 xR3xS2

(m' + (01) (WY 4 sinf1(0/2) m;) do dv, dv
=: Ipy + Iop + Io3.

The two first terms Iy and Iy are treated in the same way using the estimate (Z4]), we
obtain:

Iy + 192 S / b(cos 0) sin(6/2) | 2| )7+ | |m! (V)2 |k m(v)? do dv, dv
R3xR3xS?2

1/2
i ! 1 2/
< ([, bleost) sin@/2) 107 (6l L7 oo

X

1/2
(/ b(cos 0) sin(8/2) | f'|(v) T h2 m2(v,) do dv, dv>
R3xR3xS?
=: Jl X JQ.
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The term .J; is easily handled just using the pre-post collisional change of variable:

T2 S I N zacop1y 19072 yrrzmy S 1122wy 191072 quyrrzm)

since £ > v+ 1+ 3/2. To deal with J,, we use the regular change of variable v — v/
meaning that for each o, with v, still fixed, we perform the change of variables v — v'.
This change of variables is well-defined on the set {cos# > 0}. Its Jacobian determinant
is

d'| 1 (K- 0)?

% = g(l + K- O') = 1 s
where k := (v—uy)/|v— v*|and/£ (v —v,)/|v" —v,|. We have &/-0 = cos(6/2) > 1//2.
The inverse transformation v’ — 1,(v') = v is then defined accordingly. Using the fact

that
cos =k-0=2(K 0)>—1 and sin(0/2) = /1 —cos2(0/2) = /1 — (k' -0)2

we obtain

/ b(cos 0) sin(6/2) | (v} do dv
R3xS?
/ (K- 0)?2 = 1)1 = (k- 0)2|f| () do dv
R3xS2
4
/ b(2(k' - 0)? —1)\/1— (- 0)2|f | d lz
lo>1/v/2 (K- 0)
/ (cos 20) Slnﬁda/ | f{(v)7 T dw.

We deduce:
I3 S zacyny IRl 2 yrrzmy S 1F 1Lz cyey 112 g2y
In summary, gathering the three previous estlmates we have
Ioy + Ioo S 1l 22wy 1911 22 (oyrr2imy 1] 22 (0yr/2m) -
Concerning Is3, we take advantage of the bound given by (2.3)):

Iog < / b(cos 0) sin®*=7/2(6/2) | £ |m. (W.)2 g [(W')Y |h|m (v) 2 do dvy dv
R3xR3 xS2
1/2
< </ b(cos 0) sin®~/2(0/2) |g/| () | £L[*m* (0]} do du. dv)
R3 xR3 xS2

1/2
X </ b(cos 0) sin*7/2(6/2) |¢'|(v')Y K2 m? (v)" do du, dv>
R3 xR3 xS2
=: Tl X Tg.
As far as T is concerned, a simple pre-post collisional change of variable allows us to get

T? < Nglzaor IF T2 oyrrzmy < lallzz oo 1172 qopr2m

since £ > v+ 3/2. The second term requires more attention since we have to perform a
singular change of variable v, — v showed for example in the proof of Lemma 2.4 in [3].
Recall that the Jacobian of this transform is

dv, 4

- T <166072.0€(0,7/2
dv’ sin?(0/2) ~ ' (0,/2],
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therefore, this change of variable gives rise to an additional singularity in # around O.
However, we can take advantage of the fact that we have a power k in sin(6/2), indeed
taking k large enough allows us to control this singularity. Notice that # is no longer the
good polar angle to consider, we set 1) = (m — 0)/2 for ¢ € [r/4,7/2] so that

/

7Y% 5 and do = sine di do.

cos ) = P

This measure does not cancel any of the singularity of b(cos#) unlike in the case of the
usual polar coordinates but it will be counterbalanced taking k& large enough. We then
have:

/ b(cos 0) sint=12(9/2) |¢'| ()7 dor dvs < / (70— 2)E=/2=4225 | (/Y dr !
R3 xS2 R3xS2

< [ sy [l s [ alen
/4 R3 R3
since k > /2 + 3 + 2s. We deduce that
T22 5 HQHL}J((U)W) Hh”ig((v)wmm) 5 ”gHLg(@)f) ”hH%g((v)w/zm)
and thus
Ios S N2 qoyrrzmy 191122 (0)e) 111 22 ((oyr/2imy

which concludes the proof of estimate (2.1]).
Proof of (ii). We have:

<Q(f7 g)vg>L%(m)

— (Q(f.gm).gm)) 1z + / B(v — v, 0)fg'gm (m — m') do du, dv
R3xR3xS2
=: 1+ J

The term J is done in the first step of the proof, it corresponds to the term I replacing h
by g, we thus have

I SN ez wyrzmy 191122 (wyey 1911 22 (yr/2m) -
In order to deal with the term I, we denote G := gm. We also recall that
bs(cos @) = xs(0) b(cos 0)
and we introduce the notations
bS(cos ) := (1 — xs(0)) b(cos ),
Bs(v — vy, 0) :=bs(cos0) |[v —v,|7 and  B§(v — vi,0) 1= b§(cos0) |[v — v, |".
The two previous kernels correspond respectively to grazing collisions and non grazing

collisions (which encodes the cut-off part of the operator). We also denote Qs (resp. Qf)
the operator associated with the kernel B; (resp. Bf). We have for G = gm:

I=(Qs(f.G),G)rz +{Q5(f,G), Gz = I° + I"".
We start by dealing with the cut-off part:

j / BS(v — vs,0) f. G(G' — @) do dv, dv
R3 xR3 xS2

< / (v — v, B (cos 0) | £.] (G2 + (G)2) dor do, dv.
R3 xR3 xS2
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Using that b$(cos ) < Cs on S? and |v — v.|7 < v/ — v.|7, we get
e < / ol (02)7 G2 (o) dor v, do + / £l (02)7 G2 (W' do do, do.
R3 xR3xS2 R3 xR3xS2

The first term is directly bounded from above by | f|lz1(w HGH (0)7/2) and for the

second one, we use the regular change of variable v — v/ explamed in the proof of (i). We
thus get

9
1% S e G2 quyrrzy S 1F 22y 191172 (guyor2m -

Concerning the grazing collisions part, we write

152/ Bs(v — v4,0) f G (G’ — G) do dv, dv
R3 xR3 xS2

:—1/ Bs(v — vy, 0) f+ (G' — G)* do dv, dv
2 JR3xR3xS?
1
+—/ By — vs,0)fs (G2 — G2) dor dvs dv = I? + I
2 JR3xR3xS?

The second term I3 is treated thanks to the cancellation lemma [I, Lemma 1]:

I = / (S5% G?) f dv,
R3
where (for details, see [32] proof of Lemma 2.2])

|2

w/2
— ; — | < 52728 |57
(2.6) Ss(z) :==2m /0 sin 6 bs(cos 0) <cosV+3(9/2) || > df <6 |z|7.
We deduce that
Ig S ||f||L}J(<v>"/)||G||%12)(<v>w/2) S ||f||L%((v)f)||9||i%(<v>w/zm)-

It now remains to handle I?. First, using that |v — v.| < |v" — v.|, we have

IfS/ bs(cos 0)|v — v, || fo| (G' — G)* do dv,, dv
R3xR3xS2
< / bs(cos 0)|v" — v,|?| fo| (G' — G)? do dv, dv
R3 xR3 xS2
< / bs(cos 0| £ (02)7 (G (/Y2 — G(o)V/2)2 dor dv, dv
R3 xR3 xS2

+ / bs(cos 0)| f.] (ve)Y G2 ((0)/2 — ('Y/?)? do dv, dv =: T2, + 10,
R3XxR3 xS?
To deal with I?,, we first note that

1 1
()2 — (72| < Jof — | / W+ (v — )2V dr < o — v sin(6/2) / (0,Y7/21 g
0 0

where v, := v + 7(v —v’). Moreover, for any 7 € [0, 1], we have
(v) < (v —v) + (V) < V2vr —vi) + (va) S (vr)(vs)
which implies (since v/2 —1 < 0)
<,UT>'y/2—1 < <,U>~//2—1<U*>1—~//2‘
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Consequently, we deduce
27) (@) = @W)72)? Sl — el sin®(0/2) () (0:)* 77 S sin(0/2)(0)7 (v.) '
so that

Ity SIF sy IGIZ (uprzy S 1Lz 19072 (yrr2m)-

For the analysis of I?,, we introduce the following notations: f := f(-)7, i := u(v)~7 and
G = G(v)"/? so that

I :/ bs(cos 0)|f1(G' — G)? do dv, dv.
R3 xR3xS2

We then use Bobylev formula [T1] (see also [Il Proposition 2]), denoting £+ = (& +|¢|0) /2,

we have:
s 1 SN B2
= [, b5 (o) <|f|< 186 - 6™
T+ 2%e (ﬁw) - ﬁ(é‘)) é(s*ﬁ(s)) dor d.
Similarly, we have

161 = o [ (0) (ﬁ(oné(s) ~G(eh)P

Since |f|(0) = HJEHL}) and fi(v) = |l 1, we deduce that

= [t (s ) 2R (1710 - [71€)) G631 do

1[Iz ( £ ) N
- — 2 bs 2R do d
(2m)3 Hﬂ”L}J /]R3><82 GHE e( (0) — (€ )) G(ET)G(&) do dE
+ H{CHL% G35 = Iy + Iy + I,
2l v

Using then results from the proof of [0, Lemma 2.8] combined with Lemma 21} we get
that

1111 ~ ”f”Ll 28)”9”%15 < ”f”L%((v)Z)Hg|’§{5’*(m)
and
15 < || £ G 2 < 2
112 S 1A esllGles S W1 ez 191« m)
We also clearly have
1113 ~ ||f||L2( ||9H§{g’*(m)
Gathering all the previous estimates, we are able to deduce that (22]) holds. (]
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2.3. Non homogeneous estimates. We now prove non homogeneous estimates on the
trilinear form (Q(f,g),h) in order to get some accurate estimates on the terms coming
from the nonlinear part of the equation. Basically, we give a non homogeneous version of
Lemma 2.3 We introduce the spaces

X == H3L (m)
Y = HY5((0)m)
= Hay*(m)
Y= 15 ()2 m)

(2.8)

that are defined through their norms by (LI7) and (LI9). We also introduce Y’ the
dual space of Y with respect to the pivot space X, meaning that the Y’-norm is defined
through:

(2.9) Iflly == sup (f,d)x = sup Y (VLf,Vid)r2 (uy-2iem)-
”(b”YSl ||¢||YS109S3 '

Lemma 2.4. The following estimates hold:
(i) For k> /24 3+ 8s,

Qf9): x S Ifllx llglly 1plly + 11y lgllx Al
therefore,

1R 9y < 1Fx Nlally + 11y llgllx-
(i) For k>4 —~+3/2+ 6s,
(Q(f.9)9)x S IflIx gl + £ 1y llgllx llally-
(i) For k>4 —~v+3/2+6s,
QU D) x S IS

Proof. In this proof, we use Lemma[2Z3}(i) and (ii) together with the following inequalities
when integrating in x € T3,

(2.10)  lullpoe(rsy S Nullmzers),  Mullzsers) < lullarersy,  lulles sy S lullgoers)-

Proof of (i). We write

(QUE.9): Wypsragmy = QU0 Wiz oy + 3 (O2QUE 9).02h) 2 iy 21500

1<|81<3

and
BQUf.9)= D> CppQ@)f00g).
B1+p2=0

In the following steps we will always consider ¢ € (y+ 1+ 3/2, k — 6s] which is possible
since k > v/2+3+48s,y<1and s > 0.
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Step 1. Using Lemmal[23}(i) applied with ¢; = ¢o = s, N1 = 7/2+42s, Ny = /2 and (210)
we have

<Q(fag)7h>Liyu(m)
S [ (1700 19l gressmy Vel e

1 oo lollzzq vy)uhHLg«Wzm)

S Il azza ey 190 22 ms (oyrr2t2e m) ||h||L2Hs(< }1/2m)
+ 12, /2y N9z ez oyey 1M 22 oyr/2m)
Sfllx ||9||y IRlly + 11y Nlgllx [R]ly-

Step 2. Case |f] = 1. Arguing as in the previous step,

(Qf,079),07h) 12 ((0)-2m)

S [ (100 198ty 19 Bl ey

1l paagero2omy Va2 0ty IVl oo zs,m)

S HfHH2L2 HVCL‘QHL?HS VI/2m HV h”L2Hs )V/2=25 )
+HfHsz( 7/2-23m) HngHﬂsz 0 [IVa hHLz o ((0)1/2-25m)
S lx gl 1ally =+ [1f [y lgllx Hth.

Moreover,

(Q(OFf:9): 00 h) 12 ((6)-2m)

S [ (192 Miz Ul 19 ey

172532 U900 1Vl e )

S IVafllazrz (wye) 191 L2 mswyrrzm) 1Vehll L2 v ()220 m)
Ve sz, (wyrrz-2em) ||9||H2L2 AL h||L2 ()22 m)
Sl gl HhHY + {11y llgllx Hth-
Step 3. Case |f] = 2. When fs = 3, we have

(Q(f,079),07h) 2. ((v)-12m)

S [ (17000 1928520 1920t 300

1l aayerasomy 19280 220ty 192l oo %m))

S ”f”H2L2( ”vxgHLZHS v)7/2-25 ) ”VgchHL%Hg(@)’Y/?*‘lsm)
1 222 (oyr2-15m) 1V29N 22, () IVERI L2 (oyrr2-0m)
Sflx gl IRl + £l lgllx (1Rl
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When 3 = 3, we have
(Q(agfa 9)7 8£h>L?c,v(<U>74sm)

S [ (192N 19l gra-semy 190 ey

192 gy tom) Dol pes 2l g w)
S92 A3y 1902 ooy IV 2Byt
v f||L2 orimsemy 922300 19212 prracsomy

S I lx llglly IIhIIY + 171y llgllx IIhlly.

Finally, when |31| = |52| = 1, we obtain
(QUOS f,0729), 07 h) 12 12 ((1)~45m)

S [ (1927113000 1982 V2l

190l ooy Vel 220y 192 oo 4%))

SIVaflmzea ) 1Vedll 2 msuyprrz—20m) V2PN L2 s oy1/2-45m)
F Ve sz, (yrz-1smy 1Vagllmzrz o NNE Mz, (wy/2-1sm)
S Il llglly ||h||Y +11f v llgllx ||h||y-
Step 4. Case || = 3. When (2 = 3 we obtain

(Q(f,079),07h) 2. ((v)-60m)

$ [ (17000 1928 g5t 1920t g

T R L. 1 O 170 P ssm)

S22 1V39M 12 s (oyrr2=1omy Vol 12 b (qoyr/2-60m)
+ 1 222 (0yr72-60m) 1V291 22, () IVRRI L2 ((0y72-00m)
S AFlx glls IRl + 1 F 1y gl x (1Rl
If |f1] =1 and |B2| = 2 then

(Q(OFf,0729), 07h) 12 12 (m(wy-0+)

< [ (192000 193l 1920 e

173 -omm 192000 120 o

S ”fo”mL?( ”vxgHLZHS v)7/2-4s ) ”VthLgHg(@)v/?*%m)
Ve lmzizwyrrz-oom V29022, () V2RI 2 (07265 m)
S lx Nglly Rl + 11y lgllx 1Rl
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When |81] = 2 and |52] = 1 then we get

(QOJ £,029), DI h) 12 12 (1) -5+

S /'JI‘3 <”V925f”L% ”VIQHHS y7/2—45 ) HV h”HS }1/2-65.m)

192 2 yrrz-somy [Vl 2 0oy 1930 gy GSm)>

S IV Fllzz, o) 1720 2 a2ty I3l 2 15 -y
+uv2fuLz opra-somy IVatl2 300 I V3 2z ooy
< 171 Tl Wil + 171 ol Dl

Finally, when ) = 3, it follows
(Q(971.9): O M) 12 13 miwy )

S [ (198 M0 Dolgps-sem 1920 s s -oam

F IV g om0y 1923 o)
S ”V3f”L2 HQHH“( y7/2=4s ) IV Il L2 13 (o) /255 m)
+ HV fHL2 v)V/2=6sm) Hg”H2L2 HV h”L2 o ((0)7/2=65)

< I llx llglly ||h||Y + £y llgllx IIhlly-

Proof of (ii). As in the proof of (i), we write

(Q(f9) 91 12(m) = (QUF9): 912 )+ D (an(f,9),859>L37u(m(v>72m|s),

1<|81<3

and

05Q(f,9) = > Cpp, Q00 f,009).
B1+p2=p

In the following steps, we will always consider ¢ € (4 — v+ 3/2,k — 6s]. Notice that since
v < 1and s <1/2, the condition k > 4 — v + 3/2 + 6s implies k > /2 + 3 + 8s so that
we can apply results from Lemma

Step 1. Using Lemma [23}H(ii) and ([2.I0), we have

<Q(fvg)7g>L%7u(m)
</, (Hfl!mvzHgH%w(erHfHLz ooy 160200 191272 )

S a2z )y 19072 m5 (my + 12, o2y N9lliz 2 pe) 9l 22 qopvrzm)
S I llx HgHy* + 171y llgllx llglly-
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Step 2. Case || = 1. Arguing as in the previous step,
(QUf,979),079) L2 (()—2+m) S /T3 <HfHLg HngHHs* )~25m)

F W 22 (wyrr2-25m) Va9l L2 0y ||V$g||Lg(<v>“f/225m)>

S ||f||H2L2( HvﬂchLZHS* ((v)—25m)
+ 1A 2z, (oyrrz—2smy I Vagllmzrawye) 1Vagllnz (wyrrz—20m)
S IFllx gl + 1Lf 1y llgllx Nglly-

Moreover, we also have using Lemma 23}(i),

<Q(ang7 9)7 859>L§,U((U>725m)
5 /]T3 <HVCIZfHL% ”gHHS 'y/2 HV;CQHHS 'y/2 25m)

IV 2 oyrre-2em 9l 22000 ||vxg||sz/wm>)
< Ve sz 190 sgcoprom [Vl sccapnrs-2om)
+||v$f||L2< BN 126123 (ayr-2em

S gl + 111y lallx Nlglly -
Step 3. Case || = 2. When (35 = 3, we have

(Q(f,079),029) 12 (@) -1om) S /T ) <Hf|rLg ) IV 2901355 (015 m)

+ ||f||L2( (v)7/2=4sm) vazchL%((v)f) ||V9259||L12)(<v>«//24sm)>
< I ey V20122 ey semy

+ ”f”Hng(@)v/%%m) ”V;ngLg ”V QHLZ )7/2=45 )

Sl gl
When 51 = 3, we have

QI £.9),029) 12 ((0)~+m)

S [ (192 M Wl 19280 s

e+ 1£1ly lgllx llglly-

+ V2 f Il 2 (qoyrr2-1my 191 2200yt ||V9259||L%(<v>7/245m)>

< ||V f||L6L2 ||9||L3Hs ((v)1/2=25m) vazchL?Hs ((v)7/24s )
IV Fllz, (wyrre-1emy 9l 2 22030y 1V 29N 22 (q0yv/2-25m)
S ||V2f||H1L2 0 191l 725 (oyv/2=25m) vagHL?HS (0)/2=43m)
+V: Fllzz , wyrre=1smy 9l B2z o 0 V3 9Lz, ((wyr/2—15m)

SIFlx gl + 1LF 1y llgllx llglly-
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Finally, when |31| = |52| = 1, we obtain

Q2 £,029),08 9) 12 12 (o)~ 15 m)

S, /’]1‘3 <||me||Lg ||Vmg||Hs y1/2=25 ) ||ng||Hs y7/2—45 )

Vo ll g2 uprz-smy 1Vogll L2 (wye) 1IV29 ) L2 (oyr/2- 4Sm>>
S IVe fHH2L2 Hvxg”L2HS v)¥/2=254p) HV:CQHHHS ((v)y¥/2=434p)
Vo llzz, (wyr/e-asmy IVadll 203wy V2911 L2 | (uyrr2-t5m)

S Il gl + IIfIIY lgllx llglly -

Step 4. Case |f| = 3. When 85 = 3 we obtain

(QU-020). 080013 0 oom S [ <||f||Lg 1301 (e

1 oo 19362 oy ||vig||Lg(<vwmm>)

S ||f||H2L2( HV gHLZHS*(( y=65m)
+ ”f”H2L2( 0)1/2=65y) HVZ‘QHLZ ”V QHLZ v)¥/2=654n)
S lx lglly

v+ + ISl llgllx llglly-

If |f1] =1 and |B2| = 2 then

Q2 £,029),08 9) 12 12 ()52

S [ (19200 193y 19280 -0

+ ”foHL2 y1/2=65m) ”V gHL2( ”vxgHLz yv/2- 65m)>

< HV:cfHH%Z HV 9HL2HS ((v)7/2=4sm) vag”mHs ((v)7/2=6sm)
+ HfoHHng oy2-somy V29l 22, (o) 1V29N L2 (oyr/2-60m)
SIFlx gl + 1Lf 1y llgllx llglly-

21
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When |81] = 2 and |52 = 1, we get
(QO5 f,0229),929) 12 12 (m(v)-6)

< [ (19200 18l 19280 -0

192 2 oyrrz-som 150 2 ”VMMZWN%m>

S HvszL6L2( ”VxQHLBHS v)7/2=4sm) ”vxgHLZHS ((v)7/2=6sm)
+IVaF iz, wyrz-oomy IVaglmzez o) 1 V2901 (yr/2-6m)
SIVEF a2 ey IVagllms gzt m) ”ng”LQHS (v)7/2=65m)

V2 Fllzz, (wyr/2-00m) IInglleLz( 0 IV29ll 22, (wyr/2-sam)
S Il Nlglls + ||f||Y lgllx llglly-
Finally, when 8, = (3, it follows
Q02 £,9).059) 12 12 (mv)-5+)

S /]1‘3 <||V?£f||Lg HgHHs )/2—4s ) ||ng||Hs )7/2=6347)

193 oprrs-som 1ol 23000 vah2vﬂ%m>
S IV sz sy gl Wz%nuvauF”m4m>
+vahﬂ(vmmmﬂﬂmm( o 1936023 ayr—sem

S IFlx gy + 1£1ly lgllx lglly-

We conclude noticing that ||g||3 < ||lg||?- from Lemma 211
Proof of (). The result is immediate from (73) and the fact that ||f||5 <

O

3. THE LINEARIZED EQUATION

We linearize the equation around the equilibrium . If we set f = u+ h, h satisfies the
equation

hji=o = ho = fo — p

We recall the notations
(3.1) Lh=Q(h,n)+ Q(u,h) and Ah=Lh—v- -V h.

The aim of the present section is to prove that the semigroup associated to A enjoys
exponential decay properties in various Sobolev spaces.



INHOMOGENEOUS BOLTZMANN EQUATION WITHOUT CUT-OFF 23

3.1. Functional spaces. We recall that m is a polynomial weight m(v) = (v)*. We in-
troduce the spaces H'H!(m) and HPH! (m), (n,£) € N? which are respectively associated
to the following norms:

(3.2) T ) 10302RI, y-2iey
la<¢, |B]<n, |a|+]8|<max(,n)
and
(3-3) 1Rl 348 (my = > 1030172 ey -2iets-2151c)-
laf <L, |8|<n, |a|+|B|<max(,n)
We want to establish exponential decay of the semigroup Sy (t) in various Lebesgue and
Sobolev spaces that we will denote &:
{Hg?—[ﬁ(m), (n,0) e N* n>1¢

(3.4) A\ HH (m), (n,0) eN? >0

with & > % + 3+ 2(max(1,n) + 1)s.

Notice that those definitions include the case ng(m) obtained taking n = ¢ = 0 in one
or the other type of space.

3.2. Main results on the linearized operator. The main result of this section is a
precise version of Theorem and reads

Theorem 3.1. Let us consider £ be one of the admissible spaces defined in [B4) and

introduce B = H;rff}x(l’n) (n=Y2) where n € N is the order of x-derivatives in the definition
of £.  Then, for any A < Xy, where we recall that \g > 0 is the spectral gap of A on E
(see (L23)), there is a constructive constant C' > 1 such that the operator A satisfies on
E:
(i) X(A) c {z € C|Rez < -A}U{0};
(i) the null-space N(A) is given by (LZI) and the projection Iy onto N(A) by (L22));
(iii) A is the generator of a strongly continuous semigroup S\ (t) on & that verifies

Vt>0,Vhe&, |[Sa(t)h—TIhle <CeM||h—Thle.

To prove this theorem, we exhibit a splitting of the linearized operator into two parts,
one which is regular and the second one which is dissipative. We shall also study the
regularization properties of the semigroup. The latter point is based on the paper [22] in
which a precise study of the short time regularization properties of the linearized operator
are studied. We can then use the abstract theorem of enlargement of the functional
space of the semigroup decay from Gualdani et al. [19] using the result of Mouhot and
Neumann [29] (Theorem [[3]) as a starting point.

3.3. Splitting of the linearized operator. We recall that x € D(R) is a truncation
function which satisfies 1|_; 1) < x < 1|_5,9) and we denote x,(-) := x(-/a) for a > 0. We
then introduce

Ah = Mxrh and Bh:=Ah—Ah=—v-V,h+ Lh— Ah

for some positive constants M and R to be chosen later. In the next subsection, we are
going to prove a coercivity-type inequality of the following form: for § small enough,

(Lh, ) L2 m) < —cosl|BI1F + c1sllhll72
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where || - ||« is a stronger norm than the L2(m)-norm and cg s, ¢ 5 are positive constants
depending on §. Then, choosing suitable constants M and R, we will be able to deduce
that our operator B is indeed dissipative in Lfc,v(m) and that it provides us a gain of
regularity coming from the term —cq s||h||%.

3.4. Dissipativity properties.
Lemma 3.2. Let k> /24 3+ 2s. For 0 >0 small enough, we have:

(Lh, h>L%(m) < —¢ 52_2s|’hH2'5»*(m —Co 5_2s|’huig(<v>w/2m) + C5Hh”2L%'

)

where ¢y is a universal positive constant and Cs is a positive constant depending on ¢.

Proof. In what follows, we denote H := hm. We start by spliting the scalar product
(Q(u,h), h) 12 () into two parts:

(Q(u, 1), h) 12 (1m) :/ B(v —vy,0) [ph b — pi ] hm? do dv, dv
v R3 xR3xS2
:/ B(v — vy, 0) [M;H,—M*H] H do dv,, dv
R3 xR3 xS2

+/ B(v —vs,0) u,, b hm (m —m') do dv, dv
R3 xR3 xS?2

= <Q(/L7H)7H>L% + R.
We recall that for § > 0, bs and b§ are given by
bs(cos ) = xs(0)b(cos @) and b§(cos ) = (1 — xs5(0)) b(cos 0)

and we denote Bs, B§ (resp. @5, Q) the associated kernels (resp. operators). We then
write that

(35) <Q(:u7h)7h>L%(m) - <Q5(N7H)7H>L% + <Q§(N7H)7H>L% +R

and we are going to estimate each part of this decomposition. First, concerning grazing
collisions, using the pre-post change of variables, we have:

Qs ).z = [ Bolo—ves0) e H '~ H)do o o
R3xR3xS2
1
:__/ Bs(v — vy, 0) pis (H/—H)2 do dv, dv
2 Jr3xR3xs?
1
—|——/ Bs(v — vy, 0) pig ((H')2—H2) do dvedv =: =11 + I>.
2 Jr3xs?
Using the cancellation lemma [I, Lemma 1], we have that
1
Iy = —/ (55*H2),udv
2 R3
with Ss defined in (28] which satisfies S5(z) < 0272%|2|7. We deduce that
(3-6) Iy S 52_2s||h”%g(<v>w/2m)-

We now treat I;. To do that, we first notice that for € € (0,1/2), we have

[V — 0] > (v — i) — Ly, r<e/(1-0)-
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Together with the fact that
(v —v.)7 2 (V" =) 2 () (),
we deduce that

L 26/ bs(cos 0) (v — v,)Y u(H' — H)* do dv, dv
R3xR3 xS2
— E/ bs(cos 0) Ljy_y, [v<e/(1—e) b (H' — H)? do dv, dv
R3 xR3xS2 N
/ (cos 0) puy (v, ) ™Y (H' (0')V/? — H(W'Y/?)? do dv, dv
3><R3><S2
/ b5 (cos 0) 1y oy, jv<e /(1) s (H' — H)? do dv, dv
3xR3xS2
o / (cos 0) sy (v,) Y (H' (v'Y/? — H{@)?)? do dv, dv
“ R3xR3xS2
- / bs (cos 0) s () ™7 H? (0)7/2 — (V22 do dv, dv
R3xR3 xS2

/ COSH)]I‘U vi|7<e/(1—¢) ,u*(H H) do dv, dv =: Ill —[12—[13
3XxR3xS?

First, we clearly have

[11 Z EHh”i{S’*(m)
For I15, we can use (2.7) to get

]12<552 28||h||Lz V¥/2m)

Concerning I3, we use that for € < 1/2, 1j,_y, jv<c/(1—¢) < Ljy—o,|<1 5O that
I3 Se/ bs(cos 0) 1jy_, <1 o (H' — H)? do dv, dv
R3 xR3 xS2 n

S E/ b(cos 0) Ly, |<1 pix(H' — H)? do dv, dv.
R3xR3xS2 n
From the proof of [I5, Theorem 1.2], we get
Ly S e 10l Es (my

We thus have obtained

1

5[1 > €||h||25,*(m) — C2 €||h||§{5(<v>“f/2m)’ c1, co > 0.
On the other hand, as already mentioned in the proof of Lemma 2.1l adapting the proof
of [21l, Theorem 3.1], we can get that

1
5112 e R sy = €02 B e s 3 e > 0.

Combining the two previous inequalities, we get that there exist positive constants c¢;,
i =1,...,4 such that

I > cre ||l + (c38772 = c2) 1Al (pyr2m)

(3.7)
! 62 2SHhHLZ yVv/2

m)’
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Gathering (3.6) and (3.7), up to changing the value of ¢4, we have obtained:
<Q5(/L, H)7 H>L%
< 1 ey — (€887 = o)l oy + €187 Wbl oy

We now deal with the cut-off part (Q§(u, H), H) 2. In this term, grazing collisions are
removed, we can thus separate gain and loss terms:

@t g < [ B = veo) . ||| H do du. do
X X

—/ B§(v — vy, 0) pis do dv, H? dv.
R3 xR3 xS2
The loss term is multiplicative and can be rewritten as

/ Bg(v—v*,a),u*dadv*szv:K(;/ (px|-|")H? dv
R3xR3xS? R3

with

/2 T\ —28
(3.9) Ks = / bs(cos @) do ~ / b(cosh) sinfdh ~ 625 — <—) — +00
S2 5 2 6—0

using the spherical coordinates to get the second equality and (I3 to get the final one.
Since we also have
(|- ")) = (v)7,

we can deduce that there exists 1y > 0 such that
2 -2 2
(3.10) _/1R3xR3x§2 B§(v — vy, 0) g do dv, H* dv < —py §~*° ||h\|L%(<v>v/2m).

Concerning the gain term, following ideas from [25], we are going to split it into two parts.
To do that, we denote w := v + v, and @ := w/|w|. We then have

/ B§(v — vy, 0) ps |H'| |H| do dvy dv
R3xR3xS2
= / 15.0(>1-63 B§(v — v, 0) p |H'| |H| do dv, dv
R3 xR3 xS2 N

—1—/ Lig.oj<1—63 B§(v — v, 0) p |H'| |H| do dvi dv =: J; + Ja.
R3 xR3xS? N
We first deal with Ji: using Young inequality, we have

Jp <612 /RS oo 1 g.0>1-63 B5(v — vs, 0) pe H? do dv, dv
X X

+ 4/2 /3 - Li.0>1-63 B§(v — v, 0) 1, H? do dv, dv =: J11 + J1s
R3xR3 xS

o~

where we have used the pre-post collisional change of variables noticing that w’ = w
obvious notations). Using that b$(cos ) < 872725 on the sphere and (ux* |- [7)(v) < (v)7,
we get

J11 S 5_5/2_28/ / 1‘@,0‘21_53 do H2 <U>’Y dv.
R3 JS2
Then, since for any z € S?, we have fS2 L.op>1-3do < 52, we obtain

(3.11) Jin < 51/2_25|’hH%g(<v>v/2m)'
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As far as Jqo is concerned, we roughly bound it from above as:
Jig < 612 / BS(v — vs, 0) pl. H? do dv,, dv.
R3 xR3xS2

We then perform the regular change of variable v, — v/, as shown in the proof of Lemma2.3]
and notice that [v — v,|7 < |[v — v.|7 to obtain:

(3.12)  Jpp S 62 / b$(cos 0) do /
s2 R3xR3
The analysis of Jo starts similarly as the one of J; using Young inequality:

plv — vV H? dvy dv < 51/2_28”}1H%g(<m/2m)'

Jy < 612 /RS . 1 g.0j<1-83 B5 (v — Vs, 0) piue H?do dv, dv
X X

+ o712 /3 e Lig.0)<1—63 B§(v — vs, 0) il H?do dv, dv =: Jo1 + Jao.
R3xR3 xS

The treatment of Jo; is simple and similar as the one of Jio, we get:
(3.13) o S 51/2_28”}1“%%((1))7/2771)'

For Jao, we are going to use the following computation: denoting u := v — v, the relative
velocity, we have
1 wilul
i = (wl* + Juf*) - = =@ -0
so that if |@ - 0| < 1 — 43, then

wllul _ 0°

1 53
ol = Z(lwf + ) = (1= %)== = o (jwl + ul?) = S (1ol + [o.]?).

From this, we deduce that
UL < eI /a8 oe2/4

Consequently,

(3.14) Jog < 670/272s /
R3xR3

Combining (310), BI1), (I12), BI3) and [B.I4]), we obtain
(3.15) <Q§(N=H)=H>L% <o <C551/2 - VO) ”hH%g(@wmm) + CéHh”%ga cs > 0.

v — w7 el P/ 2 =P/ gy S C(;HhH%%.

Coming back to ([3.3)), it remains to analyse the rest term:
R:/ B(v — vy, 0) pl, i hm (m — m') do dv, dv.
R3XR3xS?

First, let us remark that

m —ml < swp [Vm|(z) | | — ],
zeB

(v,[v" —vl)
with
[v) — ] < v — vy sin(0/2).
Then, we use the fact that

e [Vm| (2) S ()1 + W) S @) )R,
z€B(v,|v'—v
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which implies that
Im' —m| < sin(0/2) [v — v (v')k_l (v')k_l.

*

Consequently, we have:

R < / b(cos ) sin(/2) p’. (V)1 w — v VTR | (W)L R m do dv, dv
R3 xR3xS?
< / b(cos 0) sin(0/2) i’ (W) o — 0,772 (W)2 (Y2 do du, dv
R3 xR3xS?

+ / b(cos 0) sin(0/2) i’ (WY1 o — v, h2 m? do dv, dv.
R3 xR3 xS2

For the first part, we use the pre-post collisional change of variables and for the second
one, we use the regular change of variable v, — v/ explained in the proof of Lemma
It gives us

(3.16) R < c6||h||§%(<vwm), cg > 0.
Gathering (B.8), (B15) and ([B.18) yields
(@ 1), ) gy < —(e07% = 2Bl sy — 1y
n <66 452 <c4 02 + c501/% — VO)) 1R 11% 2 (oyv/2m) + CollPl72-
We also have from Lemma 23}(i) applied with ¢; = 2s, ¢o = 0, Ny = v+ 2s and Ny = 0:
<Q(hvu)7 h>L%(m) < c7”hH%g((v)'¥/2m)7 cr > 0.

The two previous inequalities imply

(Lhyh) p2my < —(c36°7% — o)Al gz — 1 5||h||§'157*(m)

b (o or 072 (0% 4 03 0Y2 = 00) ) 23 oy + Collhl2:.

Taking 0 small enough and then e small enough of the order of §2~2%, we obtain the wanted
estimate:

(Lhy h) 12 (m)
< =0 85 Ml y = €08 Al goprs2my = 08 Nz grs2my + Colllzy
for some ¢y > 0. O
We can now prove the dissipativity properties of B = —v -V, + L — Mxg in Lfc,v(m).

Lemma 3.3. Let us consider k > /2434 2s and a < 0. There exist M and R > 0 such
that B — a is dissipative in L2 ,(m), namely

Vt>0, [Sst)hlLz,m < e llhllLz,m)-

We even have the following estimate (which is better that simple dissipativity as stated
above), for any h € L2, (m):

1d
VE2 0, SZISsWRE:, () <~ ISEOR: ey + @ISO, (0yrram

for some constant ¢; > 0.
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Proof. Consider a < 0 and > 0 small enough so that the conclusion of Lemma holds
and such that ¢p6~2° > —a. We are going to estimate the integral ngxRS (Bh) hm? dv dz.
We first notice that the term coming from the transport operator gives no contribution:

1
/ (U-Vxh)hmzdvda;:—/ (v - Vzh?)m? dvdz = 0.
T3 xR3 T3 xR3

Then, using Lemma and integrating in x, we obtain

/ (Lh) hm? dv dx
T3 xR3
< =0 0" hL e gy — 0 8 IR, oy + CollBlIZz -

In summary, we have obtained

/RSXRS(Bh) hm? dvdx < —cg 52‘2s||h\|%%H5,*(m)
+ / h? m?(v)? (—co 672 4+ Cs(v) ™Y — Mxr(v)) dvdz.
T3 xR3

Since —cq 872 + Cs{v) ™7 goes to —cod~ 2 < a as |v| goes to infinity, we can choose M
and R large enough so that for any v € R3, —cy62* + Cs(v)™ — Mxgr < a, which
concludes the proof. O

The goal of the next lemma is to generalize previous dissipativity results to higher order
derivatives spaces of type HIHE (m) and HPHE(m) defined through their norms in (F.2)
and ([B3]). Notice that, in order to get our dissipativity result, it is necessary to have less
weight on v-derivatives (which is induced by the weight (v)~2/%l* in the definitions of the
norms of H?H! (m) and H2H! (m)). However, the introduction of the weight (v)~2/#ls in
order to have less weight on the 2-derivatives in the space H?H! (m) is not needed at this
point but dissipativity results still hold true doing that and we will make use of it in the
nonlinear study in Section Ml

Lemma 3.4. Let us consider (n,{) € N? with n > €. In what follows, & = HIH! (m) with
k>~/2+43+2(n+1)s or &= HIH(m) with k > v/2 + 3+ 2(n + 1)s. Then for any
a < 0, there exist M, R > 0 such that B — a is hypodissipative in £ in the sense that

vt>0, [Sst)hlle < e”[nle.

Proof. The case n = £ = 0 is nothing but Lemma [3.3] Let us notice that the operator V,
commutes with the operator B, the treatment of z-derivatives is thus simple and one can
always reduce to the case n = £. Moreover, we only handle the case £ = H;‘”Hﬁ(m),
the other case being similar. We now deal with the case n = ¢ = 1, the higher-order
derivatives being treatable in the same way. To do that, we introduce the following norm
on HIHL(m):

10153y = 1012 oy + IR0y + C IV ey

where ¢ > 0 is a positive constant to be chosen later and mg(v) := (v)"2 m(v) = (v)ko
with kg := —2s + k. This norm is equivalent to the classical norm on HH.(m) defined
through (32).

In the subsequent proof, 7 is a positive constant that will be fixed later on. Let us introduce
hy == Sp(t)h with h € H1HL(m).
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Coming back to the proof of Lemma [B.3] we have that

1d 2 2—2 2
vt > 0, §£Hht||L%w(m) < —605 S HhtHLgH{j’*(m)

(3.17)
+ / (—co 67 4+ Cs5(v)™7 — Mxp(v)) hi m*(v)? dv dx.
T3 xR3

Moreover, since the z-derivatives commute with B,

1d o
5 I VehellZz om) < —c0 0 Vel 7 s oy

+ / (—co 672 4+ C5(v)™ — Mxp(v)) |Vohi|? m*(v)? dv dz.
T3 xR3

Vit >0,
(3.18)

Therefore, it remains to consider the v-derivatives. In what follows 9, and 0, stand for
Oz, ,0z, OF Oy, and Oy, ,0y, Or Oy, , respectively.
We have

9 (Opht) = B(Ovht) — Oxhe — M (9yXR) ht + Q(he, Oupt) + Q(Oupt, b)),
thus, we can split %% |0y It H2L2 (mo) into five terms, according to the previous computation,

1d
2dt
For the first term we can use again Lemma [3.3] obtaining

vt Z 0, Il S —Cp 52_28 ||8Uht

Havht”%%m(mo) =17+ -+ I5.

2

122 12 o)

(3.19) L . ) 0

+ (=067 + Cs5(v)™ — MxR(v)) [Ophe|* mg (v)7 dv d.
T3 xR3

For the second term, we have
1 1
(320)  I—— /TBXRg(amht) (0uh) i dvda < S10uhul22 gy + 51001122 o

The term I3 is simply handled as follows:
M

I3 < — 1 r<jo|<2r he (Buhe) m§ da dv
T3 xR3

M M
S.; —/ ]]‘RS‘U‘§2R ht2 m(z) drdv+ — ]]‘RS‘U‘§2R (8Uht)2 mg dx dv.
R Jrsxgrs R Jsxgs

Let us now consider I;. Using Lemma [2:3}(i), we have

(3.21)

Iy = /3<Q(ht,3vﬂ)aavht>Lg(mo) dr S ”ht”L%,u(@W/?mo)”({)Uht”L%m(@)v/?mO)
(3.22) T

1 2 2
S EHhtHL%’U((U)wmmO) + 77”8vhtHL%’v((v)'v/2mO)’
Concerning T, still using Lemma 23}H(i), we have:

Is = | (Q(Bopts he), Ovhie) 12 (mo) A S N hell L2 b (oyrr2425 mo) [OvTet || L2 b5 ((w)r/2m0)

—

(3.23) ’
S el 2 sy oy r2my + MOl L 1y g2

|-
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Before concluding, let us remark that from Lemma 2.1],

2 2—2 2
HhHL%Hf}v*(m) 2 o sHhHL%Hf}(@)wﬂm)'

Combining this fact with estimates (B:EZD BI8) and BI9) to (B23]), we get:

1d
2dtmht”’H1'H1 m) 2dtHhtHL2 2dt 1}(771, 2dt”v ht”L2 »(mo)

2—2s
< - 2 ) (”ht”LQHSv*(m) + ”VxhtHLiHi’*(m) T C”vvhtHLiHs'*(mO))
o 4—48 CC
+ <_55 " > HhtHL?Hé ((v)7/2m)
€0 c4—4s 2
+¢ (—55 —1-077) vahtHLgHg(@W”mo)

+ / < — g6 % + COs(v)™7
T3 xR3

CCM e us
+CT]1RS\U\§2R<U> i —MXR(U)>h?m2<v>7dvd;p

HV hllZs

+ / < — o072 4+ Cs(v) ™7 4 CClo)y ™18 — MXR(U)> |V ohe|? m?(0)? dv dz
T3 xR3

+C <—CO5_28+C’5(U>_7+C'<U>_V
T3 xR3

CM _
+ G nchicante)™ = Mxn(o) ) [V (o) do do

for a constant C' > 0. Consider now a < 0 and ¢ small enough such that cy6=2% > —a.
We can then choose, in this order,  and ¢ small enough and then M and R large enough
such that

1d
2dt|||ht|||H1H1 < a||ht||i2 L(@)/2m "“IHV htHLz )/2m ‘|’<a‘|avht||ig’v(<v>v/2mo)

- <||ht||L2Hs “amy) T IIthtHL%Hg,*(m) + vahtH%gHsv*(mo)>

for some ¢; > 0, which concludes the proof. O

3.5. Regularization properties of ASg. In this part, we focus on the regularization
properties of the semigroup Sg which are crucial in order to get a result on the linearized
equation. To do that, we first introduce some notations and tools.

We define the convolution of two semigroups &7 * So by
(51*82 /81 Sgt—T)d

and, for p € N*, we define S#?) by St9) = § « SHP~1) with S*) = S. For ¢ € RT and
v a polynomial weight, we also introduce intermediate spaces

X,(v) = [EE P @), Bl )]
s—1s],2

The notation used below is the classical one of real interpolation (see [10]). For sake of
completeness, we briefly recall the meaning of this notation. For C' and D two Banach
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spaces which are both embedded in the same topological separating vector space, for any
z € A+ B, we define the K-function by

K(t,2) = inf (lclc+tldlp), ¥t>0.
We then give the definition of the space [C, D]y, for § € (0,1) and p € [1, +o0]:
[C, D]y, = {z €C+D, tes K(t,2)/t? € LP (dt/tl/”>} .

Notice that by standard results of interpolation, if B — a is hypodissipative in both spaces
HQFJHILfJ(V) and H;EgJHHILfJH(l/), it is also in X (v). Notice also that we have the fol-
lowing continuous embeddings:

(3.24) X ()29 o 1Y (v) < Xo(v).
Let us now state a lemma on the regularization properties of the semigroup Sp(t).

Lemma 3.5. Let r e N, k' > (1 —~v)/2 and k > K +~v+5/2 4+ 2([(r — 1)s] +2)s. We
consider a < 0 and the operator B is defined such that the conclusion of Lemma is
satisfied in HQL(T_DSJHHE(T_”SJH(<U>k). Then, we have:

at

(&
1580l x, .oy S Trgiars 1M x_ye(@s), V20

Proof. Step 1. In the first step, we focus on the short time regularization properties
of Sg(t): we are going to prove that
1
1580l x, . ) S f7ars 1Pl (@), VE € (0,1]:
This estimate yields the conclusion of the lemma for short times ¢ € (0,1]. To do that, we
start by stating a few estimates coming from [22]. We first split A as in Subsection 5.1
from [22]: to do that, we introduce Bs and B§ defined through

Bs(v — vy, 0) == xs(|v) —v]) b(cos 0) |v — v, |7

and

B§(v — vy, 0) == (1 — x5(|v) = v|)) b(cos 0) |v — v,|7.
Then, we split A as

= (ot [ Bl o)t~ mdo )
R3xS2

+ | K{v)72 + / Bs(v — vy, 0) (1t — ps)h do dv,
R3xS?

+ / B§(v = v.,0) (ulh' — ph) do dv. + Q(h, u))
R3 xS2

=: 1~X1h + 1~X2h.
We have from [22] Theorem 5.1 that for ¢ > 0,
1
(325) ”SK1 (t)h”H;fv((wq) 5 tl/T"l‘s”hHHa(cszl)s«Wq)’ Vit e (07 1]

and for any ¢ € R
(3.26) HKQhHH;UW,) Sl as, oy, a>d +v+5/2.
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We now show how to propagate the regularization properties of 57\1 (t) to Sp(t), using the
Duhamel formula. We write:
B = Kl + (Kg —A)
so that we have: N
Su(t) = S5, (t) + (S5, * (s — A)Ss) (1)
For the first term, using ([3.24) and ([B.25]), we have:

1
”57\1 (t)h”xm(<v>k’) S ”57\ (t )hHH” V') S S tl/TJFSHhHHg;Ds((UW)

1 1
S g7 Ihlx oy raae-nann S s lx . or)-

For the second one, we introduce k” such that
E>E'+2([(r—1)s] +1)s > k' +v+5/24+2([(r—1)s] +1)s
and we use (3.24)), 3.25) and (B.26]):

H <5x1 s (Ao — A)SB> (

t 1
< S

t
1
s /0 =z 19O s oyery 47 S Wl . po)-

Step 2. In this step, we use Lemma [3.4] and interpolation combined with the previous
estimates for short times to prove the final estimate which holds for all times. If t > 1, we
have

RGP
= 1S8(1)S5(t — Dhllx,, oy S 158 = Dhllx, ) k) S €“llhllx, . wms
which concludes the proof. O

/HS~ (t — 7)(Rs — A)Sa(r hH dr

Xrs((v )

(Ay — A)Ss(T dr

(7‘ l)s < >k’)

To apply Theorem 2.13 from [19], we study the regularization properties of (ASg)*?) for
p € Nin the following corollary. We recall that the “large” space £ is given by (B8.4]) and the

associated “small” one by F = Hy max(l ")( ~1/2) Let a < —\g where \g > 0 is the spectral
gap of A on FE (see (L.23])). We then consider B such that the conclusion of Lemma [B4] is
satisfied in Fex(bm)qmax(in) (m) (resp. Hglax(l’")’}-l?ax(l’")(m)) if & = HH.(m) (resp.
E = H'H.(m)). Let us mention that it in particular implies that the conclusion of
Lemma BAlis also satisfied in € and the one of Lemma B3 is also true in L2, (m).

Corollary 3.6. There exists p € N such that
I(ASE) P (D)hl|z < e |[Blle, V>0,

Proof. Let us treat the case & = L2 ,(m) and E = H%’U(/Fl/z) which is indicative of all the
difficulties since we need to regularize both in space and velocity variables. We consider
ro € N* the smallest positive integer such that [r9s| = 1. Using then the fact that A is a
truncation operator, Lemma B.4] and Lemma B35l we get that for any 1 < r < rg,

1(ASB)(t)

eat

‘@(X(r'fl)s(m)vxf's(m)) 5 tl/2+8 A 1'




34 FREDERIC HERAU, DANIELA TONON, AND ISABELLE TRISTANI

To conclude, we use Lemmas B.3] B4l combined with the last estimate. Indeed, all those
results allow us to use the criterion given in [I9] Lemma 2.17] and gives us the conclusion.
O

3.6. Proof of Theorem 3.1l Thanks to the estimates proven in the previous subsections,
we now turn to the proof of Theorem B.Il Let £ be one of the admissible space ([3.4]) and

E = Hgﬁx(l’n) (,u_l/z) so that in all the cases, we have F C £ and we already have the decay
of the semigroup Si(t) in E from Theorem [[3] We then apply Theorem 2.13 from [19]
whose assumptions are fulfilled thanks to Lemmas [3.3] B:4] and Corollary O

4. THE NONLINEAR EQUATION

This section is devoted to the proof of Theorem [Tt we develop a Cauchy theory in a
perturbative framework. Our proof is based on the study of the linearized equation that
we made in previous sections. The idea is to prove that, using suitable norms, there exists
a neighborhood of the equilibrium in which the linear part of the equation is dominant
and thus dictates the dynamic. Consequently, taking an initial datum close enough to the
equilibrium, one can construct solutions to the equation and prove exponential stability.

4.1. Functional spaces. In what follows, we use notations of Subsection More
precisely, we define the spaces X, Y, Y*, Y and Y’ as in (Z8)) and (23] with a weight

21
m(v) = )k, k> 5 + v+ 22s.

Similarly, for i = 0,...,3, we define the spaces X;, V;, ¥; and Y/ as in ([28) and (Z.9)
associated to the weights m;(v) = (v)*. The exponents kg and k; satisfy the following
conditions:

ko ==k —2s and 8+143<k1<k0—’y—g—63.

Concerning ko and ks, we set:

ko := ki —2s and 4—’7—|—§—|—68<k‘3<k‘2—’7—g—68.

Remark 4.1. Notice first that

k>k0>k1>k2>k3.

Let us also comment briefly the conditions imposed on the weights and explain the intro-
duction of so many spaces.

o First, in the proof of Proposition [{.5, we need to be able to apply the result from
Proposition [{.2 in X1, this explains the introduction of the spaces Xo and Xs.
e The last condition

3
ks >4 —~v+ 5 + 6s
comes from the fact that we want to apply Theorem [31] and Lemma in X3.
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e In our argument explained in the two next subsections, there are two levels in which
we have a loss of weight. The first one comes from the reqularization estimate ([4.2)
(mo to my and ma to mg), which explains the conditions: ky < kg —~y —5/2 — 6s
and k3 < ko —~y—5/2—6s. The second one comes from the nonlinear estimates in
Lemma[27) (m to mg and my to my), which explains the conditions: ko =k — 2s
and kg := k1—2s (a key element is that we have || fly, < Iflly and [ flly, S 1fllvi)-

e The two first conditions

k1 > 8+ 14s

and
21
k‘>’7—|—7+228

are then naturally induced.

4.2. Dissipative norm for the whole linearized operator. Before going into the
proof of an a priori estimate which is going to be the cornerstone of our Cauchy theory, we
introduce a norm which is (better than) dissipative for the whole linearized operator A.

Proposition 4.2. Define for any n > 0 and any \y < X (where X\ > 0 is the optimal rate
in Theorem [31]) the equivalent norm on X for Ilyph = 0,

(4.1) WAl = nllkl% + /0 IS (r)N TR, dr.

Then there is 1 > 0 small enough such that the solution Sx(t)h to the linearized equation
satisfies, for any t > 0 and some constant K > 0,

5 dt|||SA( 1% < =MillSa@nll% — KlISA@)B]F+,  Vh € X, Toh = 0.

Proof. First we remark that the norm ||| - ||z 2 () is equivalent to the norm || - [|33 £2(m)
defined in (LI7) for any n > 0 and any A\; < A. Indeed, using Theorem B.I] we have

A3 £2my < WANZs 22 (my = P03 2 () +/0 ISA(T)EM T hll3 3 12 ¢y ) AT

< nllbl3s Lz m) + /0 C2e 2O R 34s 1 gy A7 < ClIR3g3 12y

We now compute, denoting hy = Sa(t)h,

1d 1[0
h o = AR hD a2 + = | = ISAT)EN he|2s 12 gy AT =2 T + Do
s arlltulligrzon = nbh hergizn +5 | FrlISATE hellig

For I1 we write A = A+ B. Using the fact that A is a truncation operator, we first obtain
that

(Ahg, hi)gs r2my < Cllhal?

HBL2(my)
Moreover, repeating the estimates for the hypod1881pat1V1ty of B in Lemmas B3] and B4
we easily get that for some K > 0,
2
therefore it follows

Iy < =MllhellFea 2 my = T el o oy + MC el 12 s -

(m)
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The second term is computed exactly
1 o0

8 AT
L=5 | glSatr+ter Pll34g 13 o A7

1 >0 AMT|12 > AT 2
= 5/0 o ISa(r ) hHHng(ml)dT—Al/o ISA )N hul3s5 12 ¢y A

T=-400

1 T
= 5 |:”SA(T)6)‘1 ht”%—t%L%(mﬂ]

—Al/ ISA (T + )M he 13 12 ) A
=0 0 rv

1 o0 T
= 5Bz =M | IS\l s,y dr

where we have used the semigroup decay from Theorem B.11
Gathering previous estimates and using that A > A;, we obtain

L+ <-—)\ {UHhtHg{ng(m) ‘1‘/ ||5A(T)€/\17ht||3{§Lg(m1) dT}
0

1
- 77K||ht\|ilg,i,*(m) +0CPell35 L2 () — §||ht||§{ng(m1)-
We complete the proof choosing 1 > 0 small enough. (]

4.3. Regularization properties of Sj. In this subsection, we state a result on the
regularization properties of Sy which is a key point for having a priori estimates on the
nonlinear problem in the next subsection.

Lemma 4.3. We have the following estimate:
1
(4.2) ISa@®)hllx, S szllkllyg, vt € (0,1].

Proof. Let us start this proof noticing an embedding property:
(4.3) Vg < g6 €RT, O H((0)®) — Hy((v)™).
This property is clear in the case ¢ € N. It is less evident in the case ¢ € RT \ N. This
case can be shown using real interpolation (see Subsection for the notations). Indeed,
since the weighted space Hy((v)%) is defined through
h € Hy((v)") < h(v)" € Hy,

we can use that (see Subsection B.5]):

HS = [HLcJ,HMH]

v v v o—[s),2

to prove that

H((0)) = [HE (o)), BEF (o)) i=12

o—|s),2’
From this, since H!((v)%2) — H.((v)®) for £ € N, we deduce the desired embedding result:
H ((0)®) — Hy((0)™).

The result that we want to prove is a twisted version of Theorem 1.2 from [22], the only
difference being in the weights. First, we notice that

[Sa@®)hllxy S ISAE) Rl 3.0 e
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The result from [22] gives us that for ¥’ > k1 + v+ 5/2, we have:

where (Has((0)¥)) is the dual space of H;Z’f,((wk/) with respect to Ha'g((v)¥'). It remains
to show that if kg = k' 4+ 6s > k1 + v+ 5/2 + 6s, we have

[ (HZ5 ((0)k") ”hH(H?’S ko)) -
Indeed,
Wl hrzs oy = sup Z(Wh Y0me, V(o) - h0mE) L
S50 V0¥l .5 <1 5=0 ’
= - swp Y (Vih()r 3, Vi (v)kee)
S0 VAW ()2 k0 =2 )| o, <15=0
< sup > (VEh()*m (o))

T,v

T3 o IV @2 0.

_ sup (B )30 (k0
[l 3’S(<v>k0)§1 ’

< Nl e yrony

where we used ([£3) to obtain the third bound and this concludes the proof of (£2). O

4.4. Proof of Theorem [I.Il We consider the Cauchy problem for the perturbation h
defined through h = f — pu. The equation satisfied by h = h(t, x,v) is
Oth = Ah + Q(h, h)
{ht:O =ho = fo—p
From the conservation laws (see (L), for all ¢ > 0, Iphy = 0 since IIphy = 0, more

precisely ngng hi(x,v) dvdx = ngng vihy(x,v) dvde = ngng |v]2h¢(2,v) dv dx = 0 for
j =1,2,3. Note that we also have IIyQ(h¢, hy) = 0.

(4.4)

4.4.1. A priori estimates.

Proposition 4.4. Any solution h = hy to [&4) satisfies, at least formally, the following
differential inequality: for any A\ < A (where A > 0 is one rate given by Theorem [31]),
there holds

1d
5 7 IPl% < =Mllblli% = (K = Cliallx) R[5

for some constants K,C > 0 and where we recall that the norm ||| - ||| is defined in Propo-

sition [{.3
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Proof. We compute the evolution of ||h]|| where h = h; is solution of (4.4]):
Ld e - M T
gggmhmxr=:W<h,Ah>Hngon)+-jg (Sa(T)e™ Th, Sa(T)e™ T Ah)y3 12 (1my) AT

+ (R, Q(hy h))az 12(m) + /OOO<5A(T)€A”h7SA(T)emQ(hj )23 12 (my) AT
=L+ 1+ I3+ 1.
For the linear part I + Is, we already have from Proposition that, for any A\ < A,

L+ I < =M |R]1% — K |[A]f5-.

We now deal with the nonlinear part, using first Lemma 2.7k
Iy S(Q(h, h), hyx S Al (1213 S IRl (1R]13--

For the last term I, we use the fact that Ilyf; = 0 and IoQ(f:, fr) = 0 for all ¢ > 0,
together with the estimate ([A2]) from Lemma More precisely, if TIph = 0, using
Theorem Blin Xy, we have:

V20, [ISa(®hllx, S e Al

Combined with the estimate (£.2)) from Lemma [.3] we deduce that for IIph = 0,

e—)\t

V>0, [ISa(Hh]x, <
ISa@hlx, £ {5

[12]lyy-
It implies

/0 T USA ()N TR, Sa(F)eMTQ(h, b)) x, dr

é/ ISA(T)eM TR x, ISA(T)eMTQ(R, )| x, dr
0

—(A=X1)T
Te( 1)

AV dr

< bl Q(h, h)||yo,/0 o -A)
< lx, QU By,

To conclude, we use Lemma 2.4

It S Il Rl IRl < Rl RIS < IRl 1A

We prove now an a priori estimate on the difference of two solutions to (Z4]).

Proposition 4.5. Consider two solutions g and h to (&4l associated to initial data go
and hg, respectively. Then, at least formally, the difference g — h satisfies the following
differential inequality

1d
s zllo = hli%, < ~Kllg = h|

v+ Clllglx, +lIRllx,) llg = Al

+C (IRl + llglly) g = hllx, llg = Allva,
for some constants K,C > 0 and where ||| - || x, is defined as ||| - || x in @I):

2*
Yl

I711%, = nllkl%, +/0 ISa(r)eM TRl dr.
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Proof. We write the equation safisfied by g — h:

(g —h)=Ag—"n)+Q(h,g—h)+Q(g—h,g),
(9 — h)|t:0 = go — ho-
We compute

1d

ZMar — helll?
5 aelloe = ell,

— (g — 1), Ao — W)y, + /0 T (Sa (MM (g — ), SA (1M Ag — B, dr
(g — 1), Qg — h))x, + /0 T (SA (M (g — ). SA (M) Qhng — h))x, dr

+0(lg—h), Qg — h,9))x, + /0 (SA(T)EMT (g — h), Sa(1)eMTQ(g — h, ) x, dT
=T +To+ T3+ Ty + 15+ Tp.

Since the proof follows closely the one of Proposition [4], we do not give too much details
here (notice that the spaces indexed by 2 are implicitly used in the following estimates as
the spaces indexed by 0 were used in Proposition [4.4]). We have:

T+ Ty < —Kllg — b3y,

and also
T3+ Ty S |llx, g = Bl + hllva lg = Pllx, llg = Bllys -
Moreover, for the last part T5 + Tg, using Lemma 2.4} (i), we get

Ts+T6 < g = hllx, gl g = Rlvi + llgllx lg = Al
S llg = hlix, lglly g = hllvi + llgllx [lg — I3,
which completes the proof. O

4.4.2. End of the proof. The end of the proof of Theorem [T Tlis classical and we do not enter
into details here. It follows a standard argument by introducing an iterative scheme whose
convergence and stability is shown thanks to Propositions [£.4] and The framework
being exactly the same, we refer to Subsections 3.4.2. and 3.4.3 from [I2] in which a more
precise proof is given.
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