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Abstract. Many fields, such as drought-risk assessment or
reservoir management, can benefit from long-range stream-
flow forecasts. Climatology has long been used in long-
range streamflow forecasting. Conditioning methods have
been proposed to select or weight relevant historical time se-
ries from climatology. They are often based on general cir-
culation model (GCM) outputs that are specific to the fore-
cast date due to the initialisation of GCMs on current con-
ditions. This study investigates the impact of conditioning
methods on the performance of seasonal streamflow fore-
casts. Four conditioning statistics based on seasonal forecasts
of cumulative precipitation and the standardised precipitation
index were used to select relevant traces within historical
streamflows and precipitation respectively. This resulted in
eight conditioned streamflow forecast scenarios. These sce-
narios were compared to the climatology of historical stream-
flows, the ensemble streamflow prediction approach and the
streamflow forecasts obtained from ECMWF System 4 pre-
cipitation forecasts. The impact of conditioning was assessed
in terms of forecast sharpness (spread), reliability, overall
performance and low-flow event detection. Results showed
that conditioning past observations on seasonal precipitation
indices generally improves forecast sharpness, but may re-
duce reliability, with respect to climatology. Conversely, con-
ditioned ensembles were more reliable but less sharp than
streamflow forecasts derived from System 4 precipitation.
Forecast attributes from conditioned and unconditioned en-
sembles are illustrated for a case of drought-risk forecasting:
the 2003 drought in France. In the case of low-flow forecast-
ing, conditioning results in ensembles that can better assess

weekly deficit volumes and durations over a wider range of
lead times.

1 Introduction

1.1 Approaches to seasonal streamflow forecasting

Numerical prediction is valuable to proactively manage risks
in areas such as hydropower, drinking water production and
drought preparedness (Wilhite et al., 2000). Regardless of the
application, probabilistic forecasts are preferred over deter-
ministic ones to convey uncertainties (Krzysztofowicz, 2001;
Ramos et al., 2013). The main sources of uncertainty in in-
forming decision-making depend on the variable being fore-
cast, the forecast horizon, and also the location. For instance,
region-specific tools have been developed in the world to
predict and anticipate drought events weeks, months or even
years in advance (Anderson et al., 2000; Ceppi et al., 2014;
Hao et al., 2014; Sheffield et al., 2013; Shukla et al., 2014).
Nevertheless, anticipating river runoff events at long lead
times remains a challenge (Yuan et al., 2015).

The predictability of streamflow at long lead times lies
in the initial hydrological conditions and the meteorological
forcing. Research has shown that the relative role of each
source of predictability mainly depends on the “inertia” or
“memory” of the studied basin, the forecast season and the
forecast lead time (Wood and Lettenmaier, 2008; Shukla et
al., 2013; Yossef et al., 2013; Wood et al., 2016). Yossef et
al. (2013) showed that in western Europe, from July to Octo-
ber, streamflow forecasts are more dependent on meteorolog-
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ical forcing than they are on initial conditions, even 1 month
ahead. The conclusions of Shukla et al. (2013) are quite con-
sistent with these findings. They found that the predictability
of a forecast issued in July in France lies in the meteorolog-
ical forcing for horizons longer than 3 months. However, at
shorter lead times, their results show that predictability can
be led by either initial conditions or meteorological forcing,
depending on the geographical location in France.

In practice, two approaches are often used to forecast
streamflow at the seasonal scale (Easey et al., 2006). Statisti-
cal approaches rely on past observations and statistical rela-
tionships between a predictor and a predictand. For instance,
climatology (past observations) is considered a good indi-
cator of the range of possible outcomes for a given time of
the year. Dynamical approaches rely on coupled general cir-
culation model (GCM) outputs or past observations to feed a
hydrological rainfall–runoff model. For example, Day (1985)
introduced the ensemble streamflow prediction (ESP), which
uses the climatology of meteorological forcings as input to
a hydrological model previously initialised for the forecast
date. This approach has been extensively used for research
purposes and operationally in seasonal streamflow forecast-
ing (Wang et al., 2011) and reservoir operations (Faber and
Stedinger, 2001), among other fields. An alternative to clima-
tological forcings is the seasonal forecasts issued by GCMs
(Yuan et al., 2015). While these are initialised and forced for
a specific forecast day, precipitation climatology additionally
provides a range of what has been previously observed on
that forecast day, regardless of the current atmospheric sit-
uation and latest observations. The choice of one approach
over the other will depend on the purpose of the forecast, the
region of interest and the available data. More importantly,
some studies have shown that dynamical and statistical ap-
proaches can complement and benefit from each other (Block
and Rajagopalan, 2009; Seibert and Trambauer, 2015).

1.2 Selecting ensembles for long-range forecasting

More recently, research has focused on fine-tuning the tra-
ditional ESP method by selecting relevant years within the
climatology of precipitation. Many studies have proposed
to condition or weight past observations based on climate
signals. In Northern America, for instance, several stud-
ies have taken advantage of the influence of the El Niño–
Southern Oscillation (ENSO) and the Pacific Decadal Oscil-
lation (PDO) to improve the overall skill of seasonal fore-
casts. Werner et al. (2004) selected and weighted traces based
on the ENSO and showed that some of the proposed meth-
ods yielded improvements in forecast overall performance.
Gobena and Gan (2010) used the PDO in several resampling
strategies, including an approach benefiting from monthly
precipitation and temperature statistically derived from cli-
mate model outputs. Their study showed that the method
yielded moderate improvements to overall forecast skill. At
the scale of the globe, van Dijk et al. (2013) selected traces

within precipitation climatology based on climate indicators
that were proven influential for the region and time period.
They showed that using climate information improved fore-
cast skill in Southeast Asia and South America.

Bierkens and van Beek (2009) exploited the teleconnec-
tion found between winter precipitation and the Northern At-
lantic Oscillation (NAO) to select traces within the precipi-
tation climatology and forecast seasonal streamflows in Eu-
rope. Their work highlighted the challenges encountered in
Europe using climate indices for seasonal streamflow fore-
casting. In Europe, teleconnections show complex patterns
and a strong seasonal dependence (Ionita et al., 2015). Some
studies have thus proposed conditioning past precipitation or
streamflow scenarios based on previous amounts of precip-
itation or on previous streamflow anomalies (Sauquet et al.,
2008; Svensson, 2016).

In other studies, such as Carpenter and Geor-
gakakos (2001), historical precipitation are conditioned
on the precipitation anomaly forecast by a GCM, based on
the hypothesis that “it is not necessary [. . . ] that low skill in
reproducing regional precipitation is an index of the utility
of GCM information for systems acting as low-pass filters,
such as the hydrological and reservoir systems are”. They
found that this conditioning was particularly efficient to
forecast the 30-day low-inflow volumes to the Folsom lake,
and that the GCM-conditioned ensemble outperformed ESP
(Yao and Georgakakos, 2001).

While most studies focus on overall skill, some studies
propose to look more closely at specific attributes of the skill,
notably forecast sharpness (i.e. the width of forecast mem-
bers), reliability (i.e. the statistical consistency between ob-
served frequencies and forecast probabilities) and the capac-
ity of ensemble predictions to detect critical events. In the
Czech Republic, Šípek et Daňhelka (2015) ran a hydrologi-
cal model with synthetic series of precipitation and temper-
ature generated from climate forecasts and historical mete-
orological series. The advantage of this modified ESP ap-
proach for forecasting was the gain in sharpness, as well as
a better capacity to detect high- and low-flow events. Also,
Trambauer et al. (2015) recently applied the method pro-
posed by Werner et al. (2004) to forecast drought conditions
in southern Africa. They found that the skill of the condi-
tioned ensemble was lower than that of GCM-based sea-
sonal forecasts but higher than that of ESP forecasts. Some
studies have investigated sharpness and reliability simulta-
neously. For instance, Hamlet and Lettenmaier (1999) se-
lected past precipitation based on categories of ENSO and
PDO to feed a hydrological model for streamflow forecast-
ing, and, later on, for reservoir operation (Hamlet et al.,
2002). They noted that the conditioning improved forecast
sharpness. However, in 6 months of the year, climatology
was more reliable than the conditioned ensembles in terms
of observed streamflow falling within the forecast range. Yao
and Georgakakos (2001) compared the method proposed by
Carpenter and Georgakakos (2001) with the ESP approach
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and with a conditioned forecast ensemble based on histori-
cal streamflows and the latest observed reservoir inflows. An
in-depth evaluation of the latter showed not only a gain in
sharpness but also a loss in reliability as compared to his-
torical streamflow data. Nevertheless, decisions based on the
conditioned ensemble were able to eliminate flood damage
and generate more energy than decisions based on the other
two ensemble approaches.

1.3 Scope of the study

This study investigates the impact of conditioning methods
on the performance of seasonal streamflow forecasts. It pro-
poses an insight into how conditioning approaches impact
forecast attributes such as reliability, sharpness and the de-
tection of low-flow events. The aim is not to provide an over-
all better ensemble but to shed light on which forecast at-
tributes can be expected to improve or deteriorate after con-
ditioning. For that purpose, we used conditioning statistics
based on precipitation indices derived from the System 4
seasonal precipitation forecasts issued by the European Cen-
tre for Medium-range Weather Forecasts (ECMWF) to select
traces of past observed precipitation and streamflow. Eight
streamflow forecast scenarios were built and analysed.

Section 2 presents the data and the methodology used to
build streamflow forecasts. In Sect. 3, we analyse the im-
pact of the conditioning on the overall performance, sharp-
ness and reliability of seasonal streamflow forecasts over the
whole year. Then, we investigate the ability of the ensemble
prediction systems to forecast low-flow events. We also illus-
trate the differences in forecast attributes with a drought-risk
assessment graph for the case of the 2003 severe drought in
France. In Sect. 4, we discuss the main outcomes and per-
spectives of the study.

2 Data and methods

2.1 Observed and forecast hydrometeorological data

Observed precipitation data come from the SAFRAN re-
analysis of Météo-France (Quintana-Seguí et al., 2008; Vi-
dal et al., 2010). Daily values are available from August
1958 to July 2010 (i.e. 51 complete years) at an 8 km× 8 km
grid resolution covering France. Data were aggregated at the
catchment scale. Mean areal potential evapotranspiration was
computed for each catchment using a temperature-based for-
mula (Oudin et al., 2005) and observed temperatures from
the SAFRAN reanalysis. Daily streamflow data at the out-
let of each catchment come from the French national archive
(Banque Hydro, www.hydro.eaufrance.fr).

Seasonal precipitation forecasts were collected from
ECMWF GCM, System 4. Once a month, ECMWF provides
a 51-member forecast ensemble for the next 7 months with
TL255 (about 80 km spatial resolution; Molteni et al., 2011).
ECMWF issued hindcasts for the first of each month from

1981 to 2010. These hindcasts are composed of 51 mem-
bers when issued in February, May, August and November,
and 15 members in other months. For the purpose of this
study, System 4 forecasts were aggregated at the catchment
scale with a weighted mean based on the catchment area cov-
ered by each forecast grid cell (2 to 10 grid cells per catch-
ment). Only forecasts with lead times up to 90-days were
considered. In a previous study, several bias corrections were
applied to System 4 precipitation forecasts and compared
based on their impacts on seasonal streamflow forecasts
(Crochemore et al., 2016). The study showed that the em-
pirical distribution mapping of daily values improved the re-
liability of both precipitation and streamflow forecasts. Fol-
lowing these results, System 4 precipitation forecasts used
here were previously bias corrected with the empirical distri-
bution mapping of daily values.

2.2 Catchments and hydrological model

In all, 16 catchments spread over France were selected from
the database used by Nicolle et al. (2014). Using a set of
catchments helps getting more general conclusions (see e.g.
Andréassian et al., 2009; Gupta et al., 2014). However, it
should be noted that identifying relations between perfor-
mances and catchment characteristics is outside the scope
of this study. These catchments are dominated by a pluvial
regime and the quality of their streamflow data during low
flows is good. Additionally, the selected catchments have
an average solid fraction of precipitation below 10 %. Their
location, hydrological regimes and main characteristics are
presented in Fig. 1 and Table 1, respectively. In these catch-
ments, low flows are observed between May and October,
i.e. from late spring to early autumn. Major drought events
include the droughts of 1976, 1989, 2003 and 2005. Among
these, the 2003 drought was estimated to have caused 15 000
deaths and cost over a billion euros just in France (UNEP,
2004; Poumadère et al., 2005). Here, this particular event
is used to illustrate the impact of conditioning methods on
drought-risk assessment.

The hydrological model used in this study is the GR6J
model, a daily conceptual model with six free parameters
specifically proposed for low-flow simulation by Pushpalatha
et al. (2011). The model has three reservoirs (one for the
production function and two for the routing function), and
one unit hydrograph to account for flow delays. Its inputs
are daily precipitation and potential evapotranspiration at the
catchment scale, and its output is the streamflow at the catch-
ment outlet. In this study, the mean interannual potential
evapotranspiration was used as input to the GR6J model,
regardless of the forecast year; i.e. for a given day of the
year, the estimated potential evapotranspiration on this day
is assumed to be the mean of all potential evapotranspira-
tion computed for this day of the year, from 1958 to 2010.
Regardless of the precipitation scenario fed to the model,
the same interannual potential evapotranspiration scenario is
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Table 1. River and gauging stations, periods with available streamflow observations and area and main hydroclimatic characteristics of the
16 catchments (ranked from the smallest to the largest). The mean annual streamflow is computed over the period of streamflow availability.
The mean annual precipitation and evapotranspiration are computed over the 1958–2010 period.

No. River Gauging station Streamflow availability Area Mean annual Mean annual potential Mean annual
precipitation evapotranspiration streamflow

(km2) (mm yr−1) (mm yr−1) (mm yr−1)

1 Andelle Vascoeuil 01/01/1973–27/02/2010 377 952 628 332
2 Orne Saosnoise Montbizot (Moulin Neuf Cidrerie) 01/12/1967–04/03/2010 501 735 696 163
3 Briance Condat-sur-Vienne (Chambon Veyrinas) 01/01/1966–28/03/2010 605 1100 706 427
4 Ill Didenheim 01/11/1973–02/03/2010 668 956 664 309
5 Azergues Lozanne 01/01/1965–28/03/2010 798 931 689 296
6 Seiche Bruz (Carcé) 01/12/1967–11/03/2010 809 732 696 181
7 Petite Creuse Fresselines (Puy Rageaud) 01/08/1958–28/03/2010 853 899 680 316
8 Sèvre Nantaise Tiffauges (la Moulinette) 01/11/1967–04/03/2010 872 898 712 331
9 Vire Saint-Lô (Moulin des Rondelles) 01/01/1971–03/02/2010 882 958 629 448
10 Orge Morsang-sur-Orge 01/10/1967–07/03/2010 934 658 680 131
11 Serein Chablis 01/08/1958–03/03/2010 1119 842 675 220
12 Sauldres Salbris (Valaudran) 01/01/1971–28/03/2010 1220 803 684 240
13 Eyre Salle 01/01/1967–19/03/2010 1678 1025 785 323
14 Arroux Etang-sur-Arroux (Pont du Tacot) 01/11/1971–27/03/2010 1792 981 655 390
15 Meuse Saint-Mihiel 01/07/1968–03/01/2010 2543 948 639 372
16 Oise Sempigny 01/08/1958–02/03/2010 4320 805 639 250

used as input to the model. This allows us to focus solely on
the influence of precipitation inputs on streamflow forecasts.
In addition, when the model is applied to forecast stream-
flows, the last observed streamflow at the time of forecast
is used to update the levels of the routing reservoirs before
issuing the forecasts.

The GR6J model was calibrated in each catchment with
the 1-year-leave-out method (Arlot and Celisse, 2010) and
with the Kling–Gupta efficiency (KGE; Gupta et al., 2009)
applied to inverse flows to focus on the lowest flows (Push-
palatha et al., 2012). We obtained an average KGE of 0.78
in calibration (ranging from 0.46 to 0.94) and 0.76 in valida-
tion (ranging from 0.41 to 0.94) over the 16 catchments. An
average KGE applied to root-squared flows of 0.86 was ob-
tained in validation (ranging from 0.54 to 0.94), showing that
the model also performs well for median to high flows. The
distance of the bias from 1 (i.e. 1 − bias, with bias defined
as the ratio between observed and simulated streamflows) is
moderate in simulation, with values ranging from−0.1 to 0.1
in all catchments but three. In these three catchments, values
of 0.12, −0.14 and −0.94 are obtained.

2.3 Forecast scenario building method

Eight ensemble forecast scenarios were built to investigate
the impact of conditioning on forecast performance. The
eight scenarios are based on four conditioning statistics and
three methods that are commonly used in seasonal stream-
flow forecasting. These three methods (named “base ensem-
bles” in the following) and the conditioned scenarios are in-
troduced below. Table 2 summarises the different ensemble
forecast scenarios analysed in this study.

2.3.1 Description of the base ensembles

The simplest ensemble forecast scenario uses the long-term
statistical variability of historical streamflows. It is assumed
that the streamflow at a given day of the year is likely to fall
within the range of streamflows observed in other years, on
that same day. This is a “poor man’s approach” that can serve
as a naïve benchmark, where no hydrological model but only
a long streamflow time series of records is available. It is
named HistQ hereafter.

Another base ensemble is the traditional ESP method. It
requires a hydrological model and a long time series of pre-
cipitation records. This ensemble is based on the assumption
that the precipitation of a given day is likely to fall within
the range of past precipitation observed on that same day in
previous years. For a given forecast day, a precipitation en-
semble is thus built by using precipitation observed in other
years. The precipitation ensemble has as many members as
the number of years different from the forecast year available
in the precipitation record. The states of the GR6J hydrologi-
cal model are first initialised with a 1-year run-up to the fore-
cast date. The precipitation ensemble and interannual poten-
tial evapotranspiration are then used as input to the model.

The third base ensemble is similar to ESP but uses the bias
corrected ECMWF System 4 seasonal precipitation forecasts
as input to the GR6J hydrological model. Both the System 4
GCM and the hydrological model are initialised for the fore-
cast day. This ensemble can be considered the most costly in
terms of implementation and computational needs. Hereafter,
this ensemble is named Sys4.
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Figure 1. Location in France and hydrological regime of the 16 catchments. Solid lines represent mean interannual monthly flows. Grey-
shaded areas represent the 10th and 90th percentiles of interannual monthly flows. Dotted red lines represent the 80th exceedance percentile
(i.e. the daily flow exceeded by 80 % of the data). The catchments are numbered from the smallest to the largest. Statistics are computed over
the streamflow record available for each catchment, i.e. 36 to 52 years (see Table 1).

2.3.2 Description of the conditioned scenarios

From the base ensembles, we built eight scenarios by select-
ing traces within the HistQ and ESP ensembles. The condi-
tioning was based on four statistics derived at each forecast
date and from each ensemble member of the System 4 pre-
cipitation forecasts. Two of these statistics are based on cu-

mulative rainfalls and the other two on the standardised pre-
cipitation index (SPI). The SPI transforms the distribution
fitted to a long precipitation record into a normal distribu-
tion (McKee et al., 1993; WMO, 2012). An SPI value of 0
corresponds to conditions close to the long-term average of
precipitation. Negative (positive) SPI values correspond to
drier (wetter) conditions. The four conditioning statistics are
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– the cumulative precipitation forecast over the first 3
months of lead time altogether (Sum3);

– the series of cumulative precipitation forecast over the
first, second and third months separately (i.e. one value
per lead time, Sum1, decomposed into Sum1-1, Sum1-2
and Sum1-3, depending on the lead month);

– the SPI over the first 3 months altogether (SPI3);

– the SPI over the first, second and third months sepa-
rately (i.e. one value per lead time, SPI1, decomposed
into SPI1-1, SPI1-2 and SPI1-3, depending on the lead
month).

The statistics (SPI or sum for the precipitation volumes)
derived from System 4 forecasts are then used to select traces
within HistQ and ESP. For that purpose, statistics are also
computed for sequences of historical precipitation. For a
given forecast member, the sequence in the historical pre-
cipitation that is the closest, in terms of Euclidian distance,
to this member with respect to the considered statistics is se-
lected. When searching for the closest historical sequence,
we only consider sequences that start within a 31-day win-
dow centred on the forecast date and in years different from
the forecast year. Note that the same “closest” historical se-
quence can be associated to several forecast members. This
procedure leads to a conditioned ensemble with the same size
as the System4 forecast.

Once the historical sequences are selected, two cases can
then lead to a streamflow forecast ensemble: (a) the selected
precipitation sequences are used as input to the hydrological
model to generate a streamflow forecast ensemble (this is the
case for ESP_Sum3, ESP_Sum1, ESP_SPI3, ESP_SPI1) or
(b) the historical streamflows corresponding to the selected
precipitation sequences are directly used as ensemble mem-
bers to build a streamflow forecast ensemble (this is the case
for HistQ_Sum3, HistQ_Sum1, HistQ_SPI3, HistQ_SPI1).
In the latter case, the streamflow sequences obtained may
result in unrealistic forecast scenarios due to an initial hy-
drologic condition on the forecast date that is far from what
was historically observed for a selected sequence. Therefore,
when directly selecting scenarios from past streamflow ob-
servations, we have also added the streamflow observed on
the day of issuing the forecast as a conditioning criterion in
the computation of the Euclidian distance.

2.4 Forecast verification methods

Many criteria exist to assess the performance of probabilis-
tic forecasts. Here, we assessed the overall performance of
the forecasts, their capacity of discrimination, their sharpness
and reliability. For these last two attributes, we consider the
paradigm that better forecasts are those that maximise sharp-
ness while guaranteeing reliability (Gneiting et al., 2007).
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2.4.1 Evaluation of forecast attributes

The overall performance of the forecast systems was eval-
uated using the continuous rank probability score (CRPS;
Hersbach, 2000). The CRPS averages the area between the
cumulative forecast distribution and the step function corre-
sponding to the observation over the evaluation period.

Sharpness is an intrinsic attribute of the forecast ensemble.
It indicates how spread the members of an ensemble fore-
cast are. Here, sharpness was computed as the average dif-
ference between the 95th and the 5th percentiles of the fore-
cast distribution over the evaluation period (Gneiting et al.,
2007). It thus corresponds to the average 90 % interquantile
range (IQR).

Reliability refers to the statistical consistency between ob-
served frequencies and forecast probabilities. Reliability was
evaluated with the probability integral transform (PIT; Gneit-
ing et al., 2007; Laio and Tamea, 2007) diagram. The PIT di-
agram represents the cumulative distribution of the positions
of the observation within the distribution of forecast values.
The PIT diagram of a perfectly reliable forecast is super-
posed with the 1 : 1 diagonal, meaning that the observation
uniformly falls within the forecast distribution. To numeri-
cally compare results for large datasets, Renard et al. (2010)
proposed to compute the area between the PIT diagram and
the 1 : 1 diagonal. The smaller the PIT area, the more reliable
the ensemble.

Note that the CRPS is sensitive to both the reliability and
the sharpness of the forecasts. Each attribute influences two
independent terms of the decomposition of the CRPS. A de-
crease in one can thus be compensated by an increase in the
other, which would remain unnoticed in the CRPS value.

The discrimination of a system is its capacity to detect an
event defined by a threshold. The relative operating charac-
teristics (ROC; Mason and Graham, 1999) diagram is used
to assess the discrimination of the forecasting systems. In
this study, the threshold used to define events is the 80th ex-
ceedance percentile of observed streamflow (i.e. 80 % of the
observed values are above this threshold). To build the dia-
gram, the proportion of ensemble members below the thresh-
old necessary to trigger an alert varies from none to all en-
semble members. For each of these proportions, the prob-
ability of detection is plotted against the false alarm ratio.
The ROC diagram is plotted for a given threshold, catchment
and forecast lead time. The area under the curve (AUC) sum-
marises the ROC diagram into one numerical value and al-
lows for an easier comparison of forecast systems. The closer
the AUC is to 1, the better the system is at discriminating be-
tween events (i.e. threshold exceedances) and non-events.

2.4.2 Skill scores

The skill of forecast systems is computed as follows for a
given lead time i:

Skill scorei =
Scoreref

i −Scoresyst
i

Scoreref
i +Scoresyst

i

. (1)

This normalised skill ranges within [−1, 1]. A skill supe-
rior to 0 (inferior to 0) indicates that the forecast system per-
forms better (worse) than the reference. Here, we evaluated
the conditioned forecast scenarios against the base ensem-
bles they were based on (i.e. Sys4, ESP or HistQ). The skill
score was computed based on the CRPS, the IQR and the
PIT area. These scores are abbreviated CRPSS, IQRSS and
PITSS. Since we compared ensembles with different ensem-
ble sizes (see Table 2), which is known to induce bias when
computing skill scores, the correction proposed by Ferro et
al. (2008) was applied to remove such bias in the computa-
tion of the CRPSS.

3 Analysis of the quality of the streamflow forecasting
systems

3.1 Skill of System 4 in forecasting conditioning
statistics

We first evaluated the skill of System 4 in forecasting the con-
ditioning statistics (cumulative precipitation sum and SPI).
Figure 2 shows their skill in overall performance (CRPSS)
and in sharpness (IQRSS), and Fig. 3 shows their reliabil-
ity (PIT diagram). The reference forecast used to compute
the skill scores is historical precipitation (i.e. climatology).
Regardless of the considered statistic, System 4 performs as
well as climatology while being sharper (Fig. 2). In addition,
SPI forecasts issued from System 4 are reliable overall and in
standard precipitation conditions (Fig. 3). In dry conditions
(i.e. SPI values smaller than −1), however, forecasts tend to
overestimate SPI values, whereas in wet conditions (i.e. SPI
values greater than 1) forecasts tend to underestimate SPI
values. Similar PIT diagrams are observed with SPI forecasts
from historical precipitation (not shown). Dutra et al. (2014)
did a similar comparison over the globe and showed that SPI
forecasts from System 4 always had superior or equivalent
skill as compared to historical precipitation, with respect to
discrimination, accuracy and anomaly correlation.

3.2 Statistical evaluation of overall performance,
sharpness and reliability

3.2.1 Forecast attributes of the conditioned scenarios
with respect to HistQ and ESP base ensembles

First, we evaluated the gain and loss in skill of daily stream-
flow forecasts due to the four types of conditioning applied to
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the HistQ base ensemble. Figure 4 shows the CRPSS, IQRSS
and PITSS for lead times up to 90 days, and the PIT diagram
for a lead time of 45 days. The reference for the computa-
tion of the skill is HistQ, i.e. historical streamflows with all
available years. Each line corresponds to one of the 16 catch-
ments.

The first conclusion from this figure is that all four condi-
tionings lead to similar results. Their impact on forecasts re-
liability (PIT) and sharpness (IQR) is uniform over the lead
times, while their impact on overall performance (CRPS) is
greater at shorter lead times. Conditioning HistQ improves
sharpness at most lead times (IQRSS above zero) and for
all conditioning statistics (Sum or SPI). However, as a re-
sult of narrower ensembles, there is a decrease in the PIT
values (reliability) at most lead times (PITSS below zero).
Nevertheless, the PIT diagrams at 45 days show that the con-
ditioned ensembles remain quite reliable as a whole (PIT val-
ues close to the diagonal line), especially when the condi-
tioning is based on SPI statistics. Regarding overall perfor-

mance (CRPS), the conditioning increases performance up
to 5 to 15 days ahead in most catchments, and up to 30 days
in some catchments. Improvement is greater when traces are
selected based on cumulative precipitation (Sum3 or Sum1)
or SPI3 than when they are selected based on the series of
SPI1 values. The improvement in overall performance in the
first lead times can be attributed to the fact that the condi-
tioning of historical streamflow also takes into account the
last observed streamflow to better match current initial con-
ditions (see Sect. 2.3.2). At longer lead times, the overall
performance of conditioned scenarios is, in the majority of
catchments, equivalent or worse than that of HistQ. In one of
the catchments, however, we observed improvements up to
90 days ahead. This catchment corresponds to catchment 1,
in which interannual streamflow variability dominates over
seasonality (see Sect. 2.2) due to a high base flow index.

We also examined the loss and gain in skill due to condi-
tioning applied to the ESP base ensemble (Fig. 5). This time,
the reference used in the computation of the skill is ESP. Here
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Figure 4. Skill scores (CRPSS, IQRSS, PITSS; first three rows) and PIT diagrams for a lead time of 45 days (last row) of the conditioned
ensemble forecast scenarios: HistQ_Sum3, HistQ_Sum1, HistQ_SPI3 and HistQ_SPI1. In the skill scores, the reference forecast is the base
ensemble HistQ. Each line represents one of the 16 catchments investigated.

again, the four conditionings seem to have a similar impact
on performance. Conditioned streamflow forecasts appear to
be equivalent or worse than ESP in terms of overall perfor-
mance (CRPSS). When conditioning ESP with SPI, this of-
ten translates in a gain in sharpness (IQRSS) and a loss in
reliability (PITSS). When conditioning with the sum statis-
tics, forecasts lose sharpness in some catchments and relia-
bility in most catchments. Results are also less homogeneous
between catchments. The loss in overall performance is also
greater with the conditionings based on cumulative precip-
itation. The PIT diagrams show that not all ensembles are
perfectly reliable, with observations too often falling below
the forecast range in most catchments. This tendency may
be caused by the precipitation inputs but also by the hydro-
logical model, since in ESP-based approaches it also plays a
role.

In summary, Figs. 4 and 5 show that, in general, condition-
ing has the same impact on forecast attributes regardless of

the conditioning statistics. It tends to increase sharpness and
decrease reliability. However, conditioning with cumulative
precipitation can also decrease both attributes, sharpness and
reliability, which is not satisfying. In addition, conditioning
based on SPI provides more consistent results between catch-
ments and minimises the losses in reliability and overall per-
formance, comparatively to base ensembles. In the following
paragraphs, only HistQ_SPI3 and ESP_SPI3 were retained in
order to further explore the quality of conditioned ensembles.

3.2.2 Forecast attributes of the conditioned scenarios
with respect to Sys4 base ensemble

In a previous study (Crochemore et al., 2016), we assessed
the performance of Sys4 precipitation forecasts for seasonal
streamflow forecasting in the studied catchments. We ob-
served a good overall performance of the streamflow fore-
casts after bias correction, but also a general lack of reliabil-
ity during summer (June–July–August). In Fig. 6, we eval-
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Figure 5. Same as Figure 4 but the forecast ensembles are ESP_Sum3, ESP_Sum1, ESP_SPI3 and ESP_SPI1 and the reference for the
computation of the skill is ESP.

uate the quality of the conditioned scenarios ESP_SPI3 and
HistQ_SPI3 with respect to Sys4, from which the condition-
ing statistics are derived.

ESP_SPI3 conditioned ensembles show better overall per-
formance than Sys4 for lead times shorter than 5 days, worse
performance for lead times from 5 to 15 days, and equiv-
alent performance at longer lead times. In terms of relia-
bility and sharpness, ESP_SPI3 is overall more reliable but
less sharp than Sys4 for lead times shorter than 45 days. At
longer lead times, ESP_SPI3 becomes equivalent to Sys4. If
we now look at HistQ_SPI3, it has lower overall performance
than Sys4, especially for lead times shorter than 15 days.
HistQ_SPI3 provides forecasts that are more reliable than
Sys4, except at long lead times (more than 45 days) in some
catchments.

In summary, Fig. 6 illustrates how conditioning the base
ensembles from the ESP method or from historical stream-
flows on SPI3 statistics derived from GCM-based seasonal
forecasts can be beneficial for several catchments at lead

times longer than 15 to 30 days, since it allows the condi-
tioned ensembles to be at least as sharp as the GCM-based
forecasts while being also, in most cases, more reliable than
or as reliable as GCM-based seasonal forecasts.

3.2.3 Overall influence of conditioning on streamflow
forecasts reliability and sharpness

Figure 7 proposes a simultaneous evaluation of the reli-
ability (PIT area) and sharpness (IQR) of ESP_SPI3 and
HistQ_ SPI3. For a given catchment, lead time and reference,
the skill in reliability is plotted against the skill in sharp-
ness. Each point corresponds to a catchment, each column
corresponds to a lead time and each row corresponds to a
forecast ensemble. Two references are chosen for each en-
semble: ESP_SPI3 is evaluated against ESP and Sys4, and
HistQ_SPI3, against HistQ and Sys4. Each reference is iden-
tified by its colour and shape (see legend). If a point is located
in the upper left part of the graph, the conditioned ensemble
is more reliable but less sharp than the reference (indicated
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by the colour of the point) in the corresponding catchment.
Conversely, if a point is located in the lower right part, the
conditioned ensemble is sharper but less reliable than the ref-
erence. At best, both reliability and sharpness are improved,
and points are located in the upper right part of the graph.
At worst, both reliability and sharpness are deteriorated with
respect to the reference, and points are located in the bottom
left part of the graph.

Overall, the conditioning tends to have more impact on
reliability than on sharpness (y axes extend further than
x axes). The main conclusion from this graph is that con-
ditioned ensembles are generally more reliable but less sharp
than Sys4, and they are sharper but less reliable than ESP or
HistQ. More specifically, we observe that

– For a lead time of 10 days, ESP_SPI3 and HistQ_ SPI3
can be more reliable and sharper than the ensembles
they are selected from. This applies to nine catchments
with ESP_SPI3, and three catchments with HistQ_SPI3.

– For a lead time of 30 days, fewer catchments benefit
from a gain in both reliability and sharpness. The loss
in sharpness and the gain in reliability with respect to

Sys4 are less pronounced than for a lead time of 10 days.
For instance, the maximum PITSS values for ESP_SPI3
move from 0.45 (for a lead time of 10 days) to 0.2 (for
a lead time of 30 days) and those for HistQ_SPI3 move
from 0.7 to 0.4. The gain in sharpness and the loss in
reliability with respect to ESP and HistQ remain in the
same ranges as observed for a lead time of 10 days;

– For a lead time of 90 days, the gain of ESP_SPI3 over
Sys4 is further reduced and varies with the catchment.
The same is observed to a lesser extent for HistQ_SPI3,
even though a positive impact of the conditioning on
reliability can still be observed in several catchments. At
this lead time, both ESP_SPI3 and HistQ_SPI3 provide
forecasts that are still sharper, yet less reliable, than the
climatology they are selected from.

Figure 7 can also be interpreted in terms of similarities
in forecast attributes between approaches. Indeed, the (0, 0)
point corresponds to the location of the references used for
the skill scores. From this perspective, ESP_SPI3 is closer to
ESP than to Sys4 for a lead time of 10 days. However, as the
lead time increases, ESP_SPI3 becomes closer to Sys4 and
further apart from ESP. The proximity between ESP_SPI3
and Sys4 at longer lead times can be attributed to the con-
ditioning itself. The proximity between ESP_SPI3 and ESP
and their distance to Sys4 at shorter lead times may be at-
tributed to the initialisation of the climate model. Since ini-
tial hydrological conditions are the same for the three fore-
cast ensembles, differences are caused by the meteorological
forcing only. The main difference between System 4 precip-
itation and climatology at such lead times is the initialisation
of the GCM, which leads to sharper System 4 forecasts for
the first lead times. Similarly, we observe that HistQ_SPI3
becomes closer to Sys4 as the lead time increases due to con-
ditioning. However, its distance to HistQ remains the same
at all lead times. This distance is probably due to the use
of previous streamflow conditions as a conditioning criterion
within HistQ.

As a summary guideline, Table 3 ranks the different en-
sembles investigated based on the analyses of overall perfor-
mance, reliability and sharpness, and for different lead time
ranges: from 10 to 30 days, from 30 to 60 days and from 60
to 90 days. The rankings are based on averaged skill score
values. Two ensembles are considered equivalent (and thus
receive the same rank) if the difference in the averaged skill
scores is smaller than 0.01. This table serves as a guideline.
For instance, in operational conditions, a practitioner could
choose to emphasise one of the three attributes of forecast
quality over the others, and could choose the forecasting ap-
proach to be implemented based on this table. From Table 3,
we can say that, if one seeks an overall performing ensemble
with 10 to 30 days lead, one would use Sys4. For horizons
longer than 30 days, ESP and ESP_SPI3 offer good alterna-
tives. If one seeks, above all, a reliable ensemble, one could
simply use HistQ, ESP, or even HistQ_SPI3 for lead times
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Each point represents one of the 16 catchments.

shorter than 30 days. For ensembles that are both good in
terms of reliability and sharpness, and for horizons longer
than 30 days, the HistQ_SPI3 ensembles seem to offer the
best trade-off.

3.3 Statistical evaluation of low flows

We now investigate the impact of conditioning on the perfor-
mance of the ensemble forecast scenarios to forecast sum-
mer low flows and drought risks. Many ways of character-
ising severe low flows and droughts exist in the literature
(Mishra and Singh, 2010; Smakhtin, 2001; Tallaksen et al.,
1997; WMO, 2008). In the following, the low-flow variables
considered are the low-flow duration and deficit volume, both
computed for the 80th exceedance percentile. In this section,
only forecast horizons falling within the May to October pe-
riod are considered.

3.3.1 Impact of the conditioning on forecast
discrimination

The capacity of the different systems to discriminate between
low-flow events and non-events is assessed. Figure 8 presents
the ranges of the AUC of the ROC diagram obtained from
five ensemble forecast scenarios, namely Sys4, ESP_SPI3,
ESP, HistQ_SPI3 and HistQ. AUC values were assessed for
the 80th exceedance percentile and for lead times of 10, 30

and 90 days. Each box plot gathers the AUC values obtained
in the 16 catchments. The letters below the box plots result
from the Friedman test (Lowry, 2008). This test consists in
considering catchments as judges of the five methods. The
test, which is based on rankings as evaluated by the catch-
ments, assesses whether the methods are significantly differ-
ent by evaluating if their rankings resemble a random shuf-
fling. Based on this test, two box plots that share a letter at a
given lead time are not significantly different.

Results show that all ensembles but HistQ are very close
in terms of discrimination. As expected, their performance
decreases as the lead time increases, except for HistQ, whose
discrimination does not vary with the lead time. For all lead
times, ESP significantly provides the best discrimination,
with most AUC values superior to 0.88. ESP_SPI3 and Sys4
have equivalent performance in terms of discrimination and
appear as second best, with most AUC values greater than
0.82. HistQ_SPI3 is also very close to the performances of
Sys4 and ESP_SPI3, but does not score as high as they do,
especially for longer lead times. Overall, the discrimination
of the conditioned ensembles is always between that of Sys4
and that of the base ensemble they are selected from (i.e. ESP
for ESP-SPI3 and HistQ for HistQ_SPI3). For HistQ_SPI3,
this translates into a gain in discrimination. However, for
ESP_SPI3, this translates into a loss as ESP is already su-
perior to Sys4. Finally, we also note that ensembles based on
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Table 3. Rankings of the Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ streamflow ensembles, as evaluated by three evaluation criteria (in
rows) and three lead time ranges (columns). The rankings are based on averaged skill scores for each ensemble, all catchments and for lead
times 10 to 30, 31 to 60 and 61 to 90.

10–30-day lead 30–60-day lead 60–90-day lead

Overall performance

1. Sys4 1. Sys4 1. Sys4
2. ESP_SPI3 1. ESP_SPI3 1. ESP_SPI3
2. ESP 1. ESP 1. ESP
4. HistQ_SPI3 4. HistQ_SPI3 4. HistQ
5. HistQ 4. HistQ 5. HistQ_SPI3

Sharpness

1. Sys4 1. Sys4 1. Sys4
2. ESP_SPI3 1. ESP_SPI3 1. ESP_SPI3
3. HistQ_SPI3 1. HistQ_SPI3 1. HistQ_SPI3
4. ESP 4. ESP 4. ESP
5. HistQ 5. HistQ 5. HistQ

Reliability

1. HistQ 1. HistQ 1. HistQ
2. HistQ_SPI3 2. ESP 2. ESP
3. ESP 3. HistQ_SPI3 3. HistQ_SPI3
4. ESP_SPI3 4. ESP_SPI3 4. Sys4
5. Sys4 5. Sys4 5. ESP_SPI3
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Figure 8. Ranges of the area under the curve (AUC) of the ROC diagram based on the 80th exceedance percentile for each of the five
selected ensemble forecasts (Sys4, ESP, HistQ, ESP_SPI3, HistQ_ SPI3). Box plots gather the AUC values for the 16 catchments. The boxes
extend to the 25th and 75th percentiles, and the whiskers extend to the data extremes. Graphs are presented for 10-, 30- and 90-day lead
times (columns). The letters below the box plots result from the Friedman test. For a given lead time, two box plots sharing a letter are not
significantly different.

hydrological modelling (Sys4, ESP and ESP_SPI3) provide
the best skills in terms of forecast discrimination, at least for
lead times shorter than 90 days, probably because they take
into account initial hydrological conditions. All these con-
clusions are also valid when the 60th exceedance percentile
is used as threshold (not shown).

3.3.2 Impact of the conditioning on forecasting
low-flow variables

We now compare the forecast systems based on variables of
interest for water management during low flows, namely the
weekly deficit duration and the weekly deficit volume. The

weekly deficit duration corresponds to the number of days
per week during which the daily streamflow is below a given
threshold. The weekly deficit volume corresponds to the flow
volume per week below this threshold. Figure 9 presents the
PIT areas obtained with Sys4, ESP_SPI3, ESP, HistQ_SPI3
and HistQ when forecasting the weekly number of days be-
low the 80th exceedance percentile. Box plots represent the
range of PIT areas obtained over the catchment set. Results
are presented for lead times of 2 weeks, 5 weeks and 12
weeks (columns). Again, letters represent the results of the
Friedman test. Two box plots that share a letter are not sig-
nificantly different. Figure 10 proposes the same evaluation
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Figure 10. Same as Fig. 8 for deficit volume.

for the weekly streamflow deficit volume below the 80th ex-
ceedance percentile.

Figure 9 shows that the difference between the five ensem-
bles is very tenuous when forecasting the deficit duration. For
instance, all lower and upper quartiles of Sys4, ESP_SPI3,
ESP and HistQ_SPI3 are included in the [0.01, 0.08] inter-
val of PIT area values, regardless of the lead time. Overall,
ESP, ESP_SPI3 or HistQ_SPI3 perform best to forecast the
deficit duration. The analysis of the corresponding PIT dia-
grams (not presented) showed that all ensembles are equiva-
lently reliable, except for HistQ, which systematically over-
estimates the deficit duration. Here again, the reliability of
the conditioned ensembles in forecasting low-flow duration
is located between that of Sys4 and that of the base ensemble
they are selected from. An exception is that HistQ_SPI3 is
significantly the best performing ensemble for a lead time of
2 weeks. In that case, conditioning has managed to improve
over both Sys4 and HistQ base ensembles.

The gap between ensembles widens when looking at the
deficit volume (Fig. 10). For lead times of 2 and 5 weeks,
ESP and ESP_SPI3 provide consistently reliable ensembles,

and lower PIT areas than the others. For a lead time of 12
weeks, ESP_SPI3 along with Sys4 and HistQ_SPI3 provide
the most reliable ensembles. The corresponding PIT dia-
grams (not presented) showed that HistQ_SPI3 tends to un-
derestimate deficit volumes at all lead times. Ensembles is-
sued with hydrological modelling also slightly underestimate
the deficit volume at long lead times. Again, overall, con-
ditioned ensembles are located between the two ensembles
they are based on (Sys4 for the conditioning statistics and
their respective base ensemble for the application of the con-
ditioning). Here, the case of ESP_SPI3 is particularly inter-
esting. Indeed, at short lead times, ESP_SPI3 benefits from
ESP, which is more reliable than Sys4. At long lead times, it
benefits from Sys4, as it becomes more reliable. ESP_SPI3
is thus consistently one of the best options to forecast deficit
volumes for all three lead times. This shows that a condi-
tioning approach can be of great interest when the ensembles
used to build the conditioned scenarios show good perfor-
mance but at different lead time ranges.
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Figure 11. Risk graphs presenting the probabilities of deficit duration versus deficit volume based on the 80th exceedance percentile (upper
row) and corresponding hydrographs (lower row). The maximum probability varies with the ensemble and the situation and is indicated in
the colour scale. The black point corresponds to the observation, the dark red dot to the drought of 1976 and the blue dot to the mean duration
and deficit volume observed in past streamflows. Each column corresponds to one of the five ensemble forecasts. Forecasts were issued for
the Azergues at Lozanne (catchment 5) on 1 July 2003 for the next 90 days.

3.4 Using the conditioned ensembles in drought-risk
forecasting

Figure 11 illustrates the case of the 2003 drought with the
streamflow forecasts issued on 1 July 2003 for the 90 days
ahead. The figure focuses on catchment 5, the Azergues
at Lozanne, in which the 2003 drought was hydrologically
more severe than the reference 1976 drought. Each column
represents the graphs obtained with one of the five ensem-
ble forecasts (Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ).
The upper row presents the graphical representation we pro-
pose to assess drought risks based on the ensemble forecasts.
The graphs represent the deficit duration against the deficit
volume, both computed based on the 80th exceedance per-
centile. The graph is divided into 49 boxes corresponding to
possible combinations and ranges of deficit volumes and du-
rations. The colour within each of these boxes indicates the
percentage of ensemble members that falls within each box.
The darker the boxes, the more ensemble members are indi-
cating the associated drought risk in terms of deficit duration
(y axis) and volume (x axis). Darker boxes may also reflect a
sharper ensemble and, if the darker boxes are around the ob-
servation, an ensemble with good discrimination (at least for
the event considered). Coloured dots represent the observa-
tion (indicated as “observed”) and two references: the 1976
drought (indicated as “drought”) and the historical mean du-
ration and deficit volume over the forecast period (indicated

as “climatology”). The lower row in the figure presents the
corresponding hydrographs over the 90-day forecast period.
The black line represents the observed streamflow, the red
line represents the 80th exceedance percentile and the blue
lines represent the members of the ensemble forecast.

All ensembles produce similar patterns, but with differ-
ent probabilities. The maximum probability is obtained with
HistQ_SPI3, with 60 % of the ensemble members falling in
the same cell. Ensembles based on hydrological modelling
reach maximum probabilities of 20 to 30 %, and HistQ does
not exceed a probability of 14 %. These colours reflect how
sharp the ensemble forecasts are for this forecast. The objec-
tive is to have a maximum of darker cells close to the obser-
vation. We observe that the graph obtained with HistQ puts
equivalent weights to a wide range of scenarios, ranging from
no risk to high risk of a drought situation, which remind us
of its good reliability but poor sharpness. This ensemble con-
veys little information to assess drought risks. HistQ_SPI3,
as opposed to HistQ, offers a more confident risk assess-
ment with the highest forecast probabilities and only three
coloured cells. In all, 80 % of the forecast members indicate
a drought equivalent or more severe than that of 1976. The
high probability may be explained by the fact that SPI fore-
cast members and initial hydrological conditions were often
best represented by the same driest year (as suggested by the
hydrographs), namely 1976.
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The ESP forecast provides a wider view of the risk of
drought, with higher probabilities located in the upper right
part of the graph and small probabilities of having moderate
low-flow conditions. ESP is able to forecast a more severe
event than the one observed during the 1976 drought. This
good performance can only be attributed to the initial hydro-
logical conditions since ESP does not have any information
on future precipitation apart from climatology. Conditioning
ESP (ESP_SPI3) slightly reduces the number of coloured
cells with slightly higher probabilities in some of the up-
per right cells. The difference between ESP and ESP_SPI3
is clear when looking at the hydrographs. With ESP_SPI3,
the number of high-flow peaks is reduced. The SPI3 condi-
tioning seems to prevent the selection of some wet sequences
from the climatology.

Sys4 also provides a quite good risk assessment since
only the upper right cells are coloured. For this event, there
seems to be an added value from the use of GCM-based fore-
casts (directly as forcing to a streamflow forecasting model
or through a conditioning statistics) to better assess the risk
of drought. Notably, in the specific case illustrated here, the
conditioned ensembles (ESP_SPI3 and HistQ_ SPI3) indi-
cated a (small) probability of drought in the box correspond-
ing to the observation, while their base ensembles (ESP and
HistQ, respectively) indicated none.

In summary, while ensembles based on hydrological mod-
elling, i.e. ESP, ESP_SPI3 and Sys4, are limited by the ca-
pacity of the model to reproduce small low-flow variations
and thus to slightly underestimate the deficit volume, ensem-
bles based on historical streamflows are limited within the
range of past precipitation and streamflow scenarios. This
highlights the fact that the studied methods, and here specif-
ically Sys4, ESP_SPI3 and HistQ_SPI3, have different lim-
itations but also different assets. Note that different contexts
might penalise or favour different methods.

4 Conclusion

We investigated the impact on forecast attributes from condi-
tioning precipitation climatology and historical streamflows
on precipitation indices derived from ECMWF System 4
(GCM) seasonal forecasts. In a first step, the attributes of
overall performance, sharpness and reliability of the condi-
tioned ensembles were analysed with respect to the perfor-
mance of the ensembles they were based on. Lead times up
to 90 days and 16 catchments in France were considered. The
main conclusions from this analysis are as follows.

The use of Sys4 forecasts to derive conditioned ensem-
bles generally did not improve the overall performance of
seasonal streamflow forecasts. Overall performance criteria
typically give equal weight to complementary features of
forecast quality. This is the case of the CRPS, which, unless
specified otherwise, gives equal weights to its components

of reliability, resolution and uncertainty (Pappenberger et al.,
2015).

Selecting traces within precipitation climatology or his-
torical streamflow generally improved sharpness and de-
creased reliability. Conditioning based on the SPI provided
more consistent results between catchments than condition-
ing based on cumulative precipitation.

Particularly, conditioning based on SPI3 statistics derived
from GCM-based seasonal forecasts proved to be benefi-
cial for several catchments at lead times longer than 15 to
30 days. Indeed, the conditioned ensembles could be as sharp
as the GCM-based forecasts while being also, in most cases,
more reliable than or as reliable as GCM-based seasonal
forecasts.

A simultaneous evaluation of the attributes of sharpness
and reliability of the conditioned ensembles showed that con-
ditioning led to ensembles that were more reliable and less
sharp than the streamflow forecasts generated from System 4
precipitation. The conditioned ensembles were however less
reliable and sharper than the ensembles they were selected
from (here, ESP and historical streamflows). Also, the con-
ditioned ensembles seemed to take advantage of the informa-
tion of either precipitation climatology or historical stream-
flows at the shorter lead times and of the information of
GCM-based forecasts at the longer lead times.

Conditioning could, in some cases, improve reliability and
sharpness simultaneously, especially for lead times shorter
than a month ahead. Nevertheless, this was seen in a few
cases and, more often, a trade-off between reliability and
sharpness was highlighted. This is in accordance with other
studies (Hamlet and Lettenmaier, 1999; Yao and Geor-
gakakos, 2001).

The performance of the ensembles in forecasting low-flow
events and low-flow variables was evaluated. Their capacity
to discriminate between low-flow events and non-events and
their capacity to forecast streamflow deficit volume and du-
ration, as defined by the 80th exceedance percentile, were
assessed. The main conclusion from this evaluation is that
building conditioned scenarios in seasonal low-flow forecast-
ing can be especially valuable when the forecasts that provide
information for the conditioning approach (either by provid-
ing a conditioning statistics or by serving as a base ensemble
to which the conditioning will be applied) perform well for
different lead times. Conditioned ensembles can benefit from
the good performance of different ensembles at different lead
times. They can thus provide more consistent performances
throughout a wider range of lead times.

Lastly, a drought-risk graphic representation was proposed
to illustrate how different conditioned ensembles, with differ-
ent performance in terms of the main forecast attributes eval-
uated in this study, could detect a drought event that occurred
in 2003 in France. In this particular case, a 3-month forecast
with conditioned ensembles based on SPI3 showed better re-
sults in terms of indicating higher probabilities closer to the
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observed deficits in duration and volume of streamflows be-
low the 80 % percentile.

In this paper, we evaluated eight streamflow forecast sce-
narios with the aim of investigating the impact of condi-
tioning on forecast attributes. Further investigations could be
done with other conditioning methods of interest for opera-
tional use. For instance, the conditioning based on the fore-
cast SPI or on the cumulative precipitation for the 3 com-
ing months puts an equivalent weight on all three lead times
to select past precipitation. However, seasonal forecasts is-
sued by GCMs usually have more skill for the coming month
than for the second and third months. Therefore, we could
explore a weighting of these three forecast lead times in or-
der to put more weight on the first lead month in the selection
of past precipitation. In addition, one important parameter to
forecast low flows and droughts is the temperature. A more
advanced approach would consist in selecting past scenarios
based on the SPEI (Standardised Precipitation Evapotranspi-
ration Index) calculated from seasonal precipitation and tem-
perature forecasts.

Other types of conditionings can be found in the litera-
ture and could also be investigated. As an example, Werner et
al. (2005) and Shukla et al. (2012) have investigated the use
of medium-range weather forecasts to improve long-range
forecasting. These approaches rely on the fact that short-
term events are well forecast by short-term to medium-term
forecasts issued by GCMs and that the benefit from medium-
range forecasts can be extended to longer lead times through
the inertia of a catchment. One could also apply a multi-
model averaging method to merge the forecasts from the dif-
ferent ensembles investigated in this paper (see, for instance,
Raftery et al., 2005; Duan et al., 2007; Najafi and Morad-
khani, 2016). The influence of such a method on the evalua-
tion of forecast attributes could be compared to the findings
of this study with the conditioning approaches, especially to-
wards a better assessment of the trade-off between reliability
and sharpness.

Finally, we investigated conditionings within climatol-
ogy solely based on past precipitation, past streamflows and
catchment conditions. SPI values were computed after an ag-
gregation of System 4 precipitation forecasts at the catch-
ment scale, and, therefore, the conditioning and the spatial
aggregation were independent. Further investigations could
assess the potential of the conditioning methods for the spa-
tial downscaling of System 4 seasonal precipitation forecasts
before their application to hydrologic forecasting.
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