
HAL Id: hal-01599835
https://hal.science/hal-01599835v1

Preprint submitted on 2 Oct 2017 (v1), last revised 12 Jun 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Memorization Paradigm: Branch & Memorize
Algorithms for the Efficient Solution of Sequencing

Problems
Lei Shang, Vincent t’Kindt, Federico Della Croce

To cite this version:
Lei Shang, Vincent t’Kindt, Federico Della Croce. The Memorization Paradigm: Branch & Memorize
Algorithms for the Efficient Solution of Sequencing Problems. 2017. �hal-01599835v1�

https://hal.science/hal-01599835v1
https://hal.archives-ouvertes.fr

The Memorization Paradigm: Branch & Memorize Algorithms for
the Efficient Solution of Sequencing Problems

Lei Shanga,∗, Vincent T’Kindta, Federico Della Croceb

aUniversité François-Rabelais de Tours,
LI (EA 6300), ERL CNRS OC 6305

64 avenue Jean Portalis
37200 Tours, France

bPolitecnico di Torino, DIGEP
Corso Duca degli Abruzzi 24

10129 Torino, Italy

Abstract

Memorization as an algorithm design technique allows to speed up algorithms at the price of
more space usage. Typically, in search tree algorithms, on lower branching levels, isomor-
phic sub-problems may appear exponentially many times and the idea of Memorization is to
avoid repetitive solutions as they correspond to identical sub-problems. The idea exists since
a long time but apparently has not been systematically considered when designing branching
algorithms. It is at least rare for sequencing problems, to the authors’ knowledge.

In this paper, we explore the power of Memorization on solving hard sequencing problems.
We first describe a general framework of Memorization with some guidelines provided on the
implementation. Then we apply the framework to four sequencing problems including the two-
machine flowshop problem minimizing the sum of completion time and three single machine
problems whose objective functions to minimize are the total tardiness, the sum of completion
time with release date and the sum of weighted completion time with deadline. The global
results suggest systematically considering Memorization as a solving block inside search tree
based algorithms like Branch and Bound.

Keywords: scheduling, exact algorithms, memorization, sequencing, branch and memorize,
total tardiness, sum of completion times, flowshop, single machine

1. Introduction

Memorization as an algorithm design technique allows to speed up algorithms at the price of
more space usage. Typically, in search tree algorithms, on lower branching levels, isomorphic
sub-problems may appear exponentially many times and the idea of Memorization is to avoid
repetitive solutions as they correspond to identical sub-problems. The method was first applied

∗Corresponding author
Email addresses: shang@univ-tours.fr (Lei Shang), tkindt@univ-tours.fr (Vincent T’Kindt),

federico.dellacroce@polito.it (Federico Della Croce)

Preprint submitted to European Journal of Operational Research October 2, 2017

on the Maximum Independent Set problem by Robson (1986) in 1986. By exploiting graph theo-
retic properties and by applying Memorization to avoid solving identical sub-problems, Robson
proposed an algorithm with a worst-case time complexity in O(1.2109n). It has remained the
exact exponential algorithm with the smallest worst-case time complexity until 2013, when it
was improved by the O(1.1996n) algorithm of Xiao and Nagamochi (2013). Memorization is
sometimes used to speed up search tree algorithms (Chandran and Grandoni, 2005; Fomin et al.,
2005; Fomin and Kratsch, 2010) in the context of EEA (Exact Exponential Algorithms), where
the objective is to conceive exact algorithms that can provide a best possible worst-case running
time guarantee.

Despite the fact that a typical Memorization algorithm memorizes solutions of sub-problems
that appear repeatedly, we prefer to interpret the idea in a more general way.

What we call the Memorization Paradigm can be formulated as “Memorize and learn from
what you have done so far, to improve your next decisions”. In the literature, various algorithms
can be classified as procedures embedding memorization techniques, though the implementation
could be quite different depending on the problem structure and the information to store. For
instance, Tabu Search (Glover, 1989, 1990) is a metaheuristic, which memorizes recently vis-
ited solutions in order to avoid returning back to these solutions again during the search. SAT
solvers deduce and then memorize conflict clauses during the tree search in order to perform
non-chronological backtracking (Conflict Driven Clause Learning) (Biere et al., 2009; Zhang
et al., 2001). Similar ideas also appear in Artificial Intelligence area as Intelligent Backtracking
or Intelligent Back-jumping.

From a theoretical point of view, the drawback relies on the memory consumption of Memo-
rization which can be exponential.

This drawback turns out to limit the quantity of memorized information like in Tabu Search
or SAT solvers. In this paper we instantiate the Memorization Paradigm in a way similar to
what is done in the field of EEA, i.e. we set up a Memorization framework for search tree based
exact algorithms but with a control on the memory usage. We have the intuition that a Memo-
rization with limited memory could already dramatically accelerate the solution in practice. By
embedding a simple Memorization technique into their Branch & Bound algorithm, Szwarc et al.
Szwarc et al. (2001) solved the single machine total tardiness problem on instances with up to
500 jobs in size. Other works presenting standard memorization techniques applied to sequenc-
ing problems have been done by T’kindt et al. (2004) where the benefit of such technique is well
shown.

Search tree algorithms are based on the idea of enumerating all possibilities via a search tree
created by a branching mechanism.

For each decision variable, the algorithm branches on all possible values, each time creating
a new sub-problem (a node in the search tree) of a reduced size. The algorithm continues re-
cursively and returns the global optimal solution. The basic structure being simple, the critical
question is how to prune the search tree so as to avoid exploring unpromising nodes. Dominance
conditions are commonly used to cut nodes: at a node, if it is proved that a more promising node
exists or can be easily found, then the current one can be abandoned. This is also the case for
Branch & Bound, in which at each node, the bounding procedure provides an optimistic estima-
tion of the solution quality of that node. If the estimation value is not better than the currently
best solution found, in other words, the current node is dominated by the incumbent solution, and
then the node is cut without being further developed. Just like the bounding procedure in Branch
& Bound, Memorization can be seen as another procedure which can help in pruning the search
tree. In branching algorithms, especially on lower branching levels, isomorphic sub-problems

2

may appear exponentially many times and Memorization can be used to avoid solving identical
problems multiple times.

Memorization, apparently, has not yet been systematically considered when designing search
tree based algorithms, as the bounding procedure in Branch & Bound. It is at least rare in se-
quencing problems, to the authors’ knowledge. The aim of this paper is to promote a systematic
merge of Memorization into search tree based algorithms in order to better prune the search tree.
In the following sections, we first describe a general framework of Memorization (section 2), fol-
lowed by some guidelines on the implementation (section 3). Then, we apply the framework to
four scheduling problems including 1|ri|

∑
Ci (section 4.1), 1|d̃i|

∑
wiCi (section 4.2), F2||

∑
Ci

(section 4.3) and 1||
∑

Ti (section 5). Finally, we conclude our work in section 6.

2. A general framework for Memorization in search trees

For a given minimization problem, the application of Memorization depends on several com-
ponents of the search tree based algorithm such as the branching scheme, the search strategies
and also the characteristics of the problem. In this section, we consider possible scenarios that
may appear for sequencing problems. Then, we present the possible schemes of Memorization
and how to choose the right scheme depending on the scenario.

Even though the general idea of Memorization can be generalized and applied to any com-
binatorial optimization problems, in this paper we focus on sequencing problems. Consider a
generic sequencing problem where n jobs J = {1, ..., n} are to be scheduled. Each job j is defined
by a set of features like a processing time p j, a due date d j, etc, which depends on the problem un-
der consideration. Some resources are available for the execution of jobs and an ordering of jobs
must be found to minimize some cost function, usually depending on jobs’ completion times.
We adopt an intuitive way to represent the content of a node or a sub-problem: as an example
123{4, ..., n} represents a sub-problem in which jobs {1, 2, 3} are already fixed by branching, to
the first three positions of the sequence, while the jobs to be scheduled after are {4, ..., n}.

No matter the branching scheme, at any iteration of the algorithm, by active nodes we de-
note the nodes that are created but not yet developed, and by explored nodes the nodes that have
already been branched on (children nodes have been created). We also adopt the notion of de-
composable problems defined by T’kindt et al. (2004). Typically, for single machine scheduling
problems, this often implies that the completion time of the prefixed job sequence of a node is
constant no matter of the order of jobs inside (it is defined as the sum of processing times of the
jobs in that sequence).

Definition 1. Let {1, ..., i}{i + 1, ..., n} be a problem to be solved. It is decomposable if and
only if the optimal solution of the sub-problem {1, ..., i} (resp. {i + 1, ..., n}) can be computed
independently from {i + 1, ..., n} (resp. {1, ..., i}), i.e. without knowing the optimal sequence of
{i + 1, ..., n} (resp. {1, ..., i}).

2.1. Branching schemes

In common search tree based algorithms for scheduling (sequencing) problems, the branch-
ing operation consists in assigning a job to a specific position in the sequence. A Branching
Scheme defines, at a node, how to choose this job and the positions to occupy.

We consider three classic branching schemes, namely forward branching, backward branch-
ing and decomposition branching.

3

When applying forward branching at a given node, each eligible free job is assigned to the
first free position. For example, the nodes at the first level of the search tree correspond to the
following sub-problems: 1{2, ..., n}, 2{1, 3, ..., n}, ..., n{1, ..., n − 1}.

When applying backward branching at a given node, each eligible free job is assigned to the
last free position. For example the nodes at the first level of the search tree correspond to the
following sub-problems: {2, ..., n}1, {1, 3, ..., n}2, ..., {1, ..., n − 1}n. This scheme is symmetric
with forward branching, hence for the sake of simplicity we only discuss forward branching in
this paper and add extra remarks on backward branching whenever necessary.

When applying decomposition branching at a given node, the job that is being considered
to branch is called a decomposition job. When a decomposition job is assigned to a position,
two sub-problems are generated implied by the free positions before and after the decomposition
job. Certainly one may determine the jobs that should be scheduled before and after this position
by enumerating all 2-partitions of jobs as the Divide & Conquer technique introduced by Fomin
and Kratsch (2010), but here we restrict our study to the situation where the two sub-problems
can be uniquely determined in polynomial time making use of some specific problem properties.
As an example, the nodes at the first level of the search tree could contain {2, 3, 4}1{5, ..., n}, if
job 1 is the decomposition job which is assigned to position 4 and generates two sub-problems
corresponding to jobs {2, 3, 4} and {5, ..., n}, respectively. This situation occurs, for instance, to

the 1||
∑

Ti problem which will be tackled later on.

2.2. Search strategies

During the execution of search tree based algorithms, when two or more nodes are active,
a strategy is needed to determine the next node to branch on. The classic search strategies are
depth first, best first and breadth first.

Depth first is the most common strategy: the node to explore is an arbitrary active node at the
lowest search tree level. The advantage of this strategy is that it only requires polynomial space.

Breadth first selects an active node with the highest search tree level. This leads to an expo-
nential space usage since the search tree is explored level by level.

Best first
chooses the node to explore according to its lower bound. The space usage in the worst case

is therefore also super-polynomial like in breadth first.
It seems conventional that when constructing a search tree based algorithm, the depth first is

adopted. However, this choice is strongly questionable according to T’kindt et al. (2004).

2.3. Memorization schemes

The memorization presented by Robson (1986) stores the optimal solution of each sub-
problem of a predetermined limited size and reuses that solution whenever such sub-problem
appears again during the tree search. However different memorization approaches can be used.
The differences rely on the choice of the information to store and the way in which the stored
information is used. We discuss below three different memorization schemes that are helpful to
efficiently solve some sequencing problems.

Taking account of the branching schemes introduced in section 2.1, any node of the search
tree can be defined by σ1S 1σ2S 2...σkS k, the σ j

′s being partial sequences of jobs and the S j
′s

being sub-problems which remain to be scheduled. For the sake of simplicity, we explain the
Memorization schemes in the case of forward branching, i.e. k = 1, and a node corresponds to a
problem σS .

4

2.3.1. Solution memorization

A : σ′S C : σ′′S

B : σS

Explored nodes Future nodes

D E F

Figure 1: Solution Memorization

Consider the situation illustrated in Figure 1, where active nodes are colored in black. Node
B is the current node, while σ, σ′ and σ′′ are different permutations of the same jobs. In other
words, nodes A, B and C may contain the same sub-problem to solve, implied by S . In that case,
if A has already been solved (consider for instance a depth-first search) and the optimal sequence
of S has been memorized, then it can be used directly to solve nodes B and C and it is no longer
necessary to branch on these nodes.

Note that, in order to successfully perform memorization, we must guarantee that the solution
of S memorized at node A is optimal. Depending on the branching algorithm implementation,
this may not be obvious: for instance in Branch & Bound algorithms, the leaf node correspond-
ing to the optimal solution of node A may be missed if one of its ascendant node is cut due to a
dominance condition. Looking at Figure 1, assume that node D should have led to the optimal
solution of problem S but has been cut by a dominance condition. Applying solution memoriza-
tion may then lead to memorize another solution β to S , which is not optimal with respect to S .
Troubles may appear if the global optimal solution to the original problem (associated to the root
node) is, for instance, given by node E. Solution memorization may imply not exploring node B
and directly replacing S by the “best” solution found from node A. As a consequence, the global
optimal solution is missed. This situation occurs whenever the dominance condition which has
pruned node D would not have pruned node E: in the remainder, this kind of conditions are

5

refined to as context dependent dominance conditions since they depend on the context of each
node (typically, the initial partial sequence σ, σ′ and σ′′). By opposition, a context independent
dominance condition would have pruned node D, E and F.

A direct way to fix this is to disable dominance conditions whenever solution memorization
is applied.

However, if these context dependent conditions are playing a very important role in the al-
gorithm then this may slow down the algorithm even if solution memorization works. Another
approach to manage context dependent dominance conditions is to extend the memorization from
“solutions” to “lower bounds” when the branching algorithm involves a bounding mechanism. In
that version of Memorization, we assume that all dominance conditions are kept in the algorithm.
When node A is created, a lower bound is computed, which represents the best solution value we
may expect from the sub-tree of A. This lower bound is based on the cost function value of the
sequence σ′ which is already fixed, and an evaluation on the unsolved part S . When branching
down the sub-tree of A, jobs in S are fixed gradually, hence the evaluation on the remaining
unscheduled jobs also becomes more and more precise. When all leaf nodes of the sub-tree of A
are explored, this value finally becomes tighter (higher) than the initial value computed at node
A. Since the objective function value of σ′ is known, we can then deduce the lower bound value
corresponding to S when scheduled after σ′, and memorize it. Now when node B is opened, in-
stead of computing its lower bound, we can get it by finding the lower bound of S directly from
the memory and then add the objective function value of σ. In this way, the lower bound we get
is tighter, and node B is more likely to be cut. Moreover, the lower bound computation at node B,
which may be time costly, is saved. Notice that, for nodes cut by context dependent dominance
conditions, their lower bound values still need to be computed and considered (hence introduces
an extra cost). Lower bound memorization can be a good alternative to solution memorization
with context dependent dominance conditions turned off as long as these conditions are efficient
in pruning the search tree.

Note that the memorization of lower bounds is compatible with the memorization of optimal
solutions: whenever in a sub-tree no nodes are cut by context dependent dominance conditions
and the global upper bound is updated by some nodes from this sub-tree, the optimal solution of
this sub-tree is memorized. Otherwise, the lower bound is memorized. We denote the described
memorization technique including the memorization of optimal solutions and the memorization
of lower bounds as solution memorization since both are related to the memorization of the “best
solution” of the problem associated to a node.

2.3.2. Passive node memorization
At any nodeσS , another information that can be memorized is the partial sequenceσ. Unlike

solution memorization where the memorized sequences can be used to solve a node, passive node
memorization is only used to cut nodes.

Consider the branching situation depicted by Figure 2. Again active nodes are black-colored
and B is the current node. Assume a node A exists among explored node, withσ′ being a different
permutation of the same jobs used in σ. If the partial sequence σ′ has been memorized then two
situations may occur. If σ′ dominates σ then B can be cut since it cannot lead to a solution better
than A. If no such σ′ dominating σ is available, then σ can be memorized in order to possibly
prune a future node like C. Note that solution memorization and passive node memorization may
possibly intersect. Consider the previous example and nodes A, B and C. If the optimal solution
of sub-problem S has been obtained from the exploration of node A, then at node B and C both

6

A : σ′S C : σ′′S

B : σS

Explored nodes

Future nodes

Figure 2: Passive node memorization)

solution memorization and passive node memorization imply not to branch on these nodes if σ′

dominates σ and σ′′.
The dominance test between sequences can be implemented as a function check(σ,σ′) which

returns 1 if σ′ dominates σ, as introduced by T’kindt et al. (2004). The check must be done on
two different sequences of the same jobs, having the same starting time and its implementation
is problem dependent. Since the memorized sequence results from branching decisions, we call
it passive node memorization.

Any node, ready to be branched on, must be compared to explored and/or to active nodes
depending on the search strategy. Additionally, it may be necessary to perform the check twice:

first once the node is created, then at the time of branching. Memorizing the partial sequence,
when the node is created, ensures that the best sequence is kept before any exploration of nodes.
Then, rechecking the dominance when branching on a node enables that node to be cut if a
dominant partial sequence has been found meanwhile.

In the following, we introduce Definition 2 which relates the lower bounding mechanism of
search tree based algorithms to the check function. When this test is verified, the current node
only needs to be compared to explored nodes instead of all nodes when best first is chosen as the
search strategy, as detailed in Section 2.4.

Definition 2. (Concordance Test) Let LB(A) be the lower bound value computed at node A.
The search tree based algorithm satisfies the concordance property if and only if, for any node
A = σS and B = πS , LB(A) < LB(B)⇔ check(π, σ) = 1.

2.3.3. Predictive node memorization
Predictive node memorization relies on the same idea as passive node memorization, but with

additional operations. As illustrated in Figure 3, at a given node B = σS , we first check, like in
passive node memorization, if the current node can be cut by σ′ memorized at node A. If not,
instead of directly memorizing σ, we search for an improving sequence π. Notice that, by the

7

way, the improving sequence necessarily belongs to a part of the search tree not yet explored
when dealing with the node σS . There may be many ways to compute π. For instance, we
may perform some local search on σ, searching for a neighbor sequence π that dominates σ.
Alternatively, we may focus on a short sub-sequence of σ and solve it to optimality (in a brute-
force way, for instance). The latter idea appears as Dominance Rules Relying on Scheduled Jobs
(Jouglet et al., 2004). We may also make use of an exact algorithm to optimize a part of σ to
get σ′, as far as this algorithm is fast. Notice that this idea is strongly related to the theoretical
mechanism called merging (Shang et al., 2017)and designed to provide good worst-case time
complexities. If such a sequence π can be built, then the current node σS is cut and node πS is
memorized. Note that node πS has not yet been encountered in the search tree when dealing with

A : σ′S C : σ′′S

B : σS

Explored nodes

Future nodes

πS

Figure 3: Predictive node memorization

node σS (consider, π = σ′′). So, it is important when applying predictive node memorization to
remember that πS still needs to be branched on.

Also, the extra cost of generating π must be limited in order to avoid excessive CPU time
consumption.

2.4. Decision guidelines
In this section we provide some guidelines on how to choose the appropriate memorization

scheme according to the branching scheme and the search strategy. The main results are summa-
rized in the decision tree in Figure 4.

2.4.1. Forward branching and depth first search strategy
In forward branching, any node of the search tree can be defined as σS . When depth first is

used as the search strategy we can state the following property.

Property 1. With forward branching and depth first, if the problem is decomposable and solution
memorization memorizes optimal solutions, then solution memorization dominates both passive
node memorization and predictive node memorization.

8

depth first

search strategy?

D

best first breadth first

A:the problem is decomposable
B:no context dependent dominance conditions
C:concordance property verified
D:solution memorzation
E:passive/predictive node memorization
F:passive node memorization
G:check() applied on active nodes only
H: check() applied on explored nodes only
HH: suggested scheme when none is dominant

forward/backward dec decforward/backward

branching strategy? branching strategy? branching strategy?

A and B?

yes no yes no

C?

E EH E

E FG F

forward/backward dec

D

Figure 4: Decision tree for choosing the memorization scheme

Proof. Any node deletion that can be achieved by passive node memorization and predictive
node memorization can also be achieved by solution memorization, but not conversely. Consider
nodes A = σS and B = πS with σ and π two permutations of the same jobs. As the problem is
decomposable, solving sub-problem S at node A is equivalent to solving it at node B. Without
loss of generality, we assume that A appears before B during the solution. In passive node
memorization if check(π, σ) = 1, i.e. sequence σ dominates π, then B can be pruned. However,
also in solution memorization, node B can be pruned since the optimal solution of jobs S has
already been memorized from node A.

Now consider the case where check(σ, π) = 1, i.e. sequence π dominates σ. This implies that
with passive node memorization, node B will not be pruned. However, as explained above, with
solution memorization, node B is pruned. With predictive node memorization, the conclusion is
the same since we have no guarantee that starting from node πS another node αS dominating πS
can be generated. Besides, even if such αS is generated and πS is pruned, the same issue occurs
to node αS when it is generated.

If the problem is not decomposable, or context dependent dominance conditions are used in
the algorithm, then solution memorization memorizes lower bounds, and then which memoriza-
tion scheme is dominant cannot be determined. However, in practice, passive node memorization
may be preferred to solution memorization. Notably, as the problem is not decomposable, then it
may be necessary to solve the sub-problem consisting of jobs S both at nodes A and B. However,
with passive node memorization, node B may be pruned whenever π is dominated by σ.

2.4.2. Forward branching and best first search strategy
We can state the following property.

9

Property 2. With forward branching and best first strategy, solution memorization does not ap-
ply. Passive node memorization or predictive node memorization can be applied only to explored
nodes if the Concordance Test (Definition 2) is answered.

Proof. To apply solution memorization at a given node, the sub-problem concerning S must be
solved first in order to memorize its optimal solution. This is not compatible with best first search
strategy. In fact, if best first reaches a leaf node, then also the optimal solution is reached and no
sequence has been stored before.

When passive node memorization and predictive node memorization are applied, the search,
at a given node, of a dominant sub-sequence needs only to be done in the set of explored nodes
whenever the concordance property holds. As the best first search strategy always consider for
branching the node with the lowest lower bound value, the concordance property implies that no
active node can dominate it.

When the concordance property does not hold, then node memorization techniques are re-
quired to consider both explored and active nodes for node pruning.

Besides, no dominance can be deduced a priori between predictive node memorization and
passive node memorization. It depends on how the search for an improving sub-sequence is ap-
plied in predictive node memorization. Generally speaking, both memorization schemes should
be considered and compared to find the best one.

2.4.3. Forward branching and breadth first search strategy
With forward branching and breadth first we can state the following property.

Property 3. With forward branching and breadth first strategy, solution memorization does not
apply. Passive node memorization should be chosen and should be applied to active nodes.

Proof. Under this configuration, solution memorization is useless since leaf nodes are reached
only at the end of the search tree. Passive node memorization can be applied to active nodes
only. An active node A is selected for branching when all the nodes at the same level have been
created, hence all other active nodes dominated by A are discarded. If in turn A it is dominated
by another node, then it is pruned. There is no need to consider explored nodes since explored
nodes on higher levels have less fixed jobs, therefore they are not comparable with the current
node.

Also, predictive node memorization cannot do better than passive node memorization since
passive node memorization already keeps the best node at each level.

2.4.4. Decomposition branching and depth first search strategy
With decomposition branching, at each level of the search tree a decomposition job can be

put on any free position by the branching operation.
Under this configuration, no dominance can be deduced among the memorization schemes.

In fact, we can imagine situations where either solution memorization or passive node mem-
orization or predictive node memorization is dominant. Consider nodes A = σS 1 j1S 2 and
B = πS 1 j2S 3 with A being explored before B. In both nodes, the current sub-problem con-
cerns scheduling jobs S 1 after σ or π. Suppose σ and π contain different jobs but have the same
completion time, which means that the sub-problem defined by S 1 is identical in A and B. Then,

10

the optimal sequence for S 1 found when solving A can be reused on B by solution memoriza-
tion, while passive node memorization cannot handle this case since σ and π contain different
jobs hence, are incomparable. Predictive node memorization may or may not cut B depending
whether a dominant prefix can be generated or not.

On the other hand, we may also imagine the case where A = σS 1 j1S 2 and B = πS 3 j2S 4.
Suppose σ and π are different permutations of the same jobs. If check(π, σ) = 1, then node B
can be cut by passive node memorization or predictive node memorization, while this is not the
case for solution memorization because sub-problems S 1 and S 3 do not consist of the same jobs.

In practice, even though every memorization scheme could be dominant in some cases, the
memory limitation does not allow applying all of them and our experience suggests preferring
solution memorization. This is due to the special structure of nodes σ1S 1...σkS k, which makes
the prefixed jobs much spread out (they are separated by S i), and prevents the application of
successful passive node memorization and predictive node memorization. Moreover, the case
with nodes σ1Sσ2 and π1S π2, where σ1 and π1 have the same completion time but contain
different jobs, may occur pretty often for large instances if the jobs processing times do not
present a large variance.

2.4.5. Decomposition branching and best first search strategy
Property 4. With decomposition branching and best first strategy, solution memorization does
not apply. Passive node memorization and predictive node memorization must only be applied
to explored nodes whenever the concordance property holds and the check function comparing
two nodes σ1S 1...σkS k and σ′1S 1

′...σk′
′S k′

′ only works on σ1 and σ1
′. Otherwise, passive node

memorization and predictive node memorization must be applied to explored and active nodes.

Proof. Similar to that of Property 2.

2.4.6. Decomposition branching and breadth first search strategy
Property 5. With decomposition branching and breadth first strategy, solution memorization
does not apply. Whether node memorization should be applied to active nodes only depends on
the definition of the check function.

Proof. This configuration discourages solution memorization for the same reason as in Property
3. If the check function is defined in a way such that the explored nodes are not comparable
to active nodes, then passive node memorization and predictive node memorization should be
applied to active nodes only, otherwise they should be applied to all nodes.

3. Implementation guidelines

In this section we discuss efficient implementations of the memorization schemes, providing,
when necessary, choices specific to the sequencing problems tackled in the remainder. The key
point is to have fast access to memorized partial solutions. Henceforth, we implement a database
as a hashtable which contains all the memorized solutions.

By well choosing the hash function, a hashtable supports querying in O(1) time to find the
corresponding elements given a hash key.

For solution memorization, at a given node, the database is queried with 〈t0, S 〉, where t0
is the starting time of the sub-problem and S is the related jobs. The returned result should

11

be 〈π, opt(π|t0)〉 which is the optimal sequence associated to S when starting at time t0, and
its corresponding objective function value. So, 〈π, opt(π|t0)〉 defines the elements which are
memorized in the database. We define the hash key h as a combination of t0 and |S |: seeing h as
a set of bits, t0 occupies the higher bits in h while |S | occupies the lower bits. The aim is to have
a unique hash key for each given pair 〈t0, S 〉, even if this is not necessarily bijective: i.e., two
elements in the database with the same hash key may correspond to different pairs 〈t0, S 〉. As a
consequence, when a list of elements is returned for a pair 〈t0, S 〉, it is also necessary to verify
that the returned sequence is a sequence of jobs S . This takes O(|S |) operations for each returned
sequence. We may also include the sum of job id’s of S into h in order to have a more exact key,
but this correspondingly increases the time needed to construct the key, without preventing from
checking whether a returned sequence π is a permutation of jobs S or not.

For passive and predictive node memorization, implementation decisions are more dependent
on the problem and on the check function used to compare two partial sequences σ and π of the
same jobs. For any such σ and π, a general definition of check() could be:

check(π, σ) =

1, i f Cmax(σ) ≤ max(Cmax(π); Emin(π)) and opt(σ|t0) ≤ opt(π|t0)
0, otherwise

(1)

with Cmax referring to the makespan of a partial sequence, and Emin(π) referring to the earliest
starting time of the jobs scheduled after π. It is not difficult to see that if check(π, σ) = 1 then
nodeσS dominates node πS . Indeed, for any regular objective function to minimize, with respect
to the fixed jobs, opt(σ|t0) ≤ opt(π|t0) ensures that σ yields a smaller cost than π. Moreover,
Cmax(σ) ≤ max(Cmax(π); Emin(π)) guarantees that the starting time of jobs S at node σS is not
higher than in node πS . Therefore, σS dominates πS .

Consequently, an element of the database is a tuple 〈σ,Cmax(σ), Emin(σ), opt(σ|t0), ExpAct〉
with ExpAct being a flag indicating whether this element corresponds to an explored or an active
node. Notice that t0 is not included since it appears in the hash key used for querying. Also,
when the problem is decomposable, the check function reduces to:

check(π, σ) =

1, i f opt(σ|t0) ≤ opt(π|t0)
0, otherwise

where only 〈σ, opt(σ|t0), ExpAct〉 need to be stored. For node memorization techniques the hash
key, at a given node, is computed in a way similar to solution memorization. Consider, for
example, forward branching: let σ1S 1 be the current node. As the dominance of another node is
checked on σ1, the database is queried with 〈0, S σ1〉 with S σ1 referring to the set of jobs in σ1.
Then, only S σ1 needs to be binary encoded into the hash value.

With respect to the database management, notice that when an element is added, in node
memorization techniques, then the elements dominated by the added one are removed. Besides,
due to memory limitation on the computer used for testing, we may need to clean the database
when it is full on some instances. More precisely, in our experiments, the RAM is of 8Gb and
hence the database size is also limited to 8Gb.

A cleaning strategy is needed to remove unpromising elements, i.e. those that are expected
not to be used for pruning the search tree. As it is not clear which elements are unpromising,
several strategies have been tested. We have implemented the following ones during our experi-
mentation.

FIFO: First In First Out
This is one of the most common database cleaning strategy: when the memory is full, we first

12

remove the first added elements. An extra structure is needed to record the order of elements
according to the time when they are added. When the database if full and a long sequence is
waiting to be inserted, it may be necessary to remove more than one elements in order to free
enough space.

BEFO: Biggest Entry First Out
This cleaning strategy suggests removing from the database the biggest elements (the longest
sequences) in order to free enough continuous memory for storing new elements. For solution
memorization it means removing nodes at higher levels in the search tree. An intuition of the
impact of this cleaning strategy on solution memorization can be sketched from Figure 5 which
presents the number of sequences memorized per size for an instance of the 1||

∑
Ti scheduling

problem with 800 jobs. It can be seen that sequences with “large number of jobs” (let’s say more
than 500 jobs) are not often used to prune nodes, and even if some large nodes could have been
useful for node pruning, we may still expect that the solution of its sub-problems generated by
one or several branching can be found from the memory.

Nb Seq: number of sequences of a given size, stored in the memory.
Nb Queried Seq: number of sequences of a given size that are used to avoid solving twice identical problems.

Figure 5: Number of solutions and useful solutions in memory for an instance of 1||
∑

Ti with 800 jobs

However, for passive and predictive node memorization, the strategy means removing nodes
at lower levels of the search tree. These nodes refer to sub-problems with many jobs already fixed
(and memorized) and few jobs to schedule. It may be possible that the extra cost of memorizing a
long fixed partial sequence is not inferior to solving the corresponding small sub-problem directly
without memorization. Since this is not obvious from a theoretic point of view, some preliminary
experiments were performed in order to investigate whether it is better also to remove nodes
at higher levels of the search tree in node memorization. Computational testing confirms that
removing the longest elements is always preferred, at least on problems 1|ri|

∑
Ci, 1|d̃i|

∑
wiCi

and F2||
∑

Ci.
At each cleaning, we also tend to clean up a large amount of space in order to decrease the

time cost induced by the cleaning operation itself.
13

LUFO: Least Used First Out

Figure 5 also suggests another cleaning strategy since a lot of sequences are never used to
prune nodes in the search tree. These sequences can be removed from the database to save space.
To implement the LUFO cleaning strategy we keep a usage counter for each database element.
The counter is incremented by 1 each time the element is queried and used to prune a node in the
search tree, and it is decremented by 1 when a cleaning operation is performed. Elements whose
counter is zero are removed by the cleaning operation. Note that in node memorization, when a
database element is replaced by a new one, the latter should inherit the counter value of the old
one. This is because that the counter value reflects the usefulness of a solution and the counter
value of a newly added solution should not be smaller than the counter values of solutions that
are dominated by the new one.

Preliminary results, not reported here, show that FIFO strategy is not efficient for the con-
sidered scheduling problems. BEFO strategy works better than FIFO, but its efficiency is not
high enough to make a difference in the computational results. LUFO strategy is proved to be
surprisingly efficient.

4. Application to the 1|ri|
∑

Ci, 1|d̃i|
∑

wiCi and F2||
∑

Ci problems

In order to experiment the effectiveness of Memorization on scheduling problems, we first
test it on three problems that were considered by T’kindt et al. (2004). In that work the authors
used memory to apply the so-called DP property over nodes in order to prune the search tree. Ac-
cording to the memorization framework as defined in this paper, what they have done is passive
node memorization with a database cleaning strategy which replaces the shortest stored sequence
by the new one when the database if full.

The aim of that paper was also on choosing the most suitable search strategy when trying
to solve these problems efficiently. In this section, for each of these three problems we apply
the previously defined framework of Memorization with various considerations and discuss the
obtained results. For each problem, we compare several Branch & Bound algorithms which
are named according to their features: Depth-, Best- and Breadth- refer to Branch & Bound
algorithms with the corresponding search strategies and no memorization included. Depth X,
Best X and Breadth X refer to a Branch& Bound algorithm with corresponding search strategies
and memorization X used, with X = S representing solution memorization, X = Pa representing
passive node memorization and X = Pr the predictive node memorization. For predictive node
memorization, we use k-perm heuristic to search for new sequences, as described in section 2.3.3.

k-perm heuristic also refers to a “dominance condition relying on scheduled jobs” as in-
troduced by Jouglet et al. (2004). At a given node σS , assume that σ = σ0σk with σk the
sub-sequence of the k last jobs in σ, k being an input parameter. The k-perm heuristic consists in
enumerating all permutations of jobs in σk to obtain sequence σ`. Then, the first found sequence
σ0σ` dominating σ0σk, if it exists, is used to prune node σS .

The dominating sequence can be memorized. The notion of dominance between sequences
is the one used to define the check function in node memorization. Preliminary tests suggest
us to choose k = 5 in our implementations in order to have the most efficient predictive node
memorization scheme.

Notice that k-perm search is not performed when breadth first strategy is used, since the
memorization applied on active nodes already covers the effect of k-perm.

14

The algorithms proposed by T’kindt et al. (2004) in 2004 are also tested on the same dataset
and they are named as Depth Pa 04, Best Pa 04 and Breadth Pa 04, respectively. Compared to
our algorithms Depth Pa, Best Pa and Breadth Pa, the main differences are that the RAM usage
is limited to 450M for Depth Pa 04, Best Pa 04 and Breadth Pa 04, in order to obtain similar
results to that reported in 2004. Also, in our algorithms

LUFO is chosen as the database cleaning strategy.
The test results on instances of certain sizes are marked as OOT (out of time) if any instance is

not solved after 5 hours. Analogously, with the application of Memorization, memory problems
may occur and the limit on RAM usage may be reached, reported as OOM (out of memory). Note
that according to our experiments, even when memory cleaning strategies are applied, OOM may
still occur due to the fragmentation of the memory after a number of cleanings. Also note that
LUFO is chosen as the cleaning strategy according to preliminary experimentations.

All tests have been done on a HP Z400 work station with 3.07GHz CPU and 8GB RAM.

4.1. Application to the 1|ri|
∑

Ci problem
The 1|ri|

∑
Ci problem asks to schedule n jobs on one machine to minimize the sum of com-

pletion times. Each job i has a processing time pi and a release date ri before which the job cannot
be processed. The problem is NP-hard in the strong sense and it has been widely studied in the
literature with both exact and heuristic algorithms considered. The referential computational re-
sults so far are done by T’kindt et al. (2004), in which with forward branching and best first and
the application of a so-called DP Property the algorithm is able to solve instances with up to 130
jobs. A mixed integer programming approach is also reported by Kooli and Serairi (2014), which
enables to solve instances with up to 140 jobs. However, in their experiments, only 5 instances
are generated for each set of parameters. This makes their result less convincing due to the fact
that the hardness of instances varies a lot even when generated with the same parameters, as
observed during our study. Consequently, we consider in this section that the Branch & Bound
algorithm provided by T’kindt et al. (2004) is at least as efficient as the approach of Kooli and
Serairi (2014). In contrast, 30 instances are generated for each set of parameters considered by
T’kindt et al. (2004), which leads to 300 instances for each size.

The work of T’kindt et al. (2004) uses the Branch & Bound algorithm of Chu (1992) as a
basis, and so forward branching is adopted as the branching strategy. With respect to search
strategies, depth first, best first and breadth first were all tested by T’kindt et al. (2004), aiming
to explore the impact of different search strategies on the efficiency of the algorithm. The lower
bounds and dominance conditions from Chu (1992) are kept. A so called DP Property, added as
a new feature by T’kindt et al. (2004), is actually equivalent to passive node memorization in our
terminology. The check() function is based on a dominance condition given by Chu (1992) and
it was defined by T’kindt et al. (2004) as follows:

check(π, σ) =

1, i f opt(σ|0) ≤ opt(π|0) and opt(σ|0) + |Ω| ∗ Emin(σ) ≤ opt(π|0) + |Ω| ∗ Emin(π)
0, otherwise

(2)
with Ω the jobs that remain to be scheduled after sequence σ and π. We also have Emin(σ) =

max(C(σ),minr∈Ω ri), with C(σ) the completion time of σ. The item stored into memory is a
tuple 〈σ,C(σ), opt(σ|0), ExpAct〉 and Emin(σ) can be computed when needed. Note that this
definition of check is an adaption of the general Equation 1 and if the check in Equation 1 return
1 then this check also returns 1.

15

4.1.1. Application of the memorization framework and improved results
The problem is not decomposable due to the existence of release dates. Therefore, with the

choice of forward branching, node memorization should be chosen, according to the decision
tree in Figure 4.

The lower bound used in the algorithm is based on the SRPT (Shortest Remaining Processing
Time) rule. Together with the check() function defined in Equation 2, it is not clear whether the
concordance property is answered.

Hence, when passive node memorization is applied upon best first, all nodes need to be
considered for the comparisons, while when it is applied with breadth first, only active nodes
need to be considered. Therefore, the choices made by T’kindt et al. (2004) with respect to
memorization are kept. The check() function also remains the same, as defined in Equation 2.

Here we refresh the computational results of T’kindt et al. (2004) on new randomly generated
input and also add results for predictive node memorization and solution memorization. The input
is generated following the way described by Chu (1992), i.e. the processing times are generated
uniformly from [1, 100] and release dates are generated between 0 and 50.5 ·n ·r with r belonging
to {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.50, 1.75, 2.0, 3.0}. 30 instances are generated for each value of r,
hence leading to 300 instances for each size n from 70 to 140.

We first ran the algorithms from T’kindt et al. (2004) (Depth Pa 04, Best Pa 04 and Breadth Pa 04)
on these newly generated instances.

All these three algorithms are able to solve instances with up to 110 jobs. On the run-
ning time, Best Pa 04 is the fastest one, with a maximum running time of 27 seconds for in-
stances with 110 jobs. This value becomes 40 seconds for Depth Pa 04 and 1082 seconds for
Breadth Pa 04. It was reported by T’kindt et al. (2004) that the algorithms with best first and
breadth first can solve respectively instances with 130 jobs and 120 jobs which is different from
what we obtain. This reveals that the newly generated instances are harder than that of T’kindt
et al. (2004), knowing that the computational power of our test environment is much better than
in 2004. Moreover, we also observed that for Depth Pa 04, the hardest instance of 110 jobs is
solved in 40 seconds but the hardest instance of 90 jobs is solved in 1691 seconds. This is why
we think that the hardness of instances vary a lot when generated randomly.

Results related to node memorization are put in Table 1.
For all the three search strategies, passive node memorization enables to solve much larger

instances with respect to the versions without memorization. This is sufficient to prove the power
of memorization on this problem.

Depth Pa, Best Pa and Breadth Pa are all more powerful than their counterparts of 2004,
i.e. Depth Pa 04, Best Pa 04 and Breadth Pa 04. This is especially visible on depth first, where
Depth Pa 04 solves instances with up to 110 jobs while Depth Pa solves instances with up to 130
jobs. This makes Depth Pa the global best algorithm and shows that when more physical memory
is available and a larger database with an appropriate cleaning strategy is set, the memorization
can be further boosted and the gain can be important.

The impact of k-perm search on this problem is very limited: predictive node memorization
basically leads to the same result as passive node memorization.

In addition, we also tested solution memorization on this problem since no theoretical dom-
inance between the memorization schemes can be established for this problem. Since context
dependent dominance conditions are enabled in the algorithm, we first disabled them in order to
obtain the optimal solution of each node. But this turned out to be very inefficient. Therefore,
we also implemented the memorization of lower bounds, as described in section 2.3.1.

16

However, the resulting algorithm can only solve instances with up to 80 jobs, hence not
competitive compared to node memorization, as predicted according to the decision tree in Figure
4.

It is also worth to be mentioned that the database cleaning strategy LUFO enables a faster
solution of large instances. As an example, we found an instance with 140 jobs is solved in 1.6
hours by Depth Pa with LUFO, while it needs 14 hours to be solved when the cleaning strategy
of T’kindt et al. (2004) is kept instead. However, due to the hardness of another instance with
140 jobs, the algorithm Depth Pa is finally out of time.

n 70 80 90 100 110 120 130 140

Depth-

Navg 141247.8 1778751.2 OOT
Nmax 17491232 276190737
Tavg 1.8 22.4
Tmax 217 3238

Depth Pa

Navg 2583.4 5756.2 18639.9 26827.4 48502.9 174545.5 192409.4 OOT
Nmax 147229 314707 2253897 644151 1281097 16575522 7742714
Tavg 0.0 0.0 0.3 0.7 1.3 7.1 9.1
Tmax 2 7 64 27 41 754 295

Depth Pr

Navg 1771.1 4455.1 12625.7 19621.7 30380.4 117865.6 128277.5 OOT
Nmax 82765 267416 1455743 588429 1096520 11126694 5132228
Tavg 0.0 0.0 0.3 0.5 0.9 4.7 6.6
Tmax 1 7 46 28 39 488 252

Best- OOT

Best Pa

Navg 1230.5 3299.4 5235.1 9494.8 13658.5 38574.5 43986.9 OOT
Nmax 36826 256534 292929 216293 228848 2675337 1449900
Tavg 0.0 0.2 0.2 0.4 0.6 15.3 11.8
Tmax 0 46 38 27 25 3595 1630

Best Pr

Navg 1229.6 3298.2 5229.0 9490.7 13545.7 38560.1 43989.8 OOT
Nmax 36826 256529 292927 216037 228832 2674776 1449872

. Tavg 0.0 0.2 0.2 0.4 0.7 15.4 11.9
Tmax 1 47 39 28 25 3579 1636

Breadth- OOT

Breadth Pa

Navg 1947.7 6745.0 9893.8 21308.5 27383.1 OOT
Nmax 90494 709607 733980 575430 1209481
Tavg 0.0 4.6 3.4 5.3 5.7
Tmax 9 1319 897 483 935

Table 1: Results of new algorithms on the 1|ri |
∑

Ci problem

4.2. Application to the 1|d̃i|
∑

wiCi problem

The 1|d̃i|
∑

wiCi problem asks to schedule n jobs on a single machine. Each job i has a
processing time pi, a weight wi and a deadline d̃i which has to be answered. The objective is to
minimize the total weighted completion time

∑
wiCi. The problem is NP-hard in the strong sense

and has been solved by Branch & Bound algorithms Posner (1985); Potts and Van Wassenhove
(1983), with Posner (1985) slightly superior. The basic algorithm described by T’kindt et al.
(2004) is a combination of algorithms of Posner (1985); Potts and Van Wassenhove (1983) by
incorporating the lower bound and the dominance condition of Posner (1985) into the Branch
& Bound algorithm of Potts and Van Wassenhove (1983). With respect to search strategies, all
the three strategies, i.e. depth first, best first and breadth first were considered by T’kindt et al.
(2004) and backward branching is adopted as the branching scheme as for Posner (1985); Potts
and Van Wassenhove (1983). Similarly to what is done on the 1|ri|

∑
Ci problem, the DP Property

17

is also considered by T’kindt et al. (2004), which is actually passive node memorization. The
check() function is defined as follows, where Ω is the set of jobs to be scheduled before σ and π.

check(π, σ) =

1, i f opt(σ|
∑

i∈Ω pi) ≤ opt(π|
∑

i∈Ω pi)
0, otherwise

(3)

The items stored in the database are 〈σ, opt(σ|
∑

i∈Ω pi), ExpAct〉. In 2003, Pan (2003) pro-
posed another Branch & Bound algorithm with reported experiments showing that it can solve to
optimality all instances with up to 90 jobs in size. As the testing protocol is identical to the one
used by T’kindt et al. (2004), we can conclude that the algorithm of Pan is outperformed by the
best one proposed in the work of T’kindt et al. (2004) (which is reported as being able to solve
instances with up to 130 jobs in size).

4.2.1. Application of the memorization framework and improved results
This problem is decomposable according to Definition 1.
From the decision tree in Figure 4 we can derive that with the depth first search strategy,

solution memorization should be considered, even though its superiority over node memorization
depends on the presence of context dependent dominance conditions in the algorithm. According
to T’kindt et al. (2004), node memorization was implemented with that strategy. Consequently,
in this section we compare four Branch & Bound algorithms: the three versions of T’kindt et al.
(2004), i.e. node memorization applied to the three search strategies and a version based on depth
first with solution memorization.

The concordance property is answered (see Proposition 1) and hence the passive node mem-
orization only considers explored node when the search strategy is best first, and only active
nodes need to be considered in breadth first. For solution memorization, the items stored into
the memory are 〈π, opt(π|0)〉. For node memorization, the check() function and the items stored
remain the same as for T’kindt et al. (2004), as described in the previous section.

About solution memorization, context dependent dominance conditions are enabled in the
algorithm. Their removal has been experimentally proved to lead to an inefficient algorithm.
Therefore, lower bounds are memorized during the solution memorization, as described in sec-
tion 2.3.1.

Proposition 1. With the check() function defined in Equation 3, our algorithms verify the Con-
cordance Test (Definition 2).

Proof. Consider two nodes Sσ and S π. First notice that the sub-problem to solve in both nodes
are the same, which consists in scheduling jobs from S starting from time 0. The lower bound
used in the algorithm (see Posner (1985); Potts and Van Wassenhove (1983)) returned on the
sub-problems on S are the same for the two nodes. Therefore, if check(π, σ) = 1, which means
opt(σ|

∑
i∈Ω pi) ≤ opt(π|

∑
i∈Ω pi), then LB(Sσ) ≤ LB(S π).

With the same reasoning, if LB(Sσ) ≤ LB(S π), it can be deduced that the opt(σ|
∑

i∈Ω pi) ≤
opt(π|

∑
i∈Ω pi) must holds, and hence check(π, σ) = 1.

Following the test plan described by Potts and Van Wassenhove (1983), for each job i, its
processing time pi is an integer generated randomly from the uniform distribution [1, 100] and
its weight wi is generated uniformly from [1, 10]. The total processing time P =

∑n
i=1 pi is then

computed and for each job i an integer deadline di is generated from the uniform distribution
[P(L−R/2), P(L + R/2)], with L increase from 0.6 to 1.0 in steps of 0.1 and R increases from 0.2

18

to 1.6 in steps of 0.2. In order to avoid generating infeasible instances, a (L,R) pair is only used
when L + R/2 > 1, hence only 20 (L,R) pairs are actually used, for each of which 10 feasible
instances are generated, yielding a total of 200 instances for each value of n from 40 to 140.
We first present the results of passive node memorization algorithms (Depth Pa 04, Best Pa 04
and Breadth Pa 04) from T’kindt et al. (2004). Both Depth Pa 04 and Best Pa 04 are stated by
T’kindt et al. (2004) to solve instances with up to 110 jobs. However, they are only capable
of solving instances with 70 jobs on the newly generated instances, with a maximum solution
time 11 seconds and 285 seconds, respectively. Breadth Pa 04 was reported to be able to solve
instances with up to 130 jobs in 2004 but this falls down to 100 jobs in our tests with a maximum
solution time of 36 seconds. This difference is not negligible and it reveals the fact that the newly
generated instances seem much harder than those generated by T’kindt et al. (2004).

The results of the new algorithms are presented in Table 2. On depth first, without memoriza-
tion the program is “out of time” on instances with 50 jobs, while both solution memorization
and passive node memorization enable to solve instances with up to 100 jobs, with passive node
memorization running faster. With the activation of k-perm search, Depth Pr enables to solve
30 more jobs than Depth Pa. This strongly proves the power of all the three memorization
schemes. It also worth to be noticed that Depth Pa solves instances with 30 more jobs with re-
spect to Depth Pa 04, knowing that the only differences between these two algorithm are that the
database size in Depth Pa is larger and the database cleaning strategy is different.

For best first, the same phenomenon can be observed, that is, Best Pr is more efficient than
Best Pa, which is better than Best- and Best Pa 04. Best Pr can also solve instances with up to
130, and faster than Depth Pr.

Breadth Pa is the most powerful algorithm among all. It is surprising to see that without
memorization Breadth- cannot even solve all instances of 40 jobs, while with passive node mem-
orization instances of 130 jobs are all solved in an average solution time of 27 seconds. Again,
as for the 1|ri|

∑
Ci problem, LUFO allows to accelerate the solution but it did not enable to solve

larger instances.

19

n 40 50 60 70 80 90 100 110 120 130 140

Depth-

Navg 116827.7 OOT
Nmax 14536979
Tavg 1
Tmax 74

Depth S

Navg 772.0 2718.0 6706.0 28463.0 114970.0 139382.0 563209.0 OOT
Nmax 17699 60462 137207 1660593 6180097 2803714 12335703
Tavg 0.4 0.5.0 1.0 3.0 15.0 12.0 113.0
Tmax 1 2 6 275 1544 474 5346

Depth Pa

Navg 559.1 2091.3 5240.1 20068.3 75727.4 139429.8 376206.9 OOT
Nmax 11963 83075 94189 1004546 1960891 4321070 5549747
Tavg 0.4 0.4 0.5 0.9 2.9 5.5 17.0
Tmax 1 1 2 39 157 312 515

Depth Pr

Navg 326.4 901.7 2184.1 6825.3 20429.0 32531.0 90375.3 266689.8 574824.4 1397463.6 OOT
Nmax 3431 17447 28677 187425 665376 768802 1781123 14713483 11236833 103699138
Tavg 0.4 0.4 0.4 0.6 1.0 1.0 3.8 14.4 37.9 108.2
Tmax 0 1 1 5 30 21 51 901 1255 8732

Best- OOT

Best Pa

Navg 334.6 879.3 1859.0 7159.9 16581.8 27259.5 60349.0 OOT
Nmax 3800 20889 25574 440623 547165 1252600 798372
Tavg 0.4 0.4 0.4 0.7 1.3 1.8 4.3
Tmax 0 1 1 30 73 130 91

Best Pr

Navg 292.0 708.9 1486.9 4312.7 10301.7 14642.9 31891.2 145203.1 239837.4 330474.1 OOT
Nmax 2435 11762 18051 120259 319068 276507 332022 10659343 7578570 6712266
Tavg 0.4 0.4 0.4 0.5 0.8 1.0 1.9 45.6 20.0 26.7
Tmax 0 1 1 4 23 13 25 5008 1137 716

Breadth- OOM

Breadth Pa

Navg 348.6 940.9 1833.1 6533.4 14964.4 23725.0 53309.2 102633.5 239512.5 329902.3 OOT
Nmax 4701 16952 24559 437697 453506 868876 789310 5975094 7577492 6702080
Tavg 0.0 0.0 0.0 0.2 0.4 0.8 2.0 10.1 20.0 26.7
Tmax 0 0 0 9 15 31 36 1353 1135 718

Table 2: Results of the new algoritihms on the 1|d̃i |
∑

wiCi problem

4.3. Application to the F2||
∑

Ci problem
The F2||

∑
Ci problem asks to schedule n jobs are to be scheduled on two machines M1 and

M2. Each job i needs first to be processed on M1 for p1,i time units then be processed on M2
for p2,i time. The objective is to minimize the sum of completion times of jobs. We restrict to
the set of permutation schedules in which there always exist an optimal solution. A permutation
schedule is a schedule in which the jobs sequences on the two machines are the same. The
problem is NP-hard in the strong sense. Up to 2016, the best exact algorithm was the Branch &
Bound algorithm proposed by T’kindt et al. (2004) and based on the Branch & Bound algorithm
of Della Croce et al. (2002). Recently, Detienne et al. Detienne et al. (2016) proposed a new and
very efficient Branch& Bound algorithm capable of solving instances with up to 100 jobs in size.
This is definitely the state-of-the-art exact method for solving the F2||

∑
Ci problem. However,

in order to evaluate the impact of using Memorization in a Branch & Bound algorithm we make
use of the algorithms described by T’kindt et al. (2004) since their code was directly available to
us.

The adopted branching scheme in this algorithm is forward branching and all the three search
strategies were considered. The DP Property is also considered by T’kindt et al. (2004), which
is actually passive node memorization. The check() function is based on a result reported by
Della Croce et al. (2002) and is defined as follows:

check(π, σ) =

1, i f opt(σ|0) ≤ opt(π|0) and |Ω| ∗ (C2(σ) −C2(π)) ≤ opt(π) − opt(σ)
0, otherwise

(4)

where Ω is the set of jobs to be scheduled afterσ and π, C2(·) is the completion time of a given
sequence on the second machine. The items stored into the database are 〈σ,C2(σ), opt(σ|0), ExpAct〉.

20

4.3.1. Application of the memorization framework and improved results
This problem is not decomposable since
given a partial solution of the form σS with σ a fixed sequence, the optimal solution of sub-

problem S depends on the order of jobs in σ. From the decision tree in Figure 4 we can derive
that with the depth first search strategy, solution memorization should be considered, even though
its superiority over node memorization depends on the presence of context dependent dominance
conditions. According to T’kindt et al. (2004), node memorization was implemented with that
strategy. Consequently, in this section we compare four Branch & Bound algorithms: the three
versions of T’kindt et al. (2004), i.e. node memorization applied to the three search strategies
and a version based on depth first with solution memorization.

With the check() function defined in Equation 4 and the lower bound (a Lagrangian Relax-
ation based lower bound) used in the algorithm, the concordance property is not answered. We
performed experiments to look for the case where for two nodes σS and πS , check(π, σ) = 1 but
LB(π) < LB(σ) and we found it. Therefore, the concordance property is not verified and both
active and explored nodes need to be considered for best first strategy. For breadth first strategy,
only active nodes need to be considered.

For solution memorization, since context dependent dominance conditions are enabled in the
algorithm, and they are important for a fast solution of the problem, lower bounds are memorized
during the solution memorization, as described in section 2.3.1.

The items stored into the memory are 〈π, t1, t2,C2(π), opt(π|(t1, t2))〉 where t1 is the actual
starting time of π on the first machine and t2 is the actual starting time of π on the second
machine. Besides, opt(π|(t1, t2)) is the sum of completion times of jobs in π, when π starts at
time t1 on the first machine and time t2 on the second machine. For node memorization, the
check() function and the stored item remain the same as per T’kindt et al. (2004), as described in
the previous section.

30 instances are generated for each size n from 10 to 40, with the processing times generated
randomly from an uniform distribution in [1, 100]. Again, we ran the algorithms from T’kindt
et al. (2004) on these newly generated instances.

Depth Pa 04 is able to solve instances of 40 jobs which is 5 jobs more than reported by
T’kindt et al. (2004), with a maximum solution time about 3.4 hours. Both Best Pa 04 and
Breadth Pa 04 solve instances with up to 35 jobs, as reported by T’kindt et al. (2004), with
maximum solution times of 43 seconds and 806 seconds, respectively.

Other results are given in Table 3. Depth- is able to solve instances with 35 jobs. Best- is
able to solve instances with 30 jobs and Breadth- can only solve up to 25 jobs. With passive
node memorization enabled, Depth Pa solves instances with 5 more jobs than Depth-. Best Pa
and Breadth Pa solve instances with 10 more jobs than the versions without Memorization. With
respect to algorithms X Pa 04, algorithms X Pa use a larger database, more precisely, the max-
imum number of solutions that can be stored is set to 6000000 instead of 350000. This enables
Best Pa to solve 5 more jobs than Best Pa 04. However, Depth Pa and Breadth Pa are not able to
solve larger instances with respect to Depth Pa 04 and Breadth Pa 04, even though they solve in-
stances faster. Notice that the F2||

∑
Ci problem is a really hard problem, certainly more difficult

than the two other problems previously tackled in this paper.
Also, the LUFO strategy is adopted for database cleaning but it did not enable to solve larger

instances without having an “Out of Time” problem.
Predictive node memorization is not more efficient than passive node memorization: in fact

no nodes are cut by undertaking a k-perm search. The result is hence even slightly slower due

21

to the time consumed by the call to the k-perm heuristic. Depth S solve instances with less
nodes generated compared to Depth-. However, its efficiency is even less than Depth-, due to the
processing of lower bound memorization.

From a global point of view, the power of memorization is also illustrated on this problem,
since we always have benefits in using it. As a perspective for this problem it could be interesting
to evaluate the contribution of Memorization when embedded into the state-of-the-art algorithm
presented by Detienne et al. (2016).

n 10 15 20 25 30 35 40 45

Depth-

Navg 23.7 255.6 4137.7 21460.4 317102.0 3615780.0 OOT
Nmax 84 2367 83863 311742 3097479 53187978
Tavg 0.0 0.0 0.1 0.8 26.0 423.0
Tmax 0 0 2 17 248 6128

Depth S

Navg 24.0 228.0 3561.0 19733.0 294355.0 3425633.0 OOT
Nmax 84 1735 68070 273146 2712580 49360565
Tavg 0.0 0.0 0.1 1.0 29.0 497.0
Tmax 0 0 2 15 248 6933

Depth Pa

Navg 22.8 187.2 1573.0 8205.0 61337.0 337194.0 1894037.2 OOT
Nmax 80 1083 17114 48459 291750 1568506 15472612
Tavg 0.0 0.0 0.0 0.1 4.1 35.0 328.3
Tmax 0 0 0 2 21 163 3627

Depth Pr

Navg 22.8 187.2 1573.0 8205.0 61361.3 337194.0 1894037.0 OOT
Nmax 80 1083 17114 48459 291016 1568506 15472612
Tavg 0.0 0.0 0.0 0.1 4.1 32.8 332.8
Tmax 0 0 0 2 23 173 3664

Best- Navg 23.7 249.3 3993.1 21717.7 291131.9 OOM
Nmax 84 2253 83863 311742 2451152
Tavg 0.0 0.0 0.1 0.7 19.1
Tmax 0 0 2 17 197

Best Pa

Navg 20.9 139.5 957.3 4780.7 28957.0 112229.8 495186.5 OOM
Nmax 72 624 6646 21022 152797 426641 3617824
Tavg 0.0 0.0 0.0 0.0 1.2 7.8 80.6
Tmax 0 0 0 1 4 43 1253

Best Pr

Navg 20.9 139.5 957.3 4780.7 28957.0 112229.8 495186.5 OOM
Nmax 72 624 6646 21022 152797 426641 3617824
Tavg 0.0 0.0 0.0 0.0 1.4 8.3 83.1
Tmax 0 0 0 1 5 45 1283

Breadth- Navg 23.9 266.1 5181.8 39303.6 OOT
Nmax 84 2360 83863 311742
Tavg 0.0 0.0 0.1 1.6
Tmax 0 0 2 17

Breadth Pa

Navg 21.0 148.8 1369.5 8889.1 115219.2 345109.6 OOT
Nmax 72 692 9927 63485 2242263 2357023
Tavg 0.0 0.0 0.0 0.2 26.1 54.2
Tmax 0 0 0 3 711 665

Table 3: Results of new algorithms on the F2||
∑

Ci problem

22

5. Application to the 1||
∑

Ti problem

In this section, we report the results of the application of Memorization on solving the single
machine total tardiness problem, referred to as 1||

∑
Ti. We first introduce main properties and

existing results of the problem, then determine parameters for Memorization and finally report
the computational results.

5.1. Preliminaries
The problem asks to schedule a set of n jobs N = {1, 2, . . . , n} on a single machine. For

each job j, a processing time p j and a due date d j are given and the objective is to arrange the
jobs into a sequence S = (a1, ..., an) so as to minimize T (N, S) =

∑n
j=1 max{

∑ j
i=1 pai − da j , 0}.

This problem is a classic scheduling problem known to be NP-hard in the ordinary sense Du and
Leung (1990). It has been extensively studied in the literature.

The current state-of-the-art exact method in practice is a Branch & Bound algorithm (named
as BB2001 in this paper) which solves to optimality problems with up to 500 jobs in size Szwarc
et al. (2001). Latest theoretical developments for the problem can be found in the survey of
Koulamas Koulamas (2010). Main properties of the problem can be found in Szwarc et al.
(2001), and some of them are reminded below.

Let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence and ([1], [2], . . . , [n]) be
an EDD (Earliest Due Date first) sequence of all jobs.

We first introduce two important decomposition properties.

Decomposition 1. Lawler (1977) (Lawler’s decomposition) Let job 1 in LPT sequence corre-
spond to job [k] in EDD sequence. Then, job 1 can be set only in positions h ≥ k and the jobs
preceding and following job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k − 1], [k +

1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Decomposition 2. Szwarc et al. (1999) Let job k in LPT sequence correspond to job [1] in
EDD sequence. Then, job k can be set only in positions h ≤ (n − k + 1) and the jobs preceding
job k are uniquely determined as Bk(h), where Bk(h) ⊆ {k + 1, k + 2, . . . , n} and ∀i ∈ Bk(h), j ∈
{n, n − 1, . . . , k + 1}r Bk(h), di ≤ d j

The two above decomposition rules can be applied simultaneously to derive a decomposing
branching scheme called Double Decomposition (Szwarc et al., 2001). At any node, let S i be
a set of jobs to schedule. Note that some other jobs may have already been fixed on positions
before or after S i, implying a structure like σ1S 1σ2S 2...σiS i...σkS k over all positions, but a node
only focuses on the solution of one sub-problem, induced by one subset of jobs (S i here). With
depth first, which is the search strategy retained in the Branch & Bound BB2001, the Double
Decomposition is always applied on S 1. This works as follows. First find the longest job ` and
the earliest due date job e in S 1. Then apply Decomposition 1 (resp. Decomposition 2) to get the
lists L` (resp. Le) of positions, on which ` (resp. e) can be branched on. As an example, suppose
Le = {1, 2} and L` = {5, 6}. Then, a double branching can be done by fixing job e on position 1
and fixing job ` on position 5, decomposing the jobs S i to three subsets (sub-problems): the jobs
before jobs job e, which is ∅; the jobs between e and `; and finally the jobs after `. In the same
way, the other 3 branching can be performed by fixing jobs e and ` in all compatible position
pairs: (1, 6), (2, 5) and (2, 6).

When branching from a node, another particular decomposition may occur as described in
Property 6. Assume that a given subset of jobs S is decomposed into two disjoint subsets B

23

and A, with B ∪ A = S and all jobs of B are scheduled before that of A in an optimal schedule
of S : (B, A) is then called an optimal block sequence and Property 6 states when does such
decomposition occur. In that case Decomposition 1 and Decomposition 2 are not applied but two
child nodes are rather created each one corresponding to one block of jobs (A or B), following
Property 6 (also called the split property).

Let E j and L j be the earliest and latest completion times of job j, that is if B j (resp. A j) is the
currently known jobs that precedes (resp. follow) job j, then E j = p(B j)+p j, and L j = p(NrA j).

Property 6. Szwarc et al. (1999) (Split)

(B, A) is an optimal block sequence if maxi∈B Li ≤ min j∈A E j.

The value of Ei and Li of each job i can be obtained by applying Emmons’ conditions (Em-
mons, 1969) following the O(n2) procedure provided by Szwarc et al. (1999).

An initial version of solution memorization has been already implemented in BB2001, even
though it was called Intelligent Backtracking by the authors. Remarkably, lower bounds are not
used in this Branch & Bound algorithms due to

the “Algorithmic Paradox” (Paradox 1) found in Szwarc et al. (2001). This one shows that
the power of Memorization largely surpasses the power of the lower bounding procedures in the
algorithm.

Paradox 1. “...deleting a lower bound drastically improves the performance of the algorithm...”

Paradox 1 is simply due to the fact that a lot of identical sub-problems occur during the ex-
ploration of the search tree. The computation time required by lower bounding procedures to cut
these identical problems is much higher than simply solving that sub-problems once, memoriz-
ing the solution and reusing it whenever the sub-problem appears again. Besides, pruning nodes
by the lower bound may negatively affect memorization since the nodes that are cut cannot be
memorized.

The BB2001 algorithm uses a depth first strategy and for each node to branch on, the follow-
ing procedure is applied:

1. Search the solution of the current problem, defined by a set of jobs and a starting time of
the schedule, in “memory”, and return the solution if found; otherwise go to 2.

2. Use Property 6 to split the problem to new sub-problems which are solved recursively
starting from step 1. If no split can be done, go to step 3.

3. Combine Decompositions 1 and 2 to branch on the longest job and the smallest-due-date
job to every candidate positions. For each branching case, solve sub-problems recursively,
then store in memory the best solution among all branching cases and return it.

Note that due to Paradox 1, all lower bounding procedures are removed, which makes the
Branch & Bound algorithm a simple branching algorithm. Notice that solution memorization
can be implemented in BB2001 as suggested in section 3. In BB2001, when the database of
stored solutions is full, no cleaning strategy is used and no more partial solutions can be stored.
The memory limit of this database in BB2001 is not mentioned by Szwarc et al. (2001).

5.2. Application of the memorization framework and improved results
We take the reference algorithm BB2001 as a basis, in which decomposition branching and

solution memorization are already chosen. The decomposition branching has been proved to be
24

very powerful, and there is no evidence that other branching schemes like forward branching or
backward branching can lead to a better algorithm (see Szwarc et al. (2001)). The problem is
decomposable according to Definition 1. The main discussion relies on the relevancy of consider-
ing node memorization instead of solution memorization. As already mentioned in section 2.4.4,
it is not obvious to implement node memorization, for a decomposing branching scheme, which
could outperform the solution memorization. Here a node is structured as σ1S 1...σkS k with the
σi
′s being the partial sequences to memorize in node memorization. Assume we have two nodes

σ1S 1...σkS k and π1S ′1...π`S
′
`, it is not apparent to find σi and π j, i ∈ {1, .., k}, j ∈ {1, .., `}, such

that σi and π j are of same jobs and have the same starting time. Moreover, it seems complicated
to design an efficient check() function deciding which of these two nodes is dominating the other.
We found no way to implement node memorization which could hopefully lead to better results
than those obtained with solution memorization. Consequently, solution memorization only is
considered and, as sketched in sections 2.4.5 and 2.4.6, there is no interest in considering best
first or breadth first search strategies.

Henceforth, the choices done by Szwarc et al. (2001) with respect to memorization were
good choices. In the remainder we investigate limitations of the memorization technique as
implemented by Szwarc et al. (2001) and propose improvements which significantly augment
the efficiency of the algorithm.

Our algorithm is based on BB2001, with two main changes.
Since the memory usage was declared as a bottleneck of BB2001, we firstly retest BB2001

on our machine: a HP Z400 work station with 3.07GHz CPU and 8GB RAM. 200 instances are
generated randomly for each problem size using the same generation scheme as per Potts and
Van Wassenhove (1982). Processing times are integers generated from an uniform distribution in
the range [1, 100] and due dates di are integers from a uniform distribution in the range [piu, piv]
where u = 1 − T − R/2 and v = 1 − T + R/2. Each due date is set to zero whenever its generated
value is negative. Twenty combinations (R,T) are considered where R ∈ {0.2, 0.4, 0.6, 0.8, 1},
and T ∈ {0.2, 0.4, 0.6, 0.8}. Ten instances are generated for each combination and the combina-
tion (R = 0.2,T = 0.6) yields the hardest instances as reported in the literature (see Szwarc et al.
(1999)) and confirmed by our experiments. Table 4 presents the results we obtain when com-
paring different algorithms. For each version we compute the average and maximum CPU time
Tavg and Tmax in seconds for each problem size. The average and maximum number of explored
nodes Navg and Nmax are also computed. The time limit for the solution of each instance is set to
4 hours, and the program is considered as OOT (Out of Time) if it reaches the time limit. Also,
when memorization is enabled without a database cleaning strategy, the physical memory may
be saturated by the program, in which case the program is indicated as OOM (Out of Memory).

Our implementation of BB2001 solves instances with up to 900 jobs in size as reported in
Table 4, with an average solution time of 764s and a maximum solution time of 9403s for 900-job
instances, knowing that the original program, as tested in 2001 was limited to instances with up to
500 jobs due to memory size limit. Their tests were done on a Sun Ultra-Entreprise Station with
a reduced CPU frequency (<450MHz) and a RAM size not stated. It is anyway interesting to see
that with just the computer hardware evolution, Memorization is augmented to solve instances
with 400 jobs more.

BB2001 is out of time (>4h) for instances with 1000 jobs, and the memory size seems no
longer to be the bottleneck. The first improvement we propose presume on the vein of Paradox
1.

Paradox 2. Removing Split procedure (Property 6) from BB2001 drastically accelerate the so-

25

lution.

The effect of Paradox 2 is astonishing. The resulting algorithm NoSplit solves instances with
700 jobs with an average solution time 20 times faster: from 192 seconds to 9 seconds (see
Table 4). In fact, Split is performed based on precedence relations between jobs, induced by
the computation of the E j

′s and L j
′s. The computation of these precedence relations is time

consuming in practice. Moreover, as already claimed, many identical problems appear in the
search tree and the Split procedure in BB2001 is run each time. When Split is removed, identical
problems are solved needing more time when first met, but then never solved twice thanks to
solution memorization. However, the disadvantage is also clear: more solutions are added to the
database and hence the database is filled faster than when Split is enabled. This is why NoSplit
encounters memory problems on instances with 800 jobs.

This was not considered by Szwarc et al. (2001) because Split is a very strong component of
the algorithm and the computer memory at that time also discourages this tentative. S i, S DD2

At this point, we have a better understanding of the power of solution memorization on this
problem and we become curious on the effectiveness of memorized solutions. In other words,
what are the stored solutions that are effectively used? To answer this question, we test cleaning
strategies as defined in section 3, to remove useless solutions when the database memory is “full”.
The most efficient strategy is proved to be LUFO by preliminary experiments not reported here.
Embedding such a memory cleaning strategy is our second contribution to BB2001 algorithm.

In Table 4, the final implementation of the memorization mechanism within the Branch &
Bound algorithm for the 1||

∑
Ti problem is referred to as NoSplit LUFO.

All 200 instances with 1200 jobs are solved, with an average solution time of 192 seconds,
while BB2001 is limited to instances with 900 jobs.

n 300 400 500 600 700 800 900 1000 1100 1200 1300

Depth-

Navg 46046201 OOT
Nmax 2249342615
Tavg 155
Tmax 6499

BB2001

Navg 61501 136452 290205 560389 880268 1534960 2053522 OOT
Nmax 663268 1884993 3585456 5784871 9802077 18199764 19352429
Tavg 2 9 31 85 192 469 763
Tmax 33 193 580 1263 2963 6817 9403

NoSplit

Navg 202970 457918 985235 1934818 3053648 OOM
Nmax 2156144 6027604 13028651 20285112 33977553
Tavg 0 0 2 4 9
Tmax 4 13 34 59 114

NoSplit LUFO

Navg 202970 457918 985235 1934818 3086620 5408511 7697810 12578211 19100285 28223766 OOT
Nmax 2156144 6027604 13028651 20285112 36853477 60151076 88909109 139698961 332937242 420974965
Tavg 0 0 2 5 9 20 31 61 112 192
Tmax 4 13 34 61 136 275 429 832 2504 3763

Table 4: Results for the 1||
∑

Ti problem

The experiments presented so far have shown that correctly tuning the memorization mech-
anism, notably by considering a cleaning strategy and studying interference with other com-
ponents of the algorithm may lead to serious changes of its efficiency. However, the striking
point of these experiments relates on the comparison between the version of BB2001 without the
memorization mechanism (algorithm Depth-) and NoSplit LUFO. Table 4 highlights the major
contribution of memorization: Depth- being limited to instances with up to 300 jobs while NoS-
plit LUFO is capable of solving all instances with 1200 jobs. It is evident that memorization is a
very powerful mechanism.

26

6. Conclusion

In this paper we focus on the application of Memorization within search tree algorithms for
the efficient solution of sequencing problems. A framework of Memorization is provided with
several memorization schemes defined. Advices are provided to choose the best memorization
approach according to the branching scheme and the search strategy of the algorithm. Some
details on the efficient implementation of Memorization are also discussed.

The application of the framework has been done on four scheduling problems. Even if the
impact of Memorization depends on the problem, for all the tackled problems it was beneficial
to use it. Table 5 provides a summary of the conclusions obtained.

Problem Largest instances solved Features of the best algorithm
with memorization

Best in
literature?Without

memorization
With

memorization

1|ri|
∑

Ci 80 jobs 130 jobs
depth first+

predictive node memorization yes

1|d̃i|
∑

wiCi 40 jobs 130 jobs
breadth first+

passive node memorization yes

F2||
∑

Ci 30 jobs 40 jobs
best first+

passive node memorization no

1||
∑

Ti 300 jobs 1200 jobs
depth first+

solution memorization yes

Table 5: Conclusions on the tested problems

Fundamentally, what we call the Memorization Paradigm relies on a simple but potentially
very efficient idea: avoid solving multiple times the same sub-problems by memorizing what has
already been done or what can be done in the rest of the solution process. The contribution of this
paradigm strongly relies on the branching scheme which may induce more or less redundancy
in the exploration of the solution space. Noteworthy, the four scheduling problems dealt with in
this paper mainly serve as applications illustrating how memorization can be done in an efficient
way. But, it is also clear that it can be applied to other hard combinatorial optimization problems,
by the way making this contribution interesting beyond scheduling theory. To our opinion, the
memorization paradigm should be embedded into any branching algorithm, so creating a new
class of branching algorithms called Branch & Memorize algorithms. They may have a theoreti-
cal interest by offering the possibility of reducing the worst-case time complexity with respect to
Branch & Bound algorithms. And they also have an interest from an experimental viewpoint, as
illustrated in this paper.

As a future research line, we plan to evaluate Branch & Memorize algorithms on more com-
binatorial optimization problems. It may be also very promising to see how machine learning
field could help in efficiently managing the database of stored partial solutions. More concretely,
a more intelligent database managing strategy may be conceived, which decides which solutions
to store into or which solutions to remove from the database, through a learning process.

27

References

Biere, A., Heule, M., van Maaren, H., Walsh, T., 2009. Conflict-driven clause learning sat solvers. Handbook of Satisfi-
ability, Frontiers in Artificial Intelligence and Applications, 131–153.

Chandran, L. S., Grandoni, F., 2005. Refined memorization for vertex cover. Information Processing Letters 93 (3),
125–131.

Chu, C., 1992. A branch-and-bound algorithm to minimize total flow time with unequal release dates. Naval Research
Logistics (NRL) 39 (6), 859–875.

Della Croce, F., Ghirardi, M., Tadei, R., 2002. An improved branch-and-bound algorithm for the two machine total
completion time flow shop problem. European Journal of Operational Research 139 (2), 293–301.

Detienne, B., Sadykov, R., Tanaka, S., 2016. The two-machine flowshop total completion time problem: branch-and-
bound algorithms based on network-flow formulation. European Journal of Operational Research 252 (3), 750–760.

Du, J., Leung, J. Y.-T., 1990. Minimizing total tardiness on one machine is np-hard. Mathematics of operations research
15 (3), 483–495.

Emmons, H., 1969. One-machine sequencing to minimize certain functions of job tardiness. Operations Research 17 (4),
701–715.

Fomin, F. V., Grandoni, F., Kratsch, D., 2005. Some new techniques in design and analysis of exact (exponential)
algorithms. Bulletin of the EATCS 87 (47-77), 0–288.

Fomin, F. V., Kratsch, D., 2010. Exact exponential algorithms. Springer Science & Business Media.
Glover, F., 1989. Tabu search—part i. ORSA Journal on computing 1 (3), 190–206.
Glover, F., 1990. Tabu search—part ii. ORSA Journal on computing 2 (1), 4–32.
Jouglet, A., Baptiste, P., Carlier, J., 2004. Branch-and-bound algorithms for totalweighted tardiness. In: Handbook of

scheduling: Algorithms, models, and performance analysis. Chapman and Hall/CRC.
Kooli, A., Serairi, M., 2014. A mixed integer programming approach for the single machine problem with unequal release

dates. Computers & Operations Research 51, 323–330.
Koulamas, C., 2010. The single-machine total tardiness scheduling problem: review and extensions. European Journal

of Operational Research 202 (1), 1–7.
Lawler, E. L., 1977. A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness. Annals of discrete

Mathematics 1, 331–342.
Pan, Y., 2003. An improved branch and bound algorithm for single machine scheduling with deadlines to minimize total

weighted completion time. Operations Research Letters 31 (6), 492–496.
Posner, M. E., 1985. Minimizing weighted completion times with deadlines. Operations Research 33 (3), 562–574.
Potts, C. N., Van Wassenhove, L., 1982. A decomposition algorithm for the single machine total tardiness problem.

Operations Research Letters 1 (5), 177–181.
Potts, C. N., Van Wassenhove, L. N., 1983. An algorithm for single machine sequencing with deadlines to minimize total

weighted completion time. European Journal of Operational Research 12 (4), 379–387.
Robson, J. M., 1986. Algorithms for maximum independent sets. Journal of Algorithms 7 (3), 425–440.
Shang, L., Garraffa, M., Della Croce, F., T’Kindt, V., Aug. 2017. Merging nodes in search trees: an exact exponential

algorithm for the single machine total tardiness scheduling problem. In: 12th International Symposium on Parame-
terized and Exact Computation (IPEC 2017). Vol. 89 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Vienna, Austria, pp. 28:1–28:12.

Szwarc, W., Della Croce, F., Grosso, A., 1999. Solution of the single machine total tardiness problem. Journal of Schedul-
ing 2 (2), 55–71.

Szwarc, W., Grosso, A., Croce, F. D., 2001. Algorithmic paradoxes of the single-machine total tardiness problem. Journal
of Scheduling 4 (2), 93–104.

T’kindt, V., Della Croce, F., Esswein, C., 2004. Revisiting branch and bound search strategies for machine scheduling
problems. Journal of Scheduling 7 (6), 429–440.

Xiao, M., Nagamochi, H., 2013. Exact algorithms for maximum independent set. In: Cai, L., Cheng, S.-W., Lam, T.-W.
(Eds.), Algorithms and Computation. Vol. 8283 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 328–338.

Zhang, L., Madigan, C. F., Moskewicz, M. H., Malik, S., 2001. Efficient conflict driven learning in a boolean satisfiability
solver. In: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design. IEEE Press, pp.
279–285.

28

	Introduction
	A general framework for Memorization in search trees
	Branching schemes
	Search strategies
	Memorization schemes
	Solution memorization
	Passive node memorization
	Predictive node memorization

	Decision guidelines
	Forward branching and depth first search strategy
	Forward branching and best first search strategy
	Forward branching and breadth first search strategy
	Decomposition branching and depth first search strategy
	Decomposition branching and best first search strategy
	Decomposition branching and breadth first search strategy

	Implementation guidelines
	Application to the 1|ri|Ci, 1||wiCi and F2||Ci problems
	Application to the 1|ri|Ci problem
	Application of the memorization framework and improved results

	Application to the 1||wiCi problem
	Application of the memorization framework and improved results

	Application to the F2||Ci problem
	Application of the memorization framework and improved results

	Application to the 1||Ti problem
	Preliminaries
	Application of the memorization framework and improved results

	Conclusion

