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CAUCHY THEORY AND EXPONENTIAL STABILITY FOR

INHOMOGENEOUS BOLTZMANN EQUATION FOR HARD

POTENTIALS WITHOUT CUT-OFF

FRÉDÉRIC HÉRAU, DANIELA TONON, AND ISABELLE TRISTANI

Abstract. In this paper, we investigate both the problems of Cauchy theory and ex-
ponential stability for the inhomogeneous Boltzmann equation without angular cut-off.
We only deal with the physical case of hard potentials type interactions (with a moder-
ate angular singularity). We prove a result of existence and uniqueness of solutions in
a close-to-equilibrium regime for this equation in weighted Sobolev spaces with a poly-
nomial weight, contrary to previous works on the subject, all developed with a weight
prescribed by the equilibrium. It is the first result in this more physically relevant frame-
work for this equation. Moreover, we prove an exponential stability for such a solution,
with a rate as close as we want to the optimal rate given by the semigroup decay of the
linearized equation.
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equation; 47H20 Semigroups of nonlinear operators; 35B40 Asymptotic behavior of solu-
tions.
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1. Introduction

1.1. The model. In the present paper, we investigate the Cauchy theory and the asymp-
totic behavior of solutions to the spatially inhomogeneous Boltzmann equation without
angular cut-off, that is, for long-range interactions. Previous works have shown that there

exist solutions in a close-to-equilibrium regime but in spaces of type Hq(e|v|
2/2) which are

very restrictive. Here, we are interested in improving this result in the following sense:
we enlarge the space in which we develop a Cauchy theory in several ways, we do not
require any assumption on the derivatives in velocity and more importantly, our weight
is polynomial. We thus only require a condition of finite moments on our data, which is
more physically relevant. Moreover, we jointly obtain a convergence to equilibrium for the
solutions that we construct with an exponential and explicit rate.

We consider particles described by their space inhomogeneous distribution density f =
f(t, x, v) with t ∈ R+ the time, x ∈ T3 the position and v ∈ R3 the velocity. We hence
study the so-called spatially inhomogeneous Boltzmann equation:

(1.1) ∂tf + v · ∇xf = Q(f, f).

The Boltzmann collision operator is defined as

Q(g, f) :=

∫

R3×S2
B(v − v∗, σ)

[
g′∗f

′ − g∗f
]
dσ dv∗.

Here and below, we are using the shorthand notations f = f(v), g∗ = g(v∗), f ′ = f(v′)
and g′∗ = g(v′∗). In this expression, v, v∗ and v′, v′∗ are the velocities of a pair of particles
after and before collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical law of elastic collisions):

v + v∗ = v′ + v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2,
so that the pre-collisional velocities are given by:

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S

2.

The Boltzmann collision kernel B(v− v∗, σ) only depends on the relative velocity |v− v∗|
and on the deviation angle θ through cos θ = 〈κ, σ〉 where κ = (v − v∗)/|v − v∗| and 〈·, ·〉
is the usual scalar product in R3. By a symmetry argument, one can always reduce to the
case where B(v − v∗, σ) is supported on 〈κ, σ〉 ≥ 0 i.e. 0 ≤ θ ≤ π/2. So, without loss of
generality, we make this assumption.

In this paper, we shall be concerned with the case when the kernel B satisfies the
following conditions:

• it takes product form in its arguments as

(1.2) B(v − v∗, σ) = Φ(|v − v∗|) b(cos θ);
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• the angular function b is locally smooth, and has a nonintegrable singularity for
θ → 0: it satisfies for some cb > 0 and s ∈ (0, 1/2) (moderate angular singularity)

(1.3) ∀ θ ∈ (0, π/2],
cb

θ1+2s
≤ sin θ b(cos θ) ≤ 1

cb θ1+2s
;

• the kinetic factor Φ satisfies

(1.4) Φ(|v − v∗|) = |v − v∗|γ with γ ∈ (0, 1),

this assumption could be relaxed to assuming only that Φ satisfies Φ(·) = CΦ | · |γ
for some CΦ > 0.

Our main physical motivation comes from particles interacting according to a repulsive
potential of the form

(1.5) φ(r) = r−(p−1), p ∈ (2,+∞).

The assumptions made on B throughout the paper include the case of potentials of the
form (1.5) with p > 5. Indeed, for repulsive potentials of the form (1.5), the collision kernel
cannot be computed explicitly but Maxwell [24] has shown that the collision kernel can be
computed in terms of the interaction potential φ. More precisely, it satisfies the previous
conditions (1.2), (1.3) and (1.4) in dimension 3 (see [14, 15, 33]) with s := 1

p−1 ∈ (0, 1)

and γ := p−5
p−1 ∈ (−3, 1).

One traditionally calls hard potentials the case p > 5 (for which 0 < γ < 1), Maxwell
molecules the case p = 5 (for which γ = 0) and soft potentials the case 2 < p < 5 (for
which −3 < γ < 0). We can hence deduce that our assumptions made on B include the
case of hard potentials.

Let us give a weak formulation of the collision operator Q. For any suitable test function
ϕ = ϕ(v), we have:
(1.6)∫

R3

Q(f, f)(v)ϕ(v) dv =
1

4

∫

R3×R3×S2
B(v− v∗, σ) [f ′∗f ′− f∗f ] (ϕ+ϕ∗−ϕ′−ϕ′

∗) dσ dv∗ dv.

From this formula, we can deduce some features of equation (1.1): it preserves mass,
momentum and energy. Indeed, at least formally, we have:∫

R3

Q(f, f)(v)ϕ(v) dv = 0 for ϕ(v) = 1, v, |v|2;

from which we deduce that a solution ft to equation (1.1) is conservative, meaning that
(1.7)

∀ t ≥ 0,

∫

T3×R3

f(t, x, v)ϕ(v) dv dx =

∫

T3×R3

f0(x, v)ϕ(v) dv dx for ϕ(v) = 1, v, |v|2.

We introduce the entropy H(f) =
∫
T3×R3 f log(f) dv dx and the entropy production

D(f) defined through:

(1.8)

D(f) := − d

dt
H(f)

=
1

4

∫

T3×R3×R3×S2
B(v − v∗, σ) (f

′f ′∗ − ff∗) log
f ′f ′∗
ff∗

dσ dv∗ dv dx.

Boltzmann’s H theorem asserts that

(1.9)
d

dt
H(f) = −D(f) ≤ 0



4 FRÉDÉRIC HÉRAU, DANIELA TONON, AND ISABELLE TRISTANI

and states that any equilibrium (i.e. any distribution which maximizes the entropy) is a
Maxwellian distribution. Moreover, it is known that global equilibria of (1.1) are global
Maxwellian distributions that are independent of time t and position x. In this paper, we
shall only consider the case of an initial datum satisfying

(1.10)

∫

T3×R3

f0 dv dx = 1,

∫

T3×R3

f0 v dv dx = 0,

∫

T3×R3

f0 |v|2dv dx = 3,

and therefore consider µ the Maxwellian with same mass, momentum and energy as f0:

µ(v) = (2π)−3/2e−|v|2/2.

1.2. Function spaces. Through all the paper, we shall consider function of two variables
f = f(x, v) with x ∈ T3 and v ∈ R3. Let ν = ν(v) be a positive Borel weight function and
1 ≤ p ≤ ∞. We define the space Lpx,v(ν) as the Lebesgue space associated to the norm,
for f = f(x, v),

‖f‖Lp
x,v(ν) :=

∥∥‖f‖Lp
v(ν)

∥∥
Lp
x
:=
∥∥‖ν f‖Lp

v

∥∥
Lp
x

which writes if p <∞:

‖f‖Lp
x,v(ν) =

(∫

T3
x

‖f(x, ·)‖Lp
v(ν) dx

)1/p

=

(∫

T3
x

∫

R3
v

|f(x, v)|p ν(v)p dv dx
)1/p

.

We define the high-order Sobolev spaces Hn
xH

ℓ
v(ν), for n, ℓ ∈ N:

(1.11) ‖f‖Hn
xH

ℓ
v(ν)

:=
∑

0≤|α|≤ℓ, 0≤|β|≤n, |α|+|β|≤max(ℓ,n)

‖∂αv ∂βx (fν)‖L2
x,v
.

This definition reduces to the usual weighted Sobolev space Hℓ
x,v(ν) when ℓ = n. We also

introduce the fractional Sobolev space Hr,ς
x,v(ν) for r, ς ∈ R+ associated to the norm:

(1.12) ‖f‖2Hr,ς
x,v(ν)

:= ‖fν‖2Hr,ς
x,v

=

∫

Z3×R3

(1 + |ξ|2)r (1 + |η|2)ς |f̂ ν(ξ, η)|2 dη dξ

where the hat corresponds to the Fourier transform in both x (with corresponding variable
ξ ∈ Z3) and v (with corresponding variable η ∈ R3). When r ∈ N, we can also define the
space Hr,ς

x,v(ν) through the norm:

(1.13) ‖f‖2Hr,ς
x,v(ν)

:=
∑

0≤j≤r

∫

T3
x

‖∇j
xf‖2Hς

v(ν)
=
∑

0≤j≤r
‖∇j

xf‖2L2
xH

ς
v(ν)

.

In this case, the norms given by (1.12) and (1.13) are equivalent. We won’t make any
difference in the notation and will use one norm or the other at our convenience. It won’t
have any impact on our estimates since it will only add multiplicative universal constants.
Finally, denoting for ς ∈ R+,

‖f‖2
Ḣς

v(ν)
:= ‖fν‖2

Ḣς
v
=

∫

R3

|η|2ς |f̂ ν(η)|2 dη,
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we introduce the space Ḣn,ς
x,v (ν) for (n, ς) ∈ N× R+ defined through the norm:

(1.14) ‖f‖2
Ḣn,ς

x,v (ν)
:=

∑

0≤j≤n

∫

T3
x

‖∇j
xf‖2Ḣς

v(ν)
=
∑

0≤j≤n
‖∇j

xf‖2L2
xḢ

ς
v(ν)

.

Notice also that in the case ς = 0, the spaces Hn
xL

2
v(ν) and H

n,0
x,v (ν) associated respectively

to the norms given by (1.11) and (1.13) are the same.
Finally, we introduce some “twisted” Sobolev spaces (useful for the development of our

Cauchy theory in Section 4), we denote them Hn,ς
x,v(ν) for (n, ς) ∈ N × R+ and they are

associated to the norm:

(1.15) ‖f‖2Hn,ς
x,v(ν)

:=
∑

0≤j≤n

∫

T3
x

‖∇j
xf‖2Hς

v(〈v〉−2jsν) =
∑

0≤j≤n
‖∇j

xf‖2L2
xH

ς
v(〈v〉−2jsν)

where s is the angular singularity of the Boltzmann kernel introduced in (1.3) and 〈v〉 =
(1 + |v|2)1/2. For the case ς = 0, since the notation is consistent, we will use the notation

Hn
xL

2
v(ν) or Hn,0

x,v(ν) indifferently.

1.3. Notations. Let X,Y be Banach spaces and consider a linear operator Λ : X → X.
When defined, we shall denote by SΛ(t) = etΛ the semigroup generated by Λ. Moreover we
denote by B(X,Y ) the space of bounded linear operators from X to Y and by ‖ · ‖B(X,Y )

its norm operator, with the usual simplification B(X) = B(X,X).

For simplicity of notations, hereafter, we denote 〈v〉 = (1 + |v|2)1/2; a ≈ b means that
there exist constants c1, c2 > 0 such that c1b ≤ a ≤ c2b; we shall use the same notation C
for positive constants that may change from line to line or abbreviate “ ≤ C ” to “ . ”,
where C is a positive constant depending only on fixed number.

In what follows, we denote m(v) := 〈v〉k with k > 0, the range of admissible k will be
specified throughout the paper.

1.4. Main results and known results.

1.4.1. Cauchy theory and convergence to equilibrium. We state now the main result on
the fully nonlinear problem (1.1). We denote X := H3

xL
2
v(m) and Y := H3,s

x,v(〈v〉γ/2m))
(see (1.15) for the definition of those spaces).

Theorem 1.1. Consider m(v) = 〈v〉k with k > 5γ/2 + 8 + 24s. We assume that f0
has same mass, momentum and energy as µ (i.e. satisfies (1.10)). There is a constant
ε0 > 0 such that if ‖f0 − µ‖X ≤ ε0, then there exists a unique global weak solution f to
the Boltzmann equation (1.1), which satisfies, for some constant C > 0,

‖f − µ‖L∞([0,∞);X) + ‖f − µ‖L2([0,∞);Y ) ≤ Cε0.

Moreover, this solution satisfies the following estimate: for any 0 < λ2 < λ1 there exists
C > 0 such that

∀ t ≥ 0, ‖f(t)− µ‖X ≤ C e−λ2t ‖f0 − µ‖X ,
where λ1 > 0 is the optimal rate given by the semigroup decay of the associated linearized
operator in Theorem 3.1.

We refer to Remark 4.1 in which the imposed condition on the power k of our weight is
explained. Let us now comment our result and give an overview on the previous works on
the Cauchy theory for the inhomogeneous Boltzmann equation. For general large data, we
refer to the paper of DiPerna-Lions [18] for global existence of the so-called renormalized
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solutions in the case of the Boltzmann equation with cut-off. This notion of solution has
been extended to the case of long-range interactions by Alexandre-Villani [8] where they
construct global renormalized solutions with a defect measure. We also mention the work
of Desvillettes-Villani [17] that proves the convergence to equilibrium of a priori smooth
solutions for both Boltzmann and Landau equations for general initial data.

In a close-to-equilibrium framework, Gressman and Strain [19] in parallel with Alexan-

dre et al. [6] have developed a Cauchy theory in spaces of type Hn
xH

ℓ
v(µ

−1/2). One of
the famous difficulty of the Boltzmann equation without cut-off is to well understand co-
ercivity estimates. In both papers [6] and [19], the gain induced is seen and understood
through a non-isotropic norm. Our strategy is a bit different since we exploit the fact
that the linearized Boltzmann operator can be seen as a pseudo-differential operator in
order to understand the gain induced by the linearized operator. It allows us to obtain
regularization estimates (quantified in time) on the semigroup associated to the linearized
operator. We refer to the paper of the same authors [22] for more details on the subject.
To end this brief review, we also refer to a series of papers by Alexandre et al. [3, 4, 5, 6, 7]
in which the Boltzmann equation without cut-off is studied in various aspects (different
type of collision kernels, Cauchy theory in exponentially weighted spaces, regularity of the
solutions etc...).

Let us underline the fact that Theorem 1.1 largely improves previous results on the
Cauchy theory associated to the Boltzmann equation without cut-off for hard potentials
in a perturbative setting. Indeed, we have enlarged the space in which the Cauchy theory
has been developed in the sense that the weight of our space is much less restrictive (it is
polynomial instead of the inverse Maxwellian equilibrium) and we also require few assump-
tions on the derivatives, in particular no derivatives in the velocity variable. However, we
need three derivatives in the space variable (Gressman and Strain only require two deriva-
tives in x in [19]): this is the counterpart of the gain in weight we have obtained. Indeed,
our framework is less favorable and needs more attention due to the lack of symmetry
of the operator in our spaces to obtain nonlinear estimates on the Boltzmann collision
operator. And thus, to close our estimates, we require regularity on three derivatives in x.

Our strategy is based on the study of the linearized equation. And then, we go back
to the fully nonlinear problem. This is a standard strategy to develop a Cauchy theory
in a close-to-equilibrium regime. However, we point out that our study of the nonlinear
problem is very tricky. Indeed, usually (for example in the case of the non-homogeneous
Boltzmann equation for hard spheres in [20]), the gain induced by the linear part of the
equation is enough to directly control the loss due to the nonlinear part of the equation so
that the linear part is dominant and thus dictates the dynamics of the equation. In our
case, it is more difficult because the gain induced by the linear part is not strong enough
and it is not possible to conclude using only natural estimates on the Boltzmann collision
operator (this fact was for example pointed out by Mouhot and Neumann in [29]). As
a consequence, we establish some new very accurate estimates on the Boltzmann colli-
sion operator (see Lemma 2.3). We also have to study very carefully the regularization
properties of the semigroup associated to the linearized operator: to this end, we use re-
sults from the same authors [22] in which the linearized Boltzmann operator is seen as a
pseudo-differential operator, following the framework introduced in [2] by Alexandre, Li
and the first author. Also, in the spirit of what was done in [13] by Carrapatoso, Wu and
the third author, we work in Sobolev spaces in which the weights depend on the order of
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the derivative in the space variable. Those key elements allow us to close our estimates
and thus, to develop our Cauchy theory in our “twisted” Sobolev spaces.

1.4.2. The linearized equation. The linearized operator around equilibrium is defined at
first order through

Λh := Q(µ, h) +Q(h, µ)− v · ∇xh.

We study spectral properties of the linearized operator Λ in various weighted Sobolev
spaces of type Hn

xH
ℓ
v(〈v〉k) up to L2

x,v(〈v〉k) for k large enough. It is important to high-
light the fact that, in order to take advantage of symmetry properties, most of the previous
studies have been made in Sobolev weighted spaces of type Hq

x,v(µ−1/2). We largely im-
prove theses previous results in the sense that we are able to get similar spectral estimates
in larger Sobolev spaces, with a polynomial weight and with less assumptions on the
derivatives. Here is a rough version of the main result (Theorem 3.1) that we obtain on
the linearized operator Λ:

Theorem 1.2. Let E be one of the admissible spaces defined in (3.4). Then, there exist
explicit constants λ1 > 0 and C ≥ 1 such that

∀ t ≥ 0, ∀h ∈ E , ‖SΛ(t)h−Π0h‖E ≤ C e−λ1t ‖h−Π0h‖E ,
where SΛ(t) is the semigroup associated to Λ and Π0 the projector onto the null space of Λ
defined by (1.18).

As mentioned above, the operator Λ (and its homogeneous version Lh := Q(µ, h) +
Q(h, µ)) has already been widely studied. Let us first briefly review the existing results
concerning spectral gap estimates for the homogeneous case. Pao [31] studied spectral
properties of the linearized operator L for hard potentials by non-constructive and very
technical means. This article was reviewed by Klaus [23]. Then, Baranger and Mouhot
gave the first explicit estimate on this spectral gap in [9] for hard potentials (γ > 0). If
we denote D the Dirichlet form associated to −L:

D(h) :=

∫

R3

(−Lh)hµ−1,

and N (L)⊥ the orthogonal of the null space of L, N (L) which is given by

N (L) = Span{µ, v1µ, v2µ, v3µ, |v|2µ},
the Dirichlet form D satisfies

(1.16) ∀h ∈ N (L)⊥, D(h) ≥ λ0 ‖h‖2L2(µ−1/2)
,

for some constructive constant λ0 > 0. This result was then improved by Mouhot [27] and
later by Mouhot and Strain [30]. In the last paper, it was conjectured that a spectral gap
exists if and only if γ+2s ≥ 0. This conjecture was finally proven by Gressman and Strain
in [19]. Finally, let us point out that the analysis that we carry on can be seen as the
sequel of the one handled in [32] by the third author which focuses on the homogeneous
linearized operator L. We also improve it in several aspects: we are able to deal with
the spatial dependency and we are able to do computations in L2 (only the L1-case was
treated in the latter).

Concerning the non-homogeneous case, we state here a result coming from Mouhot
and Neumann [29] (which takes advantage of the results proven in [9] by Baranger and

Mouhot), it gives us a spectral gap estimate inHq
x,v(µ−1/2), q ∈ N∗, thanks to hypocoerciv-

ity methods. Let us underline the fact that it provides us the existence of spectral gap and
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an estimate on the semigroup decay associated to Λ in the “small” space E = Hq
x,v(µ−1/2),

which is a crucial point in view of applying the enlargement theorem of [20]. It is also
important to precise that Mouhot and Neumann [29] only obtain a result on the linearized
operator, they are not able to go back to the nonlinear problem.

Theorem 1.3 ([29]). Consider E := Hq
x,v(µ−1/2) with q ∈ N∗. Then, there exists a

constructive constant λ0 > 0 (spectral gap) such that Λ satisfies on E:

(i) the spectrum Σ(Λ) ⊂ {z ∈ C : ℜe z ≤ −λ0} ∪ {0};
(ii) the null space N(Λ) is given by

(1.17) N(Λ) = Span{µ, v1µ, v2µ, v3µ, |v|2µ},
and the projection Π0 onto N(Λ) by

(1.18)

Π0h =

(∫

T3×R3

hdv dx

)
µ+

3∑

i=1

(∫

T3×R3

vihdv dx

)
viµ

(∫

T3×R3

|v|2 − 3

6
hdv dx

)
(|v|2 − 3)

6
µ;

(iii) Λ is the generator of a strongly continuous semigroup SΛ(t) that satisfies

(1.19) ∀ t ≥ 0, ∀h ∈ E, ‖SΛ(t)h−Π0h‖E ≤ e−λ0t‖h−Π0h‖E .

To prove Theorem 1.2, our strategy follows the one initiated by Mouhot in [28] for
the homogeneous Boltzmann equation for hard potentials with cut-off. This argument
has then been developed and extended in an abstract setting by Gualdani, Mischler and
Mouhot [20], and Mischler and Mouhot [25]. Let us describe in more details this strategy.
We want to apply the abstract theorem of enlargement of the space of semigroup decay
from [20, 25] to our linearized operator Λ. We shall deduce the spectral/semigroup esti-
mates of Theorem 1.2 on “large spaces” E using the already known spectral gap estimates
for Λ on Hℓ

x,v(µ
−1/2), for ℓ ≥ 1, described in Theorem 1.3. Roughly speaking, to do

that, we have to find a splitting of Λ into two operators Λ = A + B which satisfy some
properties. The first part A has to be bounded, the second one B has to have some dissi-
pativity properties, and also the operator (ASB(t)) is required to have some regularization
properties.

We end this introduction by describing the organization of the paper. In Section 2, we
prove nonlinear estimates on the Boltzmann collision operator. In Section 3 we consider
the linearized equation and prove a precise version of Theorem 1.2. In Section 4, we come
back to the nonlinear equation and prove our main result Theorem 1.1.

Acknowledgments. The third author has been partially supported by the Fondation
Mathématique Jacques Hadamard. This research has been supported by the École Normale
Supérieure through the project Actions incitatives Analyse de solutions d’équations de
la théorie cinétique des gaz. The first author thanks the Centre Henri Lebesgue ANR-
11-LABX-0020-01 for its support and the third author thanks the ANR EFI: ANR-17-
CE40-0030. The authors thank Kleber Carrapatoso and Stéphane Mischler for fruitful
discussions.
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2. Preliminaries on the Boltzmann collision operator

In this part, we give estimates on the trilinear form 〈Q(g, h), f〉 in our physical frame-
work (meaning that the collision kernel B satisfies conditions (1.2), (1.3), (1.4)). We
start by recalling some homogeneous estimates and then establish some new estimates in
weighted Sobolev (or Lebesgue) non homogeneous spaces. These new estimates will be
used both in the linear (Section 3) and nonlinear (Section 4) studies.

For sake of clarity, we recall that m(v) = 〈v〉k with k > 0 and that we will specify the
range of admissible k in each result.

2.1. Homogeneous estimates.

Lemma 2.1 ([16, Theorem 1.1]). For smooth functions g, h, f , one has:

|〈Q(f, g), h〉L2
v
| . ‖f‖L1

v(〈v〉γ+2s) ‖g‖Hs
v (〈v〉N1 ) ‖h‖Hs

v (〈v〉N2 )

with N1, N2 ≥ 0 and N1 +N2 = γ + 2s.

The goal of what follows is to extend this type of estimates to weighted Lebesgue spaces.
Lemma 2.2 is a “weighted version” of Lemma 2.1.

Lemma 2.2. Assume k > γ/2 + 3 + 2s.

(i) For any ℓ > γ + 1 + 3/2, there holds

(2.1)
〈Q(f, g), h〉L2

v (m) . ‖f‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2+2sm) ‖h‖Hs
v (〈v〉γ/2m)

+ ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖h‖L2
v(〈v〉γ/2m).

(ii) For any ℓ > max(2− γ, γ + 1) + 3/2, there holds
(2.2)
〈Q(f, g), g〉L2

v (m) . ‖f‖L2
v(〈v〉ℓ) ‖g‖

2
L2
v(〈v〉γ/2m)

+ ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖g‖L2
v(〈v〉γ/2m).

(iii) For any ℓ > max(2− γ, γ + 1) + 3/2, there holds

〈Q(f, f), f〉L2
v(m) . ‖f‖L2

v(〈v〉ℓ) ‖f‖
2
L2
v(〈v〉γ/2m)

.

Proof of (i). We write

〈Q(f, g), h〉L2
v (m) =

∫

R3×R3×S2
B(v − v∗, σ) (f

′
∗g

′ − f∗g)hm
2 dσ dv∗ dv

=

∫

R3×R3×S2
B(v − v∗, σ) (f

′
∗g

′m′ − f∗g m)hmdσ dv∗ dv

+

∫

R3×R3×S2
B(v − v∗, σ) f

′
∗g

′hm (m−m′) dσ dv∗ dv

=: I1 + I2.

We deal with the first term I1 using Lemma 2.1:

I1 = 〈Q(f, gm), hm〉L2
v
. ‖f‖L1

v(〈v〉γ+2s) ‖g‖Hs
v (〈v〉γ/2+2sm) ‖h‖Hs

v (〈v〉γ/2m)

. ‖f‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2+2sm) ‖h‖Hs
v (〈v〉γ/2m)

because ℓ > γ +2s+3/2. To deal with I2, we use the following estimate on |m′ −m| (see
the proof in [3, Lemma 2.3]):

(2.3) |m′ −m| . sin(θ/2)
(
m′ + 〈v′∗〉 〈v′〉k−1 + sink−1(θ/2)m′

∗
)
.
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Notice that |v − v∗| = |v′ − v′∗| . |v − v′∗| which implies

(2.4) |v − v∗|γ . |v′ − v′∗|γ/2 |v − v′∗|γ/2 . 〈v〉γ/2 〈v′〉γ/2 〈v′∗〉γ .

Also, we have,

(2.5) |v − v∗|γ . |v′ − v|γ/2 sin−γ/2(θ/2) |v′ − v′∗|γ/2 . sin−γ/2(θ/2) 〈v′〉γ 〈v〉γ/2 〈v′∗〉γ/2.

This bound induces the appearance of a singularity in θ. However, we notice that in the
third term of the estimate (2.3) we have a gain in the power of sin(θ/2) depending on the
value of k, the power of our polynomial weight. As a consequence, if k is large enough, we
can keep a power of sin(θ/2) that is enough to remove the singularity of b(cos θ) at θ = 0.
Consequently, we have:

I2 .

∫

R3×R3×S2
b(cos θ) sin(θ/2) |v − v∗|γ |f ′∗||g′||h|m

(
m′ + 〈v′∗〉 〈v′〉k−1 + sink−1(θ/2)m′

∗
)
dσ dv∗ dv

=: I21 + I22 + I23.

The two first terms I21 and I22 are treated in the same way using the estimate (2.4), we
obtain:

I21 + I22 .

∫

R3×R3×S2
b(cos θ) sin(θ/2) |f ′∗|〈v′∗〉γ+1 |g′|m′〈v′〉γ/2 |h|m〈v〉γ/2 dσ dv∗ dv

.

(∫

R3×R3×S2
b(cos θ) sin(θ/2) |f ′|〈v′〉γ+1 (g′∗)

2(m′
∗)

2〈v′∗〉γ dσ dv∗ dv
)1/2

×
(∫

R3×R3×S2
b(cos θ) sin(θ/2) |f ′|〈v′〉γ+1 h2∗m

2
∗〈v∗〉γ dσ dv∗ dv

)1/2

=: J1 × J2.

The term J1 is easily handled just using the pre-post collisional change of variable:

J2
1 . ‖f‖L1

v(〈v〉γ+1) ‖g‖2L2
v(〈v〉γ/2m) . ‖f‖L2

v(〈v〉ℓ) ‖g‖
2
L2
v(〈v〉γ/2m)

since ℓ > γ + 1 + 3/2. To deal with J2, we use the regular change of variable v → v′

meaning that for each σ, with v∗ still fixed, we perform the change of variables v → v′.
This change of variables is well-defined on the set {cos θ > 0}. Its Jacobian determinant
is

∣∣∣∣
dv′

dv

∣∣∣∣ =
1

8
(1 + κ · σ) = (κ′ · σ)2

4
,

where κ := (v−v∗)/|v−v∗| and κ′ := (v′−v∗)/|v′−v∗|. We have κ′ ·σ = cos(θ/2) ≥ 1/
√
2.

The inverse transformation v′ → ψσ(v
′) = v is then defined accordingly. Using the fact

that

cos θ = κ · σ = 2(κ′ · σ)2 − 1 and sin(θ/2) =
√

1− cos2(θ/2) =
√

1− (κ′ · σ)2,
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we obtain
∫

R3×S2
b(cos θ) sin(θ/2) |f ′|〈v′〉γ+1 dσ dv

=

∫

R3×S2
b(2(κ′ · σ)2 − 1)

√
1− (κ′ · σ)2 |f ′|〈v′〉γ+1 dσ dv

=

∫

κ′·σ≥1/
√
2
b(2(κ′ · σ)2 − 1)

√
1− (κ′ · σ)2 |f ′|〈v′〉γ+1 dσ

4 dv′

(κ′ · σ)2

.

∫

S2
b(cos 2θ) sin θ dσ

∫

R3

|f |〈v〉γ+1 dv.

We deduce:

J2
2 . ‖f‖L1

v(〈v〉γ+1) ‖h‖2L2
v(〈v〉γ/2m)

. ‖f‖L2
v(〈v〉ℓ) ‖h‖

2
L2
v(〈v〉γ/2m)

.

In summary, gathering the three previous estimates, we have

I21 + I22 . ‖f‖L2
v(〈v〉ℓ) ‖g‖L2

v(〈v〉γ/2m) ‖h‖L2
v(〈v〉γ/2m).

Concerning I23, we take advantage of the bound given by (2.5):

I23 .

∫

R3×R3×S2
b(cos θ) sink−γ/2(θ/2) |f ′∗|m′

∗〈v′∗〉γ/2 |g′|〈v′〉γ |h|m 〈v〉γ/2 dσ dv∗ dv

.

(∫

R3×R3×S2
b(cos θ) sink−γ/2(θ/2) |g′|〈v′〉γ |f ′∗|2m′

∗
2〈v′∗〉γ dσ dv∗ dv

)1/2

×
(∫

R3×R3×S2
b(cos θ) sink−γ/2(θ/2) |g′|〈v′〉γ h2m2 〈v〉γ dσ dv∗ dv

)1/2

=: T1 × T2.

As far as T1 is concerned, a simple pre-post collisional change of variable allows us to get

T 2
1 . ‖g‖L1

v(〈v〉γ ) ‖f‖
2
L2
v(〈v〉γ/2m)

. ‖g‖L2
v(〈v〉ℓ) ‖f‖

2
L2
v(〈v〉γ/2m)

since ℓ > γ + 3/2. The second term requires more attention since we have to perform a
singular change of variable v∗ → v′ showed for example in the proof of Lemma 2.4 in [3].
Recall that the Jacobian of this transform is

∣∣∣∣
dv∗
dv′

∣∣∣∣ =
4

sin2(θ/2)
≤ 16 θ−2, θ ∈ (0, π/2],

therefore, this change of variable gives rise to an additional singularity in θ around 0.
However, we can take advantage of the fact that we have a power k in sin(θ/2), indeed
taking k large enough allows us to control this singularity. Notice that θ is no longer the
good polar angle to consider, we set ψ = (π − θ)/2 for ψ ∈ [π/4, π/2] so that

cosψ =
v′ − v

|v′ − v| · σ and dσ = sinψ dψ dφ.

This measure does not cancel any of the singularity of b(cos θ) unlike in the case of the
usual polar coordinates but it will be counterbalanced taking k large enough. We then
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have:∫

R3×S2
b(cos θ) sink−γ/2(θ/2) |g′|〈v′〉γ dσ dv∗ .

∫

R3×S2
(π − 2ψ)k−γ/2−4−2s |g′|〈v′〉γ dσ dv′

.

∫ π/2

π/4
(π − 2ψ)k−γ/2−4−2s sinψ dψ

∫

R3

|g| 〈v〉γ dv .

∫

R3

|g| 〈v〉γ

since k > γ/2 + 3 + 2s. We deduce that

T 2
2 . ‖g‖L1

v(〈v〉γ ) ‖h‖
2
L2
v(〈v〉γ/2m)

. ‖g‖L2
v(〈v〉ℓ) ‖h‖

2
L2
v(〈v〉γ/2m)

and thus

I23 . ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖h‖L2
v(〈v〉γ/2m),

which concludes the proof of estimate (2.1).
Proof of (ii). The first part of the estimate comes from the proof of [3, Theorem 2.6].
And the second one is done in the first step of the proof, it corresponds to the term I2
replacing h by g, we conclude that (2.2) is satisfied.
Proof of (iii). The result is immediately obtained taking g = f in (2.2). �

2.2. Non homogeneous estimates. We now prove non homogeneous estimates on the
trilinear form 〈Q(f, g), h〉 in order to get some accurate estimates on the terms coming
from the nonlinear part of the equation. Basically, we give a non homogeneous version of
Lemma 2.2. We introduce the spaces

(2.6)





X := H3
xL

2
v(m)

Y := H3,s
x,v(〈v〉γ/2m)

Ȳ := H3,s
x,v(〈v〉γ/2+2sm)

that are defined through their norms by (1.15). We also introduce Y ′ the dual space of Y
with respect to the pivot space X, meaning that the Y ′-norm is defined through:

(2.7) ‖f‖Y ′ := sup
‖φ‖Y ≤1

〈f, φ〉X = sup
‖φ‖Y ≤1

∑

0≤j≤3

〈∇j
xf,∇j

xφ〉L2
x,v(〈v〉−2jsm).

Lemma 2.3. The following estimates hold:

(i) For k > γ/2 + 3 + 8s,

〈Q(f, g), h〉X . ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y ;
therefore,

‖Q(f, g)‖Y ′ . ‖f‖X ‖g‖Ȳ + ‖f‖Y ‖g‖X .
(ii) For k > max(1/2 − γ, γ/2) + 3 + 8s,

〈Q(f, g), g〉X . ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .
(iii) For k > max(1/2 − γ, γ/2) + 3 + 8s,

〈Q(f, f), f〉X . ‖f‖X ‖f‖2Y .
Proof of (i). We write

〈Q(f, g), h〉H3
xL

2
v(m) = 〈Q(f, g), h〉L2

x,v(m) +
∑

1≤|β|≤3

〈∂βxQ(f, g), ∂βxh〉L2
x,v(m〈v〉−2|β|s),
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and

∂βxQ(f, g) =
∑

β1+β2=β

Cβ1,β2 Q(∂β1x f, ∂
β2
x g).

In this proof, we use Lemma 2.2-(i) together with the following inequalities, that we shall
use in the sequel when integrating in x ∈ T3,

(2.8) ‖u‖L∞(T3
x)

. ‖u‖H2(T3
x)
. ‖u‖L6(T3

x)
. ‖u‖H1(T3

x)
, ‖u‖L3(T3

x)
. ‖u‖H1(T3

x)
.

In the following steps we will always consider ℓ > max(2− γ, γ + 1) + 3/2.
Step 1. Using Lemma 2.2-(i) and (2.8) we have

〈Q(f, g), h〉L2
x,v(m)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖g‖Hs
v (〈v〉γ/2+2sm) ‖h‖Hs

v (〈v〉γ/2m)

+ ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖h‖L2
v(〈v〉γ/2m)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖g‖L2

xH
s
v(〈v〉γ/2+2sm) ‖h‖L2

xH
s
v(〈v〉γ/2m)

+ ‖f‖L2
x,v(〈v〉γ/2m) ‖g‖H2

xL
2
v(〈v〉ℓ) ‖h‖L2

x,v(〈v〉γ/2m)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

Step 2. Case |β| = 1. Arguing as in the previous step,

〈Q(f, ∂βxg), ∂
β
xh〉L2

x,v(〈v〉−2sm)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇xg‖Hs
v(〈v〉γ/2m) ‖∇xh‖Hs

v (〈v〉γ/2−2sm)

+ ‖f‖L2
v(〈v〉γ/2−2sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇xh‖L2
v(〈v〉γ/2−2sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖L2

xH
s
v(〈v〉γ/2m) ‖∇xh‖L2

xH
s
v(〈v〉γ/2−2sm)

+ ‖f‖L2
x,v(〈v〉γ/2−2sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇xh‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

Moreover,

〈Q(∂βxf, g), ∂
β
xh〉L2

x,v(〈v〉−2sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖g‖Hs
v(〈v〉γ/2m) ‖∇xh‖Hs

v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−2sm) ‖g‖L2

v(〈v〉ℓ) ‖∇xh‖L2
v(〈v〉γ/2−2sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖g‖L2

xH
s
v(〈v〉γ/2m) ‖∇xh‖L2

xH
s
v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−2sm) ‖g‖H2

xL
2
v(〈v〉ℓ) ‖∇xh‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
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Step 3. Case |β| = 2. When β2 = β, we have

〈Q(f, ∂βx g), ∂
β
xh〉L2

x,v(〈v〉−4sm)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
2
xg‖Hs

v(〈v〉γ/2−2sm) ‖∇2
xh‖Hs

v(〈v〉γ/2−4sm)

+ ‖f‖L2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

2
xh‖L2

v(〈v〉γ/2−4sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xh‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖f‖H2
xL

2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L2
x,v(〈v〉ℓ) ‖∇

2
xh‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
When β1 = β, we have

〈Q(∂βxf, g), ∂
β
xh〉L2

x,v(〈v〉−4sm)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2−2sm) ‖∇2
xh‖Hs

v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−4sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

2
xh‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇2
xf‖L2

x,v(〈v〉ℓ) ‖g‖H2,s
x,v(〈v〉γ/2−2sm) ‖∇

2
xh‖L2

xH
s
v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−4sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
Finally, when |β1| = |β2| = 1, we obtain

〈Q(∂β1x f, ∂
β2
x g), ∂

β
xh〉L2

xL
2
v(〈v〉−4sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇xg‖Hs
v(〈v〉γ/2−2sm) ‖∇2

xh‖Hs
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−4sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇
2
xh‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖L2

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xh‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−4sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇

2
xh‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
Step 4. Case |β| = 3. When β2 = β we obtain

〈Q(f, ∂βx g), ∂
β
xh〉L2

x,v(〈v〉−6sm)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
3
xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v(〈v〉γ/2−6sm)

+ ‖f‖L2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xh‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖f‖H2
xL

2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
x,v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .
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If |β1| = 1 and |β2| = 2 then

〈Q(∂β1x f, ∂
β2
x g), ∂

β
xh〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇
2
xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v(〈v〉γ/2−6sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xh‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖∇xf‖H2
xL

2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L2
x,v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

When |β1| = 2 and |β2| = 1 then we get

〈Q(∂β1x f, ∂
β2
x g), ∂

β
xh〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖∇xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−6sm) ‖∇xg‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇2
xf‖L2

x,v(〈v〉ℓ) ‖∇xg‖H2,s
x,v(〈v〉γ/2−4sm)

‖∇3
xh‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−6sm) ‖∇xg‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

Finally, when β1 = β, it follows

〈Q(∂βxf, g), ∂
β
xh〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇3

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xh‖Hs

v (〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

v(〈v〉γ/2−6sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

3
xh‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇3
xf‖L2

x,v(〈v〉ℓ) ‖g‖H2,s
x,v(〈v〉γ/2−4sm) ‖∇

3
xh‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

x,v(〈v〉γ/2−6sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xh‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖Ȳ ‖h‖Y + ‖f‖Y ‖g‖X ‖h‖Y .

Proof of (ii). As in the proof of (i), we write

〈Q(f, g), g〉H3
xL

2
v(m) = 〈Q(f, g), g〉L2

x,v(m) +
∑

1≤|β|≤3

〈∂βxQ(f, g), ∂βx g〉L2
x,v(m〈v〉−2|β|s),

and

∂βxQ(f, g) =
∑

β1+β2=β

Cβ1,β2 Q(∂β1x f, ∂
β2
x g).

In the following steps, we will always consider ℓ > max(2− γ, γ + 1) + 3/2.
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Step 1. Using Lemma 2.2-(ii) and (2.8), we have

〈Q(f, g), g〉L2
x,v (m)

.

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖g‖
2
L2
v(〈v〉γ/2m)

+ ‖f‖L2
v(〈v〉γ/2m) ‖g‖L2

v(〈v〉ℓ) ‖g‖L2
v(〈v〉γ/2m)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖g‖

2
L2
x,v(〈v〉γ/2m)

+ ‖f‖L2
x,v(〈v〉γ/2m) ‖g‖H2

xL
2
v(〈v〉ℓ) ‖g‖L2

x,v(〈v〉γ/2m)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Step 2. Case |β| = 1. Arguing as in the previous step,

〈Q(f, ∂βx g), ∂
β
x g〉L2

x,v(〈v〉−2sm) .

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇xg‖2L2
v(〈v〉γ/2−2sm)

+ ‖f‖L2
v(〈v〉γ/2−2sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇xg‖L2
v(〈v〉γ/2−2sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖2L2

x,v(〈v〉γ/2−2sm)

+ ‖f‖L2
x,v(〈v〉γ/2−2sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇xg‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Moreover, we also have using Lemma 2.2-(i),

〈Q(∂βxf, g), ∂
β
x g〉L2

x,v(〈v〉−2sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖g‖Hs
v (〈v〉γ/2m) ‖∇xg‖L2

v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−2sm) ‖g‖L2

v(〈v〉ℓ) ‖∇xg‖L2
v(〈v〉γ/2−2sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖g‖L2

xH
s
v(〈v〉γ/2m) ‖∇xg‖L2

xH
s
v(〈v〉γ/2−2sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−2sm) ‖g‖H2

xL
2
v(〈v〉ℓ) ‖∇xg‖L2

x,v(〈v〉γ/2−2sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Step 3. Case |β| = 2. When β2 = β, we have

〈Q(f, ∂βx g), ∂
β
x g〉L2

x,v(〈v〉−4sm) .

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
2
xg‖2L2

v(〈v〉γ/2−4sm)

+ ‖f‖L2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

2
xg‖L2

v(〈v〉γ/2−4sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖2L2

x,v(〈v〉γ/2−4sm)

+ ‖f‖L3
xL

2
v(〈v〉γ/2−4sm) ‖∇2

xg‖L6
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖2L2

x,v(〈v〉γ/2−4sm)

+ ‖f‖H1
xL

2
v(〈v〉γ/2−4sm) ‖∇2

xg‖H1
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .
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When β1 = β, we have

〈Q(∂βxf, g), ∂
β
x g〉L2

x,v(〈v〉−4sm)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2−2sm) ‖∇2
xg‖Hs

v (〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−4sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

2
xg‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇2
xf‖L6

xL
2
v(〈v〉ℓ) ‖g‖L3

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xg‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−4sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖∇2
xf‖H1

xL
2
v(〈v〉ℓ) ‖g‖H1,s

x,v(〈v〉γ/2−2sm)
‖∇2

xg‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−4sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Finally, when |β1| = |β2| = 1, we obtain

〈Q(∂β1x f, ∂
β2
x g), ∂

β
x g〉L2

xL
2
v(〈v〉−4sm)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇xg‖Hs
v(〈v〉γ/2−2sm) ‖∇2

xg‖Hs
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−4sm) ‖∇xg‖L2

v(〈v〉ℓ) ‖∇
2
xg‖L2

v(〈v〉γ/2−4sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇xg‖L2

xH
s
v(〈v〉γ/2−2sm) ‖∇2

xg‖L2
xH

s
v(〈v〉γ/2−4sm)

+ ‖∇xf‖L2
x,v(〈v〉γ/2−4sm) ‖∇xg‖H2

xL
2
v(〈v〉ℓ) ‖∇

2
xg‖L2

x,v(〈v〉γ/2−4sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Step 4. Case |β| = 3. When β2 = β we obtain

〈Q(f, ∂βx g), ∂
β
x g〉L2

x,v(〈v〉−6sm) .

∫

T3

(
‖f‖L2

v(〈v〉ℓ) ‖∇
3
xg‖2L2

v(〈v〉γ/2−6sm)

+ ‖f‖L2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
v(〈v〉ℓ) ‖∇

3
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖f‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖2L2

x,v(〈v〉γ/2−6sm)

+ ‖f‖H2
xL

2
v(〈v〉γ/2−6sm) ‖∇3

xg‖L2
x,v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .



18 FRÉDÉRIC HÉRAU, DANIELA TONON, AND ISABELLE TRISTANI

If |β1| = 1 and |β2| = 2 then

〈Q(∂β1x f, ∂
β2
x g), ∂

β
x g〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇xf‖L2

v(〈v〉ℓ) ‖∇
2
xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xg‖Hs

v (〈v〉γ/2−6sm)

+ ‖∇xf‖L2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L2
v(〈v〉ℓ) ‖∇

3
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xg‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖∇xf‖L3
xL

2
v(〈v〉γ/2−6sm) ‖∇2

xg‖L6
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖∇xf‖H2
xL

2
v(〈v〉ℓ) ‖∇

2
xg‖L2

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xg‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖∇xf‖H1
xL

2
v(〈v〉γ/2−6sm) ‖∇2

xg‖H1
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

When |β1| = 2 and |β2| = 1 then we get

〈Q(∂β1x f, ∂
β2
x g), ∂

β
x g〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇2

xf‖L2
v(〈v〉ℓ) ‖∇xg‖Hs

v(〈v〉γ/2−4sm) ‖∇3
xg‖Hs

v (〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

v(〈v〉γ/2−6sm) ‖∇xg‖L2
v(〈v〉ℓ) ‖∇

3
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇2
xf‖L6

xL
2
v(〈v〉ℓ) ‖∇xg‖L3

xH
s
v(〈v〉γ/2−4sm) ‖∇3

xg‖L2
xH

s
v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−6sm) ‖∇xg‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖∇2
xf‖H1

xL
2
v(〈v〉ℓ) ‖∇xg‖H1,s

x,v(〈v〉γ/2−4sm) ‖∇
3
xg‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇2
xf‖L2

x,v(〈v〉γ/2−6sm) ‖∇xg‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Finally, when β1 = β, it follows

〈Q(∂βxf, g), ∂
β
x g〉L2

xL
2
v(m〈v〉−6s)

.

∫

T3

(
‖∇3

xf‖L2
v(〈v〉ℓ) ‖g‖Hs

v (〈v〉γ/2−4sm) ‖∇3
xg‖Hs

v (〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

v(〈v〉γ/2−6sm) ‖g‖L2
v(〈v〉ℓ) ‖∇

2
xg‖L2

v(〈v〉γ/2−6sm)

)

. ‖∇3
xf‖L2

x,v(〈v〉ℓ) ‖g‖H2,s
x,v(〈v〉γ/2−4sm)) ‖∇

3
xg‖L2

xH
s
v(〈v〉γ/2−6sm)

+ ‖∇3
xf‖L2

x,v(〈v〉γ/2−6sm) ‖g‖H2
xL

2
v(〈v〉ℓ) ‖∇

3
xg‖L2

x,v(〈v〉γ/2−6sm)

. ‖f‖X ‖g‖2Y + ‖f‖Y ‖g‖X ‖g‖Y .

Proof of (iii). The result is immediate using the inequality (ii). �
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3. The linearized equation

We linearize the equation around the equilibrium µ. If we set f = µ+ h, h satisfies the
equation {

∂th = Q(µ, h) +Q(h, µ)− v · ∇xh+Q(h, h)

h|t=0 = h0 = f0 − µ.

In what follows, we denote

(3.1) Lh := Q(h, µ) +Q(µ, h) and Λh := Lh− v · ∇xh.

The aim of the present section is to prove that the semigroup associated to Λ enjoys
exponential decay properties in various Sobolev spaces.

3.1. Functional spaces. We recall that m is a polynomial weight m(v) = 〈v〉k. We in-
troduce the spaces Hn

xHℓ
v(m) and Hn

xHℓ
v(m), (n, ℓ) ∈ N2 which are respectively associated

to the following norms:

(3.2) ‖h‖2Hn
xHℓ

v(m) :=
∑

0≤|α|≤ℓ, 0≤|β|≤n, |α|+|β|≤max(ℓ,n)

‖∂αv ∂βxh‖2L2
x,v(m〈v〉−2|α|s)

,

and

(3.3) ‖h‖2Hn
xHℓ

v(m) :=
∑

0≤|α|≤ℓ, 0≤|β|≤n, |α|+|β|≤max(ℓ,n)

‖∂αv ∂βxh‖2L2
x,v(m〈v〉−2|α|s−2|β|s)

.

We want to establish exponential decay of the semigroup SΛ(t) in various Lebesgue and
Sobolev spaces that we will denote E :

(3.4) E :=

{
Hn
xHℓ

v(m), (n, ℓ) ∈ N
2, n ≥ ℓ with k > γ/2 + 3 + 2(n + 1)s

Hn
xHℓ

v(m), (n, ℓ) ∈ N
2, n ≥ ℓ with k > γ/2 + 3 + 2(n+ 1)s.

Notice that those definitions include the case L2
x,v(m) obtained taking n = ℓ = 0 in one

or the other type of space.

3.2. Main results on the linearized operator. The main result of this section is a
precise version of Theorem 1.2 and reads

Theorem 3.1. Let us consider E be one of the admissible spaces defined in (3.4) and

introduce E = H
max(1,n)
x,v (µ−1/2) where n ∈ N is the order of x-derivatives in the definition

of E. Then, for any λ < λ∗ and any λ1 ≤ min{λ0, λ}, where we recall that λ0 > 0 is the
spectral gap of Λ on E (see (1.19)) and λ∗ is defined in Lemmas 3.5 and 3.6, there is a
constructive constant C ≥ 1 such that the operator Λ satisfies on E:

(i) Σ(Λ) ⊂ {z ∈ C | ℜe z ≤ −λ1} ∪ {0};
(ii) the null-space N(Λ) is given by (1.17) and the projection Π0 onto N(Λ) by (1.18);
(iii) Λ is the generator of a strongly continuous semigroup SΛ(t) on E that verifies

∀ t ≥ 0, ∀ f ∈ E , ‖SΛ(t)f −Π0f‖E ≤ C e−λ1t ‖f −Π0f‖E .
To prove this theorem, we exhibit a splitting of the linearized operator into two parts,

one which is regular and the second one which is dissipative. We shall also study the
regularization properties of the semigroup. The latter point is based on the paper [22] in
which a precise study of the short time regularization properties of the linearized operator
are studied. We can then use the abstract theorem of enlargement of the functional
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space of the semigroup decay from Gualdani et al. [20] using the result of Mouhot and
Neumann [29] (Theorem 1.3) as a starting point.

3.3. Splitting of the linearized operator. We first split the linearized operator L
defined in (3.1) into two parts, separating the grazing collisions and the cut-off part. To
do that we introduce the truncation function χ ∈ D(R) which satisfies 1[−1,1] ≤ χ ≤ 1[−2,2]

and χδ(·) := χ(·/δ) for δ > 0. We then define

bδ(cos θ) := χδ(θ) b(cos θ) and bcδ(cos θ) := (1− χδ(θ)) b(cos θ)

for some δ ∈ (0, 1) to be chosen later, it induces the following splitting of L:
Lh = Lδh+ Lcδh

=:

∫

R3×S2

[
µ′∗h

′ − µ∗h+ h′∗µ
′ − h∗µ

]
bδ(cos θ)|v − v∗|γ dσ dv∗

+

∫

R3×S2

[
µ′∗h

′ − µ∗h+ h′∗µ
′ − h∗µ

]
bcδ(cos θ)|v − v∗|γ dσ dv∗.

In the rest of the paper, we shall use the notations

Bδ(v − v∗, σ) := bδ(cos θ) |v − v∗|γ and Bc
δ(v − v∗, σ) := bcδ(cos θ) |v − v∗|γ .

As far as the cut-off part is concerned, our strategy is similar to the one adopted in [20]
for hard-spheres. For any ε ∈ (0, 1), we consider Θε = Θε(θ, v, v∗) ∈ C∞ bounded by one,
which equals one on {

|v| ≤ ε−1 and 2ε ≤ |v − v∗| ≤ ε−1
}

and whose support is included in
{
|v| ≤ 2ε−1 and ε ≤ |v − v∗| ≤ 2ε−1

}
.

We then denote the truncated operator

Aδ,ε(h) :=

∫

R3×S2
Θε

[
µ′∗ h

′ + µ′ h′∗ − µh∗
]
bcδ(cos θ)|v − v∗|γ dσ dv∗

and the corresponding remainder operator

Bcδ,ε(h) :=
∫

R3×S2
(1−Θε)

[
µ′∗ h

′ + µ′ h′∗ − µh∗
]
bcδ(cos θ)|v − v∗|γ dσ dv∗.

We also introduce the so-called collision frequency

νδ(v) :=

∫

R3×S2
µ∗ b

c
δ(cos θ)|v − v∗|γ dσ dv∗,

so that we have the following splitting: Lcδ = Aδ,ε + Bcδ,ε − νδ.
Moreover, νδ satisfies

νδ(v) = Kδ (µ ∗ | · |γ)(v)
with

(3.5) Kδ :=

∫

S2
bcδ(cos θ) dσ ≈

∫ π/2

δ
b(cos θ) sin θ dθ ≈ δ−2s −

(π
2

)−2s
−−−→
δ→0

+∞

using the spherical coordinates to get the second equality and (1.3) to get the final one;
and

(µ ∗ | · |γ)(v) ≈ 〈v〉γ .
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We then define

(3.6) B0
δ,ε := Lδ + Bcδ,ε − νδ

so that L = Aδ,ε + B0
δ,ε. Finally, we denote

Bδ,ε := −v · ∇x + B0
δ,ε

so that Λ = Aδ,ε + Bδ,ε.

3.4. Dissipativity properties. In this part, we prove some dissipativity estimates on
Bδ,ε, the proof is separated into several lemmas (each part of Bδ,ε = −v · ∇x+B0

δ,ε defined

in the splitting (3.6) is handled separately). We start by estimating the part coming from
grazing collisions.

Lemma 3.2. Let k > γ/2+3+2s. There exist nonnegative functions θi = θi(δ), i = 1, 2,
tending to 0 as δ tends to 0 such that the following estimate holds:

(3.7)

∫

T3×R3

(Lδh)hm2 dv dx ≤ −θ1(δ)‖h‖2Ḣ0,s
x,v(〈v〉γ/2m)

+ θ2(δ) ‖h‖2L2
x,v (〈v〉γ/2m)

.

Proof. Let us first make a remark coming from the assumption (1.3) which is going to be
useful in the sequel of the proof:
(3.8) ∫

S2
bδ(cos θ) sin(θ) dσ =

∫ 2π

0

∫ π/2

0
χδ(θ) b(cos θ) sin

2(θ) dθ dφ . δ1−2s −−−→
δ→0

0

and
∫

S2
bδ(cos θ) sin

2(θ) dσ =

∫ 2π

0

∫ π/2

0
χδ(θ) b(cos θ) sin

3(θ) dθ dφ . δ2−2s −−−→
δ→0

0.

We here underline the fact that considering a moderate singularity, meaning s ∈ (0, 1/2),
is here needed to get the first above convergence.

We split Lδ into two parts in the following way:

Lδh =

∫

R3×S2

[
µ′∗ h

′ − µ∗ h
]
bδ(cos θ)|v − v∗|γ dσ dv∗

+

∫

R3×S2

[
h′∗ µ

′ − h∗ µ
]
bδ(cos θ)|v − v∗|γ dσ dv∗

=: L1
δh+ L2

δh,

this splitting corresponds to the splitting of Lδ as Qδ(µ, h) +Qδ(h, µ), where Qδ denotes
the collisional operator associated to the kernel Bδ.

Let us first consider L1
δh and estimate:

∫

T3×R3

(L1
δh)hm

2 dv dx =

∫

T3×R3×R3×S2
Bδ(v − v∗, σ)

[
µ′∗ h

′ − µ∗ h
]
hm2 dσ dv∗ dv dx

=

∫

T3×R3×R3×S2
Bδ(v − v∗, σ)µ

′
∗
[
h′ − h

]
hm2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
Bδ(v − v∗, σ)

[
µ′∗ − µ∗

]
h2m2 dσ dv∗ dv dx

=: I1 + I2.
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For the second term, we use the cancellation lemma [1, Lemma 1]

I2 =

∫

T3×R3

(Sδ ∗ µ)h2m2 dv dx,

where

(3.9) Sδ(z) := 2π

∫ π/2

0
sin θ bδ(cos θ)

( |z|γ
cosγ+3(θ/2)

− |z|γ
)
dθ . δ2−2s |z|γ ,

for details, see computations in [32, proof of Lemma 2.2] . Therefore,

I2 . δ2−2s

∫

T3×R3

(| · |γ ∗ µ)h2m2 dv dx

. δ2−2s

∫

T3×R3

〈v〉γ h2m2 dv dx.

For the first term, we have

I1 = −1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) (h

′ − h)2 µ′∗m
2 dσ dv∗ dv dx

+
1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) (h

′2 − h2)µ′∗m
2 dσ dv∗ dv dx

=: I−1 + I+1 .

Let us first analyze the term I+1 which has no sign: using the pre-post collisional change
of variable, we have

I+1 =
1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) ((h

′)2 (m′)2 − h2m2)µ′∗ dσ dv∗ dv dx

+
1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) (h

′)2 (m2 − (m′)2)µ′∗ dσ dv∗ dv dx

=
1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) (h

2
∗m

2
∗ − (h′∗)

2 (m′
∗)

2)µdσ dv∗ dv dx

+
1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ)h

2 ((m′)2 −m2)µ∗ dσ dv∗ dv dx

=: I+11 + I+12.

Using again the cancellation lemma together with (3.9),

I+11 = −
∫

T3×R3

(
Sδ ∗ h2m2

)
µdv dx ≤ 0.

In order to analyze I+12, we estimate the difference |(m′)2 −m2|:

|(m′)2 −m2| ≤
(

sup
z∈B(v,|v′−v|)

∣∣∇m2
∣∣ (z)

)
|v′ − v|,

with

|v′ − v| = |v − v∗|/2 sin (θ/2) ≤ 1

2
√
2
|v − v∗| sin θ.

Then, we use the fact that

sup
z∈B(v,|v′−v|)

∣∣∇m2
∣∣ (z) . 〈v〉2k−1 + 〈v∗〉2k−1,
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which implies that

(3.10) |(m′)2 −m2| . sin θ 〈v〉2k 〈v∗〉2k.
Therefore

I+12 .

∫

T3×R3×R3×S2
bδ(cos θ) sin θ |v − v∗|γ 〈v〉2k 〈v∗〉2k h2 µ∗ dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
bδ(cos θ) sin θ 〈v〉2k+γ 〈v∗〉2k+γ h2 µ∗ dσ dv∗ dv dx

. δ1−2s

∫

T3×R3

〈v〉γ h2m2 dv dx,

where we used (3.8) and the fact that
∫
R3 µ∗ 〈v∗〉2k+γ dv∗ < +∞. Let us analyze now the

non-positive term

I−1 = −1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) (h

′ − h)2 µ′∗m
2 dσ dv∗ dv dx.

We have

I−1 ≤ −1

4

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) (h

′m′ − hm)2 µ′∗ dσ dv∗ dv dx

+
1

2

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) (h

′)2 (m−m′)2 µ′∗ dσ dv∗ dv dx

=: I−11 + I−12.

We treat I−12 as previously. We estimate the difference (m′−m)2 in the same spirit as (3.10)
and obtain:

|m′ −m|2 . sin2(θ) 〈v〉2k 〈v∗〉2k.
Therefore

I−12 .
∫

T3×R3×R3×S2
bδ(cos θ) sin

2(θ) |v − v∗|γ 〈v〉2k 〈v∗〉2k h2 µ∗ dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
bδ(cos θ) sin

2(θ) 〈v〉2k+γ 〈v∗〉2k+γ h2 µ∗ dσ dv∗ dv dx

. δ2−2s

∫

T3×R3

〈v〉γ h2m2 dv dx,

where we used (3.8) and
∫
R3 µ∗ 〈v∗〉2k+γ dv∗ < +∞. Concerning I−11, we use some estimates

coming from [21, Theorem 3.1]. Adapting the proof to our truncated kernel Bδ, one can
prove that

I−11 ≤ −c0 δ2−2s‖h‖2
H0,s

x,v(m〈v〉γ/2) + C δ2−2s ‖h‖2
L2
x,v(m〈v〉γ/2)

for some positive constants c0 and C.
We consider now L2

δh and write:

L2
δh =

∫

R3×S2

[
h′∗ µ

′ − h∗ µ
]
bδ(cos θ)|v − v∗|γ dσ dv∗

=

∫

R3×S2
Bδ(v − v∗, σ)h

′
∗
[
µ′ − µ

]
dσ dv∗ +

∫

R3×S2
Bδ(v − v∗, σ)

[
h′∗ − h∗

]
dσ dv∗ µ

=: L2,1
δ h+ L2,2

δ h.
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Concerning L2,2
δ , we use again the cancellation lemma. It implies that

L2,2
δ h = (Sδ ∗ h) µ.

Hence, from (3.9),
∫

T3×R3

(L2,2
δ h)hm2 dv dx =

∫

T3×R3

(Sδ ∗ h) µhm2 dv dx

. δ2−2s

∫

T3×R3×R3

〈v − v∗〉γ |h∗| |h|µ m2 dv∗ dv dx

. δ2−2s

∫

T3×R3×R3

〈v∗〉γ |h∗| |h| µ̃ dv∗ dv dx,

where µ̃ := µm2 〈v〉γ . Observe that for any ℓ ∈ R, we have

〈v∗〉γ |h∗| |h| = 〈v∗〉γ+ℓ |h∗| 〈v∗〉−ℓ |h| ≤
1

2
〈v∗〉2(γ+ℓ) h2∗ +

1

2
〈v∗〉−2ℓ h2.

Let now ℓ ∈ (32 , k −
γ
2 ] (which is possible since k > γ/2 + 3/2), then

∫

T3×R3

(L2,2
δ h)hm2 dv dx . δ2−2s

∫

T3×R3×R3

〈v∗〉2(γ+ℓ) h2∗ µ̃ dv∗ dv dx

+ δ2−2s

∫

T3×R3×R3

〈v∗〉−2ℓ h2 µ̃ dv∗ dv dx

. δ2−2s

∫

T3×R3

〈v〉γ h2m2 dv dx,

where we used the fact that 2k + γ ≥ 2γ + 2ℓ,
∫
R3 µ̃ dv < +∞ and

∫
R3〈v∗〉−2ℓ dv∗ < +∞.

We now deal with L2,1
δ . We introduce the notation M :=

√
µ and write that µ′ − µ =

(M ′ −M)(M ′ +M), therefore
∫

T3×R3

L2,1
δ (h)hm2 dv dx

≤
∫

T3×R3×R3×S2
Bδ(v − v∗, σ) |h′∗| |h| |M ′ −M | (M ′ +M)m2 dσ dv∗ dv dx

≤
∫

T3×R3×R3×S2
Bδ(v − v∗, σ) |h′∗| |h| |M ′ −M |M m2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) |h′∗| |h| |M ′ −M |M ′ (m′)2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) |h′∗| |h| |M ′ −M |M ′ |(m′)2 −m2| dσ dv∗ dv dx

=: J1 + J2 + J3.

Since Mm2 ≤ C and |M ′ − M | . |v′ − v| . |v − v∗| sin(θ/2) because M is Lipschitz-
continuous, we have

(3.11)

J1 .

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) |h′∗| |h| |M ′ −M | dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
bδ(cos θ) sin(θ/2) |v − v∗|γ+1 |h∗| |h′| dσ dv∗ dv dx.
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We now perform the change of variables v → v′ which is explained in the treatment of J2
in the proof of Lemma 2.2. Let us underline the fact that

|ψσ(v) − v∗| = |v − v∗|/κ · σ,

where we recall that v′ → ψσ(v
′) is the inverse transformation. We obtain

∫

R3×S2
bδ(cos θ) sin(θ/2) |v − v∗|γ+1 |h′| dσ dv

=

∫

R3×S2
bδ(2(κ

′ · σ)2 − 1)
√

1− (κ′ · σ)2 |ψσ(v′)− v∗|γ+1 |h′| dσ dv

=

∫

κ′·σ≥1/
√
2
bδ(2(κ

′ · σ)2 − 1)
√

1− (κ′ · σ)2 |ψσ(v′)− v∗|γ+1 |h′| dσ 4 dv′

(κ′ · σ)2

=

∫

κ·σ≥1/
√
2
bδ(2(κ · σ)2 − 1)

√
1− (κ · σ)2 |v − v∗|γ+1 |h| 4

(κ · σ)γ+3
dσ dv

.

∫

S2
bδ(cos 2θ) sin(θ) dσ

∫

R3

〈v〉γ+1 |h| dv 〈v∗〉γ+1.

Therefore, since k > γ/2 + 1 + 3/2, we can pick ℓ ∈ (3/2, k − γ/2− 1] and observing that∫
R3〈v〉−2l dv < +∞ together with (3.8), we have that

J1 . δ1−2s

∫

T3

(∫

R3

〈v〉γ+1 |h| dv
)2

dx

. δ1−2s

∫

T3

(∫

R3

〈v〉2(γ+1+ℓ) h2 dv

∫

R3

〈v〉−2ℓ dv

)
dx

. δ1−2s

∫

T3×R3

〈v〉γ h2m2 dv dx.

Reasoning in the same way, we have

J2 .

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) |h′∗| |h| |M ′ −M | dσ dv∗ dv dx

. δ1−2s

∫

T3×R3

〈v〉γ h2m2 dv dx.

For J3, since |M ′ −M | ≤ C, we have

J3 .

∫

T3×R3×R3×S2
Bδ(v − v∗, σ) |h′∗| |h|M ′ |(m′)2 −m2| dσ dv∗ dv dx.

We are now going to establish a variant of estimate (3.10). Using the fact that

sup
z∈B(v,|v′−v|)

∣∣∇m2
∣∣ (z) .

(
〈v〉2k−1 + 〈v′〉2k−1

)
,

it follows

|(m′)2 −m2| .
(
〈v〉2k−1 + 〈v′〉2k−1

)
|v − v∗| sin(θ/2).
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Moreover,
(3.12)

〈v〉2k−1 + 〈v′〉2k−1 = (1 + |v′ + v − v′|2) 2k−1
2 + 〈v′〉2k−1

. |v′ − v|2k−1 + 〈v′〉2k−1

. |v′ − v|k−1−γ/2 |v′ − v|k+γ/2 + 〈v′〉2k−1

. (sin(θ/2))k−1−γ/2 |v − v∗|k−1−γ/2 〈v′〉k+γ/2 〈v〉k+γ/2 + 〈v′〉2k−1,

Therefore,

J3 .

∫

T3×R3×R3×S2
bδ(cos θ)(sin(θ/2))

k−γ/2|v − v∗|k+γ/2〈v′〉k+γ/2 〈v〉k+γ/2

|h′∗| |h|M ′ dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
bδ(cos θ) sin(θ/2) |v − v∗|γ+1 〈v′〉2k−1 |h′∗| |h|M ′ dσ dv∗ dv dx

=: J31 + J32.

We have since |v′ − v′∗| = |v − v∗|,

J31 .

∫

T3×R3×R3×S2
bδ(cos θ)(sin (θ/2))

k−γ/2 |v′ − v′∗|k+γ/2 〈v′〉k+γ/2 〈v〉k+γ/2

|h′∗| |h|M ′ dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
bδ(cos θ)(sin(θ/2))

k−γ/2 〈v′∗〉k+γ/2 〈v′〉2k+γ 〈v〉k+γ/2 |h′∗| |h|M ′ dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
bδ(cos θ)(sin(θ/2))

k−γ/2 〈v′∗〉2k+γ |h′∗|2 M̃ ′ dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
bδ(cos θ)(sin(θ/2))

k−γ/2 〈v〉2k+γ |h|2 M̃ ′ dσ dv∗ dv dx

=: J311 + J312,

where M̃ :=M 〈v〉2k+γ . Now, observing that
∫
R3 M̃ dv < +∞,

J311 =

∫

T3×R3×R3×S2
bδ(cos θ)(sin(θ/2))

k−γ/2 〈v∗〉2k+γ |h∗|2 M̃ dσ dv∗ dv dx

=

∫

T3

∫

S2
bδ(cos θ)(sin(θ/2))

k−γ/2 dσ
∫

R3

〈v∗〉2k+γ |h∗|2 dv∗
∫

R3

M̃ dv dx

. δ1−2s

∫

T3×R2

〈v〉γh2m2 dv dx,

since k − γ/2 ≥ 1.
For the term J312, we have:

J312 =

∫

T3×R3

∫

R3×S2
bδ(cos θ)(sin(θ/2))

k−γ/2 M̃ ′ dσ dv∗〈v〉2k+γ |h|2 dv dx
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we are going to apply the singular change of variable v∗ → v′ presented in the proof of
Lemma 2.2 for the treatment of the term T2. Given that bδ(cos θ) ∼0 θ

−2−2s, we have
∫

R3×S2
bδ(cos θ)(sin(θ/2))

k−γ/2 M̃ ′ dσ dv∗ .
∫

R3×S2
10≤θ≤2δ θ

k−2−2s−γ/2 M̃ ′ dσ dv∗

.

∫

R3×S2
1π/2−δ≤ψ≤π/2 (π − 2ψ)k−4−2s−γ/2 M̃ ′ sinψ dψ dv′

.

∫ 2δ

0
ψk−4−2s−γ/2 dψ

∫

R3

M̃ ′ dv′

. δk−3−2s−γ/2,

where we used
∫
R3 M̃

′ dv′ < +∞. This estimate is acceptable since k > 3 + 2s + γ/2.
Therefore

J312 . δk−3−2s−γ/2
∫

T3×R2

〈v〉γh2m2 dv dx.

Finally, using the pre-post collisional change of variable,

J32 =

∫

T3×R3×R3×S2
bδ(cos θ) sin(θ/2) |v − v∗|γ+1 〈v′〉2k−1 |h′∗| |h|M ′ dσ dv∗ dv dx

=

∫

T3×R3×R3×S2
bδ(cos θ) sin(θ/2) |v − v∗|γ+1 〈v〉2k−1 |h∗| |h′|M dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
bδ(cos θ) sin(θ/2) |v − v∗|γ+1 |h∗| |h′| dσ dv∗ dv dx

. δ1−2s

∫

T3×R2

〈v〉γh2m2 dv dx,

where we used 〈v〉2k−1M ≤ C and then the same strategy as in J1 (see (3.11)). This
concludes the proof. �

We now want to deal with the part Bcδ,ε − νδ. To do that, we shall review a classical

tool in the Boltzmann theory, a version of the Povzner lemma (see [34, 11, 26, 12]). The
version stated here is a consequence of the proof of Lemma 2.2 from [26] and a sketch of
a proof can be found in [32].

Lemma 3.3. For any k > 2,

∀ v, v∗ ∈ R
3,

∫

S2

[
〈v′∗〉k + 〈v′〉k − 〈v∗〉k − 〈v〉k

]
bcδ(cos θ) dσ

≤ ck

(
〈v∗〉k−1〈v〉 + 〈v〉k−1〈v∗〉

)
− c′k |v|k

for some constants ck, c
′
k > 0 depending on k.

We can now prove the following estimate on Bcδ,ε − νδ.

Lemma 3.4. Consider k > 2 + γ/2. For ε > 0 and δ > 0 small enough, we have the

following estimate: for any h ∈ L2
x,v(〈v〉γ/2m),

∫

T3×R3

(Bcδ,εh)hm2 dv dx−
∫

T3×R3

νδ h
2m2 dv dx ≤ (Λδ(ε) − λ∗) ‖h‖2L2

x,v(〈v〉γ/2m)

where λ∗ > 0 is an explicit constant (depending only on k) and Λδ(ε) is a nonnegative
constant depending on δ which tends to 0 as ε goes to 0 when δ is fixed.



28 FRÉDÉRIC HÉRAU, DANIELA TONON, AND ISABELLE TRISTANI

Proof. In this proof, we use the notation Cδ for any constant depending only on δ that
may change from line to line. Let us first consider,

∫

T3×R3

Bcδ,ε(h)hm2 dv dx

=

∫

T3×R3×R3×S2
(1−Θε)

[
µ′∗ h

′ + µ′ h′∗ − µh∗
]
bcδ(cos θ)|v − v∗|γ hm2 dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
(1−Θε)

[
µ′∗ |h′| + µ′ |h′∗|

]
bcδ(cos θ)|v − v∗|γ

|h|m2 〈v〉1/4〈v〉−1/4 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
(1−Θε)µ |h∗| bcδ(cos θ)|v − v∗|γ |h|m2 dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
(1−Θε)µ

′
∗
[
〈v〉1/4|h′|〈v〉−1/4 |h|

]
bcδ(cos θ)|v − v∗|γm2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
(1−Θε)µ

′
[
〈v〉1/4|h′∗|〈v〉−1/4 |h|

]
bcδ(cos θ)|v − v∗|γm2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
(1−Θε)µ |h∗| bcδ(cos θ)|v − v∗|γ |h|m2 dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
(1−Θε)

[
µ′∗ |h′|2 + µ′|h′∗|2

]

bcδ(cos θ)|v − v∗|γm2 〈v〉1/2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
(1−Θε)

[
µ′∗ + µ′

]
bcδ(cos θ)|v − v∗|γ h2m2 〈v〉−1/2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
(1−Θε)µ |h∗| bcδ(cos θ)|v − v∗|γ |h|m2 dσ dv∗ dv dx

=: I1 + I2 + I3.

Concerning I1, we treat this term together with the one coming from νδ. According to
the definition of the truncation function (1−Θε):

(1−Θε)(θ, v, v∗) ≤ 1|v−v∗|≤ε(v, v∗) + 1{|v|≥ε−1 or |v−v∗|≥ε−1}
≤ 1|v−v∗|≤ε(v, v∗) + χε−1(v, v∗)

where χε−1 is the characteristic function of the set

{√
|v|2 + |v∗|2 ≥ ε−1 or |v − v∗| ≥ ε−1

}
.

We then use the following bound on the function χε−1 :

(3.13)

χε−1(v, v∗) ≤ 1|v|≥ ε−1

2

(v, v∗) + 1|v∗|≥ ε−1

2

(v, v∗)

=

(
1|v|≥ ε−1

2

(v, v∗)

)1/2

+

(
1|v∗|≥ ε−1

2

(v, v∗)

)1/2

≤ 21/2ε1/2
(
|v|1/2 + |v∗|1/2

)
.
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We then write:

I1 =

∫

T3×R3×R3×S2
χε−1bcδ(cos θ)|v − v∗|γ

[
µ′∗ (h

′)2 + µ′ (h′∗)
2
]
m2 〈v〉1/2 dσ dv∗ dv dx

=

∫

T3×R3×R3×S2
χε−1bcδ(cos θ)|v − v∗|γ

[
µ′∗ (h

′)2 + µ′ (h′∗)
2 − µ∗ h

2 − µh2∗
]
m2 〈v〉1/2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
bcδ(cos θ)χε−1 µ∗ h

2 |v − v∗|γm2 〈v〉1/2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
bcδ(cos θ)χε−1 µh2∗ |v − v∗|γm2 〈v〉1/2 dσ dv∗ dv dx

=: T1 + T2 + T3.

We notice that the characteristic function χε−1 is invariant under the usual pre-post col-
lisional change of variables as it only depends on the kinetic energy and momentum.
We hence bound the term T1 thanks to Lemma 3.3 (we denote Ck := c2k+1/2 and
C ′
k := c′2k+1/2):

T1 ≤
∫

T3×R3×R3

χε−1 µ∗h
2 |v − v∗|γ

∫

S2

(
〈v′∗〉2k+1/2 + 〈v′〉2k+1/2 − 〈v∗〉2k+1/2 − 〈v〉2k+1/2

)
bcδ(cos θ) dσ dv∗ dv dx

≤ Ck

∫

T3×R3×R3

χε−1 µ∗h
2 |v − v∗|γ

(
〈v〉2k−1/2〈v∗〉+ 〈v〉〈v∗〉2k−1/2

)
dv∗ dv dx

− C ′
k

∫

T3×R3×R3

χε−1 µ∗h
2 |v − v∗|γ |v|2k+1/2 dv∗ dv dx

≤ Ck

∫

T3×R3×R3

χε−1 µ∗h
2 |v − v∗|γ

(
〈v〉2k−1/2〈v∗〉+ 〈v〉〈v∗〉2k−1/2

)
dv∗ dv dx

+ C ′
k

∫

T3×R3×R3

χε−1 µ∗h
2 |v − v∗|γ dv∗ dv dx

− C ′
k 2

3/4−k
∫

T3×R3×R3

χε−1 µ∗h
2 |v − v∗|γ 〈v〉2k+1/2 dv∗ dv dx

=: T11 + T12 + T13.

We treat together the terms T11, T12 and T3 using (3.13) and we obtain:
(3.14)
T11 + T12 + T3

. ε1/2 Ck

∫

T3×R3×R3

(|v|1/2 + |v∗|1/2)µ∗ h2 |v − v∗|γ
(
〈v〉2k−1/2〈v∗〉+ 〈v〉〈v∗〉2k−1/2

)
dv∗ dv dx

+ ε1/2 C ′
k

∫

T3×R3×R3

(|v|1/2 + |v∗|1/2)µ∗ h2 |v − v∗|γ dv∗ dv dx

+ ε1/2 Cδ

∫

T3×R3×R3

(|v|1/2 + |v∗|1/2)µh2∗ |v − v∗|γm2 〈v〉1/2 dv∗ dv dx

≤ ε1/2 Ck Cδ ‖h‖2L2
x,v(〈v〉γ/2m)

=: Λδ(ε) ‖h‖2L2
x,v(〈v〉γ/2m)
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up to increasing the value of Ck. We now put together the terms T13, T2 and the term
coming from νδ, and we denote C ′′

k := C ′
k 2

3/4−k:

T13 + T2 −
∫

T3×R3

νδ h
2m2 dv dx

≤ −C ′′
k

∫

T3×R3×R3

χε−1 µ∗ |v − v∗|γ h2m2 〈v〉1/2 dv∗ dv dx

+Kδ

∫

T3×R3×R3

χε−1 µ∗ |v − v∗|γ h2m2 〈v〉1/2 dv∗ dv dx

−Kδ

∫

T3×R3×R3

µ∗ |v − v∗|γ h2m2 dv∗ dv dx

≤ −Kδ

∫

T3×R3×R3

µ∗ |v − v∗|γ h2m2 (1− χε−1 〈v〉1/2) dv∗ dv dx

− C ′′
k

∫

T3×R3×R3

χε−1µ∗ |v − v∗|γ h2m2 〈v〉1/2 dv∗ dv dx

where we recall that Kδ is defined in (3.5). Taking now δ small enough so that Kδ ≥ C ′′
k ,

we get:

T13 + T2 −
∫

T3×R3

νδ h
2m2 dv dx ≤ −C ′′

k

∫

T3×R3×R3

µ∗ |v − v∗|γ h2m2 dv∗ dv dx

and thus

(3.15) T13 + T2 −
∫

T3×R3

νδ h
2m2 dv dx ≤ −λ∗‖h‖2L2

x,v(〈v〉γ/2m)

for some constant λ∗ > 0 depending only on k. Gathering (3.14) and (3.15), we are able
to get the right estimate,

I1 −
∫

T3×R3

νδ h
2m2 dv dx ≤ (CkCδ ε

1/2 − λ∗)‖h‖2L2
x,v(〈v〉γ/2m)

.

Let us now consider I2. We again use the following estimate on 1−Θε:

(1−Θε)(θ, v, v∗) ≤ 1|v−v∗|≤ε(v, v∗) + χε−1(v, v∗).

It induces a splitting of I2 into two parts:

I2 .

∫

T3×R3×R3×S2
1|v−v∗|≤ε(v, v∗)

[
µ′∗ + µ′

]
bcδ(cos θ)|v − v∗|γ h2m2 〈v〉−1/2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
χε−1(v, v∗)

[
µ′∗ + µ′

]
bcδ(cos θ)|v − v∗|γ h2m2 〈v〉−1/2 dσ dv∗ dv dx

. I21 + I22.

We split once more I21

I21 =

∫

T3×S2

∫

|v−v∗|≤ε
µ′∗ b

c
δ(cos θ)|v − v∗|γ h2m2 〈v〉−1/2 dv∗ dv dσ dx

+

∫

T3×S2

∫

|v−v∗|≤ε
µ′ bcδ(cos θ)|v − v∗|γ h2m2 〈v〉−1/2 dv∗ dv dσ dx

=: I211 + I212.
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We estimate I211 using again the regular change of variable v → v′ and that bcδ(cos θ) ≤ Cδ
in S2:

I211 . εγ Cδ

∫

T3×S2

∫

|v−v∗|≤ε
µ′∗ h

2m2 dv∗ dσ dx

. εγ Cδ

∫

T3×S2

∫

|v−v∗|≤ε
µ′ h2∗m

2
∗ dv∗ dv dσ dx

. εγ Cδ

∫

κ′·σ≥1/
√
2
µ′

1

(κ′ · σ)2 dv
′dσ

∫

T3×R3

h2∗m
2
∗ dv∗ dx

. εγ Cδ

∫

R3×S2
µdvdσ

∫

T3×R3

h2m2 dv dx

. εγ Cδ

∫

T3×R3

h2m2 dv dx.

Moreover, we estimate I212 using again the singular change of variable v∗ → v′

I212 . εγ Cδ

∫

T3

∫

|v−v∗|≤ε
µ′ h2m2 dv∗ dv dx

. εγ Cδ

∫

R3×S2
1θ≥δ µ

′ dσ dv∗

∫

T3×R3

h2m2 dv dx

. εγ Cδ

∫ π/2−δ

π/4
(π − 2ψ)−2 sinψ dψ

∫

R3

µ′ dv′
∫

T3×R3

h2m2 dv dx

. εγ Cδ

∫

T3×R3

h2m2 dv dx.

Concerning I22, we use the estimate (3.13) combined with the fact that,

|v∗|1/2 = |v∗ − v + v|1/2 ≤ (|v∗ − v|+ |v|)1/2 . |v∗ − v|1/2 + |v|1/2

Hence

I22 . ε1/2
∫

T3×R3×R3×S2

(
|v|1/2 + |v∗|1/2

) [
µ′∗ + µ′

]
bcδ(cos θ)|v − v∗|γ

h2m2 〈v〉−1/2 dσ dv∗ dv dx

. ε1/2
∫

T3×R3×R3×S2

(
|v|1/2 + |v∗ − v|1/2

) [
µ′∗ + µ′

]
bcδ(cos θ)|v − v∗|γ

h2m2 〈v〉−1/2 dσ dv∗ dv dx

. ε1/2
∫

T3×R3×R3×S2

[
µ′∗ + µ′

]
bcδ(cos θ)|v − v∗|γ+1/2 h2m2 〈v〉−1/2 dσ dv∗ dv dx

+ ε1/2
∫

T3×R3×R3×S2

[
µ′∗ + µ′

]
bcδ(cos θ)|v − v∗|γ h2m2 dσ dv∗ dv dx

:= I221 + I222 + I223 + I224.
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For I221 and I223 we proceed in the same way, we perform the change of variable v → v′:

I221 . ε1/2 Cδ

∫

T3×R3×R3×S2
µ′ |v − v∗|γ+1/2 h2∗m

2
∗ 〈v∗〉−1/2 dσ dv∗ dv dx

. ε1/2 Cδ

∫

R3×S2
µ |v − v∗|γ+1/2 dσ dv

∫

T3×R3

h2∗m
2
∗ 〈v∗〉−1/2 dv∗ dx

. ε1/2 Cδ

∫

T3×R3

h2∗m
2
∗ 〈v∗〉γ dv∗ dx,

. ε1/2 Cδ

∫

T3×R3

h2m2 〈v〉γ dv dx.

Analogously, for I222 and I224 we proceed in the same way. Using the fact that for θ ≥ δ,

|v − v∗| . θ−1 |v′ − v| . Cδ 〈v′〉 〈v〉,

consequently,

I222 . ε1/2 Cδ

∫

T3×R3×R3×S2
1θ≥δ µ

′ |v − v∗|γ+1/2 h2m2 〈v〉−1/2 dσ dv∗ dv dx

. ε1/2 Cδ

∫

R3×S2
1θ≥δ µ

′ 〈v′〉γ+1/2 dσ dv∗

∫

T3×R3

h2m2 〈v〉γ dv dx

. ε1/2 Cδ

∫

T3×R3

h2m2 〈v〉γ dv dx,

where we used again the singular change of variable v∗ → v′ (which only changes the value
of Cδ).

Concerning I3, we use again the estimate for (1−Θε) we have

I3 .

∫

T3×R3×R3×S2
1|v−v∗|≤ε(v, v∗)µ |h∗| bcδ(cos θ)|v − v∗|γ |h|m2 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
χε−1(v, v∗)µ |h∗| bcδ(cos θ)|v − v∗|γ |h|m2 dσ dv∗ dv dx

=: I31 + I32.

Consider ℓ ∈ (3/2, k], then

I31 . εγ Cδ

∫

T3

∫

|v−v∗|≤ε
µ |h∗| |h|m2 dv∗ dv dx

. εγ Cδ

∫

T3

∫

R3

|h∗|〈v∗〉ℓ 〈v∗〉−ℓ dv∗
∫

R3

|h|µm2 dv dx

. εγ Cδ

∫

T3×R3

h2〈v〉2ℓ dv dx

. εγ Cδ

∫

T3×R3

h2m2 dv dx.
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Moreover, using the same technique as for I31, for all ℓ ∈ (3/2, k − γ/2− 1/2],

I32 . ε1/2
∫

T3×R3×R3×S2
bcδ(cos θ)

(
|v|1/2 + |v∗|1/2

)
|v − v∗|γ |h∗| |h|µm2 dσ dv∗ dv dx

. ε1/2Cδ

∫

T3

∫

R3

〈v〉1/2+γ |h|µm2 dv

∫

R3

〈v〉γ+1/2〈v〉ℓ〈v〉−ℓ |h| dv dx

. ε1/2Cδ

∫

T3×R3

〈v〉2γ+1+2ℓ h2 dv dx

. ε1/2Cδ

∫

T3×R3

〈v〉γ h2m2 dv dx,

which ends the proof. �

We can now prove the dissipativity properties of Bδ,ε = −v·∇x+Lδ+Bcδ,ε−νδ in L2
x,v(m).

Lemma 3.5. Let us consider k > γ/2 + 3 + 2s and a ∈ (−λ∗, 0) where λ∗ is defined
in Lemma 3.4. For δ > 0 and ε > 0 small enough, Bδ,ε − a is dissipative in L2

x,v(m),
namely

∀ t ≥ 0, ‖SBδ,ε
(t)‖B(L2

x,v(m)) ≤ eat.

We even have the following estimate (which is better that simple dissipativity as stated
above), for any h ∈ L2

x,v(m):

∀ t ≥ 0,
1

2

d

dt
‖SBδ,ε

(t)h‖2L2
x,v(m) ≤ −cδ ‖SBδ,ε

(t)h‖2
L2
xḢ

s
v(〈v〉γ/2m)

+ a ‖SBδ,ε
(t)h‖2

L2
x,v(〈v〉γ/2m)

for some constant cδ > 0 depending on δ.

Proof. Consider a ∈ (−λ∗, 0). We first notice that performing an integration by parts, the
term coming from the transport operator gives no contribution. Then, gathering results
coming from Lemmas 3.2 and 3.4, we obtain∫

T3×R3

(Bδ,εh)hm2 dv dx

≤ −θ1(δ) ‖h‖2L2
xḢ

s
v(〈v〉γ/2m)

+

∫

T3×R3

(θ2(δ) + Λδ(ε) − λ∗)h
2 〈v〉γ m2 dv dx.

We first take δ small enough so that θ2(δ) ≤ (a+ λ∗)/2. We then chose ε small enough so
that Λδ(ε) ≤ (a+ λ∗)/2. With this choice of δ and ε, we have the following inequality:

θ2(δ) + Λδ(ε)− λ∗ ≤ a.

It implies that∫

T3×R3

(Bδ,εh)hm2 dv dx ≤ −θ1(δ) ‖h‖2L2
xḢ

s
v(〈v〉γ/2m)

+ a ‖h‖2
L2(〈v〉γ/2m)

,

which concludes the proof. �

The goal of the next lemma is to generalize previous dissipativity results to higher order
derivatives spaces of type Hn

xHℓ
v(m) and Hn

xHℓ
v(m) defined through their norms in (3.2)

and (3.3). Notice that, in order to get our dissipativity result, it is necessary to have less

weight on v-derivatives (which is induced by the weight 〈v〉−2|α|s in the definitions of the

norms of Hn
xHℓ

v(m) and Hn
xHℓ

v(m)). However, the introduction of the weight 〈v〉−2|β|s in
order to have less weight on the x-derivatives in the space Hn

xHℓ
v(m) is not needed at this

point but dissipativity results still hold true doing that and we will make use of it in the
nonlinear study in Section 4.
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Lemma 3.6. Let us consider (n, ℓ) ∈ N2 with n ≥ ℓ. In what follows, E = Hn
xHℓ

v(m)
with k > γ/2 + 3 + 2(ℓ + 1)s or E = Hn

xHℓ
v(m) with k > γ/2 + 3 + 2(n + 1)s. Then for

any a ∈ (−λ∗, 0) where λ∗ is defined in Lemma 3.4, there exist δ > 0 and ε > 0 such that
Bδ,ε − a is dissipative in E in the sense that

∀ t ≥ 0, ‖SBδ,ε
(t)‖B(E) ≤ Ceat.

Proof. The case n = ℓ = 0 is nothing but Lemma 3.5. Let us notice that the operator ∇x

commutes with the operator Bδ,ε, the treatment of x-derivatives is thus simple and one

can always reduce to the case n = ℓ. Moreover, we only handle the case E = Hn
xHℓ

v(m),
the other case being similar. We now deal with the case n = ℓ = 1, the higher-order
derivatives being treatable in the same way. To do that, we introduce the following norm
on H1

xH1
v(m):

|||h|||2H1
xH1

v(m) := ‖h‖2L2
x,v(m) + ‖∇xh‖2L2

x,v(m) + ζ ‖∇vh‖2L2
x,v(m0)

where ζ > 0 is a positive constant to be chosen later and m0(v) := 〈v〉−2sm(v) = 〈v〉k0
with k0 := −2s + k. This norm is equivalent to the classical norm on H1

xH1
v(m) defined

through (3.2).
In the subsequent proof, η is a positive constant that will be fixed later on. Let us introduce
ht := SBδ,ε

(t)h with h ∈ H1
xH1

v(m).
Thanks to Lemma 3.5, we have that

∀ t ≥ 0,
1

2

d

dt
‖ht‖2L2

x,v(m) ≤ −θ1(δ) ‖ht‖2L2
xḢ

s
v(〈v〉γ/2m)

+ (θ2(δ) + Λδ(ε) − λ∗) ‖ht‖2L2
x,v(〈v〉γ/2m)

.

Moreover, since the x-derivatives commute with Bδ,ε,

∀ t ≥ 0,
1

2

d

dt
‖∇xht‖2L2

x,v(m) ≤ −θ1(δ) ‖∇xht‖2L2
xḢ

s
v(〈v〉γ/2m)

+ (θ2(δ) + Λδ(ε) − λ∗) ‖∇xht‖2L2
x,v(〈v〉γ/2m)

.

Therefore, it remains to consider the v-derivatives. In what follows ∂x and ∂v stand for
∂x1 ,∂x2 or ∂x3 and ∂v1 ,∂v2 or ∂v3 , respectively.
We have

∂t(∂vht) = Bδ,ε(∂vht)− ∂xht − ∂v(Aδ,εht) +Aδ,ε(∂vht) +Q(ht, ∂vµ) +Q(∂vµ, ht),

thus, we can split 1
2
d
dt‖∂vht‖2L2

x,v(m0)
into six terms, according to the previous computation,

1

2

d

dt
‖∂vht‖2L2

x,v(m0)
:= I1 + · · ·+ I6.

For the first term we can use again Lemma 3.5, obtaining

∀ t ≥ 0, I1 ≤ −θ1(δ) ‖∂vht‖2L2
xḢ

s
v(〈v〉γ/2m0)

+ (θ2(δ) + Λδ(ε)− λ∗) ‖∂vht‖2L2
x,v(〈v〉γ/2m0)

.

For the second term, we have

I2 = −
∫

T3×R3

(∂xht) (∂vht)m
2
0 dv dx ≤ η

2
‖∂vht‖2L2

x,v(m0)
+

1

2η
‖∂xht‖2L2

x,v(m0)
.

The terms I3 and I4 can be treated together to obtain

I3 + I4 .
1

2η
‖ht‖2L2

x,v(m0)
+
η

2
‖∂vht‖2L2

x,v(m0)
.
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Indeed, using Carleman representation (see [33, Chapter 1]), one can write the truncated
operator Aδ,ε as an integral operator

Aδ,εh(v) =

∫

R3

kδ,ε(v, v∗)h(v∗) dv∗

for some smooth kernel kδ,ε ∈ C∞
c (R3 ×R3). Therefore,

‖∂v(Aδ,εht)‖2L2
x,v(m0)

≤ ‖ht‖2L2
x,v(m0)

and performing an integration by part

‖Aδ,ε(∂vht)‖2L2
x,v(m0)

≤ ‖ht‖2L2
x,v(m0)

.

Thus,

I3 = −
∫

T3×R3

∂v(Aδ,εht) (∂vht)m
2
0 dv dx .

1

2η
‖∂v(Aδ,εht)‖2L2

x,v(m0)
+
η

2
‖∂vht‖2L2

x,v(m0)

.
1

2η
‖ht‖2L2

x,v(m0)
+
η

2
‖∂vht‖2L2

x,v(m0)
,

and

I4 =

∫

T3×R3

Aδ,ε(∂vht) (∂vht)m
2
0 dv dx .

1

2η
‖Aδ,ε(∂vht)‖2L2

x,v(m0)
+
η

2
‖∂vht‖2L2

x,v(m0)

.
1

2η
‖ht‖2L2

x,v(m0)
+
η

2
‖∂vht‖2L2

x,v(m0)
.

Let us consider now I5. Define µ̃ := ∂vµ

I5 =

∫

T3×R3

Q(µ̃, ht) (∂vht)m
2
0 dv dx

=

∫

T3×R3×R3×S2
B(v − v∗, σ) (µ̃

′
∗ h

′
t − µ̃∗ ht) (∂vht)m

2
0 dσ dv∗ dv dx

=

∫

T3×R3×R3×S2
B(v − v∗, σ) (µ̃

′
∗ h

′
tm

′
0 − µ̃∗ htm0) (∂vht)m0 dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
B(v − v∗, σ) µ̃

′
∗ h

′
t (m0 −m′

0) (∂vht)m0 dσ dv∗ dv dx

=: I51 + I52.

For the first term we can use Lemma 2.1

I51 =

∫

T3

〈Q(µ̃, htm0), (∂vht)m0〉L2
v
dx

.

∫

T3

‖µ̃‖L1
v(〈v〉γ+2s) ‖htm0‖Hs

v(〈v〉N1 ) ‖(∂vht)m0‖Hs
v(〈v〉N2 ) dx,

with N1, N2 ≥ 0 and N1 +N2 = γ + 2s. Therefore, setting N2 = γ/2, N1 = γ/2 + 2s we
have

I51 .

∫

T3

‖ht 〈v〉γ/2m‖Hs
v
‖(∂vht) 〈v〉γ/2m0‖Hs

v
dx,
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since m0 = 〈v〉−2sm. Hence

I51 .
1

2η
‖ht 〈v〉γ/2m‖2L2

xH
s
v
+
η

2
‖(∂vht) 〈v〉γ/2m0‖2L2

xH
s
v

.
1

2η
‖ht‖2L2

xH
s
v(〈v〉γ/2m)

+
η

2
‖∂vht‖2L2

xH
s
v(〈v〉γ/2m0)

.

For the second one, we have

I52 ≤
1

2η

∫

T3×R3×R3×S2
B(v − v∗, σ) µ̃

′
∗ (h

′
t)
2 |m0 −m′

0|m0 dσ dv∗ dv dx

+
η

2

∫

T3×R3×R3×S2
B(v − v∗, σ) µ̃

′
∗ (∂vht)

2 |m0 −m′
0|m0 dσ dv∗ dv dx

=:I521 + I522.

Setting µ̄∗ := µ̃∗m0∗ and µ̂∗ := µ̄∗〈v∗〉k0−1, we have

I521 ≤ 1

2η

∫

T3×R3×R3×S2
B(v − v∗, σ) µ̃

′
∗ (h

′
t)
2 |m0 −m′

0|m′
0m

′
0∗ dσ dv∗ dv dx

.
1

η

∫

T3×R3×R3×S2
B(v − v∗, σ) µ̄

′
∗ (h

′
t)
2 |m0 −m′

0|m′
0 dσ dv∗ dv dx

.
1

η

∫

T3×R3×R3×S2
B(v − v∗, σ) µ̄∗ (ht)

2 |m0 −m′
0|m0 dσ dv∗ dv dx

.
1

η

∫

T3×R3×R3×S2
b(cos θ) sin(θ/2) |v − v∗|γ+1 (ht)

2m0 〈v〉k0−1 µ̂∗ dσ dv∗ dv dx

.
1

η
‖ht‖2L2

x,v(〈v〉γ/2m0)
,

where we used the fact that |m0 −m′
0| . |v − v∗| sin(θ/2) 〈v〉k0−1 〈v∗〉k0−1.

Moreover, setting vτ = v + τ(v′ − v) for τ > 0, we have

|m0 −m′
0| . |v − v∗| sin(θ/2) 〈vτ 〉k0−1

and using that |v′ − v| . |v − v∗|,

〈vτ 〉k0−1 . 〈v〉k0−1 + 〈v′ − v〉k0−1 . 〈v〉k0−1 + (1 + |v′ − v|2)
k0−1

2 . 〈v〉k0−1 + 〈v − v∗〉k0−1.

Therefore

I522 . η

∫

T3×R3×R3×S2
B(v − v∗, σ) µ̃

′
∗ (∂vht)

2 |m0 −m′
0|m0 dσ dv∗ dv dx

. η

∫

T3×R3×R3×S2
b(cos θ) sin(θ/2) µ̃′ (∂vht∗)

2 〈v − v∗〉γ+k0 m0∗ dσ dv∗ dv dx

+ η

∫

T3×R3×R3×S2
b(cos θ) sin(θ/2) µ̃′ (∂vht∗)

2 |v − v∗|γ+1 〈v∗〉k0−1m0∗ dσ dv∗ dv dx

.
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Now, for α ∈ {γ + k0, γ + 1}, performing the change of variable v → v′, we have
∫

R3×S2
b(cos θ) sin(θ/2) µ̃′ 〈v − v∗〉α dσ dv

=

∫

R3×S2
b(2(κ′ · σ)2 − 1)

√
1− (κ′ · σ)2 |ψσ(v′)− v∗|α µ̃′ dσ dv

=

∫

κ′·σ≥1/
√
2
b(2(κ′ · σ)2 − 1)

√
1− (κ′ · σ)2 |ψσ(v′)− v∗|α µ̃′

1

(κ′ · σ)2 dσ dv
′

=

∫

κ·σ≥1/
√
2
b(2(κ · σ)2 − 1)

√
1− (κ · σ)2 |ψσ(v)− v∗|α µ̃

1

(κ · σ)2 dσ dv

.

∫

R3×S2
cos(2θ) sin θ 〈v − v∗〉α µ̃ dσ dv

.〈v∗〉α.
Hence

I522 . η ‖∂vht‖2L2
x,v(〈v〉γ/2m0)

.

It remains to consider the last term I6. Using again the notation µ̃ = ∂vµ, we have

I6 =

∫

T3×R3

Q(ht, ∂vµ) (∂vht)m
2
0 dv dx

=

∫

T3×R3×R3×S2
B(v − v∗, σ)

(
h′t∗ µ̃

′ (m′
0)

2 − ht∗ µ̃m
2
0

)
(∂vht) dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
B(v − v∗, σ)h

′
t∗ µ̃

′ (∂vht)
(
m2

0 − (m′
0)

2
)
dσ dv∗ dv dx

=:I61 + I62.

For the first term we can use again Lemma 2.1:

I61 =

∫

T3

〈Q(ht, µ̃ m
2
0), ∂vht〉L2

v
dx

.

∫

T3

‖ht‖L1
v(〈v〉γ+2s) ‖µ̃m2

0‖Hs
v(〈v〉N1 ) ‖∂vht‖Hs

v(〈v〉N2 ) dx,

with N1, N2 ≥ 0 and N1 + N2 = γ + 2s. Therefore, setting N2 = 0, N1 = γ/2 + 2s and
using the fact that ‖ht‖L1

v(〈v〉γ+2s) . ‖ht‖L2
v(〈v〉γ+2s+2), we have

I61 .

∫

T3

‖ht‖L2
v(〈v〉γ+2s+2) ‖∂vht‖Hs

v
dx.

Due to the fact that k > γ/2 + 2s+ 2, it follows γ + 2s + 2 < k + γ/2, hence

I61 .

∫

T3

‖ht‖L2
v(m〈v〉γ/2) ‖∂vht‖Hs

v
dx

.
η

2
‖∂vht‖2L2

xH
s
v
+

1

2η
‖ht‖2L2

x,v(m〈v〉γ/2).

For the second term, we proceed as in the case of J3 in the proof of Lemma 3.2. We have

I62 =

∫

T3×R3×R3×S2
B(v − v∗, σ)h

′
t∗ µ̃

′ (∂vht)
(
m2

0 − (m′
0)

2
)
dσ dv∗ dv dx.
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Using the fact that

sup
z∈B(v,|v′−v|)

∣∣∇m2
0

∣∣ (z) .
(
〈v〉2k0−1 + 〈v′〉2k0−1

)
,

it follows

|(m′
0)

2 −m2
0| .

(
〈v〉2k0−1 + 〈v′〉2k0−1

)
|v − v∗| sin(θ/2).

Moreover, performing the same estimate as in (3.12),

〈v〉2k0−1 + 〈v′〉2k0−1 . (sin(θ/2))k0−1−γ/2 |v − v∗|k0−1−γ/2 〈v′〉k0+γ/2 〈v〉k0+γ/2 + 〈v′〉2k0−1.

Therefore,

I62 .

∫

T3×R3×R3×S2
b(cos θ)(sin(θ/2))k0−γ/2|v − v∗|k0+γ/2〈v′〉k0+γ/2 〈v〉k0+γ/2

|h′t∗| µ̃′ |∂vht| dσ dv∗ dv dx

+

∫

T3×R3×R3×S2
b(cos θ) sin(θ/2) |v − v∗|γ+1 〈v′〉2k0−1 |h′t∗| µ̃′ |∂vht| dσ dv∗ dv dx

=: I621 + I622.

We have

I621 .

∫

T3×R3×R3×S2
b(cos θ)(sin(θ/2))k0−γ/2 |v′ − v′∗|k0+γ/2 〈v′〉k0+γ/2 〈v〉k0+γ/2

|h′t∗| µ̃′ |∂vht| dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
b(cos θ)(sin(θ/2))k0−γ/2 〈v′∗〉k0+γ/2 〈v′〉2k0+γ 〈v〉k0+γ/2 |h′t∗| µ̃′ |∂vht| dσ dv∗ dv dx

.
1

2η

∫

T3×R3×R3×S2
b(cos θ)(sin(θ/2))k0−γ/2 〈v′∗〉2k0+γ |h′t∗|2 M̃ ′ dσ dv∗ dv dx

+
η

2

∫

T3×R3×R3×S2
b(cos θ)(sin(θ/2))k0−γ/2 〈v〉2k0+γ |∂vht|2 M̃ ′ dσ dv∗ dv dx

=: I6211 + I6212,

where M̃ ′ = µ̃′ 〈v′〉2k0+γ . Now, observing that
∫
R3 M̃ dv < +∞,

I6211 =
1

2η

∫

T3×R3×R3×S2
b(cos θ)(sin(θ/2))k0−γ/2 〈v∗〉2k0+γ |ht∗|2 M̃ dσ dv∗ dv dx

=
1

2η

∫

T3

∫

S2
b(cos θ)(sin(θ/2))k0−γ/2 dσ

∫

R3

〈v∗〉2k0+γ |ht∗|2 dv∗
∫

R3

M̃ dv dx

.
1

2η
‖ht‖2L2

x,v(〈v〉γ/2m0)
,

since k0 − γ/2 ≥ 1 for k ≥ 1 + 2s+ γ/2.
For the term

I6212 =
η

2

∫

T3×R3

∫

R3×S2
b(cos θ)(sin(θ/2))k0−γ/2 M̃ ′ dσ dv∗〈v〉2k0+γ |∂vht|2 dv dx,

using the change of variable v∗ → v′ and the fact that k0 > 3 + 2s + γ/2 since k >
3 + 4s+ γ/2, we have:

I6212 .
η

2

∫

T3×R2

〈v〉γ(∂vht)2m2
0 dv dx.
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Finally

I622 =

∫

T3×R3×R3×S2
b(cos θ) sin(θ/2) |v − v∗|γ+1 〈v′〉2k0−1 |h′t∗| µ̃′ |∂vht| dσ dv∗ dv dx

=

∫

T3×R3×R3×S2
b(cos θ) sin(θ/2) |v − v∗|γ+1 〈v〉2k0−1 |ht∗| µ̃ |∂vh′t| dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
b(cos θ) sin(θ/2) |v − v∗|γ+1 |ht∗| |∂vh′t| dσ dv∗ dv dx

.

∫

T3×R3×R3×S2
b(cos 2θ) sin(θ) |v − v∗|γ+1 |ht∗| |∂vht| dσ dv∗ dv dx

where we used the regular change of variable v → v′ and the fact that 〈v〉2k0−1µ̃ ≤ C.
Then, for ℓ > 3/2, using Cauchy-Schwarz inequality,

I622 .

∫

T3

(∫

R3

|ht|2 〈v〉2(γ+1+ℓ) dv

)1/2(∫

R3

|∂vht|2 〈v〉2(γ+1+ℓ) dv

)1/2

dx

.
1

2η
‖ht‖2L2

x,v(〈v〉γ/2m)
+
η

2
‖∂vht‖2L2

x,v(〈v〉γ/2m0)

where we used that k + γ/2 > γ + 1 + 3/2 + 2s.
In order to conclude, we put all the estimates together

1

2

d

dt
|||ht|||2H1

xH1
v(m) =

1

2

d

dt
‖ht‖2L2

x,v(m) +
1

2

d

dt
‖∇xht‖2L2

x,v(m) + ζ
1

2

d

dt
‖∇vht‖2L2

x,v(m0)

≤
(
−θ1(δ) +

Cζ

η

)
‖ht‖2L2

xḢ
s
v(〈v〉γ/2m)

− θ1(δ) ‖∇xht‖2L2
xḢ

s
v(〈v〉γ/2m)

+ ζ (−θ1(δ) + Cη) ‖∇vht‖2L2
xḢ

s
v(〈v〉γ/2m0)

+

(
θ2(δ) + Λδ(ε) +

Cζ

η
− λ∗

)
‖ht‖2L2

x,v(〈v〉γ/2m)

+

(
θ2(δ) + Λδ(ε) +

Cζ

η
− λ∗

)
‖∇xht‖2L2

x,v(〈v〉γ/2m)

+ (θ2(δ) + Λδ(ε) + Cη − λ∗) ζ ‖∇vht‖2L2
x,v(〈v〉γ/2m0)

,

for a constant C > 0. We first take δ, ε small enough so that θ2(δ) + Λδ(ε) ≤ (a+ λ∗)/2.
Secondly, we chose η small enough so that Cη ≤ (a+ λ∗)/2 and −θ1(δ) + Cη ≤ 0 then ζ

small enough that Cζ ≤ η(a + λ∗)/2 and −θ1(δ) + Cζ
η ≤ 0. With this choice of δ, ε, η, ζ,

we have the following inequalities:

θ2(δ) + Λδ(ε) + Cη − λ∗ ≤ a

θ2(δ) + Λδ(ε) +
Cζ

η
− λ∗ ≤ a

−θ1(δ) +Cη ≤ 0

−θ1(δ) +
Cζ

η
≤ 0.

Therefore
1

2

d

dt
|||ht|||2H1

xH1
v(m) . a ‖ht‖2L2

x,v(〈v〉γ/2m)
+ a ‖∇xht‖2L2

x,v(〈v〉γ/2m)
+ ζa ‖∂vht‖2L2

x,v(〈v〉γ/2m0)
,
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which concludes the proof. �

3.5. Regularization properties. We first state a regularity estimate on the truncated
operator Aδ,ε which comes from [20, Lemma 4.16].

Lemma 3.7. For any q ∈ N, the operator Aδ,ε maps L1
v(〈v〉) into Hq

v functions with
compact support.

We now focus on the short-time regularization properties the semigroup SΛ, which are
also going to be of crucial importance in the study of the nonlinear equation in Section 4.
For the sake of clarity, and because it is the case that we shall use in the sequel, we only
present this result of regularization for the particular case of ℓ = 0 in the spaces defined
in (3.4).

Lemma 3.8. Let r ∈ N, k > γ/2 + 3 + 2(r + 1)s. Consider f0 ∈ Hr
xL

2
v(〈v〉k). Then, for

k′ > k + γ + 5/2 + 6s, we have the following estimate:

(3.16) ‖SΛ(t)f0‖Hr,0
x,v(〈v〉k) .

1

t1/2
‖f0‖(Hr,s

x,v(〈v〉k′ ))′ , ∀ t ∈ (0, 1],

where (Hr,s
x,v(〈v〉k′))′ is the dual space of Hr,s

x,v(〈v〉k′) with respect to Hr,0
x,v(〈v〉k′).

We also have for k′ > k + γ + 5/2:

(3.17) ‖SΛ(t)f0‖Hr+s,0
x,v (〈v〉k) .

1

t1/2+s
‖f0‖Hr−s,0

x,v (〈v〉k′ ), ∀ t ∈ (0, 1].

Proof. Let us start this proof noticing an embedding property:

(3.18) ∀ k1 ≤ k2, ς ∈ R
+, Hς

v(〈v〉k2) →֒ Hς
v(〈v〉k1).

This property is clear in the case ς ∈ N. It is less evident in the case ς ∈ R+ \ N.
This case can be shown using a pseudo-differential argument or even more simply, using
real interpolation. Indeed, since the weighted space Hς

v(〈v〉ki) is defined through h ∈
Hς
v(〈v〉ki) ⇔ h〈v〉ki ∈ Hς

v , we can use that (see for example [10]):

Hς
v =

[
HE(ς)
v ,HE(ς)+1

v

]
ς−E(ς),2

to prove that

Hς
v(〈v〉ki) =

[
HE(ς)
v (〈v〉ki),HE(ς)+1

v (〈v〉ki)
]
ς−E(ς),2

, i = 1, 2.

From this, since Hℓ
v(〈v〉k2) →֒ Hℓ

v(〈v〉k1) for ℓ ∈ N, we deduce the desired embedding
result: Hς

v(〈v〉k2) →֒ Hς
v(〈v〉k1).

The first part of the result is a twisted version of Theorem 1.2 from [22], the only
difference being in the weights. First, we notice that

‖SΛ(t)f0‖Hr,0
x,v(〈v〉k) . ‖SΛ(t)f0‖Hr,0

x,v(〈v〉k).

The result from [22] gives us that for k′′ > k + γ + 5/2, we have:

‖SΛ(t)f0‖Hr,0
x,v(〈v〉k) .

1

t1/2
‖f0‖(Hr,s

x,v(〈v〉k′′ ))′ , ∀ t ∈ (0, 1]

where (Hr,s
x,v(〈v〉k′′))′ is the dual space ofHr,s

x,v(〈v〉k′′) with respect toHr,0
x,v(〈v〉k′′). It remains

to show that if k′ = k′′ + 6s > k + γ + 5/2 + 6s, we have

‖f‖(Hr,s
x,v(〈v〉k′′ ))′ . ‖f‖(Hr,s

x,v(〈v〉k′ ))′ .
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Indeed,

‖f‖(Hr,s
x,v(〈v〉k′′ ))′ = sup

∑r
j=0 ‖∇

j
x(ϕ〈v〉k′′ )‖

H
0,s
x,v

≤1

r∑

j=0

〈
∇j
xf〈v〉k

′−2js,∇j
xϕ〈v〉2k

′′−(k′−2js)
〉
L2
x,v

= sup
∑r

j=0 ‖∇
j
x(ψ〈v〉2(k′−2js)−k′′ )‖

H
0,s
x,v

≤1

r∑

j=0

〈
∇j
xf〈v〉k

′−2js,∇j
xψ〈v〉k

′−2js
〉
L2
x,v

≤ sup
∑r

j=0 ‖∇
j
x(ψ〈v〉k′−2js)‖

H
0,s
x,v

≤1

r∑

j=0

〈
∇j
xf〈v〉k

′−2js,∇j
xψ〈v〉k

′−2js
〉
L2
x,v

= sup
‖ϕ‖

H
r,s
x,v(〈v〉

k′ )
≤1
〈f, ϕ〉Hr,0

x,v(〈v〉k′ )

≤ ‖f‖(Hr,s
x,v(〈v〉k′ ))′ ,

where we used (3.18) to obtain the third bound and this concludes the proof of (3.16).
Concerning (3.17), it is a more direct consequence of Theorem 1.2 from [22]. Indeed, from
the latter, we have:

‖SΛ(t)f0‖Hr,0
x,v(〈v〉k) .

1

t1/2+s
‖f0‖(Hr+s,0

x,v (〈v〉k′ ))′ , ∀ t ∈ (0, 1].

Then,

‖f0‖(Hr+s,0
x,v (〈v〉k′ ))′ = sup

‖ϕ‖
H

r+s,0
x,v (〈v〉k

′
)
≤1

〈f0, ϕ〉Hr,0
x,v(〈v〉k′ )

= sup
‖ϕ‖

H
r+s,0
x,v (〈v〉k

′
)
≤1

∫

R3×Z3

f̂0〈v〉k′(ξ, η) ϕ̂〈v〉k′ (ξ, η)〈ξ〉r+s 〈ξ〉r−sdξ dη

≤ sup
‖ϕ‖

H
r+s,0
x,v (〈v〉k

′
)
≤1

‖ϕ‖
Hr+s,0

x,v (〈v〉k′ )‖f0‖Hr−s,0
x,v (〈v〉k′ )

≤ ‖f0‖Hr−s,0
x,v (〈v〉k′ ),

which concludes the proof of (3.17). �

We define the convolution of two semigroups S1 ∗ S2 by

(S1 ∗ S2)(t) :=

∫ t

0
S1(τ)S2(t− τ) dτ,

and, for p ∈ N∗, we define S(∗p) by S(∗p) = S ∗ S(∗(p−1)) with S(∗1) = S.
In what follows, in order to be able to apply Theorem 2.13 from [20], we study the

regularization properties of (Aδ,εSBδ,ε
)(∗p). We recall that the “large” space E is given

by (3.4) and the associated “small” one by E = H
max(1,n)
x,v (µ−1/2). We then prove the

following lemma:

Lemma 3.9. For any λ < λ∗ and any a ∈ (−min{λ0, λ}, 0), where we recall that λ0 > 0
is the spectral gap of Λ on E (see (1.19)) and λ∗ is defined in Lemmas 3.5 and 3.6 there
exists p ∈ N such that

‖(Aδ,εSBδ,ε
)(∗p)(t)‖B(E,E) ≤ C eat, ∀ t ≥ 0.
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Proof. Let us point out the fact that, from Lemma 3.7, the operator Aδ,ε provides us all

the regularization that we want in the velocity variable. In particular, when E = Hn
xHℓ

v(m)

or E = Hn
xHℓ

v(m) with n ≥ ℓ, (n, ℓ) 6= (0, 0) and E = Hn
x,v(µ

−1/2), the result is clear since
we only need to regularize in the velocity variable and thus from Lemmas 3.6 and 3.7, we
are able to prove that the conclusion of the lemma holds with m = 1.

We now treat the most difficult case E = L2
x,v(m) and E = H1

x,v(µ
−1/2). First, we prove

that Lemma 3.8 implies that the semigroup SBδ,ε
has similar regularization properties

as SΛ. Indeed, using Duhamel formula, we have:

SBδ,ε
(t) = SΛ(t)− (SΛ ∗ Aδ,εSBδ,ε

)(t)

From this, using that 1/2 + s < 1 and thus 1
t1/2+s is integrable at 0, we can prove that for

any r ∈ N,

(3.19) ‖SBδ,ε
(t)f0‖Hr+s,0

x,v (〈v〉k) .
1

t1/2+s
‖f0‖Hr−s,0

x,v (〈v〉k′ ), ∀ t ∈ (0, 1].

To conclude, we use Lemmas 3.5, 3.6, 3.7 combined with (3.19). Indeed, all this results
allow us to use the criterion given in [25, Lemma 2.4] and gives us the conclusion. �

3.6. Proof of Theorem 3.1. Thanks to the estimates proven in previous section, we
now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let E be one of the admissible space (3.4) and E = H
max(1,n)
x,v (µ−1/2)

so that in all the cases, we have E ⊂ E and we already have the decay of the semi-
group SΛ(t) in E from Theorem 1.3. We then apply Theorem 2.13 from [20] whose
assumptions are fulfilled thanks to Lemmas 3.7, 3.5, 3.6 and 3.9.

4. The nonlinear equation

This section is devoted to the proof of Theorem 1.1: we develop a Cauchy theory in a
perturbative framework. Our proof is based on the study of the linearized equation that
we made in previous section. The idea is to prove that, using suitable norms, there exists
a neighborhood of the equilibrium in which the linear part of the equation is dominant
and thus dictates the dynamic. Consequently, taking an initial datum close enough to the
equilibrium, one can construct solutions to the equation and prove exponential stability.

4.1. Functional spaces. In what follows, we use notations of Subsection 2.2. More
precisely, we define the spaces X, Y , Ȳ and Y ′ as in (2.6) and (2.7) with a weight

m(v) = 〈v〉k, k > 5γ/2 + 8 + 24s.

Similarly, for i = 0, . . . , 3, we define the spaces Xi, Yi, Ȳi and Y ′
i as in (2.6) and (2.7)

associated to the weights mi(v) = 〈v〉ki . The exponents k0 and k1 satisfy the following
conditions:

k0 := k − 2s and 3γ/2 + 11/2 + 16s < k1 < k0 − γ − 5/2 − 6s.

Concerning k2 and k3, we set:

k2 := k1 − 2s and γ/2 + 3 + 8s < k3 < k2 − γ − 5/2− 6s.

Remark 4.1. Let us comment briefly those conditions imposed on the weights and explain
the introduction of so many spaces.
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• First, in the proof of Proposition 4.4, we need to be able to apply the result from
Proposition 4.2 in X1, this explains the introduction of the spaces X2 and X3.

• The last condition k3 > γ/2 + 3 + 8s comes from the fact that we want to apply
Theorem 3.1 and Lemma 2.3 in X3.

• In our argument explained in the two next subsections, there are two levels in
which we have a loss of weight. The first one comes from the regularization es-
timate (3.16) (m0 to m1 and m2 to m3), which explains the conditions: k1 <
k0 − γ − 5/2 − 6s and k3 < k2 − γ − 5/2 − 6s. The second one comes from
the nonlinear estimates in Lemma 2.3 (m to m0 and m1 to m2), which explains
the conditions: k0 := k − 2s and k2 := k1 − 2s (a key element is that we have
‖f‖Ȳ0 . ‖f‖Y and ‖f‖Ȳ2 . ‖f‖Y1).

• The two first conditions 5γ/2 + 8 + 24s < k and 3γ/2 + 11/2 + 16s < k1 are then
naturally induced.

4.2. Dissipative norm for the whole linearized operator. Before going into the
proof of an a priori estimate which is going to be the cornerstone of our Cauchy theory, we
introduce a norm which is (better than) dissipative for the whole linearized operator Λ.

Proposition 4.2. Define for any η > 0 and any λ2 < λ1 (where λ1 > 0 is the optimal
rate in Theorem 3.1) the equivalent norm on X for Π0h = 0,

|||h|||2X := η‖h‖2X +

∫ ∞

0
‖SΛ(τ)e

λ2τh‖2X1
dτ.

Then there is η > 0 small enough such that the solution ht = SΛ(t)h to the linearized
equation satisfies, for any t ≥ 0 and some constant K > 0,

1

2

d

dt
|||SΛ(t)h|||2X ≤ −λ2|||SΛ(t)h|||2X −K‖SΛ(t)h‖2Y , ∀h ∈ X, Π0h = 0.

Proof. First we remark that the norm ||| · |||H3
xL

2
v(m) is equivalent to the norm ‖ · ‖H3

xL
2
v(m)

defined in (1.15) for any η > 0 and any λ2 < λ1. Indeed, using Theorem 3.1, we have

η‖h‖2H3
xL

2
v(m) ≤ |||h|||2H3

xL
2
v(m) = η‖h‖2H3

xL
2
v(m) +

∫ ∞

0
‖SΛ(τ)e

λ2τh‖2H3
xL

2
v(m1)

dτ

≤ η‖h‖2H3
xL

2
v(m) +

∫ ∞

0
C2e−2(λ1−λ2)τ‖h‖2H3

xL
2
v(m1)

dτ ≤ (η + C)‖h‖2H3
xL

2
v(m).

We now compute, denoting ht = SΛ(t)h,

1

2

d

dt
|||ht|||2H3

xL
2
v(m) = η〈Λht ht〉H3

xL
2
v(m) +

1

2

∫ ∞

0

∂

∂t
‖SΛ(τ)e

λ2tht‖2H3
xL

2
v(m1)

dτ =: I1 + I2.

For I1 we write Λ = A+B. Using the fact that A is a truncation operator (see for example
Lemma 3.7), we first obtain that

〈Aht, ht〉H3
xL

2
v(m) ≤ C‖ht‖2

H3
xL2

v(m1)
.

Moreover, repeating the estimates for the hypodissipativity of B in Lemmas 3.5 and 3.6
we easily get, for any λ2 ≤ λ < λ∗ and some K > 0,

〈Bh, h〉H3
xL

2
v(m) ≤ −λ‖h‖2H3

xL
2
v(m) −K‖h‖2H3,s

x,v(〈v〉γ/2m)
,

therefore it follows

I1 ≤ −λη‖ht‖2H3
xL

2
v(m) − ηK‖ht‖2H3,s

x,v(〈v〉γ/2m))
+ ηC‖ht‖2H3

xL
2
v(m1)

.
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The second term is computed exactly

I2 =
1

2

∫ ∞

0

∂

∂t
‖SΛ(τ + t)eλ2τh‖2H3

xL
2
v(m1)

dτ

=
1

2

∫ ∞

0

∂

∂τ
‖SΛ(τ + t)eλ2τh‖2H3

xL
2
v(m1)

dτ − λ2

∫ ∞

0
‖SΛ(τ)e

λ2τht‖2H3
xL

2
v(m1)

dτ

=
1

2

[
‖SΛ(τ)e

λ2τht‖2H3
xL

2
v(m1)

]τ=+∞

τ=0
− λ2

∫ ∞

0
‖SΛ(τ)e

λ2τht‖2H3
xL

2
v(m1)

dτ

= −1

2
‖ht‖2H3

xL
2
v(m1)

− λ2

∫ ∞

0
‖SΛ(τ)e

λ2τht‖2H3
xL

2
v(m1)

dτ

where we have used the semigroup decay from Theorem 3.1.
Gathering previous estimates and using that λ ≥ λ2, we obtain

I1 + I2 ≤ −λ2
{
η‖ht‖2H3

xL
2
v(m) +

∫ ∞

0
‖SΛ(τ)e

λ2τht‖2H3
xL

2
v(m1)

dτ

}

− ηK‖ht‖2H3,s
x,v(〈v〉γ/2m)

+ ηC‖ht‖2H3
xL

2
v(m1)

− 1

2
‖ht‖2H3

xL
2
v(m1)

.

We complete the proof choosing η > 0 small enough. �

4.3. Proof of Theorem 1.1. We consider the Cauchy problem for the perturbation h
defined through h = f − µ. The equation satisfied by h = h(t, x, v) is

(4.1)

{
∂th = Λh+Q(h, h)

h|t=0 = h0 = f0 − µ.

From the conservation laws (see (1.7)), for all t > 0, Π0ht = 0 since Π0h0 = 0, more
precisely

∫
T3×R3 ht(x, v) dv dx =

∫
T3×R3 vjht(x, v) dv dx =

∫
T3×R3 |v|2ht(x, v) dv dx = 0 for

j = 1, 2, 3. Note that we also have Π0Q(ht, ht) = 0.

4.3.1. A priori estimates.

Proposition 4.3. Any solution h = ht to (4.1) satisfies, at least formally, the following
differential inequality: for any λ2 < λ1 (where λ1 > 0 is the optimal rate in Theorem 3.1),
there holds

1

2

d

dt
|||h|||2X ≤ −λ2|||h|||2X −

(
K − C|||h|||X

)
‖h‖2Y ,

for some constants K,C > 0 and where we recall that the norm ||| · ||| is defined in Propo-
sition 4.2.

Proof. We compute the evolution of |||h||| where h = ht is solution of (4.1):

1

2

d

dt
|||h|||2X = η〈h,Λh〉H3

xL
2
v(m) +

∫ ∞

0
〈SΛ(τ)e

λ2τh,SΛ(τ)e
λ2τΛh〉H3

xL
2
v(m1) dτ

+ η〈h,Q(h, h)〉H3
xL

2
v(m) +

∫ ∞

0
〈SΛ(τ)e

λ2τh,SΛ(τ)e
λ2τQ(h, h)〉H3

xL
2
v(m1) dτ

=: I1 + I2 + I3 + I4.

For the linear part I1 + I2, we already have from Proposition 4.2 that, for any λ2 < λ1,

I1 + I2 ≤ −λ2|||h|||2X −K‖h‖2Y .
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We now deal with the nonlinear part, using first Lemma 2.3:

I3 . 〈Q(h, h), h〉X . ‖h‖X ‖h‖2Y . |||h|||X ‖h‖2Y .

For the last term I4, we use the fact that Π0ft = 0 and Π0Q(ft, ft) = 0 for all t ≥ 0,
together with the estimate (3.16) from Lemma 3.8. More precisely, if Π0h = 0, using
Theorem 3.1 in X1, we have:

∀ t ≥ 0, ‖SΛ(t)h‖X1 . e−λ1t‖h‖X1 .

Combined with the estimate (3.16) from Lemma 3.8, we deduce that for Π0h = 0,

∀ t > 0, ‖SΛ(t)h‖X1 .
e−λ1t

min(1,
√
t)
‖h‖Y ′

0
.

It implies
∫ ∞

0
〈SΛ(τ)e

λ2τf,SΛ(τ)e
λ2τQ(f, f)〉X1 dτ

≤
∫ ∞

0
‖SΛ(τ)e

λ2τf‖X1 ‖SΛ(τ)e
λ2τQ(f, f)‖X1 dτ

. ‖f‖X1 ‖Q(f, f)‖Y ′
0

∫ ∞

0
e−(λ1−λ2)τ e

−(λ1−λ2)τ

min(
√
τ , 1)

dτ

. ‖f‖X1 ‖Q(f, f)‖Y ′
0
.

To conclude, we use Lemma 2.3:

I4 . ‖f‖X1 ‖f‖X0 ‖f‖Ȳ0 . |||h|||X ‖h‖2Y .

�

We prove now an a priori estimate on the difference of two solutions to (4.1).

Proposition 4.4. Consider two solutions g and h to (4.1) associated to initial data g0
and h0, respectively. Then, at least formally, the difference g − h satisfies the following
differential inequality

1

2

d

dt
|||g − h|||2X1

≤ −K‖g − h‖2Y1 + C
(
‖g‖X1 + ‖h‖X1) ‖g − h‖2Y1

+ C
(
‖h‖Y1 + ‖g‖Y

)
|||g − h|||X1 ‖g − h‖Y1 ,

for some constants K,C > 0.

Proof. We write the equation safisfied by g − h:

{
∂t(g − h) = Λ(g − h) +Q(h, g − h) +Q(g − h, g),

(g − h)|t=0 = g0 − h0.
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We compute

1

2

d

dt
|||gt − ht|||2X1

= η〈(g − h),Λ(g − h)〉X1 +

∫ ∞

0
〈SΛ(τ)e

λ2τ (g − h),SΛ(τ)e
λ2τΛ(g − h)〉X3 dτ

+ η〈(g − h), Q(h, g − h)〉X1 +

∫ ∞

0
〈SΛ(τ)e

λ2τ (g − h),SΛ(τ)e
λ2τQ(h, g − h)〉X3 dτ

+ η〈(g − h), Q(g − h, g)〉X1 +

∫ ∞

0
〈SΛ(τ)e

λ2τ (g − h),SΛ(τ)e
λ2τQ(g − h, g)〉X3 dτ

=: T1 + T2 + T3 + T4 + T5 + T6.

Arguing as in Proposition 4.3 we easily obtain,

T1 + T2 ≤ −K‖g − h‖2Y1 ,
and also

T3 + T4 . |||h|||X1 ‖g − h‖2Y1 + ‖h‖Y1 |||g − h|||X1 ‖g − h‖Y1 .
Moreover, for the last part T5+T6, arguing as in Proposition 4.3 and using Lemma 2.3-(i),
we get

T5 + T6 . |||g − h|||X1 ‖g‖Ȳ1 ‖g − h‖Y1 . |||g − h|||X1 ‖g‖Y ‖g − h‖Y1 ,
which completes the proof. �

4.3.2. End of the proof. The end of the proof of Theorem 1.1 is classical and we do not enter
into details here. It follows a standard argument by introducing an iterative scheme whose
convergence and stability is shown thanks to Propositions 4.3 and 4.4. The framework
being exactly the same, we refer to Subsections 3.4.2. and 3.4.3 from [13] in which a more
precise proof is given.
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Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France. E-mail: tonon@ceremade.dauphine.fr
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search University, 45 rue d’Ulm, 75005 Paris, France E-mail: isabelle.tristani@ens.fr


	1. Introduction
	1.1. The model
	1.2. Function spaces
	1.3. Notations
	1.4. Main results and known results

	2. Preliminaries on the Boltzmann collision operator
	2.1. Homogeneous estimates
	2.2. Non homogeneous estimates

	3. The linearized equation
	3.1. Functional spaces
	3.2. Main results on the linearized operator
	3.3. Splitting of the linearized operator
	3.4. Dissipativity properties
	3.5. Regularization properties
	3.6. Proof of Theorem 3.1

	4. The nonlinear equation
	4.1. Functional spaces
	4.2. Dissipative norm for the whole linearized operator
	4.3. Proof of Theorem 1.1

	References

