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Active Noise Control : Adaptive vs. Robust
Approach

Ioan Doré Landau, Raúl Meléndez

Abstract—Active noise control is often concerned with the
strong attenuation of single or multiple tonal noise disturbances
which may have unknown and time varying frequencies. Cur-
rently in applications, adaptive feed-forward compensation is
used which requires the use of an additional transducer and
introduces an instability risk due to a positive internal coupling.
However for these types of noise a feedback approach can be
efficiently used and this will be illustrated in this paper. One
considers the case of two tonal disturbances located in two
distinct frequency regions subject to frequency variations within
a given range as well the case of interferences between tonal
disturbances of very close frequencies. The objective is to mini-
mize the measured residual noise in a predefined location. These
problems occurs often in ventilation systems (active silencers).
To solve these problems robust and adaptive solutions are
considered. A robust controller design using sensitivity function
shaping is considered. The maximum achievable attenuation is
inverse proportional to the range of frequency variations of
the tonal disturbances. To further improve the performance an
add-on direct adaptive feedback approach using the Internal
Model Principle and the Youla Kucera parametrization is
considered. The adaptive approach allows both to improve
the performance within the given frequency ranges as well
as to extend the admissible domain of frequencies variations.
Experimental results obtained on a relevant test bench will
illustrates the performance of the two designs.

Index Terms—Active noise control, System Identification, In-
ternal model principle, Youla-Kučera parametrization, Adaptive
control, Robust control.

I. INTRODUCTION

Active disturbance rejection is a key issue in active vibra-
tion control and active noise control. The popular approach
for active noise control is to use adaptive feed-forward com-
pensation. This approach, inspired by Widrows technique for
adaptive noise cancellation, see [1], ignores the possibilities
offered by feedback control systems and have a number
of disadvantages: 1) it requires the use of an additional
transducer for obtaining an image of the disturbance, 2)
difficult choice for positioning this additional transducer
and, 3) in most cases, there exists a ”positive” coupling
between the compensator system and the disturbance image’s
measurement, which can cause instabilities. See for example
[2]. To achieve the disturbance’s rejection (asymptotically)
without measuring it, a feedback solution can be considered.
This approach is particularly pertinent for single or multiple
time varying tonal or narrowband disturbance noise.
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The common framework is the assumption that a narrow
band or a tonal disturbance noise is the result of a white
noise or a Dirac impulse passed through the ”disturbance’s
model.” More specifically the model for a single narrow-band
or tonal disturbance is a notch filter with poles on the unit
circle and zeros inside the unit circle (for details see [3]).

In managing the vibration attenuation by feedback, the
shape of the modulus of the “output sensitivity function” (the
transfer function between the disturbance and the residual
acceleration/force) is fundamental both from performance
and robustness considerations. Three basic concepts are to
be considered: the Bode Integral, the Modulus margin and
the Internal Model Principle (IMP). The problem of robust
control design in the context of active noise control has been
considered in [4] and the shaping of the output sensitivity
function has been achieved using the convex optimization
procedure introduced in [5]. See also [6], [7] for Hinf and
LMI approaches.

In this paper, one considers multiple unknown and time
varying tonal disturbances located within two distinct rel-
atively small frequency ranges. To be specific, two cases
will be considered: (i) the case of two time varying tonal
disturbances located in two distinct frequency regions and
(ii) the case of four simultaneous tonal disturbances, two
located in one limited frequency range and the other two in
another frequency range. In this context, a very important
problem is to be able to counteract the very low frequency
oscillations which are generated when the two frequencies are
very close (interference). Since these disturbances are located
within two relatively small frequency ranges, it is possible to
consider a robust linear control design which will shape the
output sensitivity function in such a way that a sufficient
attenuation is introduced in these two frequency regions
but avoiding significant amplification at other frequencies
(both for performance and robustness reason). It will be
shown in this paper that an elementary procedure for shaping
appropriately the modulus of the sensitivity functions can be
implemented using stop band filters as shaping tools. For a
basic reference on this approach see [3].

To further improve the performance an add-on direct adap-
tive feedback approach using the Internal Model Principle
and the Youla Kucera parametrization is considered. The
adaptive approach allows both to improve the performance
within the given frequency ranges as well as to extend the
admissible domain of frequencies variations.

The performance of these approaches depend to a large ex-
tent on the quality of the dynamic model of the compensator
system used for controller design. To obtain such reliable
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model, identification from data of a finite dimensional dis-
crete time model has to be used since the physical modelling
does not in general provide enough good models for design.

Experimental results on a noise silencer for noise attenu-
ation in ducts will illustrate comparatively the performance
of the robust and adaptive approach.

II. THE TEST BENCH

The detailed scheme of the noise silencer test bench used
for the experiments is given in Fig. 1. Its actual photo
is shown in Fig. 2. The speaker used as the source of
disturbances is labeled as 1, the control speaker is 2 and
finally, at pipe’s open end, the microphone that measures
the system’s output (residual noise) is denoted as 3. The
transfer function between the disturbance’s speaker and the
microphone (1→3) is denominated Primary Path, while the
transfer function between the control speaker and the micro-
phone (2→3) is denominated Secondary Path. Both speakers
are connected to a PC Target computer with Simulink Real
Time R© environment through a pair of high definition power
amplifiers and a data acquisition card. In Fig. 1, y(t) is the
system’s output (residual noise measurement) and u(t) is
the control signal. Both primary and secondary paths have
a double differentiator behaviour, since as input we have
the voice coil displacement, and as output the air acoustic
pressure. A second computer is used for development, design
and operation with Matlab R©.

Fig. 1. Active noise control test bench diagram.

Fig. 2. Active noise control test bench (Photo).

PVC pipes of 0.10 m diameter are used in this test bench,
with couplings of 135◦ for the control speaker. Distances
between disturbance loudspeaker and microphone are 1.65 m,
and to control input 0.80 m. Speakers are isolated inside
wood boxes filled with special foam in order to create
anechoic chambers and reduce the radiation noise produced.

III. SYSTEM DESCRIPTION

The linear time invariant (LTI) discrete-time model of the
secondary path, (the plant), used for controller design is

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−dB′(z−1)DF(z−1)

A(z−1)
, (1)

where DF(z−1) = (1− z−1)2 is a double differentiator filter
and

A(z−1) = 1+a1z−1 + · · ·+anA z−nA , (2)

B′(z−1) = b1z−1 + · · ·+bnB′ z
−nB′ , (3)

with d as the plant pure time delay in number of sampling
periods1. The system’s order (without the double differentia-
tor) is:

n = max(nA,nB′ +d) (4)

Fig. 3. Feedback regulation scheme.

Figure 3 shows the closed loop feedback regulation
scheme, where the controller K is described by

K(z−1) =
R
S
=

r0 + r1z−1 + · · ·+ rnR z−nR

1+ s1z−1 + · · ·+ snS z−nS
. (5)

The plant’s output y(t) and the input u(t) may be written
as (see Fig. 3):

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t), (6)

S(q−1) ·u(t) =−R(q−1) · y(t). (7)

In (6), p(t) is the disturbances’ effect on the measured
output2 and R(z−1), S(z−1) are polynomials in z−1 having
the following expressions:

R = HR ·R′ = HR · (r′0 + r′1z−1 + . . .+ r′nR′
z−nR′ ), (8)

S = HS ·S′ = HS · (1+ s′1z−1 + . . .+ s′nS′
z−nS′ ), (9)

1The complex variable z−1 is used to characterize the system’s behavior
in the frequency domain and the delay operator q−1 for the time domain
analysis.

2The disturbance passes through the primary path, and p(t) is its output.
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where HS(z−1) and HR(z−1) represent prespecified parts of
the controller (used for example to incorporate the internal
model of a disturbance, or to open the loop at some frequen-
cies) and S′(z−1) and R′(z−1) are solutions of the Bezout
equation:

P = (A ·HS) ·S′+
(

z−dB ·HR

)
·R′. (10)

In (10) P(z−1) represents the characteristic polynomial,
which specifies the desired closed loop poles of the system.

The transfer functions between the disturbance p(t) and
the system’s output y(t) and the control input u(t), denoted
respectively output sensitivity and input sensitivity functions,
are given by

Syp(z−1) =
A(z−1)S(z−1)

P(z−1)
(11)

and

Sup(z−1) =−A(z−1)R(z−1)

P(z−1)
, (12)

IV. SYSTEM IDENTIFICATION

System identification from experimental data (see [3],
[8]) will be used for obtaining the dynamic model of the
compensator system used for controller design .

For design and application reasons (the objective is to re-
ject tonal disturbances up to 400 Hz), the sampling frequency
was selected as fs = 2500Hz (Ts = 0.0004s) i.e. approxima-
tively 6 times the maximum frequency to attenuated (see [3]).

A Pseudo Random Binary Sequence (PRBS) has been
used as excitation signal. Its characteristics are: magnitude =
0.15V, register length= 17, frequency divider of 1, sequence
length of 217 − 1 = 131,071 samples, guaranteeing a uni-
form power spectrum from about 70 Hz to 1250 Hz. Since
the transfer functions has a double differentiator behaviour
(input: speaker’s coil position, output: acoustic pressure), this
is considered as a system’s known part and the objective
will be to identify the unknown part only. To do this, the
input sequence will be filtered by a double discrete-time
differentiator DF = (1−q−1)2 such that u′(t) =DF ·u(t). The
double differentiator will be concatenated with the identified
model of the unknown part in the final model used for
controller design.

The criterion used for order estimation has the form:

JIV (n̂,N) =VIV (n̂,N)+2n̂
logN

N
, (13)

where n̂ is the estimated order of the system and N is the
number of data and the optimal estimated order is the one
which minimize the criterion JIV . The first term of the crite-
rion VIV (n̂,N) is a prediction error criterion to which a term
penalizing the model’s complexity is added. The effective
order estimation was done using the algorithms given in
[3], [9] which uses instrumental variablesfor obtaining an
unbiased value for the error criterion VIV . Once an estimated
order n̂ is selected, one can apply a similar procedure to
estimate n̂A, n̂− d̂, and n̂B′ + d̂, from which n̂A, n̂B′ and d̂
are obtained.
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Fig. 4. Frequency characteristics of the identified primary and secondary
paths models.

A model with the orders n=40, nA=38, nB’=30 and d=8
has been chosen.

Comparison of several models obtained with various pa-
rameter estimation algorithms in terms of statistical valida-
tion led to the conclusion that an ARMAX model repre-
sentation is the most appropriate for this system. Among
the various methods which can be used for this structure3,
XOLOE algorithm gives the best results for a given order
model, in terms of whiteness test validation (see [3]).

Therefore the XOLOE model with n= 40 has been chosen.
It has 18 oscillatory modes with damping comprised between
0.0097 and 0.3129; also 13 pairs of oscillatory zeros with
damping comprised between −0.0159 and 0.5438. Fig. 4
gives the frequency characteristics of the identified complete
models for the primary and secondary paths4.

V. ROBUST CONTROL DESIGN

Control specifications

The controller will be designed to attenuate in regions
of ±5Hz around the two nominal frequencies 170Hz and
285Hz. The attenuation must be al least of −17dB and any
undesired amplification should be less that 7dB. Also since
our model may be not fully representative of the system’s
behaviour at high frequencies, magnitudes at the input sen-
sitivity function should be below −20dB at frequencies over
600Hz (improving robustness versus additive plant model
uncertainties in high frequencies).

In addition the gain of the controller should be zero at
0 Hz since the plant does not have gain at zero frequency
and the gain of the controller should be zero also at the
Nyquist frequency (0.5 fs) for robustness reasons. These
control specifications will be achieved through the sensitivity
functions’ shaping.

3Recursive Extended Least Squares (RELS), Output Error with Extended
Prediction Model (OEEPM) or (XOLOE), Recursive Maximum Likelihood
(RML)

4Primary path model has been identified using the same procedure. This
model is used for simulations only
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Design procedure

To achieve the constraints at 0Hz and at 0.5 fs, a fixed part
(HR)

5 will be introduced in the controller:

HR(q−1) = (1−q−1)(1+q−1) = 1−q−2, (14)

Three major tools will be used for design
• Choice of the dominant poles
• Use of the band stop filters for shaping the sensitivity

functions
• Choice of the auxiliary poles for further improving

performance and robustness
The use of auxiliary poles will be done such that the

characteristic polynomial take the form

P(z−1) = PD(z−1) ·PF(z−1), (15)

where PD are the dominant poles obtained from the identified
dynamic model, and PF will be the auxiliary poles determined
by the controller’s requirements.

It is shown in [3] that very accurate shaping of the output
or the input sensitivity functions can be obtained by the use
of band-stop filters (BSF). These are IIR filters obtained from
the discretization of continuous-time filters of the form

F(s) =
s2 +2ζnumω0s+ω2

0

s2 +2ζdenω0s+ω2
0

(16)

using the bilinear transform s = 2
T s

1−z−1

1+z−1 . The use of BSFs

introduces an attenuation M = 20log
(

ζnum
ζden

)
at the normal-

ized discretized frequency ωd = 2 ·arctan
(

ω0TS
2

)
. Depending

on whether the filter is designed for shaping the output
or the input sensitivity function, the numerator of the dis-
cretized filter is included in the fixed part of the controller
denominator HS0 or numerator HR0 , respectively. The filter
denominator is always included in the desired closed loop
characteristic polynomial. As such, the filter denominator
influences the design of the controller indirectly since S′0 and
R′0 are solutions of the Bezout equation (10). These filters
will be used for a fine shaping of both the output and input
sensitivity functions.

The steps for the design of the linear controller are:
1) include all (stable) secondary path poles in the closed

loop characteristic polynomial.
2) open the loop at 0 Hz and at 1250 Hz by setting the

fixed part of the controller numerator as in Eq. (14).
3) 7 BSFs on Syp have been used around each of the

frequencies where attenuation is desired in order to
assure the desired attenuation within ±5 Hz .

4) 11 BSF has been used on Sup to reduce its magnitude
above 600 Hz.

5) to improve robustness 17 auxiliary real poles located at
0.17 have been added to the characteristic polynomial.

Figure 5 shows the characteristics of the output sensitiv-
ity function through the various steps of the design. It is
clear that the performance and robustness specifications are
achieved.

5Hi,HRi ,HRi ,PFi will denote any given controller’s fixed part.
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Fig. 5. Robust controller design: Output sensitivity function.

VI. ADAPTIVE CONTROL DESIGN

The adaptive approach uses the Youla-Kucera parametriza-
tion of the controller combined with the Internal Model
Principle. The basic reference for this approach used in active
vibration control is [3] A key aspect of this methodology is
the use of the Internal Model Principle (IMP). It is supposed
that p(t) is a deterministic disturbance given by

p(t) =
Np(q−1)

Dp(q−1)
·δ (t), (17)

where δ (t) is a Dirac impulse and Np, Dp are coprime
polynomials of degrees nNp and nDp , respectively6. In the
case of stationary narrow-band disturbances, the roots of
Dp(z−1) are on the unit circle.

Internal Model Principle[10]: The effect of the distur-
bance (17) upon the output

y(t) =
A(q−1)S(q−1)

P(q−1)
· Np(q−1)

Dp(q−1)
·δ (t), (18)

where Dp(z−1) is a polynomial with roots on the unit circle
and P(z−1) is an asymptotically stable polynomial, converges
asymptotically towards zero iff the polynomial S(z−1) in the
RS controller has the form (based on eq. (9))

S(z−1) = Dp(z−1)HS0(z
−1)S′(z−1). (19)

Thus, the pre-specified part of S(z−1) should be chosen as
HS(z−1) = Dp(z−1)HS0(z

−1) and the controller is computed
solving

P = ADpHS0S′+ z−dBHR0R′, (20)

where P, Dp, A, B, HR0 , HS0 and d are given7.
In the context of this paper for the Youla-Kučera parametriza-
tion, one considers a finite impulse response (FIR) filter of
the form:

Q(z−1) = q0 +q1z−1 + · · ·+qnQz−nQ , (21)

to which one associate the vector of parameters:

θ = [q0 q1 . . .qnQ ]
T . (22)

6Throughout the paper, nX denotes the degree of the polynomial X .
7Of course, it is assumed that Dp and B do not have common factors.
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Under Youla-Kučera parametrization or Q-parametrization,
the equivalent polynomials R(z−1) and S(z−1 of the controller
K(q−1) take the form

R(q−1) = R0 +A ·Q ·HS0 ·HR0 (23)

S(q−1) = S0−q−dB ·Q ·HS0 ·HR0 , (24)

with

R0(z−1) = r0
0 + r0

1z−1 + . . .+ r0
nR

z−nR0 = R′0 ·HR0 (25)

S0(z−1) = 1+ s0
1z−1 + . . .+ s0

nS
z−nS0 = S′0 ·HS0 , (26)

where A, B and d correspond to the identified model of the
secondary path, R0(z−1), S0(z−1) are the central controller’s
polynomials, and HS0 , HR0 are the controller fixed parts.

Using the output sensitivity function, the expression of the
output can be written as:

y(t) =
S0

P
·w(t)−Q · q

−dBHS0HR0

P
·w(t), (27)

with
w(t) = A · y(t)−q−dB ·u(t) = A · p(t) (28)

as a disturbance’s observer. The objective is to find a value
of Q such that y(t) is driven to zero.

A block diagram of the adpative scheme is given in Figure
6.

Fig. 6. Adaptive Youla-Kučera parametrization scheme.

The estimation of the polynomial Q at time t is denoted:

Q̂(t,q−1) = q̂0(t)+ q̂1(t)q−1 + · · ·+ q̂nQ(t)q
−nQ (29)

and is caracterized by the parameter vector:

θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)]
T , (30)

Since this is a regulation problem y(t) is expected to go to
zero and as such it is an a priori adaptation error denoted
ε0(t +1) for a given estimated polynomial Q̂(t,q−1):

ε
0(t +1) =

S0

P
·w(t +1)− Q̂(t)

q−dB∗HS0HR0

P
·w(t), (31)

with B(q−1) = q−1 ·B∗(q−1) . In a similar way, we can define
an a posteriori error like

ε(t +1) =
S0

P
·w(t +1)− Q̂(t +1)

q−dB∗HS0HR0

P
·w(t), (32)

which can be further expressed as

ε(t +1) = [Q− Q̂(t +1)] · q
−dB∗HS0HR0

P
·w(t)+η(t +1)

(33)
where η(t) tends asymptotically towards zero ( see [3]for
details).

Denoting filtered versions of observer output w(t) as

w1(t) =
S0(q−1)

P(q−1)
·w(t) (34)

w2(t) =
q−dB∗HR0HS0

P
·w(t) (35)

and
ϕ

T (t) = [w2(t) w2(t−1) . . .w2(t−nQ)], (36)

Eq. (33) can be rewritten as:

ε(t +1) = [θ T − θ̂
T (t +1)] ·ϕ(t)+η

∗(t +1). (37)

This type of equation allows immediately to develop an
adaptation algorithm (see [11]):

θ̂(t +1) = θ̂(t)+F(t)ϕ(t)ε(t +1) (38)

ε(t +1) =
ε0(t +1)

1+ϕT (t)F(T )ϕ(t)
(39)

ε
0(t +1) = w1(t +1)− θ̂

T (t)ϕ(t). (40)

F(t +1) =
1

λ1(t)

F(t)− F(t)ϕ(t)ϕT (t)F(t)
λ1(t)
λ2(t)

+ϕT (t)F(t)ϕ(t)

 (41)

where λ1, λ2 allows to obtain different profiles for the
evolution of the adaptation gain F(t). Finally the control to
be applied is given by

S0 ·u(t+1)=−R0 ·y(t+1)−HR0HS0Q̂(t+1) ·w(t+1). (42)

For the stability analysis of this algorithm see[11].

VII. EXPERIMENTAL RESULTS

The robust and adaptive design have been comparatively
evaluated on the duct silencer described in Section II. For all
the adaptive experiments nQ = 3 (4 parameters)

A. Interference test

Figure 7 shows the performance of the robust controller in
the presence of two pairs of sinusoidal noise signals acting si-
multaneously, and located first at170Hz and 170.5Hz, 285Hz
from 10s to 20s and then with modified central frequencies
located at 285.5Hz, 180Hz and 180.5Hz, and respectively at
295Hz and 295.5Hz. One can see that the controller gives
good performance from 10s to 20s( global attenuation of
36.56 dB) but the performance is degraded after 20s and this
is understandable since one operates outside the the region
considered for the design. Figure 8shows the performance
of the adaptive controller for the same configuration. The
performance are very good ( global attenuation of 71.45 dB).
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Fig. 7. Acoustic interference attenuation using a robust controller. Noise
frequencies:170,170.5,285,285.5 Hz then 180,180.5,295, 295.5 Hz.

Fig. 8. Acoustic interference attenuation using an adaptive controller. Noise
frequencies:170,170.5,285,285.5 Hz then 180,180.5,295, 295.5 Hz.

B. Step Changes in Frequency

In this test two simultaneous signals of constant frequency
act as disturbances. After a given amount of time a step
change in the frequencies of both signals is done. Both fre-
quencies are decreased or increased with a constant value and
remain at those new constant frequencies for 4s . Figures 9
and 10 show the performance of the robust and adaptive
controller. The red curves gives the magnitude of the residual
noise in open loop and the blue curves give the magnitude
of the residual noise in closed loop. The frequencies of
the disturbances are indicated in the plots. One can clearly
see that the adaptive controller has better performance than
the robust controller even within the frequency domain of
variations used for robust controller design.

VIII. CONCLUSION

The paper has shown that robust and adaptive approaches
can be considered for active attenuation of multiple narrow
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Fig. 9. Step changes in frequencies using the robust controller.
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Fig. 10. Step changes in frequencies using the adaptive controller.

band noise disturbances by feedback. However the adaptive
approach offer better performance.
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