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CAUCHY THEORY AND EXPONENTIAL STABILITY FOR
INHOMOGENEOUS BOLTZMANN EQUATION FOR HARD
POTENTIALS WITHOUT CUT-OFF

FREDERIC HERAU, DANIELA TONON, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we investigate both the problems of Cauchy theory and ex-
ponential stability for the inhomogeneous Boltzmann equation without angular cut-off.
We only deal with the physical case of hard potentials type interactions (with a moder-
ate angular singularity). We prove a result of existence and uniqueness of solutions in
a close-to-equilibrium regime for this equation in weighted Sobolev spaces with a poly-
nomial weight, contrary to previous works on the subject, all developed with a weight
prescribed by the equilibrium. It is the first result in this more physically relevant frame-
work for this equation. Moreover, we prove an exponential stability for such a solution,
with a rate as close as we want to the optimal rate given by the semigroup decay of the
linearized equation.

Mathematics Subject Classification (2010): 76P05 Rarefied gas flows, Boltzmann
equation; 47H20 Semigroups of nonlinear operators; 35B40 Asymptotic behavior of solu-

tions.

Keywords: Boltzmann equation without cut-off; hard potentials; Cauchy theory; spec-
tral gap; dissipativity; exponential rate of convergence; long-time asymptotic.
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1. INTRODUCTION

1.1. The model. In the present paper, we investigate the Cauchy theory and the asymp-
totic behavior of solutions to the spatially inhomogeneous Boltzmann equation without
angular cut-off, that is, for long-range interactions. Previous works have shown that there
exist solutions in a close-to-equilibrium regime but in spaces of type H q(e|”|2/ 2) which are
very restrictive. Here, we are interested in improving this result in the following sense:
we enlarge the space in which we develop a Cauchy theory in several ways, we do not
require any assumption on the derivatives in velocity and more importantly, our weight
is polynomial. We thus only require a condition of finite moments on our data, which is
more physically relevant. Moreover, we jointly obtain a convergence to equilibrium for the
solutions that we construct with an exponential and explicit rate.

We consider particles described by their space inhomogeneous distribution density f =
f(t,z,v) with ¢ € RT the time, 2 € T? the position and v € R? the velocity. We hence
study the so-called spatially inhomogeneous Boltzmann equation:

(1.1) Wf+v-Vauf =Qf, f).

The Boltzmann collision operator is defined as
Qo0 = [ Blo=veo) [df ~ guf] dodo.
R3xS2

Here and below, we are using the shorthand notations f = f(v), g« = g(vs), [/ = f(V)
and g, = g(v.). In this expression, v, v, and v’, v}, are the velocities of a pair of particles
after and before collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical law of elastic collisions):

v+ v, =0 + vi,
R O e e S CA
so that the pre-collisional velocities are given by:
P S PR T ;o vt vl v — vy

_ _ 2
5 5 0 U= 5 o €S

The Boltzmann collision kernel B(v — v, o) only depends on the relative velocity |v — v,]
and on the deviation angle 6 through cos = (k,c) where Kk = (v — v,)/|v — vi| and (-, )
is the usual scalar product in R3. By a symmetry argument, one can always reduce to the
case where B(v — vy, 0) is supported on (k,0) > 0ie. 0 <6 < /2. So, without loss of
generality, we make this assumption.

In this paper, we shall be concerned with the case when the kernel B satisfies the
following conditions:

e it takes product form in its arguments as

(1.2) B(v — vy,0) = ®(Jv — vi]) b(cos 0);
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e the angular function b is locally smooth, and has a nonintegrable singularity for
6 — 0: it satisfies for some ¢, > 0 and s € (0,1/2) (moderate angular singularity)

o _ 1
ST < sinfb(cosf) < et

(1.3) Vo e (0,7/2],

e the kinetic factor ® satisfies
(1.4) D(lv —wvi]) = |v—w|" with ~€(0,1),

this assumption could be relaxed to assuming only that ® satisfies ®(-) = Cs |- |7
for some C¢ > 0.

Our main physical motivation comes from particles interacting according to a repulsive
potential of the form

(1.5) o(r) =r~P"D  pe(2,+00).

The assumptions made on B throughout the paper include the case of potentials of the
form (LB]) with p > 5. Indeed, for repulsive potentials of the form (1)), the collision kernel
cannot be computed explicitly but Maxwell [24] has shown that the collision kernel can be
computed in terms of the interaction potential ¢. More precisely, it satisfies the previous
conditions ([2), (L3) and (4] in dimension 3 (see [14, [15] 33]) with s := p%l € (0,1)
and vy := z%? (—3,1).

One traditionally calls hard potentials the case p > 5 (for which 0 < v < 1), Mazwell
molecules the case p = 5 (for which v = 0) and soft potentials the case 2 < p < 5 (for
which —3 < v < 0). We can hence deduce that our assumptions made on B include the
case of hard potentials.

Let us give a weak formulation of the collision operator (). For any suitable test function
© = ¢(v), we have:

(1.6
[ QU@ ewd=1 [ Bo—u.o) i~ ) o+ o=~ o) do du do
R3 R3xR3xS2

From this formula, we can deduce some features of equation (LII): it preserves mass,
momentum and energy. Indeed, at least formally, we have:

L QU Nwp)d =0 for o) = 10, Juf

from which we deduce that a solution f; to equation (I.1]) is conservative, meaning that
(1.7)

Vit >0, / flt,z,v)p(v)dvde = / fo(z,v) p(v)dvdz for ¢(v)=1,v,|v|*
T3 xR3 T3 xR3
We introduce the entropy H(f) = fT3xR3 f log(f)dvdx and the entropy production
D(f) defined through:

d
D(f) i= =L H()
(18) _ 1/ B(v —vs,0) (f'f — ff.)log P o v, dv da.
4 T3 xR3 xR3xS2 7 * ff*

Boltzmann’s H theorem asserts that

(19) SH() = =D() <0
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and states that any equilibrium (i.e. any distribution which maximizes the entropy) is a
Maxwellian distribution. Moreover, it is known that global equilibria of (II]) are global
Maxwellian distributions that are independent of time ¢ and position x. In this paper, we
shall only consider the case of an initial datum satisfying

(1.10) / fodvdx =1, / fovdvdr =0, / fo |v|?dvdz =3,
T3 xR3 T3 xR3 T3 xR3

and therefore consider p the Maxwellian with same mass, momentum and energy as fj:

p(v) = (2m) %22,

1.2. Function spaces. Through all the paper, we shall consider function of two variables
f = f(z,v) with € T3 and v € R3. Let v = v(v) be a positive Borel weight function and
1 < p < oco. We define the space L% ,(v) as the Lebesgue space associated to the norm,

for f = f(a:,v),

122, o) = ANzl o == (v £l

which writes if p < oo:

1/p
Iz ) = </1rg £ (@, ) L) dl’)

_ (/w /RB 1 (@, 0)|P ()P dvd:n) W.

We define the high-order Sobolev spaces HI H:(v), for n,{ € N:

Lg

(1.11) 1 e e ) = > 16502 (fv)ll .z, -

0< || <¥, 0<| 8| <, ||+ B8] <max(£,n)

This definition reduces to the usual weighted Sobolev space Hﬁm(l/) when ¢ = n. We also
introduce the fractional Sobolev space Hyy(v) for r, ¢ € RT associated to the norm:

(112) Wl = vl = [ Q1R () (Fot.mP dnd
X

where the hat corresponds to the Fourier transform in both = (with corresponding variable
¢ € Z3) and v (with corresponding variable 7 € R3). When 7 € N, we can also define the
space Hys(v) through the norm:

(1.13) 1Bz = 3 [ 19w = 3 1937 Bamsn:
o<j<r’Ti 0<j<r

In this case, the norms given by ([LI2]) and (I3]) are equivalent. We won’t make any
difference in the notation and will use one norm or the other at our convenience. It won’t
have any impact on our estimates since it will only add multiplicative universal constants.
Finally, denoting for ¢ € R™,

1y = 1501 = [ ol [Pl dn,
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we introduce the space Hys(v) for (n,s) € N x Rt defined through the norm:

(1.14) Hf”?{g;g(,,) = Z /11‘3 HVgcf”zg(V) = Z va:fuigyg(y)'

0<j<n 0<j<n

Notice also that in the case ¢ = 0, the spaces H?L?(v) and HZJB (v) associated respectively
to the norms given by ([LII]) and (II3]) are the same.

Finally, we introduce some “twisted” Sobolev spaces (useful for the development of our
Cauchy theory in Section M), we denote them Hyy(v) for (n,¢) € N x RT and they are
associated to the norm:

2 ,_ 2 _ 2
(1.15) ”f”y;;g(y) = Z /3 Hv‘;fHHf}(@))*2j5y) = Z HV%JCHLgHE(@%%sV)
0<j<n’ Tz 0<j<n
where s is the angular singularity of the Boltzmann kernel introduced in (L3 and (v) =
(1 + |v|?)Y/2. For the case ¢ = 0, since the notation is consistent, we will use the notation
HL2(v) or Hi9(v) indifferently.

1.3. Notations. Let X,Y be Banach spaces and consider a linear operator A : X — X.
When defined, we shall denote by Sy (t) = e the semigroup generated by A. Moreover we
denote by #(X,Y) the space of bounded linear operators from X to Y and by || - [ z(x,v)
its norm operator, with the usual simplification Z(X) = (X, X).

For simplicity of notations, hereafter, we denote (v) = (1 + [v|?)"/?; a ~ b means that
there exist constants cq,co > 0 such that ¢1b < a < ¢ob; we shall use the same notation C'
for positive constants that may change from line to line or abbreviate “ < C 7 to “ <7,
where C' is a positive constant depending only on fixed number.

In what follows, we denote m(v) := (v)* with k > 0, the range of admissible & will be
specified throughout the paper.

1.4. Main results and known results.

1.4.1. Cauchy theory and convergence to equilibrium. We state now the main result on
the fully nonlinear problem (II). We denote X := H3L2(m) and Y := Hi5s((0)7/2m))
(see (LIT) for the definition of those spaces).

Theorem 1.1. Consider m(v) = (v)* with k > 5v/2 + 8 4 24s. We assume that fy
has same mass, momentum and energy as p (i.e. satisfies (LIQ)). There is a constant
eo > 0 such that if || fo — pl|x < o, then there exists a unique global weak solution f to
the Boltzmann equation (L)), which satisfies, for some constant C > 0,

1f = llzee(0,00):3) + [1f = Bll2(j0,00)7) < Cheo-
Moreover, this solution satisfies the following estimate: for any 0 < Ay < Ay there exists
C > 0 such that

V20, [If(t) —ulx < Ce | fo - ullx,

where A1 > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem [31.

We refer to Remark 1] in which the imposed condition on the power k of our weight is
explained. Let us now comment our result and give an overview on the previous works on
the Cauchy theory for the inhomogeneous Boltzmann equation. For general large data, we
refer to the paper of DiPerna-Lions [I8] for global existence of the so-called renormalized
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solutions in the case of the Boltzmann equation with cut-off. This notion of solution has
been extended to the case of long-range interactions by Alexandre-Villani [8] where they
construct global renormalized solutions with a defect measure. We also mention the work
of Desvillettes-Villani [I7] that proves the convergence to equilibrium of a priori smooth
solutions for both Boltzmann and Landau equations for general initial data.

In a close-to-equilibrium framework, Gressman and Strain [19] in parallel with Alexan-
dre et al. [6] have developed a Cauchy theory in spaces of type H?H‘(u=/?). One of
the famous difficulty of the Boltzmann equation without cut-off is to well understand co-
ercivity estimates. In both papers [6] and [19], the gain induced is seen and understood
through a non-isotropic norm. Our strategy is a bit different since we exploit the fact
that the linearized Boltzmann operator can be seen as a pseudo-differential operator in
order to understand the gain induced by the linearized operator. It allows us to obtain
regularization estimates (quantified in time) on the semigroup associated to the linearized
operator. We refer to the paper of the same authors [22] for more details on the subject.
To end this brief review, we also refer to a series of papers by Alexandre et al. [3] 4] [5] 6 [7]
in which the Boltzmann equation without cut-off is studied in various aspects (different
type of collision kernels, Cauchy theory in exponentially weighted spaces, regularity of the
solutions etc...).

Let us underline the fact that Theorem [L] largely improves previous results on the
Cauchy theory associated to the Boltzmann equation without cut-off for hard potentials
in a perturbative setting. Indeed, we have enlarged the space in which the Cauchy theory
has been developed in the sense that the weight of our space is much less restrictive (it is
polynomial instead of the inverse Maxwellian equilibrium) and we also require few assump-
tions on the derivatives, in particular no derivatives in the velocity variable. However, we
need three derivatives in the space variable (Gressman and Strain only require two deriva-
tives in x in [19]): this is the counterpart of the gain in weight we have obtained. Indeed,
our framework is less favorable and needs more attention due to the lack of symmetry
of the operator in our spaces to obtain nonlinear estimates on the Boltzmann collision
operator. And thus, to close our estimates, we require regularity on three derivatives in z.

Our strategy is based on the study of the linearized equation. And then, we go back
to the fully nonlinear problem. This is a standard strategy to develop a Cauchy theory
in a close-to-equilibrium regime. However, we point out that our study of the nonlinear
problem is very tricky. Indeed, usually (for example in the case of the non-homogeneous
Boltzmann equation for hard spheres in [20]), the gain induced by the linear part of the
equation is enough to directly control the loss due to the nonlinear part of the equation so
that the linear part is dominant and thus dictates the dynamics of the equation. In our
case, it is more difficult because the gain induced by the linear part is not strong enough
and it is not possible to conclude using only natural estimates on the Boltzmann collision
operator (this fact was for example pointed out by Mouhot and Neumann in [29]). As
a consequence, we establish some new very accurate estimates on the Boltzmann colli-
sion operator (see Lemma 2.3]). We also have to study very carefully the regularization
properties of the semigroup associated to the linearized operator: to this end, we use re-
sults from the same authors [22] in which the linearized Boltzmann operator is seen as a
pseudo-differential operator, following the framework introduced in [2] by Alexandre, Li
and the first author. Also, in the spirit of what was done in [13] by Carrapatoso, Wu and
the third author, we work in Sobolev spaces in which the weights depend on the order of
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the derivative in the space variable. Those key elements allow us to close our estimates
and thus, to develop our Cauchy theory in our “twisted” Sobolev spaces.

1.4.2. The linearized equation. The linearized operator around equilibrium is defined at
first order through
Ah = Q(u,h) + Q(h,p) —v -V h.

We study spectral properties of the linearized operator A in various weighted Sobolev
spaces of type H Hi((v)*) up to L2 ,((v)¥) for k large enough. It is important to high-
light the fact that, in order to take advantage of symmetry properties, most of the previous
studies have been made in Sobolev weighted spaces of type Hgﬂ,(,u_l/ 2). We largely im-
prove theses previous results in the sense that we are able to get similar spectral estimates
in larger Sobolev spaces, with a polynomial weight and with less assumptions on the
derivatives. Here is a rough version of the main result (Theorem [BI]) that we obtain on
the linearized operator A:

Theorem 1.2. Let £ be one of the admissible spaces defined in [BA). Then, there exist
explicit constants Ay > 0 and C > 1 such that

V20, Vhe&, [Sa(t)h—Tohle < Ce M b —Tohle,

where S\(t) is the semigroup associated to A and Iy the projector onto the null space of A

defined by (1.13).

As mentioned above, the operator A (and its homogeneous version Lh := Q(u,h) +
Q(h, 1)) has already been widely studied. Let us first briefly review the existing results
concerning spectral gap estimates for the homogeneous case. Pao [3I] studied spectral
properties of the linearized operator £ for hard potentials by non-constructive and very
technical means. This article was reviewed by Klaus [23]. Then, Baranger and Mouhot
gave the first explicit estimate on this spectral gap in [9] for hard potentials (y > 0). If
we denote D the Dirichlet form associated to —L:

D(h) := / (—Lh)hp™t,
R3
and N (£)* the orthogonal of the null space of £, /(L) which is given by

N(ﬁ) = Span{#) V1 by U2y U3 [, |U|2M}7
the Dirichlet form D satisfies
(1.16) YhEN(D), D) = Xollhl2a, sy
for some constructive constant Ay > 0. This result was then improved by Mouhot [27] and
later by Mouhot and Strain [30]. In the last paper, it was conjectured that a spectral gap
exists if and only if v+ 2s > 0. This conjecture was finally proven by Gressman and Strain
in [I9]. Finally, let us point out that the analysis that we carry on can be seen as the
sequel of the one handled in [32] by the third author which focuses on the homogeneous
linearized operator £. We also improve it in several aspects: we are able to deal with
the spatial dependency and we are able to do computations in L? (only the L'-case was
treated in the latter).

Concerning the non-homogeneous case, we state here a result coming from Mouhot
and Neumann [29] (which takes advantage of the results proven in [9] by Baranger and
Moubhot), it gives us a spectral gap estimate in H. g,v(,u_l/ 2), ¢ € N*, thanks to hypocoerciv-
ity methods. Let us underline the fact that it provides us the existence of spectral gap and
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an estimate on the semigroup decay associated to A in the “small” space £ = H. g,v(,u_l/ 9,
which is a crucial point in view of applying the enlargement theorem of [20]. It is also
important to precise that Mouhot and Neumann [29] only obtain a result on the linearized
operator, they are not able to go back to the nonlinear problem.

Theorem 1.3 ([29]). Consider E := Hi.,(u="?) with ¢ € N*. Then, there exists a
constructive constant Ao > 0 (spectral gap) such that A satisfies on E':

(i) the spectrum L(A) C {z € C:Rez < —Ao} U{0};
(ii) the null space N(A) is given by

(1.17) N(A) = Span{p, vi 1, vapt, vap, [v]* 1},
and the projection Iy onto N(A) by

Hoh:</ hdvdx>p+z</ vihdvd:E)vi,u
T3 xR3 . T3 xR3

i=1

2 2
/ =3 ) 1E=3)
T3 xR3 6 6

(iii) A is the generator of a strongly continuous semigroup S (t) that satisfies

(1.18)

(1.19) Vt>0,YheE, |Sa(t)h—Th|p <e 2 h—Th| .

To prove Theorem [[L2, our strategy follows the one initiated by Mouhot in [28] for
the homogeneous Boltzmann equation for hard potentials with cut-off. This argument
has then been developed and extended in an abstract setting by Gualdani, Mischler and
Moubhot [20], and Mischler and Mouhot [25]. Let us describe in more details this strategy.
We want to apply the abstract theorem of enlargement of the space of semigroup decay
from [20], 25] to our linearized operator A. We shall deduce the spectral/semigroup esti-
mates of Theorem [[.21on “large spaces” £ using the already known spectral gap estimates
for A on Hﬁ,v(u_l/z), for ¢ > 1, described in Theorem Roughly speaking, to do
that, we have to find a splitting of A into two operators A = A + B which satisfy some
properties. The first part A has to be bounded, the second one B has to have some dissi-
pativity properties, and also the operator (ASp(t)) is required to have some regularization
properties.

We end this introduction by describing the organization of the paper. In Section 2] we
prove nonlinear estimates on the Boltzmann collision operator. In Section [3] we consider
the linearized equation and prove a precise version of Theorem [[L2] In Section M we come
back to the nonlinear equation and prove our main result Theorem [[1]

Acknowledgments. The third author has been partially supported by the Fondation
Mathématique Jacques Hadamard. This research has been supported by the Ecole Normale
Supérieure through the project Actions incitatives Analyse de solutions d’équations de
la théorie cinétique des gaz. The first author thanks the Centre Henri Lebesgue ANR-
11-LABX-0020-01 for its support and the third author thanks the ANR EFI: ANR-17-
CE40-0030. The authors thank Kleber Carrapatoso and Stéphane Mischler for fruitful
discussions.
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2. PRELIMINARIES ON THE BOLTZMANN COLLISION OPERATOR

In this part, we give estimates on the trilinear form (Q(g, h), f) in our physical frame-
work (meaning that the collision kernel B satisfies conditions (L2), (L3]), (L4)).
start by recalling some homogeneous estimates and then establish some new estimates in
weighted Sobolev (or Lebesgue) non homogeneous spaces. These new estimates will be
used both in the linear (Section [B]) and nonlinear (Section M) studies.

For sake of clarity, we recall that m(v) = (v)* with k > 0 and that we will specify the
range of admissible &k in each result.

2.1. Homogeneous estimates.

Lemma 2.1 ([I6, Theorem 1.1]). For smooth functions g, h, f, one has:
KQUf, 9) M 2| S N Fllnswyrr2e) 19 s (oynny 1l s oy 2y

with N1, No > 0 and N1 + No = v + 2s.

The goal of what follows is to extend this type of estimates to weighted Lebesgue spaces.
Lemma is a “weighted version” of Lemma 211

Lemma 2.2. Assume k > v/2+ 3 + 2s.
(i) For any £ > v+ 1+ 3/2, there holds

1) (Qf,9)s M 2my S FIL2 (w)o) 191 ms (oyrrz2smy 1Al s oyr/2m)
' + 1l 22 (wyrrzmy 1191122 (0 ||h||L2 y7/2m)-
( ()ii) For any ¢ > max(2 — v,y + 1) + 3/2, there holds
2.2
(Q(f,9): 9 r2my S Il yey 19072 g2y + 1Nz oyor2my 91122 ooy 19112 oy o/2m) -

(i) For any £ > max(2 —~,v+ 1) + 3/2, there holds
QU 1) Frzmy S Wiz 1122 oprrzm -
Proof of (i). We write

QU9 Wiz = [ Bl=0.0) (g~ fug) ki dodo. do
R3xR3 xS2
:/ B(v —vs,0) (figdm' — fegm) hmdo dv, dv
R3xR3 xS2

+/ B(v —vs,0) fig hm (m —m') do dv, dv
R3 xR3 xS2
=11+ Is.
We deal with the first term I using Lemma 2Tt
Iy ={Q(f, gm), hm) 12 S IF Ly wyrr2s) 191 brs (oyrr2+25my 10l s (oyrr2my
< HfHLg 0y 191 g (oyv/2+20my 1Bl bz ((oyrr2m)

because ¢ > v+ 2s + 3/2. To deal with I5, we use the following estimate on |m’ — m| (see
the proof in [3] Lemma 2.3]):

(2.3) im’ — m| < sin(6/2) <m (W) ()1 4 sink1(9/2) m;) .
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Notice that |[v — v,| = [v/ — v)| < |v — v)| which implies

(2.4) o — v S0 = ol o = oS )2 W) ()

Also, we have,

(2.5) o —va" S0 = o[ sin2(0/2) o — w72 S sinT2(0/2) (o)) (0)7/2 (0l)7V2.

This bound induces the appearance of a singularity in #. However, we notice that in the
third term of the estimate (2.3]) we have a gain in the power of sin(f/2) depending on the
value of k, the power of our polynomial weight. As a consequence, if k is large enough, we
can keep a power of sin(#/2) that is enough to remove the singularity of b(cosf) at 6 = 0.
Consequently, we have:

Iy 5/ b(cos 0) sin(0/2) v — v |" | fLl|d'||R| m
R3 xR3 xS2

<m/ + (01) ('YL 4 sinf 1 (0/2) m ) do dv, dv
=: Io1 + Ioo + Io3.

The two first terms I and I, are treated in the same way using the estimate (24]), we
obtain:

Ioy 4 Ipg S / b(cos 0) sin(6/2) | f1[(W )L g |m! (V)2 |h| m(v)Y/? do dv, dv
R3xR3 xS2
1/2
< </ b(cos 0) sin(0/2) [ f'[(v)* (gl)?(m))?* (v))" do d. dv)
R3 xR3 xS2

1/2
X (/ b(cos 8) sin(0/2) | f'|(v' )T h2 m2(v,)7 do dv, dv>
R3 xR3xS?
=: Jl X JQ.

The term Jj is easily handled just using the pre-post collisional change of variable:

T2 S oy 19122 aprvamy S 1 2ty 190122 (ayorm

since £ > v+ 1+ 3/2. To deal with Jo, we use the regular change of variable v — v/
meaning that for each o, with v, still fixed, we perform the change of variables v — v'.
This change of variables is well-defined on the set {cos6 > 0}. Its Jacobian determinant
is

dv’
dv

1 (k' - 0)?
-1 o) =
8( +K-0) YR

where k := (v—v,)/[v—2v,| and &' := (V' —v,)/|v' —vs]. We have k-0 = cos(0/2) > 1/+/2.
The inverse transformation v" — 1,(v') = v is then defined accordingly. Using the fact
that

cos=r-0=2(K-0)> -1 and sin(6/2) = /1 —cos2(0/2) = /1 — (k' -0)2
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we obtain
/ b(cos 0) sin(6/2) | /| (v} do dv
R3 xS?
/ (K- 0)2 = 1)\/1= (k- 0)2|f () do dv
3x§?
/ (k' 0)2 = 1)\/1= (K -0)2|f ()T d L'
K/ J>1/\f

T W0y
/ (cos 26) sm@da/ |f|{v VJrlalfu
SZ

We deduce:
I3 Sy IRl yrrzmy S 1F 1Lz cye) 11 g2y
In summary, gathering the three previous estimates, we have
Ioy + T2 S 1 Fllzzwyey 19022 (oyrr2my 11| 22 (wyr72m) -

Concerning I»3, we take advantage of the bound given by (2.3)):

Ing < / b(cos 0) sin=7/2(0/2) | 1 |m (WL)/2 g [(W')Y |h|m (0)/? do duv, dv
R3xR3xS2
1/2
< </ b(cos §) sin*=/2(0/2) |¢/ |(v/) | f1[>m.* (v])Y do dv, d”)
R3xR3xS2

1/2
X </ b(cos 0) sin*~7/2(0/2) |¢'|(v')Y K2 m? (v)" do du, dv>
R3 xR3 xS2
=: Tl X Tg.
As far as Ty is concerned, a simple pre-post collisional change of variable allows us to get
77 S gl ) HfHLz yr/zmy S 191E2 wye) Hf”i%(@w/?m)

since ¢ > v + 3/2. The second term requires more attention since we have to perform a
singular change of variable v, — v' showed for example in the proof of Lemma 2.4 in [3].
Recall that the Jacobian of this transform is

dv, 4

e <16072.0€(0.71/2
dv’ sin?(0/2) ~ 0. €(0,m/2,

therefore, this change of variable gives rise to an additional singularity in 6 around O.
However, we can take advantage of the fact that we have a power k in sin(6/2), indeed
taking k large enough allows us to control this singularity. Notice that # is no longer the
good polar angle to consider, we set 1) = (m — 0)/2 for ¢ € [r/4,7/2] so that

/

L% o and do = sind di dg.

cos ) = P

This measure does not cancel any of the singularity of b(cos#) unlike in the case of the
usual polar coordinates but it will be counterbalanced taking k& large enough. We then
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have:

/ b(cos 0) sint=2(9/2) |¢'|()7 dor dvs < / (70 — 2)E=/2=4225 | (/Y dr !
R3xS2 R3 xS?

w/2
< - k—v/2—4-2s _; ¥ < ¥
S0 siwids [ ol dvs [ lalt)

since k > /2 + 3 + 2s. We deduce that

2
T3 S Ngllza oy 1072 (oyrrzmy S 19022ty IR1Z2 (guyr2m)
and thus
Ios SNl 22 (oyrr2my 191 2 (0)ey 11 L2 ((oyr/2my
which concludes the proof of estimate ([2.1).
Proof of (it). The first part of the estimate comes from the proof of [3, Theorem 2.6].
And the second one is done in the first step of the proof, it corresponds to the term I

replacing h by g, we conclude that (2Z2]) is satisfied.
Proof of (iii). The result is immediately obtained taking g = f in ([2.2]). O

2.2. Non homogeneous estimates. We now prove non homogeneous estimates on the
trilinear form (Q(f,g),h) in order to get some accurate estimates on the terms coming
from the nonlinear part of the equation. Basically, we give a non homogeneous version of
Lemma We introduce the spaces

X = H3L2(m)
(2.6) Y =15 ((0)m)
= H5((0)7 T m)

that are defined through their norms by (LI3]). We also introduce Y’ the dual space of Y
with respect to the pivot space X, meaning that the Y/-norm is defined through:

(2.7) 7l = sup (f,0)x = sup Y (VAL VIO 2 ()-2ism)-

lolly<1 05523

Lemma 2.3. The following estimates hold:
(i) For k> /24 3+ 8s,

Q(f,9), ) x S Ifllx llglly [IRlly + 11y llglx (1]l
therefore,

1Q(f. D)y S Ifllx Nlglly + [1f 1y gl x-
(ii) For k > max(1/2 —~,7v/2) + 3 + 8s,

(Q(f.9):9)x S Ifllx gl + IF 1y llgllx llgly-
(iii) For k > max(1/2 —~,v/2) + 3 + 8s,

QUL x S IS
Proof of (i). We write

(QUf.9)s My raim) = (QUF9)s iz om) + D (2Q(F19):07h) 12 (mqwy-21515);

1<|81<3
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and

07Q(f,9) = > Cp s, Q05 f,0729).
B1+p2=p

In this proof, we use Lemma [Z2}(i) together with the following inequalities, that we shall
use in the sequel when integrating in = € T3,

(2.8) lull Loo(rsy S Nullmzersy- Nullpsersy S Nullarersy,  llullzsersy S llullmrrs).-

In the following steps we will always consider ¢ > max(2 — v,y + 1) + 3/2.
Step 1. Using Lemma 2.2}(i) and (28] we have

<Q(fag)7h>Liyu(m)
S [ (170t 19l gressomy Vel e

1 sz Dol o Wil )

S Wl zzez ey 191 L2 s (o225 m) ||h||L2Hs(< }1/2m)
+ 11z, wyr/zmy N9l a2 ez oyey 1M L2 | yr/2m)
SIfllx HQHY RNy + 11y Nlgllx IRy

Step 2. Case || = 1. Arguing as in the previous step,
(Q(f,079),07h) 12 ((0)-2+m)
S [ (1000 198ty 19 Bl ey

1l aagera-2omy Vel 220ty 1Vl oo w)

S HfHH2L2 HVCL‘QHL?HS V/2m HV h”L2Hs )V/2=25 )
+HfHsz( 7/2-23m) HngHmLz 0 [IVa hHLz o ((0)1/2-25m)
S Al Nl ally + 1Dy llgllx IIhlly.

Moreover,
(Q(O5f:9): M) 12 ((6)-2m)

< [ (19200 Vol 19l -2

T PP 17 (YA 1 (O QSm)>

< Ve Fllazracon) 190 mg(oprzm) 1Vl 2y oyria—2em)
190 3 (o320 ooty 195l (oo o
< UL lal Tl + 151 Dol Il
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Step 3. Case |5] = 2. When (35 = 3, we have
(Q(f,079),97h) 12 ((6)-4m)

S [ (17000 1928520 1920t 300

1l paagerosomy 1928l 220ty V2Rl 2 gy 4Sm>)
S ||f||H2L2( ||ng||L2HS v)7V/2=25m) ||V h||L2HS ((vyv/2=4sm)
1 a0y 92005y V2 2 qupasomy

S gl plly + 1Al llgllx Hth.
When 51 = 3, we have

(Q(971,9),07h) 12 ((0)~1+m)

S [ (192N 19l -2y 1920t i

192 L2 gy tomy Nallzages 720 oo 4Sm>)

SIVEFllzz oy 191 g2:s quyora-2emy [VaRI L2 15 ((0yr2-59m)

+V2 flle S(rr2-samy |9l 222y V291 L2 (yr72-45m)
S I llx llglly 121y + [1£ 1y llgllx IIhlly-

Finally, when |B[ = |82| = 1, we obtain
(QUO5 f,029), 05 h) 12 12 ((u)~45m)

S (Y L P Y-

1953t 1900 120 i

S IVeFlmzrz oy V29l L2 mrsuyr/z-26my V2RI 12 g1 (o) 72-25m)
FIVafllez (wyrz-1smy 1Vagllmzrz o ”V2hHL2 L (wy7/2= 45 m)
Sl lglly HhHY + {11y llgllx Hth-
Step 4. Case || = 3. When 35 = 3 we obtain

(Q(f,079),07h) 2. ((v)-60m)

S [ (17000 1928 gt 1920t g

1l paayera-somy 1930l 22ty 193l s oo mm))

S ”f”H2L2( ”vxgHLZHS v)7/2-4s ) ”VthLgHg(@)v/?*%m)
1 222 (yr72-60m) 1V291 22, (0 V2RI L2 ((0yr72-00m)
SIflx lglly IRlly + £y lgllx (1Rl
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If |f1] =1 and |B2| = 2 then
QD7 £,029), D0 12 12 (1) -6+

5 /1‘3 <”v1‘f”L% ”v gHHS 'y/2 4sm HV h”Hs .‘//2 65m)

190 2 yrrzsomy 1720 2 0oy 1930 gy GSm)>

S ||V:vf||H2L2( ||Vgcg||L2HS v)1/2=4s ) ||V:vh||L§H5(<v>“f/2*6Sm)
Ve fll g2z oyr/z-semy 1V291 22, () ||Vih||L§7U(<v>“f/2*65m)
S gl ally + 1Dy llgllx Hth.

When |81] = 2 and |52] = 1 then we get
(QUOS f,0729), 07 h) 12 12 (mw) 0%

S /'JI‘3 <”V925f”L% ”VIQHHS yv/2—4s ) HV h”HS }1/265.m)

+||V2f||Lz y7/2-65 ) ||Vmg||L2 ||V3h||L2 yr/2— GSm)>
< IV L2 o1y IV 2 gsmsenmy IV S0 2 aprn-somy
FIV2Fll iz prs-som ool 0 IV3 Rl qoprra-semy
S I llglly Hth +11fllv llgllx Hth.
Finally, when 8, = 3, it follows
(Q(D0£,9): 0T h) 12 12 (w0

S [ (192 M0 Dolgopn-sem 1920 o

19 g om0 192053 o)
S IV Lz 090 1902 gty IR 2o
3
+HV fHL2 v)V/2=6sm) Hg”H2L2 HV h”L2 o ((0)7/2=65m)

< I llx llglly ||h||Y + £y llgllx IIhlly-

Proof of (ii). As in the proof of (i), we write

(QUf.9): Dz rzem) = (Q(F19). 92 o)+ Y (07Q(F:9),029) 12 (mguy-2151);

1<|8|<3

and

BQf.9)= > CppQO)f00g).
B1+B2=p

In the following steps, we will always consider ¢ > max(2 — v,y + 1) + 3/2.

15
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Step 1. Using Lemma 2.2}(ii) and (Z.8]), we have

QU9 9)12
S [, (122 V91 qymy + 1 oorom I3 oo
S WUz 1902 ooz 1z, oo 922 g 9 2 oporom

S Ifllx ||9||y + £l llgllx llglly -

Step 2. Case || = 1. Arguing as in the previous step,

(Q(f,079):009) 12 (1)-22m) S /TS <HfHLg( HngHLz }7/2-28 )

18 sz e 1Vl 22 00 [ g2y
< ”f”H2L2 HVIQHLZ o ((0)7/2=25)
+”f”L2 Yv/2-25 ) ”VxQHH2L2 HVIQHB L (0)7/2=25)

Sl llally + IIfIIY lgllx llglly-

Moreover, we also have using Lemma [22}(i),
(Q(O11,9):009) 2 ((v)-2+m)

< [ (192Nt Wl 1280z -2

+ IVafll 2 wyr2-20my 191l 22 (ye) 1IV29 22 (0 szsm))

S Ve fllazez e 191z mswyrzmy 1V gl L2 s oyrrz-20m)
+ ”fo”L2 ()12 25m) HQHH2L2( HV:CQHLZ v)1/2=250m)

S £l gl + 1L£ 1y llgllx llglly-

Step 3. Case || = 2. When (35 = 3, we have

(QUf,079),079) 12 ((w)-1om) S /T3 <||f||Lg( % 9||Lz( wy/2=43 )

e som 192602 ||v§g||Lg(<vam>)

< 2z 1926122 prra-sens
+ 1 f 123 22 ((wyr72-12m) vagHLﬁLZ( ||Vx.g||L2 L (v)7/2—45 )
< ”f”H2L2 ”V QHLz L ((0)7/2=4s )
+ ”f”H%LQ 0)7/2=4s ) ”VxQHHlm ”VxQHLZ L ((0)7/2—45m)
SFIx gl + 1y lallx lglly-
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When 57 = 3, we have

<Q(8£f7 9)7 859>L%YU((U>*45m)

< [ (192 M Wl 19280 oo

#1925z rtem 190 192853 s )
2
S IV fHL6L2 ”gHL3HS ((v)7/2=251m) ”Vzg”mHs ((v)7/2=4s )
VRSl L2, (oyrr2-samy |9l 223 0)) V29 L2 (yr72-30m)
< ||V2f||HlL2 ||9||H15 Y1/2=25 ) ||V:c9||L2Hs ((v)1/2—454m)
V2 Fllz, (wyrrz-asmy 9l 2 22 ye) 1V 29N 2, (oyv/2-25m)

S £l gls + £y lgllx lglly -

Finally, when |B:] = |82| = 1, we obtain

Q05 f,0229), 05 9) 12 12 () ~45m)

5 /’]TS (vaEfHL% ||vfﬂg||HS 'y/2 25m ||ng||Hs w/2 4sm)

19 szt 19000 1928 3 e )
S HV:cfHH%Z vacg”L2HS 0)¥/2=254p) vag”L2HS ((v)yv/2=434p)
+ HfoHsz( v/2-asm) | Vadllmzrawsy V29l 22 ((oyr/2-1em)

S IFlx gl + 1Al llgllx llglly-

Step 4. Case |f| = 3. When 85 = 8 we obtain

<Q(fv 859)7859>L§’U(<v)*63m) S /’]I‘3 <||f||L12,( HV g||L2( v)7/2=6s )

1l ayera-somy 1930l 2300y 19360 2 oy %)

< ”f”H2L2 ”V QHLZ L ((0)7/2=651m)
+ ”f”H%L%(@))'Y/z*‘ism) ”vngL%m«v)l) ”ViQHLg’U(@)w/z%sm)
S gty + 1171y lallx gl
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If |f1] =1 and |B2| = 2 then
Q05 f,0229), 92 9) 12 12 (m(v)-6¢)

S /’]1‘3 <HV:CJCHL5 HV g”Hs y/2=4s ) ”ngHHs )7/2=6347)

F 19 g or-onm 1920000 1928 3 ooy )
S IVafllaz2 (o) 129N L2 g (oyr2-5m) HVi:chHLsz (0)/2=65m)
+ ”vﬂﬁf”L?’L2 )y7/2=65m) Hvxg”L6L2 ”vxgHL2 » ((v)7/2=659m)
S Vs f||H2L2 ||V:c9||L2Hs v)7/2=4sm) ||V:c9||L2Hs ((v)7/2=6sm)

+||Vﬂcf||H1L2( oy/2-ssm) IV2gll a2 ey IV29llLz | oyr/2-ssm)
S UFlx gls +11£1ly llgllx llgly-

When |81] = 2 and |52] = 1 then we get
(Q(O5 f,0529), 05 9) 12 12 () -5+

5 /]T3 <Hv3:fHL% HV:CQHHS 'y/2 4sm HVIQHHS 'y/2 Ssm)

F IV L2 oyrrz—ssmy 1V 29 L2 0y ||Vig||Lg(<v>“f/265m)>

S ||V f||L6L2( ||Vw9||L3Hs v)V/2=4sm) ||Vig||L2HS ((v)7/2=651m)
+|v2 Fllzz , (wyrrz=osmy IVagll m2rz oy ||V:c9||L2 V)7/2=65 )
< ||V2f||HlL2 0 [IVagll 1.0 (oyrr2-tsm) HV:BQHLQHS ((v)7/2-65m)
+ V2 f”L2 wyr/2=6smy IVadllg2r2 (o HV:CQHB 0)7/2=65m)
SIFAx llgly + ||f||Y lgllx Nlglly-

Finally, when 8, = 3, it follows
Q02 £,9).009) 12 12 (m(v)-69)

S [ (192 M Wl 1920 oo

I3 s oprrs-som 1ol 23000 ”VMM2vﬂﬁm>
S HVBJCHLZ HgHst Vv/2-45 1)) ”VxQHLZHS ((v)7/2=6s1m)
+vahm(wm&mﬂﬂmw( o 1936l pore-oem

S £l gl¥ + 1£1ly lgllx lglly-

Proof of (iii). The result is immediate using the inequality (7i).
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3. THE LINEARIZED EQUATION

We linearize the equation around the equilibrium pu. If we set f = u+ h, h satisfies the
equation
{ath = QU h) + Q) — v~ Vb + Q(h, )
hji—o = ho = fo — p.
In what follows, we denote

(3.1) Lh:=Q(h,un)+Q(u,h) and Ah:=Lh—v -V h.

The aim of the present section is to prove that the semigroup associated to A enjoys
exponential decay properties in various Sobolev spaces.

3.1. Functional spaces. We recall that m is a polynomial weight m(v) = (v)*. We in-
troduce the spaces H'H:(m) and HZH! (m), (n,£) € N? which are respectively associated
to the following norms:

(32 1l = ) R
0< || <L, 0<|B[<n, [af+|B|<max(¢,n)

and

(3-3) 1Rl 306 (my = > 103071172y -21ele—21510)-
0<|e|<¢, 0<|BI<n, |al+|B|<max(f,n)

We want to establish exponential decay of the semigroup Sy (t) in various Lebesgue and
Sobolev spaces that we will denote &:

(3.4) ¢ H"M(m), (n,0) eN?, n>/¢ with k>~/24+3+2(n+1)s
. - HOHE (m), (n,0) e N}, n >0 with k> ~/2+3+2(n+1)s.

Notice that those definitions include the case L%v(m) obtained taking n = ¢ = 0 in one
or the other type of space.

3.2. Main results on the linearized operator. The main result of this section is a
precise version of Theorem and reads

Theorem 3.1. Let us consider £ be one of the admissible spaces defined in ([B4) and

introduce B = H;rff}x(l’n) (n=Y2) where n € N is the order of x-derivatives in the definition

of £. Then, for any X < A\« and any A\ < min{\g, A}, where we recall that A\g > 0 is the
spectral gap of A on E (see (IL19)) and A« is defined in Lemmas and [3.4, there is a
constructive constant C' > 1 such that the operator A satisfies on E:
(i) X(A) c {z € C|Rez < -\ }U{0};
(i) the null-space N(A) is given by (LIT) and the projection Iy onto N(A) by (II8);
(iii) A is the generator of a strongly continuous semigroup Sy (t) on & that verifies

Vt>0,Vfe& |[Sa)f—Toflle <Ce M| f—Tof|e.

To prove this theorem, we exhibit a splitting of the linearized operator into two parts,
one which is regular and the second one which is dissipative. We shall also study the
regularization properties of the semigroup. The latter point is based on the paper [22] in
which a precise study of the short time regularization properties of the linearized operator
are studied. We can then use the abstract theorem of enlargement of the functional
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space of the semigroup decay from Gualdani et al. [20] using the result of Mouhot and
Neumann [29] (Theorem [[3]) as a starting point.

3.3. Splitting of the linearized operator. We first split the linearized operator £
defined in (B into two parts, separating the grazing collisions and the cut-off part. To
do that we introduce the truncation function x € D(R) which satisfies L1 <x <129
and xs(+) := x(-/9) for § > 0. We then define

bs(cos @) := xs(0) b(cos@) and b§(cos @) := (1 — xs5(0)) b(cos )
for some ¢ € (0,1) to be chosen later, it induces the following splitting of L:
Lh = Lsh + L§h

_. /R o W = el o = ] bs(eos O — wa[dor dos
X

+ / (il — b+ o — hap] b5 (cos 0)|v — vy |Y do dus,.
R3xS2

In the rest of the paper, we shall use the notations
Bs(v — vy, 0) :=bs(cos ) |[v —v,|? and  B§(v — vy, 0) = b§(cos0) |[v — v, |".

As far as the cut-off part is concerned, our strategy is similar to the one adopted in [20]
for hard-spheres. For any ¢ € (0, 1), we consider O, = ©.(6,v,v,) € C* bounded by one,
which equals one on

{lv|]<eland2e < |v—w|<e'}
and whose support is included in
{]v[ <2 land e < v — v, < 25_1}.

We then denote the truncated operator
As(h) == / O [ B+ p' W, — ph] b§(cos )| — v |7 do dv,
R3 xS2
and the corresponding remainder operator
BS_(h) = / (1— @[l + p' I, — puhs] b(cosO)[v — vs]" do do,.
’ R3xS§2
We also introduce the so-called collision frequency

vs(v) := / fx b5 (cos 0)|v — v, |7 do dvy,
R3xS?

so that we have the following splitting: £§ = As . + Bg . — Us.
Moreover, vy satisfies
vs(v) = Ks (ux|-")(v)
with
/2 T\ —2s
(3.5) Ks = / bs(cos ) do ~ / b(cos 0) sin@ df ~ 6% — <—) — +00
s2 s 2 5—0

using the spherical coordinates to get the second equality and (3] to get the final one;
and

(x| [)(v) = (v)".
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We then define
(3.6) By :=Ls+B5.—vs
so that £ = A + Bge. Finally, we denote
Bse:=—v-Vo+B).
so that A = As. + B .
3.4. Dissipativity properties. In this part, we prove some dissipativity estimates on
Bs.e, the proof is separated into several lemmas (each part of Bs. = —v -V, + Bg . defined

in the splitting ([B.0]) is handled separately). We start by estimating the part coming from
grazing collisions.

Lemma 3.2. Let k > v/2+3+2s. There exist nonnegative functions 0; = 0;(9), i = 1,2,
tending to 0 as & tends to 0 such that the following estimate holds:

(3.7) /TB (Lo b dode < =01 Ol e yo/2,my + 020 I ooy

Proof. Let us first make a remark coming from the assumption (L3]) which is going to be
useful in the sequel of the proof:
(3.8)

2r /2
b&(COS 9) Sin(@) do = / / X(S(H) b(COS 9) Sin2(9) do dqb 5 51—23 0
§? o Jo 50
and
2r /2
bs(cos 0) sin® () do = / / X5(0) b(cos 0) sin®(9) df dg < 6272 —— 0.
§2 o Jo 60

We here underline the fact that considering a moderate singularity, meaning s € (0,1/2),
is here needed to get the first above convergence.

We split Ls into two parts in the following way:

Lsh = [ B — pe h] bs(cos 0)|v — vy |7 do du,
R3xS?
+ / [P 1 — hy ] bs(cos 0)|v — v,|Y do du.
R3xS?
=: Lih + L3h,

this splitting corresponds to the splitting of Ls as Qs(u, h) + Qs(h, i), where Qg5 denotes
the collisional operator associated to the kernel Bs.
Let us first consider E%h and estimate:

/ (Lih) hm? dv dx = / Bs(v —vy,0) [p, b — ps b hm? do dv, dv dz
T3 xR3 T3 xR3xR3 xS?

:/ Bs(v — v,,0) i, [ — h] hm? do dv, dv dx
T3 xR3xR3 xS?

+/ Bs(v — vy, 0) [u; — u*] h2m?do dv, dv dx
T3 xR3 xR3xS2

=: Iy + Is.
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For the second term, we use the cancellation lemma [I, Lemma 1]
I, = / (S5 * ) h? m? dv de,
T3 xR3
where
|2

w/2
. =2 i A W R AT
(3.9) Ss(z) s /0 sin 6 bs(cos 6) <COS’Y+3(9/2) |z > o <o |z|7,

for details, see computations in [32 proof of Lemma 2.2] . Therefore,
I < 52—28/ (| - |7 * p) h® m? dv dz
T3 xR3

< 9272 / (v)Y h?m? dv dz.
T3 xR3

For the first term, we have

1
I = _5/ Bs(v — vy, 0) (W — h)? . m? do dv, dv da
T3 xR3 xXR3xS2
1
+—/ Bs(v — v, 0) (W? — h?) pl. m? do dv, dv dx
2 JT3xR3 xR3xS2
= I +1I.

Let us first analyze the term I}~ which has no sign: using the pre-post collisional change
of variable, we have

1
I == / Bs(v — vy, 0) (R))* (m")? — h®2m?) i, do dv, dv da
2 JT3xR3 xR3xS2
1
+ = / Bs(v — vy, 0) (W)? (m? — (m')?) 1. do dv, dv dz
2 J13 xRS xR3xS2

= 1/ Bs(v — vy, 0) (h2m? — (h,)? (m.)?) pdo dv, dv dz
2 JT3xR3xR3xS?

1

+ - / Bs(v — vy, 0) B2 (m')? — m?) p, do dv, dv dz
2 JT3xR3xR3xS2

= If] +I}5.

Using again the cancellation lemma together with ([3.9),
Ifrl:—/ (S(;*h2m2) pwdvdr <0.
T3 xR3

In order to analyze I3, we estimate the difference |(m’)? — m?|

o'y —m? < s [Vm2](2)) ool
z€B(v,|v' —vl)

with )
/ . .
v — vl =|v—v,/2sin(0/2) < —— |v — vy| sin 6.
o = vl = o= vl/2 sin (0/2) < = o —
Then, we use the fact that

sup  [Vm?|(2) S (o) + (va) P,
z€B(v,|v' —v|)
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which implies that
(3.10) |(m")? —m?| < sinf ()2 (v,)%k.

Therefore

I < / bs(cos 0) sin 0 |v — v, |Y (V)% (0,)%* B2, do dv, dv dx
T3 xR3 xR3 xS2
< / bs(cos 0) sin 6 (0)2K+7 (0, V2K B2 1, do du, do da
T3 xR3xR3 xS?
< (51_28/ ()Y h? m? dv dz,
T3 xR3

where we used (B8) and the fact that [ps 1. (v.)2*™7 dv, < +00. Let us analyze now the
non-positive term
1

I = ——/ Bs(v — vy, 0) (W — h)? il m? do dv, dv dz.
2 JT3xR3xR3xS?

We have
1
I < ——/ Bs(v — vy, 0) (W'm' — hm)? pi. do dv, dv dz
4 /713 xR3 xR3xS?

1
+—/ Bs(v — vy, 0) (W)? (m —m)? 1. do dv, dv dz
2 J13xRre xR3xS2

=: I + I,.

We treat I;, as previously. We estimate the difference (m/—m)? in the same spirit as ([B10)
and obtain:

[m' —m[* < sin®(6) (v)** (v.)*".

Therefore

I5 < / bs(cos 0) sin(0) |v — v |7 (0)2* (v,) h? p, do dv, do da
T3 xR3 xR3 x S2
< / bs(cos 0) sin?(0) (v)2EY (0, 2K+ B2 1, do dv, do da
T3 xR3 xR3 x S2
< 9272 / (v)Y h? m? dv dz,
T3 xRR3

where we used (B8] and [gs 4 (v4)?*77 dv, < +00. Concerning I7;, we use some estimates
coming from [2I Theorem 3.1]. Adapting the proof to our truncated kernel By, one can
prove that

Iy < =0 8 2l 00 o2y + C 8 MNRIZ: gy

for some positive constants ¢y and C'.
We consider now £§h and write:

L3h = / (R i — hy ] bs(cos 0)|v — v, |7 do du,
R3 xS?

:/ Bs(v — vy, 0) R, [u'—,u] dadv*—i—/ Bs(v — vy, 0) [h; —h*] do dvy 11
R3 xS2 R3 xS2

= Ly h+ L3N,
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Concerning £(2;’2, we use again the cancellation lemma. It implies that
£§’2h = (S5 xh) p.
Hence, from (3.9),

/ (£§’2h)hm2dvdx:/ (S5 % h) phm?dvdx
T3 xR3 T3 xR3

,§52_2S/ (v —v,)7 |hy| |h| p m? dv, dv dz
T3 xR3 xR3
So [ ) Al dv. dude,

T3 xR3 xR3

where ji := um? (v)?. Observe that for any ¢ € R, we have
1 1
(0 [l [ = (02) "+ [h| (o)~ |R| < §(v*>2(7+£) hs + 5(’0*>_2€ he.

Let now £ € (3,k — 2] (which is possible since k > /2 + 3/2), then

/ (L23°h) hm? dv da < 6272 / (W )20 B2 5 du, dv da
T3 xR3 T3 xR3 xR3

+ 62728 /T _ ()2 R i dv, dv dx
X X
< 922 / (v)Y h? m? dv dz,
T3 xRR3

where we used the fact that 2k +~ > 2y + 20, [ps fidv < +00 and [ps(v.) 2 dv, < +00.

We now deal with £(2;’1. We introduce the notation M := /i and write that ' — p =
(M" — M)(M'" + M), therefore

/ L3 (h) hm? dv dx

T3 xR3

< Bs(v — vy, 0) |h.| |h| |M' — M| (M’ + M) m? do dv, dv dx
T3 xR3 xR3xS2

< Bs(v — vy, 0) |h.| |h| |M' — M| M m? do dv, dv dz
T3 xR3 xR3xS2

+/ Bs(v — v, 0) |W.||h| |M' — M| M’ (m')* do dv, dv dz
T3 xR3 xR3xS2

+ / By(v — v, 0) || [B [M? — M| M’ |[(m')2 — m2| do dv, dv dz
T3 xR3 xR3xS2
= J1+ Jo+ J3.

Since Mm? < C and |M' — M| < |v/ —v| < |v — vs|sin(6/2) because M is Lipschitz-
continuous, we have

T 5/ Bs(v — v, o) || [B] | M’ = M| do dv, dv dz
(3 11) T3 xR3 xR3 xS2
< / bs(cos 8) sin(0/2) v — v, "t |hy| |W | do dv, dv dz.
T3 xR3 xR3 xS2
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We now perform the change of variables v — v’ which is explained in the treatment of Jy
in the proof of Lemma Let us underline the fact that

o (v) = vi| = [0 —vu| /5 - 0,
where we recall that v" — 1, (v') is the inverse transformation. We obtain
/ bs(cos 8) sin(0/2) v — v,|" Tt B! | do dv
R3xS?
_ / bs (20K - 0)2 — 1) /T = (- 0)2 |t (v)) — va [T |1 dor o
R3 xS?
4 dv'
= bs(2(K - 0)? = 1)\/1 = (k- 0)2 e (V) — v VT W | do ———
L) b2 0 D VTG o ) e o
4
:/ bs(2(k - 0)2 = 1) /1 — (k-0)2|v — v, 7T h| ——75 dodv
ka>1/y/2 (/i . 0-)7

< / bs(cos 20) sin(8) do / (WYL (] do (u,) 7+
S2 R3

Therefore, since k > /2 + 1+ 3/2, we can pick £ € (3/2,k — /2 — 1] and observing that
Jgs (v) 72 dv < +00 together with (B8], we have that

2
Jy <6 / ( / <v>7+1|h|dv> dz
T3 R3

< 51—23/ (/ <U>2('y+1+£) h2 dv <U>—2Z dv> dx
~ T3 \JR3 R3
< otz / (v)Y h*m? dv dz.

T3 xRR3

Reasoning in the same way, we have
Js 5/ By(v — vs,0) || [B] 1M’ — M| do du, dv dz
T3 xR3 xR3xS?2
< ol / (v)Y h®m? dv dz.
T3 xR3
For Js, since |M' — M| < C, we have
Js < / By(v — vs, 0) || [B] M ()2 — m?| do dvs. do da.
T3 xR3 xR3 xS2

We are now going to establish a variant of estimate (8I0). Using the fact that

sup [Vm?| (2) § () + )* ),
z€B(v,|v' —vl)

it follows

()2 = m?| S ()% + ()1 fo - v sin(0/2).
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Moreover,
(3.12)
2k—1

<U>2k—1 + (v/>2k—1 — (1 + ‘U/ +v— U/‘2)T + <U/>2k—1
5 "U/ o U‘2k_1 + <v1>2k2—1

S |U/ o U|k—1—fy/2 |’U/ o ,U|k+~//2 + <U/>2k—1

5 (Sin(e/z))k—l—yﬂ ”U - v*‘k—l—'y/2 (v/>k+~//2 <U>k+fy/2 + (’U/>2k_1,
Therefore,
Jz < / bs(cos 0)(sin(0/2))F =72 |v — v, [FFV/2 (0 \FF/2 () FH7/2
T3 xR3 xR3 xS2
|R.||h| M do dv, dv dx

+ / bs(cos 0) sin(0/2) [v — v, |7 (WKL |BL| |h| M do dv, dv dx:
T3 xR3 xR3 xS?

=: J31 + J39.
We have since [v/ — v} | = [v — v,
J31 < / bs(cos 0)(sin (8/2))F7/2 |0/ — vl [FH7/2 (o \EH1/2 () k+7/2
T3 xR3 xR3xS?

|h||h| M do dv, dv dz:

< / bs(cos 0) (sin(6/2))F =172 (WL VEH/2 (V2T ()\FFY/2 | BL | |h| M do du, dv da:
T3 xR3xR3xS2

< / bs(cos 0) (sin(6/2))¥ /2 (W V7|12 M do dv, dv da
T3 xR3xR3xS2

+/ bs(cos 0)(sin(0/2))*=7/% (v)2+7 |n|? M’ do dv, dv dx
T3 xR3xR3 xS?

=: J311 + J312,

where M := M (v)?+7. Now, observing that ng M dv < +0o0,
J311 = / bs(cos 0) (sin(6/2))* =772 (0, )25+ |h, |2 M do dv, dv da
T3 xR3 xR3 xS2

:/ / bg(cose)(sin(0/2))k_7/2da/ (v*>2k+7\h*]2dv*/ M dv dx
T3 Js? R3

RS

<ol / (v)Yh*m? dv dz,
T3 xRR2

since k — /2 > 1.
For the term Js312, we have:

Jans = / / bs(cos 0)(sin(6/2))E=1/2 NI’ dor du, (v)2+ [|2 dv da
T3 xR3 JR3 xS?
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we are going to apply the singular change of variable v, — v/ presented in the proof of
Lemma 22 for the treatment of the term Tb. Given that bs(cos ) ~q 672725, we have

/ bs(cos 0) (sin(0/2))F =72 M’ do dv, < / To<p<as 0¥ 2725772 M do dv,
R3xS?2 R3xS2

< / L jo—s<pensa (1 — 20)F 472702 M sin e dp do/
R3 xS?
26

S.; / wk—4—2s—'y/2 di M/ dv’
0 R3

< 5k—3—2s—'y/2

where we used [ps M'dv' < 4oco. This estimate is acceptable since k > 3 + 25 + 7/2.
Therefore

J312 S 5'“_3_23_7/2/ (V)Th?*m? dv dz.
T3 xR2
Finally, using the pre-post collisional change of variable,

J30 = / bs(cos 0) sin(0/2) [v — v, /T (WVEL R |h| M do dv, dv dx
T3 xR3xR3 xS?
= / bs(cos 0)sin(0/2) |v — v, 7Tt (V)KL b, | |W| M do dv, dv da
T3 xR3 xR3 xS2
< / bs(cos ) sin(6/2) [v — v, [V |he| |B| do dv, dv dz
T3 xR3 xR3 xS2

< 51_25/ (V)Y h*m? dv dz,
T3 xR2
where we used (v>2k_1 M < C and then the same strategy as in Jy (see ([B.I1])). This
concludes the proof. O

We now want to deal with the part Bga — v5. To do that, we shall review a classical
tool in the Boltzmann theory, a version of the Povzner lemma (see [34], 11 26l 12]). The
version stated here is a consequence of the proof of Lemma 2.2 from [26] and a sketch of
a proof can be found in [32].

Lemma 3.3. For any k > 2,
Vo, v, € R3, / [(v@k + (') — (u)F — (fu>k} b§(cos ) do
g2

<o (@7 )+ ()5 ) — ol
for some constants ¢, ¢, > 0 depending on k.
We can now prove the following estimate on Bf_ — vs.
Lemma 3.4. Consider k > 2+ ~/2. For e > 0 and § > 0 small enough, we have the

following estimate: for any h € L%v((v)“//Qm),

/ (B5..h) hm® dvdaz—/ vs h?m? dvdz < (As(e) — A [|h]|3, (0)7/2m)
T3 xR3 T3 xR3 v

where A\ > 0 is an explicit constant (depending only on k) and As(e) is a nonnegative
constant depending on § which tends to 0 as € goes to 0 when ¢ is fized.
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Proof. In this proof, we use the notation Cy for any constant depending only on J that
may change from line to line. Let us first consider,

/ B§ (k) hm? dv dx
T3xR3

1—0) [ h' + /K. — phy] b(cos8)|v — v, |” hm? do dv, dv dx
T3 xR3 <R3 x §2 ’
X X X

A

/Ts I — O [l W] + p W] b (cos B)|v — v
X X X

\h|m? ()4 () do dv, dv dx

_l’_

/ (1 — 0. |ha| S(cos 0)|v — vi | |h| m? do dvy dv dx
T3 xR3 xR3 xS?2

< / (1- 0., [<v>1/4|h'|<v>—1/4 |h|] b (cos 0)|v — vy|'m? do dv, dv dz
T3 xR3xR3xS2

+

/ 1-0.)u [<v>1/4|h;|<v>—1/4 |h|} b (cos 0)|v — ve|'m? do dv, dv dz
T3 XR3 xR3 xS2
+/ (1 — O) 1t |he| b(cos 0)[v — v |7 |h| m? do dv, dv dx:

T3 XR3 xR3 xS2

S (1= Oc) [l 1> + ' |PJ7]
T3 xR3XR3 xS?
bS(cos 0)|v — vy|Y m? (V)% do dv, dv da

+ / (1—0.) [, + p'] b§(cosO)|v — v, |7 h2m? (v)~Y2 do dv, dv dx:
T3 xR3 xR3 xS2

+/ (1 — O) 1 |he| b(cos B)[v — v, |7 |h| m? do dv, dv dx
T3 XR3 xR3 xS2
=11+ I+ Is.

Concerning [, we treat this term together with the one coming from vs. According to
the definition of the truncation function (1 — ©,):

(1 - @E)(97U7U*) < ]l\v—v*|§a(vvv*) + 1{\0\25*10r|v—v*\25*1}
< ]l\v—v*|§a(vvv*) + Xs*l('U’U*)

where y.-1 is the characteristic function of the set

{\/|v|2 +vs2 > e or|v— v, > 6_1}.

We then use the following bound on the function y,-1:

Xe-1(v,05) < ]l|v|>%(v,v*) +1

IU*‘Z?(U7 U*)

(3.13) = (1@2521 (v,y*)>1/2 i <1|v*|261 (v,v*)>1/2
)

< 91/2.1/2 (|v|1/2 n |v*|1/2
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We then write:

L = / Xe-1b§(cos 0)|v — vy |7 [l (') + o/ (BL)?] m? (W2 do dv, dv dx
T3 xR3xR3 xS2

= / Xe-1b5(cos B)|v — v, |7
T3 xR3 xR3 xS2
(1, (W) + i (L)% = e B® — phZ] m? (W2 do dv, dv dx
+ / bS(cos 0) Xo-1 fix h? [0 — v, " m? (0)Y/? do dv, dv da:
T3 xR3 xR3 xS2
+ / b5 (cos 0) xo—1 pph? [v — v,]" m? (V)2 do dv, dv dx:
T3 xR3 xR3xS?2
=T+ 15+ T;.
We notice that the characteristic function x.-1 is invariant under the usual pre-post col-

lisional change of variables as it only depends on the kinetic energy and momentum.
We hence bound the term 7j thanks to Lemma (we denote Cy = copy1/2 and

Cy, = C/2k+1/2):
T < / Xe—1 ,u*h2 v — v
T3 xR3xR3
/ ((’U;>2k+1/2 + <,Ul>2k+1/2 o <U*>2k+1/2 o <U>2k+1/2) bg(COS 9) do dv, dv dz
S2
< Cy / Xe—1 pixh? v — vy |7 ((v)zk_1/2 (V) + <v>(v*>2k_1/2> dv, dv dz
T3 xR3 xR3
- C, / Yoot ph? [0 — v, |7 |02 do, dv da
T3 xR3 xR3
< Cg / Xe—1 pixh? v — vy |7 ((v>2k_1/2 (vg) + <v>(v*>2k_1/2> dv, dv dx
T3 xR3 xR3
+ Oy, / Xe-1 psh? v — v.]7 dv, dv dae
T3 xR3 xR3

— Oy 234k / Xeot ftxh? [0 — 0,7 (022 do, do da
T3 xR3 xRR3
=:Tv +Tio + Th3.
We treat together the terms 711, T2 and T3 using (313 and we obtain:

(3.14)
T+ Tio+ T3

Se2cy / (0172 4+ 0. 2) e B2 o = w7 ()22 (0,) + (0)(02)272) do. dvde
T3 xR3xR3
+el2ey / ([0]Y2 + [0 ]Y2) e B2 [0 — v,]7 do, do da
T3 xR3xR3

+el/2 Cg/T3 -, Rg(\v\l/z—l—\v*\l/z)uhz v — v,|" m? ()2 dv, dv da
X X

<20y Cs Hh”ig’v((v)’Y/Qm) =: As(e) HhHQL%,U(@W”m)
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up to increasing the value of C%. We now put together the terms 733, 75 and the term
coming from vs, and we denote C} := Cj 23/47F;

T13+T2—/ V5h2m2dvda:
T3 xR3
< —C;Z/ Xet fix |0 — 0] B2 M2 (0)V/2 du, dv da
T3 xR3 xR3
—|—K5/ Xeot fix [0 — 04|V B2 M2 ()2 du, dv da:
T3 xR3 xR3
—K(;/ Lo |v — v B2 m? dv,, dv dz
T3 xR3 xRR3
< —Ks p [0 — vV B2 M2 (1 = xoo1 (0)V?) doy do da
T3 xR3 xR3
- C]Z/ Xe-1pts [0 — 0,7 B2 m?% ()2 dv, dv dx:
T3 xR3 xRR3

where we recall that K is defined in ([B5]). Taking now ¢ small enough so that K5 > C7/,
we get:

T13+T2—/ vs h2m?dvdr < —C’,Z/ ,u*|v—v*|7h2m2dv*dvd:n
T3 xRR3 T3 xR3xR3
and thus
(3.15) Tis + 15 —/ vs h?m? dv dx < _>\*||h||i%1}((v)7/2m)
T3 xR3 ’

for some constant A\, > 0 depending only on k. Gathering (3.14]) and (BI5]), we are able
to get the right estimate,

I — / vs h? m? dvdx < (CxCs e — )12, (o) 2m)°
T3 xRR3 v

Let us now consider Is. We again use the following estimate on 1 — ©.:
(1 —=0)(0,v,v.) < ]l|v—v*|§a(v7 U*) + Xs*l(va U*)'

It induces a splitting of I5 into two parts:
I, < / Ly, <= (0, 04) [l 4 1] b(cos 0)|v — v.]” h2m? (v)~Y2 do dv, dv dx
T3 xR3 xR3 xS2 N
+ / Xe—1 (v vi) [ph + 1] b5 (cos 0)|v — v,|" h? m? (W)™V2 do dv, dv dx
T3 xR3xR3 xS?

S Iog + oo,

We split once more Is;

Iy = / / 1 b§(cos 0)[v — vy |Y h2 m? (v) V2 dv, dv do da
T3xS2 J|v—v«|<e

+/ / 1 b5 (cos )|v — vy Y B2 m? (v) Y2 du, dv do dx:
T3xS2 Jjv—v«|<e

=: Io11 + I210.
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We estimate I51; using again the regular change of variable v — v" and that b§(cos 0) < Cs
in S%:

Iy $e7Cs / wl. k2 m? dv, do dx
fo—ve|<e

T3 xS?

< eV Cs / / ¢ hEm? dv, dvdo dx
T3xS? J |v—v«|<e

1
< eV Cs / Y ———— dv'do / hm?2 dv, dz
K-o>1/v/2 (K- 0’)2 T3 xR3

<e"Cs / wdvdo / h?m? dv dx
R3xS2 T3 xR3

< 05/ h*m? dv dz.
T3 xR3
Moreover, we estimate I using again the singular change of variable v, — v’

Is12 S 7 Cy / / w h2m? dv, dv dx
T3 Jv—vy|<e
<e’Cs / Lg>s ' do dv, / h2m? dv dz
R3 xS2 T3 xR3
w/2—8
<e7Cs / (m — 2¢)~2 siny d¢/ ' dv' / h?m? dv dx
T RR3 T3 xR3

/4
<er 05/ h%m? dv dz.
T3 xR3

Concerning Iz, we use the estimate ([3.I3]) combined with the fact that,
el 2 = Jo = v+ 0|2 < (Jo = v + o) S fos = ofV7 + o2
Hence
b 5e | (112 o 72 [ 4 4] B(cos B)fo — .|
T3 xR3 xR3 xS?
h2m? (v)Y? do dv, dv dx:
e (12 + o = o] /2) [p + ] B cos ) — v
T3 xR3 xR3 xS?

h2m? (v)™Y2 do dv, dv dx:

e 1+ 1] B5(cos B)fo — v ["F1/2 2 m? (o)™ do o, dv
T3 xR3 xR3 xS2

4l /w I (1 + 1] B5(cos 0) v — v, | B* m? do du, dv da
X X X

= I921 + T2 + 1293 + I04.
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For Isp; and Is93 we proceed in the same way, we perform the change of variable v — v':

Ing1 S Y2 /’]1‘3 N i o — v 7TV2R2m2 (0,) V2 do dv, dv da
X X X

<20 / v — v "2 do dv / h2m? (v,) V2 dv, da
R3xS2? T3 xR3

< 2y / h2m? (v,)7 dv, dz,
T3 xR3

<eV20; / h*m? (v)7 dv dz.
T3 xRR3

Analogously, for Is99 and I994 we proceed in the same way. Using the fact that for 6 > 6,
o= v SO0 =] S Cs () (v),

consequently,

Ipgo S el/? 05/ Loss ! [v — v 7FY2 W2 m? (0) Y2 do dv, dv da:
T3xR3xR3xS2

<20y / Toss i/ (V)2 do du, / h2m? (v) dv dx
R3xS?2 T3 xR3

< el/? Cg/ h? m? (v)7 dv dz,
T3 xR3

where we used again the singular change of variable v, — v (which only changes the value
of 05)
Concerning I3, we use again the estimate for (1 — ©.) we have

Is < / Tjy—v, <e(v,04) g |hi] b5 (cos 0)|v — vs|™ | B m? do dv, dv dz
T3 xR3 xR3 x §2 B

+ / Xe—1(v,05) t |he| b5 (cos 0) v — v, |7 |h| m? do dv,, dv dz
T3 XR3 xR3 x S2

=: I31 + I39.

Consider ¢ € (3/2, k], then
I3 gem&/ / 1| hs| [h|m? dv, dv dx
T3 J|v—vs|<e
gemg/ / (02! <u*>—€dv*/ Ih| jpm? dv da
T3 JR3 R3

S e Cs / h?(v)% dv dx
T3 xR3

< E7Cs / h*m? dv dz.
T3 xR3
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Moreover, using the same technique as for I3y, for all £ € (3/2,k — /2 —1/2],

I3 < 51/2/ b (cos 6) <\U\1/2 + ]v*\1/2) [0 — .| | |R| pm? do dvy dv da
T3 xXR3XR3 xS?

551/205/ / ()2 || pm? dv/ (W)YFY2 () () | b do da
T3 JR3 R3
5 51/2C5/ <U>2’\/+1+2£ h2 dv dax

T3 xR3

< el20; / ()Y h*m? dv d,
T3 xR3

which ends the proof. O
We can now prove the dissipativity properties of Bs. = —v-V,+Ls+B§ _—vs in L%U(m).

Lemma 3.5. Let us consider k > /2 4+ 3+ 2s and a € (=, 0) where A\, is defined
in Lemma [54) For § > 0 and € > 0 small enough, Bs. — a is dissipative in L2 ,(m),
namely

Vt>0, (S5 (0Ollawz,my) < e

We even have the following estimate (which is better that simple dissipativity as stated
above), for any h € L3 ,(m):

Vi > 07 2 dtHSB(Ss( )hH%%U(m) < =6 ”835,5( )hHLsz 0)7/2m) +a ”835,5 (t)hH%%yu(@)’y/?m)

for some constant cs > 0 depending on §.

Proof. Consider a € (—\,0). We first notice that performing an integration by parts, the
term coming from the transport operator gives no contribution. Then, gathering results
coming from Lemmas 3.2l and B4] we obtain

/T . (Bs..h) hm?* dv dx
X

< =008 W, oy + [, 60)+ As(e) = ) 2 (0 i o
X

We first take ¢ small enough so that 02(0) < (a+ \.)/2. We then chose € small enough so
that As(e) < (a+ A)/2. With this choice of ¢ and e, we have the following inequality:

02(8) + As(e) — A < a.
It implies that

[ Bkt dvda < =00) A1 oy + 0
X

which concludes the proof. O

The goal of the next lemma is to generalize previous dissipativity results to higher order
derivatives spaces of type HIH! (m) and HIH:(m) defined through their norms in (B:2))
and ([B.3). Notice that, in order to get our dissipativity result, it is necessary to have less
weight on v-derivatives (which is induced by the weight (v)~2/%l* in the definitions of the
norms of H'H!(m) and H?H! (m)). However, the introduction of the weight (v)~2%ls in
order to have less weight on the x-derivatives in the space H?H! (m) is not needed at this
point but dissipativity results still hold true doing that and we will make use of it in the
nonlinear study in Section @l
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Lemma 3.6. Let us consider (n,f) € N? with n > (. In what follows, & = HIH!(m)
with k > v/2 +3+2(0 + 1)s or & = HH(m) with k > /2 4+ 3+ 2(n + 1)s. Then for
any a € (—A,0) where A, is defined in Lemma[3.4), there exist 6 > 0 and ¢ > 0 such that
Bs. — a is dissipative in £ in the sense that

V>0, [Sg,. (t)]ae < Ce

Proof. The case n = £ = 0 is nothing but Lemma [B.5l Let us notice that the operator V,
commutes with the operator Bs., the treatment of :E-derivatives is thus simple and one
can always reduce to the case n = £. Moreover, we only handle the case & = H'H(m),
the other case being similar. We now deal with the case n = ¢ = 1, the higher-order
derivatives being treatable in the same way. To do that, we introduce the following norm

on HiHI(m):
sy = 1y + 1902y + €IV

where ¢ > 0 is a positive constant to be chosen later and mq(v) := (v)~2 m(v) = (v)ko
with ko := —2s + k. This norm is equivalent to the classical norm on H1H!(m) defined

through (3.2).

In the subsequent proof, 7 is a positive constant that will be fixed later on. Let us introduce
hy := Sps_(t)h with h € HyH(m).
Thanks to Lemma m we have that

Vit >0, HhtHLz m <~

2
2dt 01(9) 1t 1172 s uyr/2my

+ (02(0) + As(e) = M) IhllZs  (pyrnmy-

Moreover, since the z-derivatives commute with B,
1d 9
vt >0, §E\|tht”Lgm(m) < —01(0) [V htHLsz V/2m)

T (02(0) + As(e) = M) [9ehel22 (oo

Therefore, it remains to consider the v-derivatives. In what follows 9, and 0, stand for
Oz, ,0z, OF Oy, and Oy, ,0y, Or Oy, respectively.
We have

at(avht) = Bé,a(avht) - 8acht - 8U(~A6,Eht) + Aé,a(avht) + Q(hty 8@:“) + Q(av,ua ht)y
thus, we can split %% || Ot H%Q (mo) into six terms, according to the previous computation,

1d 4
2dt
For the first term we can use again Lemma [3.5] obtaining

Vi>0, L < _91( ) Ha htHLsz Y7/2m) (92(5) + A5(5) - )‘*) Havht”ig’v«v)w/zmo)-

\ahtHLz moy =T+ e

For the second term, we have
_ 2 n 2 1 2
I2 - - /TSXRS(axht) (Z?vht) mo d’U da: S EHOUhtHL%,U(mO) + %Haxhtulliyu(mo
The terms I3 and I, can be treated together to obtain

1 2 n 2
I3+ 14 S 2_77Hht”Lg’v(mo) + §|’8”htHL%,u(mo)
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Indeed, using Carleman representation (see [33, Chapter 1]), one can write the truncated
operator As. as an integral operator

Ash(v) = /R3 ks - (v, v4) h(vs) do,
for some smooth kernel ks € C2°(R? x R?). Therefore,

100 (As.he) 72 (mo) < N1PelZ2 (o)
and performing an integration by part

M5, @oh) 72 (o) < 10el1Z2 (1mo)-

Thus,
1
— 2 2 n 2
Iy = — /1r3xR3 Oy (Asche) (Ophe) mg dvda < 277”80("4576ht)HL%,u(mo) + §Havht”Lg’v(mo)

1 n
S %Hhtﬂig,v(mo) + §H5vht\|igm(mo),
and
L n
_ 2 2 2
[4 = /']TSXRS Aé,e(avht) (avht) mg dv dx 5 %HA(Sﬁ(avht)”L%m(mo) + §”avhtHL%7U(m0)
1 n
S %Hhtﬂigm(mo) + §||3vht\|%g’v(mo)-
Let us consider now I5. Define ji := J,u
Is = / Q(f, he) (Oyhy) m§ dv dz
T3 xR3
= / B(v — vy, 0) (il b} — fix ht) (Ophy) mé do dv., dv da:
T3 xR3 xR3xS?
= / B(v — vy, o) (il hym{ — fis hy mg) (Ophy) mo do dvy dv dx
T3 xXR3 xR3xS2
+/ B(v — vy, 0) i), by (mo — m() (Ophi) mo do dvy dv dx
T3 xR3 xR3 xS2

=: Iy + I52.

For the first term we can use Lemma 211
Iy = /3<Q(/~%ht mo), (Ovht) mo) 2 dx
T

S /qu Al Ly (wyr2e) (e moll g oynny [1(Ouhe) mol| g gy v2y dez,

with Ny, Ny > 0 and Ny + Ny = v + 2s. Therefore, setting Ny = /2, Ny = v/2 + 2s we
have

it 5 [ e 0 2mlig 100e) ) ol d,
T
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since mg = (v)~2*m. Hence
1
Bt 5 gl )2l + 21(0he) () ol
1 2 n 2
S 9 Wellzz rrgqqeyrrzmy + 190hell Lz g uyrrzmo)-

For the second one, we have

1
Iso <— B(v — vy, 0) i, (})? |mo — my| mo do dv, dv dx
21 J T3 xRS <R3 xS2
n

+ —/ B(v — vy, 0) i, (Opht)? mo — mj| mo do dv, dv dx
2 JT3xR3xR3xS?

=:I501 + I520.

Setting fix := fixmos and [iy := ﬁ*@*)ko_l, we have

1
Iso) < — B(v — vy, 0) fi, (R})? |mo — mg| mfmy, do dv, dv dz
21 J 73 xR3 xRS xS2

1
5—/ B(v — vy, 0) fil, (h})? |mo — my| my do dv, dv dz
7 J T3 xR3xR3xS2
1
5—/ B(v — vy, 0) fix (ht)2 |mo — mg| mo do dvy dv dx
7 JT3 xR3xR3 xS2
1
< - / b(cosB) sin(0/2) |v — U*WH (ht)2 mo (v>k°_1 fis do dvy dv dx
1 JT3 xR3xR3 xS2

1 2
S o Wellzz | (prr2mo):
where we used the fact that |mg — mp| < |v — v.| sin(6/2) (v)ko=1 (v, )ko=1,
Moreover, setting v, = v + 7(v' — v) for 7 > 0, we have

mo —mg| S v — | sin(6/2) (v )r!

and using that |0/ —v| < Jv — v/,

ko—1
()Rt S YT 4 (0 — )Tt S )R (L o — o) S )R 4 (o — )R,

Therefore
I590 < 77/ B(v — vy, 0) i, (Oyhy)? |mo — mg| mo do dv, dv dx
T3 xR3xR3 xS2
S 77/ b(cos ) sin(0/2) i’ (Dyhes)? (v — 07T Mg, do dv, dv da
T3 xR3 xR3 xS2

+ 77/ b(cos 0) sin(0/2) i’ (Dphex)? v — v VT (0, mg, do dv, dv dx
T3 xR3 xR3 xS2
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Now, for o € { + kg, + 1}, performing the change of variable v — v/, we have

/ b(cos 8) sin(0/2) i’ (v —v.)* do dv

R3 xS2
/ (k' -0) —1 YV 1 — (K 0)2 |9 (V) — vi|* i do dv
R3 xS2

1
2k 0)2 = 1) /1= (K - 0)2 [he (V') — 0,|* i —— do dv
/WW = ) VI 0P a0~ 0l

/ b2 )2 — 1) /T = (- 0 [ (0) — 0| i dord
Ko>1/v2 (H 0')

N

/ cos(26) sin 0 (v — v,)* i do dv
R3xS2

(o)
Hence

Iszo S || Ouhy

HLZ v)7/2mg)”

It remains to consider the last term Ig. Using again the notation i = d,u, we have

Is = / Q(ht, Do) (Oyhy) m3 dv dx:
T3 xR3
:/ B(v —vy,0) (hyy fi' (m()? = hes imd) (9yhy) do dv, dv da
T3 xR3 xR3 xS?

+ / B(v — vy, 0) hiy, il (9yhe) (m§ — (mg)?) do dv, dv dx
T3 xR3 xR3 xS2
=:1I41 + Igo.

For the first term we can use again Lemma 2T}
Iei = /3<Q(ht,gmg),avht>% d
T

S /TS el Ly coyrezsy 1M1 bz oy y (10uhel| prs qoynay ez,

37

with N1, No > 0 and Ny + Ny = v + 2s. Therefore, setting No = 0, N3 = v/2 + 2s and

using the fact that [[h|z1(wyr+2s) S el L2 ((o)r+20+2), We have

Ie1 < /3 [hell L2 (wyr+2s+2) |Ouhe g da.
T

Due to the fact that k > v/2 + 2s + 2, it follows v+ 2s + 2 < k 4 /2, hence
Is1 < / ||ht||L%(m<v v/2) ||a”ht||H5 dx

||8 hill 22 s t3 ||ht||L2 o (m(u)7/2)°

For the second term, we proceed as in the case of J3 in the proof of Lemma We have

162:/ B(v — s, 0) iy, fi' (Buhe) (m — (m})?) do dv, dv dz.
T3 xR3xR3 xS2
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Using the fact that

sup [Vmd| (2) S ()07t + ()0
z€B(v,|v' —v])

it follows
[(m)? = mi| S ()07 4+ (@)#07) o — v, sin(8/2).
Moreover, performing the same estimate as in (3.12]),
<’U>2k0_1 + <U/>2k0—1 5 (Sin(9/2))ko—l—'y/2 ‘U o U*‘k0—1—7/2 <U/>ko+'y/2 <U>ko+'y/2 + <’Ul>2k0_l.
Therefore,
Igo < / b(cos 9)(sin(9/2))k°_7/2|v — U*|k0+'\//2<vf>ko+'\//2 <U>ko+v/2
T3 xR3 xR3 xS?
|hy,| /@ |Opht| do dvs dv dx
+ / b(cos 0) sin(0/2) [v — v, VT (W)L |BL | 7 |8y he| do dv. dv da
T3 xR3 xR3 xS2

=: Is21 + Ig20.
We have

Isn < / b(cos 0)(sin(0/2))F0=7/2 | — o [Fo+7/2 (3 \koF/2 (4 kot7/2
T3 xR3xR3 xS2
|hy| @ |Opht| do dvy dv dz

< / b(cos 0) (sin(0/2))Fo=1/2 (y! ko772 (2ot ()\ kot /2 bl | BBy hy | do du, do da:
T3 xR3xR3 xS2

1 -
<= b(cos 0) (sin(0/2))Fo=7/2 (v \2ko+Y |p! 2 M do dv, dv da
21 J13 xR3xR3 xS2
0 / b(cos 0) (sin(0/2))F0=7/2 (x)2k0+7 |9, hy|? M do dv, dv da
2 T3 xRS xR3xS?

=: Is211 + I6212,
where M’ = ji’ (Y%7, Now, observing that Jrs M dv < 400,
1

Igo11 = — b(cos 0) (sin(6/2)) 0 =7/2 (v,) 20+ | by, |2 M do dv, dv da
21 J13 xR3 xR3xS2

1 .
= — / b(cos 0)(sin(6/2))k0—1/? da/ (v, ) 2R+ |y, |2 dv*/ M dv dx
277 T3 .JS2 R3 R3

1 2
: %Hht”%,v«vwmmv

since kg — /2 > 1 for k > 1+ 2s + /2.
For the term

Iso1o = g / / b(cos 0)(sin(0/2))F 072 M’ do dv, (v)20F7 |8, he|? dv d,
T3 xR3 JR3xS?

using the change of variable v, — v’ and the fact that ko > 3 + 2s + /2 since k >
3+ 4s + /2, we have:

Is212 S g/m RZ(U}“’(&,htFm% dv dz.
X
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Finally
Toso / b(cos 0) sin(6/2) [v — v, (02K =L || i D] dor dvs. do da
T3 xR3xR3 xS2

/ b(cos 0) sin(6/2) [v — v, [ (0)20 [heu | 0| do du, dv da
T3 xR3xR3xS2

A

/ b(cos 0) sin(0/2) [v — v T b | |0uh| do dvy dv dx
T3 xR3xR3 xS?

5/ b(cos 20) sin(8) [v — v, |7 |hys| |0y hy| do dvy dv da
T3 xR3 xR3 xS2

where we used the regular change of variable v — v’ and the fact that (v)?0~1j < C.
Then, for ¢ > 3/2, using Cauchy-Schwarz inequality,

1/2 1/2
Is92 5/ < |ht|2 <U>2('y+l+€) d’U> (/ |avht|2 <U>2('y+l+£) d’U> dx
11‘ R3 R3

77
el vy + OB (orrim

where we used that kE+~/2>~+14+3/2+ 2s.
In order to conclude, we put all the estimates together

3 g el ony =5 2 10 lL2 | omy 2dt”v hell?s +C§dtHv hell?s
CC
< (=010 + S5 1ty o
010 bl oo
+C( ( )+C77) HV htHLZHs )'V/Qmo)
c¢
+ (40004 860 + 5 =0 ) Wl sy

c¢
+ (600004 860 + <0 ) IVl o

+ (62(0) + As(e) + Cn— A ¢ ||Vvht||i%m(<v>’y/2mo)7
for a constant C' > 0. We first take J,e small enough so that 02(0) + As(e) < (a + i) /2.
Secondly, we chose 7 small enough so that Cn < (a + \)/2 and —61(0) + Cn < 0 then ¢
small enough that C¢ < n(a + A.)/2 and —61(9) + % < 0. With this choice of §,¢,n,(,
we have the following inequalities:
02(0) + As(e) +Cn— A < a
C
02(0) + As(e) + TC - A <a
—01(6) +Cn <0
—91(5) + % <0.

Therefore
1d

B dt”’hthlHl(m Sa ”htHLz ()7/2m) ta Hvl‘ht”i%m«v)’y/? + Ca |0y htHLz v)7/2mg)?
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which concludes the proof. O

3.5. Regularization properties. We first state a regularity estimate on the truncated
operator As . which comes from [20] Lemma 4.16].

Lemma 3.7. For any q € N, the operator As. maps LL((v)) into HE functions with
compact support.

We now focus on the short-time regularization properties the semigroup Sa, which are
also going to be of crucial importance in the study of the nonlinear equation in Section [l
For the sake of clarity, and because it is the case that we shall use in the sequel, we only
present this result of regularization for the particular case of £ = 0 in the spaces defined

in (B4).
Lemma 3.8. Let r € N, k > v/2 +3 +2(r + 1)s. Consider fo € HL2((v)*). Then, for
K > k+~+5/2+ 6s, we have the following estimate:

1
(3.16) [[Sa(t )fOHHM( m“fo”(ﬂgg(@)k’))u vie (0,1,

where (M5 ((0)*)) is the dual space of Hys((v)¥') with respect to Hy%((v)F').
We also have for k' >k +~v+5/2:
1
(3.17) IS0 ooy S mrameloll oy Yt € 011
Proof. Let us start this proof noticing an embedding property:
(3.18) Vi < ko, ¢ € RT,  H5((0)*2) = HS((v)*).

This property is clear in the case ¢ € N. It is less evident in the case ¢ € RT \ N.
This case can be shown using a pseudo-differential argument or even more simply, using
real interpolation. Indeed, since the weighted space HS((v)Fi) is defined through h €
Hg((v)*) < h(v)k € HS, we can use that (see for example [10]):
HS = [HE@)’ HE<<>+1]
v v v —E(s),2
to prove that
(") = [HPO ("), BYO ()] =12,
s—EB(s),2
From this, since H.((v)*2) — H.((v)*) for £ € N, we deduce the desired embedding
result: HS((v)*2) — HS((v)k).
The first part of the result is a twisted version of Theorem 1.2 from [22], the only
difference being in the weights. First, we notice that

1SA () foll a0 uyey S NSAM) foll g guyr-

The result from [22] gives us that for k” > k‘ + v+ 5/2, we have:

1
1SA @) foll sz oy S g7 I foll s quyeryy» ¥t € (0,1]

where (Hy5((v)*")) is the dual space of Hys((v)¥") with respect to H;:?,((wk”). It remains
to show that if & = k” 4+ 6s > k + v+ 5/2 + 6s, we have

HfH(H L) HfH(H” KLy
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Indeed,
1 s oyeyy = ~sup > <Vgcf<v>k/_2jsaV?;<P<U>2ku_(k/_2js)>L% .
50 IVE@®)* )l 40,6 <1 j=0 ’
= - swp (V4F ) 720, Vi ()F =2%)
S50 IV ((0) 2K =23k | o4 <1 j=0

xv

T

S em SRR,

. X z,v
5o IV () ~29%)] 0.0 <1 7=0

— sup (f, ‘P>H§’%(<v>k/)
el ccoppry <1 ’

< HfH(HM( Ky

where we used ([B.I8]) to obtain the third bound and this concludes the proof of (3.16).
Concerning ([B1I7), it is a more direct consequence of Theorem 1.2 from [22]. Indeed, from
the latter, we have:

1
‘|SA(t)f0||H;19J(<v>k) S WT-HHfOH(H;ﬁJS'O((v)k'))” Vite (07 1]-
Then,
I foll oy = s (o @ uzg )
1ol g 00 oyrry <1
= [ R e € e (€ dn
II@”H;JLS’O((vW,)Sl R3xZ3
< sup HQOHH;J;S’O«v)k/)HfOHH;:}S’O(<v>k’)
ol prgtei0 guprry <t ’ '
< ||f0||H;;J$’O(<v>k’)7
which concludes the proof of ([BI7]). O

We define the convolution of two semigroups &7 * So by
(51*82 /81 Sgt—T)d

and, for p € N*, we define S*P) by S¢P) = &« SEP-1) with &1 = S.
In what follows, in order to be able to apply Theorem 2.13 from [20], we study the
regularization properties of (.A(g,eSB&E)(*p). We recall that the “large” space £ is given

by [B4) and the associated “small” one by E = HEEX“’") (un~1/?). We then prove the
following lemma:

Lemma 3.9. For any A\ < A« and any a € (—min{\g, A},0), where we recall that Ay > 0
is the spectral gap of A on E (see (LI9)) and A, is defined in Lemmas 32 and [F0 there
exists p € N such that

1(As.85,.) ) ()| s,y < C ™, Vit >0,
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Proof. Let us point out the fact that, from Lemma [3.7], the operator As;. provides us all
the regularization that we want in the velocity variable. In particular, when & = H"H! (m)
or & =HIH! (m) with n > £, (n,f) # (0,0) and E = Hﬁv(,u_lp), the result is clear since
we only need to regularize in the velocity variable and thus from Lemmas and [3.7], we
are able to prove that the conclusion of the lemma holds with m = 1.

We now treat the most difficult case & = L2 ,(m) and E = H%w(,u_l/Q). First, we prove
that Lemma [3.8 implies that the semigroup Sp;. has similar regularization properties
as Sp. Indeed, using Duhamel formula, we have:

S8, (1) = SA(t) — (Sa * A5Sp;.)(1)

From this, using that 1/2 4+ s < 1 and thus tl/ﬁ is integrable at 0, we can prove that for
any r € N,

1
(3.19) ”SB(S,E (t)fOHH;j)S’O(@)k) S WT_,_S”JCOHH;;&O((U)k’)a vie (0,1,
To conclude, we use Lemmas B.5] B.6l B.7] combined with (3I9]). Indeed, all this results
allow us to use the criterion given in [25, Lemma 2.4] and gives us the conclusion. O

3.6. Proof of Theorem [3.1] Thanks to the estimates proven in previous section, we
now turn to the proof of Theorem [B.11

Proof of Theorem[31l Let € be one of the admissible space [B.4]) and E = Hg?x(l’n)(u_lp)
so that in all the cases, we have F C & and we already have the decay of the semi-
group Si(t) in E from Theorem We then apply Theorem 2.13 from [20] whose
assumptions are fulfilled thanks to Lemmas 3.7, 3.5, and

4. THE NONLINEAR EQUATION

This section is devoted to the proof of Theorem [Tt we develop a Cauchy theory in a
perturbative framework. Our proof is based on the study of the linearized equation that
we made in previous section. The idea is to prove that, using suitable norms, there exists
a neighborhood of the equilibrium in which the linear part of the equation is dominant
and thus dictates the dynamic. Consequently, taking an initial datum close enough to the
equilibrium, one can construct solutions to the equation and prove exponential stability.

4.1. Functional spaces. In what follows, we use notations of Subsection More
precisely, we define the spaces X, Y, Y and Y’ as in (Z0]) and 7)) with a weight

m(v) = )k, k> 5y/2+ 8+ 24s.

Similarly, for i = 0,...,3, we define the spaces X;, Y;, ¥; and Y/ as in (28] and 271
associated to the weights m;(v) = (v)*. The exponents kg and k; satisfy the following
conditions:

ko:=k—2s and 3v/2+11/2+16s < k; < ko —~ —5/2 — 6s.
Concerning ko and k3, we set:
ko:=ky —2s and ~/243+8s<ks<ks—~vy—5/2—6s.

Remark 4.1. Let us comment briefly those conditions imposed on the weights and explain
the introduction of so many spaces.
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e First, in the proof of Proposition we need to be able to apply the result from
Proposition [[.3 in X1, this explains the introduction of the spaces Xo and X3.

e The last condition ks > v/2 + 3 + 8s comes from the fact that we want to apply
Theorem [31l and Lemma n X3.

e In our argument explained in the two mext subsections, there are two levels in
which we have a loss of weight. The first one comes from the reqularization es-
timate BI6) (mo to my and mo to ms), which explains the conditions: ki <
ko —~v —5/2 —6s and ks < ko —~ —5/2 — 6s. The second one comes from
the nonlinear estimates in Lemma [2Z23 (m to mo and my to ma), which explains
the conditions: ko := k — 2s and ky := ki — 2s (a key element is that we have

1fllye S [ flly and [ flly, S 1 f1lvi)-
e The two first conditions 5v/2 + 8 + 24s < k and 3v/2 4+ 11/2 + 16s < k1 are then
naturally induced.

4.2. Dissipative norm for the whole linearized operator. Before going into the
proof of an a priori estimate which is going to be the cornerstone of our Cauchy theory, we
introduce a norm which is (better than) dissipative for the whole linearized operator A.

Proposition 4.2. Define for any n > 0 and any Ay < Ay (where \y > 0 is the optimal
rate in Theorem [31]) the equivalent norm on X for ph = 0,

IR]1% = nllal% + /0 ISa(r)e*hII%, dr.

Then there is 1 > 0 small enough such that the solution hy = Sa(t)h to the linearized
equation satisﬁes for any t > 0 and some constant K > 0,

S MSAOAI < ~NallSa @RI ~ KUSA@AIE,  ¥h e X, Tigh =0,

Proof. First we remark that the norm ||| - ||z 2 () is equivalent to the norm || - [|33 £2(m)
defined in ([LI5) for any n > 0 and any A < A;. Indeed, using Theorem B.1] we have

MM%WMSWMWWZMM%mm+AH&me%mmm”

<03 12 / C2e 2N B2 o dr < (4 Ol 12

We now compute, denoting hy = Sp(t)h,

1d 1 [0

——hellZs p2m = DA a2y + = | = ISA(T)EN hel 33 12y dT =2 T1 + L.
thH\ t”’Hng( ) (Ahy t>HILU( )T o 0 at” (1) t”Hng( 1)

For I} we write A = A+ B. Using the fact that A is a truncation operator (see for example
Lemma [377]), we first obtain that

(Ahg, hi) g r2my < Cllhal?

H3L2(my)
Moreover, repeating the estimates for the hypod1881pat1V1ty of B in Lemmas and
we easily get, for any Ay < A < A, and some K > 0,

<Bhah>Hng(m)§—)\Hh||3{ng KHhH 35 ((0)1/2m)?

therefore it follows

I < =1 hell3gs 2y — 1K [[ell3, 52 (0)/2m) + 000l 12 (my )
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The second term is computed exactly
L=t [ ﬁns (7 4 t)e 2T h|? dr
2792 ), oA H3 L (m1)

1 > 8 AoT 2 o AoT 2
= 5/0 57 1SA(T + t)e” hHHng(ml)dT—&/o ISA(T)E*T Al 13 () A7

1 T T=too * T

T=

1 o0 T
= —§Hht”3{m(ml) - )\2/0 ISA(T)EThell33 12 (my ) AT

where we have used the semigroup decay from Theorem B.11
Gathering previous estimates and using that A > A9, we obtain

I+ 15 < — )9 {’I’}Hhtng{%L%(m) + / HSA(T)G)\QThtHg-[%L%(ml) dT}
0

1
- nKHhtHiLi’fj((v)“//Zm) + 770||ht||3{ng(m1) - §||ht‘|’?{gL%(m1)
We complete the proof choosing 1 > 0 small enough. (]

4.3. Proof of Theorem [I.1l We consider the Cauchy problem for the perturbation h
defined through h = f — pu. The equation satisfied by h = h(t, x,v) is

{c%h — A+ Q(h, h)
hji=0 = ho = fo — p.

From the conservation laws (see (7)), for all ¢ > 0, Ilph; = 0 since IIphy = 0, more
precisely [rs, s he(@,0) dvde = [1a ps vihe(z,v) dvde = [ gs [v]*he(2,v) dvde = 0 for
j =1,2,3. Note that we also have IIpQ(h¢, hy) = 0.

(4.1)

4.3.1. A priori estimates.

Proposition 4.3. Any solution h = hy to [@I)) satisfies, at least formally, the following
differential inequality: for any Ao < Ay (where Ay > 0 is the optimal rate in Theorem [31]),
there holds

1d
5 g IPl% < =Xallblls = (K = Cliallx) R ]3
for some constants K,C > 0 and where we recall that the norm || - ||| is defined in Propo-

sition [{.9
Proof. We compute the evolution of ||| where h = h; is solution of (&I)):

1d o
§Elllh|||_2x = n(h, Ah)3g3 12 (m) +/0 (Sa(T)eXTh, SA(T)e2T A3y 13 (my) AT
+ 77<h7 Q(h7 h)>H§L%(m) + / <SA(T)6>\2Th7 SA(T)E)QTQ(}% h)>7~l§L%(m1) dr
0
=L+ 1+ I3+ 1.
For the linear part I + Is, we already have from Proposition that, for any Ay < Aq,

L+ I < =Xo|Rll5 — KAl



INHOMOGENEOUS BOLTZMANN EQUATION WITHOUT CUT-OFF 45

We now deal with the nonlinear part, using first Lemma
I ${Q(h, h), h)x < IRl x 1B < Al 1215

For the last term I, we use the fact that Ilyf; = 0 and IoQ(ft, fr) = 0 for all ¢ > 0,
together with the estimate (B.I0G) from Lemma More precisely, if TIph = 0, using
Theorem [B.I]in X7, we have:

V20, [ISa(hlx, S e M |hllx,.

Combined with the estimate (3.16]) from Lemma B8, we deduce that for IIph = 0,

e—)\lt
V>0, [ISa®Ohlx, < —|lhlly.
a0, S il

It implies
/0 OO<SA<T>eA2Tf, SA(T)eTQ(f, f)) x, dr
SAH&MWTMm%MW@mﬁMMT

e—()\l—)\z)r

< , = (M —=A2)T -
S QU Dl [ e e .

S xR, Hllyy-

To conclude, we use Lemma

I S 1l £ 1o 1l < MBI DB

We prove now an a priori estimate on the difference of two solutions to (41]).

Proposition 4.4. Consider two solutions g and h to (&) associated to initial data go
and hg, respectively. Then, at least formally, the difference g — h satisfies the following
differential inequality

1d
5 llg = Rll%, < =Kllg =i, + C(llgllx, + 1kllx,) llg = RlR;

2dt
+ C(lIhlly, +llglly) llg = hlllx, llg = Allvi,
for some constants K,C > 0.

Proof. We write the equation safisfied by g — h:

di(g—h)=MAg—h)+Q(h,g—h)+Q(g — h,g),
(9 —h)ji=o0 = go — ho-
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We compute

1d

- — hlll?
5 llge = hell,

— (g — 1) Ao — W)y, + /0 T (Sa (M€ (g — ), Sn (1) Ag — h))x, dr
(g — 1), Qg — h))x, + /0 T (SA (Mg — ). SA ()T Qg — h))x, dr

+n(lg—h),Qg —h,9))x, + /OOO<3A(T)6*”(9 —h), SA(M)eTQ(g — I, 9)) xy dT
=T+ T+ T3+ Ty +T5 + Tg.
Arguing as in Proposition [£.3] we easily obtain,
Ty + T < —K|g —hlf3;,

and also
Ts+ Ty S Ibllx, llg — RIS, + IRlva llg = Rlllx, llg = Blly,-

Moreover, for the last part 15+ 71§, arguing as in Proposition and using Lemma 2.3} (7),

we get
Ts + 15 S lllg — Al x: lglly, lg = Rllvi S llg = Plilx, llglly lg — Ally:
which completes the proof.

4.3.2. End of the proof. The end of the proof of Theorem [L.Tlis classical and we do not enter
into details here. It follows a standard argument by introducing an iterative scheme whose
convergence and stability is shown thanks to Propositions [4.3] and 1.4l The framework
being exactly the same, we refer to Subsections 3.4.2. and 3.4.3 from [I3] in which a more

precise proof is given.
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