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Emotions alter muscle 
proprioceptive coding of 
movements in humans
Rochelle Ackerley   1,2, Jean-Marc Aimonetti1 & Edith Ribot-Ciscar1

Emotions can evoke strong reactions that have profound influences, from gross changes in our internal 
environment to small fluctuations in facial muscles, and reveal our feelings overtly. Muscles contain 
proprioceptive afferents, informing us about our movements and regulating motor activities. Their 
firing reflects changes in muscle length, yet their sensitivity can be modified by the fusimotor system, 
as found in animals. In humans, the sensitivity of muscle afferents is modulated by cognitive processes, 
such as attention; however, it is unknown if emotional processes can modulate muscle feedback. 
Presently, we explored whether muscle afferent sensitivity adapts to the emotional situation. We 
recorded from single muscle afferents in the leg, using microneurography, and moved the ankle joint of 
participants, while they listened to evocative classical music to induce sad, neutral, or happy emotions, 
or sat passively (no music). We further monitored their physiological responses using skin conductance, 
heart rate, and electromyography measures. We found that muscle afferent firing was modified by the 
emotional context, especially for sad emotions, where the muscle spindle dynamic response increased. 
We suggest that this allows us to prime movements, where the emotional state prepares the body for 
consequent behaviour-appropriate reactions.

Emotions are responsible for profound changes in the body landscape, by affecting the internal environment, 
viscera, and the musculoskeletal system. Five basic emotions have been identified: sadness, happiness, fear, anger, 
and disgust1, where emotional reactions are displayed to the world through our behaviour, actions and reactions. 
Accordingly, the musculoskeletal system allows us to carry out these activities, interact with others, and explore 
our surroundings. It also informs us about changes in such activity, our posture, and the speed and quality of 
movements2, 3. Our behaviour influences social interactions, where even the smallest of facial muscle contractions 
can signal our intentions and affective thoughts4.

Emotions modulate our readiness to move5, where pleasant experiences prime approach actions and unpleas-
ant experiences prime withdrawal. The temporal kinematics of movement are especially affected by the situational 
valence6. Emotions, particularly unpleasant ones, can impact movements, for example, producing differences in 
the maintenance of an isometric contraction7 and of posture8. The continued exposure to such stimuli can mag-
nify the force of sustained voluntary movements7. Manipulating emotional state can also be used to facilitate gait 
initiation in healthy people9, as well as in patients such as those with Parkinson’s disease10.

The knowledge and control of action is determined, at least partly, by proprioceptive information, which arises 
from muscle spindles11. This is corroborated by studies on patients lacking myelinated fibres (including those 
for proprioception), who are unable to maintain a steady joint angle without vision, or adapt their movements 
to unexpected loads12, 13. These patients show deficits in multi-joint movements and their limb trajectories are 
severely distorted, even when they have visual input during movements14. The sensitivity of muscle afferents can 
be modified by the central nervous system through the gamma fusimotor system, as found in animals15, 16. This 
effect has been sought in humans, yet studies have shown only a small impact of the descending drive on muscle 
afferent activity17–19, although it has been observed recently, where muscle afferent firing acts as a forward sensory 
model and predicts the future kinematic activity of the parent muscle20.

Conscious cognitive processes have been shown to influence muscle afferent activity, where attention21, 22 and 
learning23 can modify their sensitivity, allowing the selection of specific muscle feedback relevant for the behav-
ioural context. However, it is unknown whether instinctual processes, such as emotions, can modulate muscle 
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feedback directly. We hypothesise that emotions can modify the descending motor drive and modulate the fir-
ing of muscle afferents, where emotions will prepare the body for making consequent behaviour-appropriate 
reactions.

Results
We recorded unitary activity from 24 primary (type Ia) muscle afferents, originating in the dorsal flexor ankle 
muscles, using microneurography24, 25 in 16 resting, healthy participants. The sensitivity of each muscle afferent 
was assessed during an emotional manipulation paradigm, where the participant closed their eyes and listened 
to evocative classical music of sad, neutral, or happy valence26–31 (Table 1), or sat passively (no music). A micro-
electrode was inserted into the common peroneal nerve and the absence of concomitant muscle activity was 
controlled by recording surface electromyographic activity (EMG). Muscle afferent firing was recorded during 
sinusoidal plantar flexion/dorsiflexion movements (Fig. 1), imposed at the ankle, while the participant attended 
to the emotions triggered by each type of music. Electrodermal activity and heart rate were also recorded as emo-
tional markers and participants rated their emotion on a visual analogue scale (VAS), from sad to happy.

We find that muscle afferent activity was modulated by the emotional content. Figure 1 details a full example 
of responses from a single primary muscle afferent, while listening to the music of different valences. During sad 
music, the afferent response composed a succession of spike bursts and silences, relating to the lengthening and 
shortening of the muscle, respectively (Fig. 1a shows a full movement sequence, with all the physiological meas-
ures and Fig. 1b left shows three successive movements on an expanded time-scale). The same afferent’s response 
to movement during neutral music differed considerably (Fig. 1b, middle), where the silent periods between sinu-
soids disappeared and there was additional firing throughout these parts of the movement cycle. When listening 
to happy music, silences occurred during muscle shortenings, akin to the sad condition, but these were shorter in 
duration (Fig. 1b, right). Movement-by-movement rasters (Fig. 1c) show that the afferent’s response was consist-
ent over the movement cycles, for each condition. The mean instantaneous frequency is shown below the rasters, 
where the minimum and maximum rates were extracted. The difference between these two measures (‘delta’) was 
used to quantify the afferent’s dynamic firing and we found increases in the sad condition, as compared to the 
neutral and happy conditions.

For the whole population of afferents (n = 24), the delta significantly differed between the music conditions 
(ANOVA, F(2,46) = 4.28, p = 0.034, η2 = 0.16). Figure 2a shows that the delta was significantly higher during sad 

Musical piece Composer Valence
Number of 
presentations

Rating 
(mean ± SD)

Nocturnes, Op. 27 No. 1 Chopin Sad 7 1.8 ± 0.2

Kol Nidrei, Op. 47 Bruch Sad 7 2.1 ± 0.5

Adagio for Strings Barber Sad 5 0.4 ± 0.1

Nocturnes, Op. 48 No. 1 Chopin Sad 2 0.8 ± 0.5

Piano Concerto No. 23, 
Adagio Mozart Sad 1 1.2

Symphony No. 5, 
Adagietto Malher Sad 1 2.4

Peer Gynt: Solveig’s song, 
Op. 55 No. 2 Grieg Sad 1 3.8

The Planets, Venus Host Neutral 10 4.9 ± 0.4

Pictures at an exposition 
No. 1 Mussorgsky Neutral 7 5.7 ± 0.3

Water music suite No. 1 
Minuet (mvt 6) Handel Neutral 5 4.9 ± 0.2

Water music suite No. 2 
passepied (mvt 2) Handel Neutral 1 5.9

Piano Sonata No. 14, 
Moonlight Sonata Beethoven Neutral 1 5.5

Radetzky marsch, Op. 228 Strauss Happy 5 9.3 ± 0.3

Carmen Suite No. 1, Les 
Toreadors Bizet Happy 5 8.4 ± 0.4

Piano Concerto No. 23, 
Allegro assai Mozart Happy 5 8.2 ± 0.4

Carnival of the Animals 
No. 14, Finale Saint-Saëns Happy 3 9.0 ± 0.7

Eine kleine Nachtmusik, 
K. 525 Mozart Happy 3 8.7 ± 0.4

Four seasons, Spring, 
Allegro Vivaldi Happy 2 7.9 ± 0.2

Carnival of the Animals 
No. 10, Aviary Saint-Saëns Happy 1 8.0

Table 1.  Classical music pieces selected for the experiments to induce different emotional states. The musical 
piece, composer, its pre-determined emotional valence26–31, the number of presentations per piece for the whole 
experimental group, and the VAS mean ratings are given.
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music, as compared to happy music (p = 0.031) and neutral music (p = 0.001), but did not change significantly 
between happy and neutral music (p = 0.812). Figure 2c shows the distribution of responses in the emotional 
conditions, as compared to neutral. Here, an increase in delta during the sad condition was found in 21/24 units, 
where the delta during sad music was significantly increased (t = 4.43, p < 0.001).

We also compared the changes in muscle afferent delta in a sub-population of the same units when no music 
was listened to, as an auditory control. This sub-set (n = 11) showed the same pattern of responses, where the 

Figure 1.  Responses from a single muscle afferent (from extensor digitorum longus, EDL) to movements 
during different emotional music. (a) Recordings to a full movement sequence during sad music. The top trace 
shows the instantaneous frequency of muscle afferent firing, with its activity shown below. The third trace 
shows the imposed sinusoidal movement, with a lack of concomitant EMG activity below. The fifth trace shows 
fluctuations in the electrodermal activity and the below trace demonstrates cardiac frequency. (b) For the 
same unit, activity is shown during three movements (bottom trace), over sad, neutral, and happy conditions. 
Differences can be seen in the instantaneous frequency (top) and unit firing (middle) between the conditions, 
with decreased activity during muscle shortenings in the sad condition. (c) Raster plots of spike activity for each 
condition are shown for the full movement, per sinusoid, with the mean response below. The dynamic response 
was measured by delta (change in the instantaneous frequency curve) for each condition.
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delta was significantly different between the conditions (ANOVA, F(3,30) = 5.21, p = 0.014, η2 = 0.34). Figure 2b 
shows that the delta during sad music was significant increased, as compared to the neutral (p = 0.023), happy 
(p = 0.011), and no music (p = 0.025) conditions. There was no significant difference between the neutral and no 
music conditions (p = 0.456). The distributions of the responses over the conditions, as compared to neutral, are 
shown in Fig. 2d. Here, an increase in delta during the sad condition was found in 10/11 units, where the delta 
during sad music was significantly higher than during neutral music (t = 3.15, p = 0.010).

For the physiological measures of emotion, electrodermal activity increased significantly during sad music, 
as compared to neutral music (Wilcoxon, W = −166 p = 0.046). In the happy music condition, the electrodermal 
activity was significantly higher than in all the other conditions (cf. sad W = −193, p = 0.019; neutral W = −324, 
p < 0.001; no music W = −208, p = 0.004; Fig. 3b). The mean heart rate increased significantly during happy 
music, as compared to neutral music (W = −139, p = 0.046; Fig. 3c). Heart rate variability was significantly higher 
during sad music (W = −169, p = 0.008) and happy music (W = −78, p = 0.043; Fig. 3d), as compared to neutral. 
Heart rate variability was also increased during sad music, as compared to no music (W = −134, p = 0.010). These 
measures were congruent with the emotion VAS ratings; a significant effect was found between the emotional 
conditions (Friedman ANOVA = 41.54, p < 0.001), where there were differences between all the comparisons 
(all p < 0.01; Fig. 3a). This showed that participants felt sad, neutral, and happy emotions when listening to the 
corresponding music.

Discussion
The present results demonstrate that changes in emotional state lead to the differential encoding of body move-
ment by muscle spindles. We used the auditory modality to provoke emotional changes, as the induced affect 
is more pervasive compared to other modalities31. The emotional content of the music was sufficient to drive 
central mechanisms and modulate the descending fusimotor efference to muscles, as seen in the muscle afferent 
responses, as well as produce physiological changes.

We found that sad emotions caused muscle afferents to respond differently to movement, as compared to 
the effects from neutral music (in 20/24 units), as seen in an increase in their dynamic firing. The congruence 
between the sad feelings induced by listening to sad music and those triggered by the experimental situation 
(e.g. not being able to move), likely amplified the effect32. Sad feelings may be more important for survival33 
and prime the body for a context-appropriate behavioural response e.g. withdrawal and avoidance. Unpleasant 

Figure 2.  Modulation of the muscle afferent dynamic responses over the conditions for the full group of units 
(left) and a sub-set with the additional no music condition (right). The top graphs show the overall changes in 
instantaneous firing frequency (delta). (a) A significant increase in delta was found during the sad condition, 
over the neutral and happy conditions for all units, which was also found in (b) the sub-set with the additional 
no music condition. Means with SEM are shown. The bottom row shows the spread of the population. (c) The 
distribution of delta (as a percentage) in comparison to the neutral music condition for all units. (d) The same 
distributions are shown for the sub-set of units with the no music condition. In both (c) and (d), the delta in the 
sad condition was significantly increased. *p < 0.05.



www.nature.com/scientificreports/

5Scientific Reports | 7: 8465  | DOI:10.1038/s41598-017-08721-4

stimuli generally provoke a more pervasive behavioural and physiological reaction5–7, 31, 34–36, where corticospinal 
excitability has been found to be higher for unpleasant stimuli5, 37–40, reflecting increased motor preparation. Such 
studies demonstrate only small modulations in corticospinal excitation by emotions; these changes may not pro-
duce an actual movement, yet they will nevertheless influence the execution of future movements39. Presently, we 
found a small, but consistent increase in the dynamic firing of muscle afferents during sad emotions, which also 
suggests a change in the readiness to react.

Our findings during happy emotions were more variable, where we found both increases and decreases in 
the dynamic firing over different participants. The increases in dynamic firing may be akin to the sad condition, 
where there is priming for action; as generally observed with positive emotions that prompt approach behaviour6. 
However, we suggest that, for some participants, a situational incongruence may have occurred. The happy music 
may have evoked a desire to move, but opposingly, the participant was required to remain relaxed for the experi-
ment. Previous work has postulated that pleasant stimuli trigger an urge to move, where corticospinal excitability 
is decreased due to a need to suppress the response6. Hence, the decreases in the dynamic response of muscle 
afferents that we found during happy music may reflect a suppression of the urge to move. Thus, the participant’s 
perception of the situational incongruence may have dictated their overall response, demonstrating the subjective 
nature of emotional experiences and reactions41.

Muscle proprioceptive messages encode both the position and velocity of movements2, and the present 
increase in their dynamic firing likely leads to increased proprioceptive acuity during emotional situations, par-
ticularly sad ones that may require more urgent attention33. The change in muscle afferent firing that we demon-
strate with emotion is not large; however, muscle afferent firing rates are much lower in humans, as compared to 
animals21. For example, the fusimotor-induced increase in muscle afferent firing rate during isometric contrac-
tions in humans (~20 Hz)42 is considerably less than that in awake cats (100–300 Hz)43. At these lower frequencies, 
the difference in afferent firing will be less pronounced in humans23, as we find. Nevertheless, the muscle afference 

Figure 3.  Changes in emotional ratings and physiological states over the conditions. (a) VAS ratings in the sad-
happy dimension are shown over the emotional music conditions tested in the microneurography experiment. 
There was a significant difference between all the conditions. Physiological measures over all the experimental 
conditions (sad/happy/neutral music and no music). (b) Electrodermal activity was significantly increased 
during happy music, and there was a significant difference between sad and neutral music. (c) The mean heart 
rate was significantly higher during happy, as compared to neutral music. (d) Heart rate variability also changed 
with sad and happy emotions; a significant increase was found over the neutral music, and additionally, the sad 
emotion condition was significantly higher than the no music condition (not indicated for clarity). Means are 
shown with SEM, *p < 0.05.
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sent to the brain will be registered and enhance ongoing behaviour, preparing the person for behaviour appro-
priate to the situation. We are not saying that a subsequent behaviour must necessarily be produced; rather that 
the emotional response readies the body for action to suit the situation and muscle afferent signals could act as 
‘somatic markers’ in driving behavior44.

Muscle afferents are involved in the regulation of motor activities45, where an increase in their dynamic firing 
may influence movements by directly enhancing alpha motoneuron excitability46. Similarly, a descending com-
mand appears to govern increases in sympathetic activity to muscles, rather than direct muscle activity, which is 
important for the regulation of muscle perfusion during movement47. Regarding the origin of the effect we find, it 
is improbable that the increase in muscle spindle sensitivity resulted from enhanced muscle sympathetic activity, 
since it does not influence muscle spindle firing48. The described effect is likely produced by the descending drive 
from fusimotor neurons, and more specifically, from the dynamic gamma fusimotor drive that increases the ten-
sion in intrafusal muscle fibres15, 16, 49, 50.

As well as the dynamic change in muscle afferent firing, we found differences in the physiological measures 
over the conditions. We expected electrodermal activity to increase in emotional states, as studies have found skin 
conductance changes when listening to emotional music, and akin to our findings, that happy emotions produce 
a larger effect34–36. Similarly, our emotional conditions produced changes in the heart rate measures, as found pre-
viously31, 34. These measures reflect the effect of feeling the emotions in the music, as neutral music did not show 
such an impact and the physiological reactions from it were equivalent to the no music condition.

Emotions are vital to human behaviour and for social interactions. They shape our perceptions and actions, 
particularly through the auditory and visual channels29. We find that emotions modulate the feedback from our 
muscles, which has direct consequences for our bodily awareness and readiness to react to emotional situations, 
i.e. perception-action. The effect of emotions on driving preferential action responses may be exploited thera-
peutically. The addition of external stochastic noise has been shown to reduce physiological tremor and improve 
motor performance51, as well as postural control52, and the manipulation of internal emotional state may ready 
the body for action. Music is widely used to enhance emotional impact and emotional priming may be used in 
physical rehabilitation to enhance feedback in patients with movement disorders10. Likewise, emotional manip-
ulation may be used in patients with affective disorders, such as depression, where listening to sad music may 
actually regulate mood and behavior53.

Methods
Participants and experimental set-up.  The experiments were performed on 16 healthy human volun-
teers (6 females, mean age 27.7 ± 6.3 years), all of whom gave their written, informed consent. The study was 
approved by the local ethics committee (Comité de Protection des Personnes Sud-Méditerranée I) and performed 
in accordance with the Declaration of Helsinki. Due to the nature of the paradigm (in vivo peripheral nerve 
single unit recordings during an emotional manipulation), it was important that all our participants were calm 
and felt relaxed about the procedure. Hence, they participated in a pre-experiment visit to assess their suitability 
and introduce them to the laboratory environment. For the experiment, participants were seated comfortably in 
an armchair with their legs positioned in cushioned grooves. This allowed a standardised, relaxed position to be 
maintained, in the absence of any muscle activity. The knee joints were positioned at an angle of ~120–130°, and 
their feet rested on supports, giving a neutral position of the ankle, with an angle of ~110° between the leg and the 
foot. The right foot was laid on a stationary plate and the left foot was placed on a pedal connected to a comput-
er-controlled robot, which was used to impose plantarflexion/dorsiflexion movements.

Before the experiment started, the participant listened to several pieces of classical music deemed to evoke 
sad, neutral, or happy emotions (up to 5 pieces of each type), and rated each of them on a VAS, ranging from 
sad (equating to 0, the saddest they could feel) to happy (equating to 10, the happiest they could feel). Although 
emotions are complex, we chose sad and happy as the emotions to be induced, as these are two of the five basic 
emotions1, where sad-happy can be represented as a dimension on a continuum. Sad and happy emotions can 
be readily induced experimentally and have been well-studied, including comparing sad, neutral, and happy 
emotions through images54–56 and music26, 27, 30, 31, 57. We used the auditory modality to invoked these emotions, 
as the effect is more pervasive compared to other modalities31. For classical music, sad and happy emotional 
music has been well-classified26, 27, and produces body physiological changes34–36, evokes neural activity in brain 
regions relating to emotional processing27, and induces autonomic responses31. Further, even when pleasure can 
be derived from sadness (e.g. enjoying sad music), the resultant emotion is decoupled from the aesthetic content 
(liking) of a stimulus53, 58. As our approach introduced constraints on the number of conditions presented (e.g. 
recording stably from a single muscle afferent), we focused on sad-happy as our emotional dimension, with neu-
tral music and no music as emotional and auditory controls, respectively.

For each participant, the most effective music in triggering each type of emotion, for sad, neutral, and happy 
pieces, was chosen to be played during physiological recordings. Table 1 gives the name of each piece of music 
and the number of times the music was used, with the mean emotional ratings from all participants. The musical 
pieces were subject to signal processing to provide similar levels of acoustic excitation and to avoid strong vari-
ations of the sound level. Original music digital recordings in MP3PRO (FHG) format (44100 Hz, 16 bits) were 
first adjusted to have similar root mean square amplitudes of 80 dB re. 1 bit, using a custom made MATLAB (The 
Mathworks, Natick, MA) program. An amplitude compression was then performed using Adobe Audition 1.5 
(Adobe, San Jose, CA) software. The chosen compression curve flattened the upper 40 dB (all levels from maxi-
mum to −40 dB re. maximum) to a constant level. A linear compression was then applied to the lower levels (all 
levels from −40 dB re. maximum to minimum). These modifications of the music were not particularly noticeable 
to the participants, but ensured equivalent modulations between the music pieces. The participants rated these 
music pieces easily for their emotional content (see Fig. 3a and Table 1).
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Physiological recordings.  The activity of single muscle spindle endings, originating from the tibialis ante-
rior (TA; n = 10) and extensor digitorum longus (EDL; n = 14) muscles, were recorded from the left common 
peroneal nerve at the popliteal fossa, using the human, in vivo technique of microneurography24, 25. We ensured 
that the procedure was not painful and that the participant remained calm and relaxed throughout (e.g. we did 
not use electrical stimulation to find the nerve, we advanced the electrode very slowly and carefully, we frequently 
asked them how they were, and monitored their physiological responses). Unitary muscle afferent activity was 
recorded referentially using an insulated tungsten microelectrode (impedance 0.3–1 MΩ, tip diameter ~5 µm, 
length 30 mm; FHC, Bowdoin, ME). The recordings were monitored continuously using an oscilloscope and a 
loudspeaker. Neural activity was amplified (×200,000) and band-pass filtered (300–3000 Hz) to ensure an optimal 
signal-to-noise ratio, and sampled at 20 kHz frequency. Muscle afferents were identified as primary endings on 
the basis of their irregular spontaneous activity, their high dynamic sensitivity to ramp and hold movements, and 
their silencing during passive muscle shortenings59.

The absence of concomitant muscle activity was controlled throughout the experiment by recording EMG. 
Two pairs of surface electrodes were placed over the TA muscle, with an inter-electrode distance of ~4 cm for each 
pair. The EMGs were recorded with high gain (×10,000), band-pass filtered (30–300 Hz), and sampled at 5 kHz. 
Further measures of emotional responses were obtained through recording electrodermal activity, using two 
surface electrodes placed on each side of the left hand (gain: ×500, band-pass: 0.1–100 Hz, sampling frequency: 
200 Hz), and heart rate was recorded by means of a passive transducer, strapped around the left index finger. The 
EMG, electrodermal activity, and heart rate measures were monitored throughout the experiment. These pro-
vided feedback to the experimenter that the participant was not stressed, felt trapped, or wanted to move (e.g. no 
EMG, not a high heart rate, no strong modulations in the electrodermal response).

Experimental paradigm.  The participant’s emotional state was changed by listening to classical music 
through headphones. The music pieces had been previously defined as reliably inducing sad (n = 9 pieces), happy 
(n = 7), or neutral (n = 5) affective states26–31 (see Table 1). Once activity from a single muscle spindle had been 
isolated, the participant put on the headphones and was instructed to close their eyes. The participant was told 
before the recording to listen attentively to the music and disregard the movement imposed at the foot. The music 
started and, after a delay of ~10 s, a series of 30 sinusoidal plantarflexion/dorsiflexion movements (5° amplitude 
and 5°/s velocity, over ~1 minute) were imposed at the ankle joint. The movement range was chosen to maintain 
stability of the microelectrode recording at the level of the knee, but allow sufficient ankle movement21. The max-
imal angle towards plantar flexion is ~20°60, hence 5° amplitude corresponds to ~25% of the maximal movement 
possible.

We chose to play 10 s of music before the movements started to allow the participant to ‘feel’ the emotions. 
Music has been found to be instantly evocative, where the physiological arousal changes quickly from the very 
beginning of the music35, 61. The initial period allowed sufficient time for continued experience of the emotions 
during the movement, without inattention or habituation31, 34. Each afferent was recorded during four sequences, 
where the participant listened to sad, happy, or neutral music, or listened to nothing (‘no music’ condition) 
through noise-cancelling headphones (Bose; Framingham, MA). These four conditions were presented in a 
pseudo-random order. After each sequence, the participant was asked to rate the emotion felt for the music on a 
further VAS, which was used in the analysis.

Data analysis and statistics.  The data were stored on a digital tape recorder (DTR 1802, Biologic, Claix, 
France) and processed off-line using Spike 2 software (CED, Cambridge, UK). The nerve spikes were inspected 
carefully in an expanded time scale and transformed into an instantaneous frequency curve. The mean instanta-
neous frequency curve (bin size = 0.005 s), per unit/condition, was obtained by averaging its response to 29 sinu-
soidal movements, where the first movement was excluded because of a dynamic response from the onset of the 
movement. The maximum and minimum frequency was extracted from this measure, and the difference (‘delta’; 
see Fig. 1c) was used as an index to characterise a unit’s dynamic response in each condition. This measure was 
chosen specifically to reflect the dynamic response of muscle afferents, where similar measures have been used 
previously62. Note that in the majority of microneurography studies investigating changes in muscle spindle activ-
ity use ramp-and-hold movements. In our paradigm, we needed to use a longer-lasting movement stimulus to 
determine the effects of emotions (which can be induced quickly, but fluctuate over time), hence we were required 
to deliver continuous movements over time. We measure the changes in firing rate in cycle histograms over the 
sinusoids, as in previous animal studies dealing with the effect of fusimotor activity63, 64. For six of the units, mus-
cle activity (EMG) was present during some of the movement cycles; in these cases the averaged response was 
composed of the movements that were EMG-free.

The statistical analysis for the whole population of afferent responses was made using a one-way ANOVA with 
repeated measures, followed by false-discovery rate adjusted post-hoc tests. A second ANOVA was used to com-
pare the data in a sub-set of units, where the no music condition was also tested. The effect sizes were determined 
using Eta-squared (η2). The emotional VAS ratings were compared using a non-parametric Friedman’s ANOVA 
and differences between the music conditions were compared using Dunn’s corrected post-hoc tests. The physi-
ological measures (electrodermal activity, mean and standard deviation of heart rate) were recorded over all the 
conditions (including the no music condition) and non-parametric Wilcoxon tests were used to compare differ-
ences within each measure, due to the data not meeting normality criteria (which was found using Shapiro-Wilk 
tests). The level of significance was set at p < 0.05.

Data Availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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