N

N

How to take into account piecewise constraints in
constraint satisfaction problems
Elise Vareilles, Michel Aldanondo, Paul Gaborit

» To cite this version:

Elise Vareilles, Michel Aldanondo, Paul Gaborit. How to take into account piecewise constraints in
constraint satisfaction problems. Engineering Applications of Artificial Intelligence, 2009, 22 (4-5),
pp.778-785. 10.1016/j.engappai.2009.01.004 . hal-01599441

HAL Id: hal-01599441
https://hal.science/hal-01599441
Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01599441
https://hal.archives-ouvertes.fr

How to take into account piecewise constraints in constraint satisfaction

problems

Elise Vareilles *, Michel Aldanondo, Paul Gaborit

Ecole des mines d’Albi Centre de Génie Industriel, Université de Toulouse, Route de Teillet Campus Jarlard, 81013 Albi Cedex 09, France

ABSTRACT

A particular data structure named a Quad Tree allows a better representation of solution space of binary
continuous constraints C(x1,x3), than classical continuous consistencies. The generation and integration
of this data structure do not raise any particular problem for continuous constraints defined by only one
mathematical formula [Sam, D., 1995. Constraint consistency techniques for continuous domains. Ph.D.
Thesis, Ecole Polytechnique Fédérale de Lausanne]. In this paper, we propose to extend the method of
generating Quad Trees in order to take into account, in CSPs, binary continuous constraints defined by a
piecewise constraint, i.e. a set of functions defined on intervals. The first section presents the industrial
requirements which led us to take into account this type of constraint in CSP. The second section recalls
the principles of the Quad Tree. The last section describes our contributions relevant to Quad Tree

extensions dealing with piecewise constraints.

Keywords:

Design

Piecewise constraints
Constraints satisfaction problem
Quad Tree

Filtering

1. Introduction

A particular data structure named a 2¥ Tree (Sam, 1995) allows a
better representation of continuous solution space of continuous
constraints as defined by Definition 1, than continuous consisten-
cies, such as 2B-consistency (Lhomme, 1993) and Box-consistency
(Benhamou et al., 1994).

Definition 1. A continuous constraint C(xy,...,X,) is an arbitrary
equality or inequality involving variables Xxi,....X; (X1,...,X; €
Dy,,...,Dx, and Dy,,...,Dy, €).

Indeed, both consistencies focus on optimizing the tightening of
the feasibility space outer bounds: they approximate the effective
solution space by a rough enclosing box (Sam, 1995). Their
principal difference lies in the fact that 2B-consistency requires
the projection of the constraints on each of their variables while
Box-consistency works directly on the original constraints by
using interval Newton iterates.

In order to define a more precise and efficient representation of
continuous solution space (Sam, 1995) has proposed the use of
Quad Trees (Samet, 1984) for binary continuous constraints and of
2¥_Trees for constraints involving k variables. The search area of a
constraint is split recursively into rectangles or hypercubes until a
certain accuracy level is reached. During recursive decomposition,
the consistency with the constraint of each node is computed and
marked with a particular colour. The integration of this data

* Corresponding author. Tel.: +33 563493 092; fax: +33563493 183.
E-mail address: vareille@enstimac.fr (E. Vareilles).

structure in CSP does not raise any particular problem for
continuous constraints defined by only one continuous function
(Sam, 1995). In this paper, we propose to extend the method of
generating Quad Trees in order to take into account in CSPs, binary
continuous constraints defined by a piecewise constraint (a set of
functions defined on intervals). Our method, with respect to some
insubstantial assumptions, follows the idea of classical Quad Tree
(recursive decomposition), but the generation of Quad Trees of
piecewise constraints is somewhat more complex.

The first section presents the industrial requirements which
led us to take into account such binary constraints in CSP. The
second section recalls what a Quad Tree is and how it is generated
from a binary continuous constraint. The third section defines
what piecewise constraints are and what the different grades of
information we need to generate relevant Quad Trees. Then, the
generation of Quad Trees of piecewise constraints is presented for
constraints assembling inequalities and equalities.

2. Industrial requirements of piecewise constraints

This study has been necessary when designing a knowledge
based system in order to take into account experimental knowl-
edge, relevant to heat treatment domain during the European
project VHT (Virtual Heat Treatment—Project no. G1RD-CT-2002-
00835). Some expert knowledge has been collected and as-
sembled in a CSP based reasoning model and an interactive
constraint propagation engine has been designed and developed
(Aldanondo et al., 2005).

Composition: 0.52% C - 0.60% Mn - 0.40% Si - 0.011% S -
0.013% P - 0.17% Ni - 1.00% Cr - 0.22% Mo - 0.38% Cu -
<0.05% V Grain size: 10-11 Austenitized at 850°C (1562°F) for
30 min

o EN\\ \?i:— o - ___;; _
i —~¥l§ A X \ ss‘l =
| \rs i lsg\,LFfC :
600 , ; t ﬂ\ — —
i 00 \\ \\ g) \-\
E LA \}\ s
k m_Ili «?}\ a ‘QQ‘\\
v +| ' 32, JN ;
TR
Y N 5 A O A \ \
100 . \ \)\ 1‘\ \\\ \
TRV NAVANATIRNAUA

g [HRC[62 6160 54 45 37353526 20 |
i T U T T T T 11 1|

12 5 10 20 50 100200 500 10° w0 10

Wl
Temps en secondes | | I |
1mn 2mn 15mn 1h 2h &4h 8h 24h

CCT

Fig. 1. Cooling curves and piecewise constraint.

The critical point of heat treatment operation design is trying
to avoid distortions. According to heat treatment experts (David
et al., 2003), distortions can result from any kind of choice
relevant to the definition of the heat treatment operation.
Consequently, the resulting constraints model is composed of
four sets of variables relevant to: (i) the geometry of the part,
(ii) the material of the part, (iii) the resources required by the
operation and (iv) the distortion characteristics (Vareilles et al.,
2007). The constraints linking these variables correspond with
compatibility tables and mathematical expressions but also with
2D experimental graphs such as the one shown in Fig. 1 that
shows some cooling curves with respect to transformating phases.
The latest model is presented in Lamesle et al. (2005).

Unfortunately, experimental graphs cannot be approximated
with a single mathematical expression, and are, most often,
fitted with a set of mathematical expressions defined on parti-
cular domains: six linear functions in the example of Fig. 1. This
example comes from metallurgy. Many others exist in engineering
design as for example, the models in fluid mechanics involving
the Reynolds dimensionless number whose value points to
different types of ways the fluids flow (laminar, transient,
turbulent) corresponding to fluid mechanics laws (Chenouard
et al,, 2007) or the displacement of the extremity of a beam with
respect to the admissible load and relevant section shape, as
shown in Fig. 2.

3. Quad Tree: definition and generation

The aim of this section is to recall Quad Tree definition and to
explain how Quad Trees can be generated and integrated in a CSP.
Several examples illustrate the elements presented.

M
.
.
.
I v
- F: 6 < <9 (10° daN)
m Solution S5
.
m
my
.
]
1] v
uy F: 3 < <6 (10% daN)
m .
- Solution S,
i
m
.
1] v
% F: 0 < <3 (10° daN)
- Solution §;
L
=
5
g
[}
2
=
a
g
5
>
=
£
2
m
F:103 daN
[[
0 3 6 9

Consistent area with respect to solutions

Fig. 2. Displacement data and piecewise constraint.

3.1. Quad Tree definition

Definition 2. A Quad Tree is made up of nodes defined as
followed:

o each node n is defined by a pair of intervals (&, &),

e each node n is constrained by C(x,y) which is a constraint as
defined by 1,

e each node n has a unique code, corresponding to its co-
ordinates,

e each node n has a colour: white, grey or blue defined
according to the consistency of the intervals (d},, d”) with the
continuous constraint C(x,y),

o white: if the region (d}, d”) is consistent with the constraint

Cx,y),

blue: if the region (d},d)) is not consistent with the

constraint C(x, y),

grey: if the region (dy,d”) is both consistent and incon-

sistent with the constraint C(x, y).

e each grey node is split into four children notated north-west
(NW), south-west (SW), south-east (SE) and north-east (NE),

o]

[e]

each of whose consistency with the constraint C(x,y) has to be
checked and marked by a colour,
o two discretization steps & and ¢, relevant to the two variables
x and y, stop the Quad Tree decomposition at a given accuracy,
e when one of these discretization steps is reached, the
discretization stops. The grey nodes are then called unitary
nodes and are considered:

o consistent with the constraint C(x,y) if only the regions
which are completely inconsistent need to be excluded:
they turn white,

o inconsistent with the constraint C(x,y) if only the regions
which are completely legal with the constraint C(x,y) need
to be kept: they turn blue.

The leaves of the resulting Quad Tree are therefore either
blue or white.

Each node n is encoded using a succession of h digits,
representing an integer in base 2", where the number of digits h
corresponds to the height of the encoding node n in the Quad Tree.
This encoding is based on a Peano’s filled path with an N motif,
arranged following Morton’s order (Briggs and Peat, 1991), as
shown in Fig. 3. This kind of encoding produces a code unique to
each node, corresponding to its geographic coordinates in base 2".

3.2. Quad Tree generation

The generation of a Quad Tree can be launched at the initial
search area defined by the domains of the variables x and y
(Dx, Dy). The search area is decomposed recursively until either of
the discretization steps, & and ¢y, is reached. All kinds of binary
continuous constraints, Definition 1, can be represented by a Quad
Tree.

There are two ways to compute the colour of a node. The first
one, proposed by Sam (1995), consists in using mathematical
techniques to compute the intersections between the four sides
of a node and the constraint. This computation can be a difficult
problem to solve according to the shape of the mathematical
expression.

The other one, proposed by Lottaz (2000), consists in using
interval arithmetic to verify if a node n satisfies the constraint
or not. Interval arithmetic (Moore, 1966) extends real arithmetic
to intervals by applying the operators of a formula to the
endpoints of the intervals of its arguments. If a node n completely
satisfies the constraint, it turns white. If it partially satisfies the
constraint, it turns grey. In the remaining case, the node is
inconsistent with the constraint and turns blue. As interval

1 (0,8 (1,3, (23

01 O, (1, 1Dy (2, Ny

0,0, = (1,0),

Fig. 3. Peano’s filled path with an N motif, arranged following Morton’s order.

arithmetic can over-estimate results, Lottaz (2000) has shown
that it can happen that a node n belonging completely to either a
consistent or an inconsistent region has to be decomposed and
explored unnecessarily. In spite of this drawback, we have chosen
this last approach to compute the colour of the nodes, mainly
because it operates well whatever the shape of the mathematical
expression.

3.3. Quad Tree example

For instance, Fig. 4 shows the Quad Tree corresponding to
the constraint C:y —x3>0 where & = 0.0625 and &y = 0.0625.
The left part of the figure lays out the discretized solution space,
composed only of consistent (white) and inconsistent (blue)
areas. The right part sets out the beginning of its hierarchical data
structure.

Let us compute the consistency of the following nodes by using
interval arithmetic:

e Let N; be the node defined by the pair of intervals
([0,0.51,[0.5,1]). N; is white because it completely satisfies
the constraint C(x,y): &, & (d})* >0<[0.475,1]>[0, 0] (true for
all the computed interval).

e Let N, be the node defined by the pair ([1,2],[-1,0]). N, is
blue because it does not satisfy the constraint C(x,y): d’ ©
(dﬁ)3 >0<=[-9,—1]=>[0,0] (false for all the computed interval).

e Let N3 be the node defined by the pair ([1,2],[1,2]). N3 is
grey because it partially satisfies the constraint C(x,y): d’ ©
(d)}>0<[-9,1]>[0,0] (true and false on the computed
interval).

Algorithm 1, named Buib Quap Treg, builds the Quad Tree of a
continuous constraint C(x,y) from one of its nodes given as a
parameter. In this algorithm, only the completely inconsistent
regions have to be rejected, therefore the unitary grey nodes turn
white.

4. Piecewise constraints and Quad Tree

The aim of this section is to extend the Quad Tree approach in
order to be able to take into account piecewise constraints. A first
sub-section defines what we mean by piecewise constraints and
introduces what we call information grades. Following sub-
sections present Quad Trees which deal with constraints assem-
bling equalities, f(x,y) = 0, and inequalities, f(x,y)>, >, < or <0.

4.1. Piecewise constraints definition and example

Definition 3. A piecewise constraint C(x,y) is defined on a search
area (Dx,Dy) and composed of a set of continuous constraints as
defined by Definition 1, called pieces and noted f;(x,y). A piece
fi(x.y) is defined on a particular domain (D}, D)) and is either
an equality constraint f;(x,y) =0 or an inequality constraint
fix,y)©0, with © belonging to {<,<,>,>}. A piecewise
constraint C(x,y) is either a set of equality constraints or a set of
inequality constraints.

We notice that a region (dy, dy) of the search area (Dx, Dy) can be
covered by more than a single domain (D{g‘,D&') or by none at all.
Some hypotheses on the general outline of piecewise con-
straints are necessary to guarantee the existence of a border
between the consistent and inconsistent regions. These hypoth-
eses are considered verified when the Quad Tree generation

C:y-x*>0

dy =[-1,0]

(00, 01),

***** N e N

S [P dx =[-1,0] | fdx=[-10])
Whiteyy -, >y =120 dy=(-101|
(00,00), (01,00), (01,01),

Fig. 4. Quad Tree of a continuous constraint.

Y A
2
-
=
N, H
=
0 i
HEE
ﬁ—- dx =[-2,
-+
X
-2 0 2
Y .
Milestone
4
N,
! h
2 f3 NZ ‘ ‘f4
N3
l|
N,
¢ i)
X
0 2 4

Fig. 5. Grades of information.

is launched:

e the general outline of the piecewise constraint C(x,y) must be
closed in case of inequality constraints, and must be bounded
in case of equality ones,

e in the case of inequality constraints, the pieces should not
cross each other and all the pieces must be consistent with the
others: the border between the consistent and inconsistent
regions must be clearly defined.

Fig. 5 shows an example of piecewise constraints, named
‘Milestone’, composed of four pieces:

o fixy): (x—2)* +(y—2)*<1, on the domain

Dl =[1,3],D) =[2,3],

e f2(x.y):y=>1, on the domain D} =[1,3],Djz = [0.9,1.1],
e fi(x,y):x>1, on the domain Di3 =[09,1.11,D7? =11,2],
® f4(x.y): x<3, on the domain D) = [2.9,3.1],D¥y4 =[1,2].

Let us look at the nodes Ny, N5, N3 and Ny:

e The node N; does not intersect any domain (Df,D}) of the
pieces f;(x,y) and does not intersect any piece f;(x,Y).

e The node N, intersects the domain (D', D}) of f;(x,y), but it
intersects none of the pieces f;(x,y).

e The node Nj intersects the domain (D, Dl#) of f,(x,y) and
intersects this piece f4(x,y).

e The node N, intersects the domains (D,f<2,D§,2) and (Dfx3,D§,3), the
first one corresponding to f,(x,y) and the second one to f3(x,y),
and it intersects the two pieces f,(x,y) and f3(x,y).

4.2. Grades of information

As a node n of a Quad Tree can either intersect several domains
(ng,Df,') and/or several pieces f;(x,y), or none at all, we need to
characterize different types of nodes with, what we call, a grade of
information. We propose four grades of information according,
firstly, to the intersection between a node n and the domain of a
piece (DQ,D{;’), and secondly, to the intersection between a node n
and a piece itself f;(x,y). The previous intersections are computed
by using interval analysis.

Four types of nodes are then characterized by the grade of
information.

e Firstly, we have empty nodes which do not have any information to
determine their consistency with the piecewise constraint C(x, y).

Definition 4. A node n defined by (d},, d’) is an empty node if it
does not intersect any domain (D)fg',DQ) and any piece f;(x,y):
(dy,d) N (D}, D}y =9 for the domain of any piece
(dy.dy)Nfix,y) =9 for any piece fi(x.y)

e Secondly, we have poorly informed nodes which do not have
enough information to determine their consistency with the
piecewise constraint C(x, y).

Definition 5. A node n defined by (d},d”) is a poorly informed
node if, firstly, it intersects at least one domain (ng,Df,') and
secondly, does not intersect any piece f;(x,y):

&, d)n (Df Df,‘)#@ at least for the domain of one piece
(dn,dﬁ) Nfi(x.y) =9 for any piece f;(x,y)

e Thirdly, we have informed nodes which have enough informa-
tion to determine their consistency with the piecewise
constraint C(x, y).

Definition 6. A node n is an informed node if it intersects one
and only one piece f;(x,y), whatever the number of domains
(fo,Df‘) it intersects:

dr,d)n (Df Df,‘);é@ at least for the domain of one piece
(dn,dﬁ) Nfix,y)#% for one, and only one piece f;(x,y)

e And finally, we have over-informed nodes which are full of
information to determine their consistency with the piecewise
constraint C(x,y).

Definition 7. A node n is an over-informed node if it intersects
more than one piece f;(x,y), whatever the number of domains
(D, Dly) it intersects:

(d, &) n @D, Df‘)sé@ at least for the domain of one piece

(d,,)N fix,y)#v for more than one piece f;(x,y)

Empty and poorly informed nodes are called ignorant nodes. The
solution space can therefore be divided into four grades of
information: empty, poorly-informed, informed and over-informed.

If we consider the previous example, Fig. 5, we can characterize
the type of the four nodes N, N, N3 and N4 by their grade of
information as follows: the node N; an empty node, the N, is a
poorly informed node, the node N3 is an informed node, the Ny is
an over-informed node.

4.3. Generation of a Quad Tree of a piecewise constraint

In this subsection, the generation of Quad Trees of piecewise
constraints is presented for constraints assembling inequalities
and equalities.

4.3.1. Piecewise constraints assembling inequalities

The idea of the previous section, associating a grade
of information to each node, is kept. But the generation of a
Quad Tree relevant to a piecewise constraint assembling inequal-
ities, is somewhat complex: ignorant nodes can belong either
to consistent or inconsistent regions. Therefore, generation is
achieved in two steps. Firstly, during recursive decomposition, we
need to identify and mark the information grade of each
node with a particular colour. Secondly, when decomposition
stops, the consistency of each ignorant node is found, thanks to
the propagation of the consistent and inconsistent regions.

The first step of Quad Tree generation is recursive, based on the
grades of information and follows the principles below:

o each node n is defined by a pair of intervals (d}, &),

e each node n has a specific code, corresponding to its
coordinates,

e if a node n is an empty node, it is coloured red,

o if a node n is a poorly informed node, it is coloured green,

e if a node n is an over-informed one (more than one piece
intersects the node), it is coloured:

o orange if it is unitary (one of the decomposition steps, &x
and ¢y, is reached),

o grey otherwise and split into four children: NW, SW, SE
and NE, each of whose grade of information has to be
computed and marked,

o if a node n is an informed one (only one piece f;(x,y) intersects
the node), it is coloured:

o yellow if it is unitary (one of the decomposition steps, &
and gy, is reached),

o grey otherwise and classical Quad Tree generation is
launched from the isolated piece (cf. Section 3.1). A colour
is given to the node:

white if the node n is consistent with the isolated
piece f,(x.),

blue if the node n is inconsistent with the
isolated piecef;(x,y),

grey if the node n is, at once, consistent and
inconsistent with the isolated piece f;(x,y),

o two discretization steps, & and &y, relevant to the two variables
x and y, allow the Tree decomposition to stop at a given
accuracy level. When one of these two discretization steps is
reached, the second step of the generation is launched.

At the end of the first step, the leaves of the Quad Tree can be
coloured either white for consistent nodes, blue for inconsistent
nodes, yellow for unitary informed nodes, orange for unitary
over-informed nodes, red for empty nodes and green for poorly
informed nodes.

In order to illustrate these different colours, let us consider the
inside area and the border of the constraint named ‘Milestone’ of Fig.
5, as the consistent region. In this example, &x = 0.25 and ¢, = 0.25.
When the first step is finished as shown in Fig. 6, the Quad Tree is
multicoloured with white, blue, red, green, yellow and orange.

Let us look in detail at the decomposition of the node defined
by the pair (df =[1,1.5],d% =[1.5,2]) and encoded (2,3);. This
node is an over-informed node intersecting f; and f5: its colour is
therefore grey and it must be split once more into four child
nodes which are:

e a unitary over-informed node (NW), intersecting f; and f;, for
its first child, defined by the pair (d} = [1.25,1.5], d’ =[1.75,2])

and encoded (6,7),: its colour is therefore orange,

Y

A Milestone
4
v,
ing /’ N
/ N
2 I \\
N N
| LUl LT
SHEHEHE
X

0 2 4

Fig. 6. Quad Tree at the end of the first step. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

e a unitary informed node (SW), intersecting only f;, for
its second child, defined by the pair (dj =[1.25,1.5], d, =
[1.5,1.75]) and encoded (6, 6),: its colour is therefore yellow,

e a unitary empty node for its third child (SE), defined by the pair
(dy =1[1.5,1.75], & = [1.5,1.75]) and encoded (7,6),: its colour
is therefore red,

e and a unitary poorly informed node (NE), intersecting the
domain of f;, for its fourth child, defined by the pair
(d, =[1.5,1.75], & =[1.75,2]) and encoded (7,7),: its colour
is therefore green.

The second step of Quad Tree generation consists in propagating
the consistent and inconsistent regions from the nodes which
know their consistency (the yellow, blue and white nodes), to
those which are ignorant (the red and the green ones). In order
to propagate the consistent and the inconsistent regions, the
neighbours of the yellow, blue and white nodes must be
identified. The selection of the relevant neighbours of a node n
is made thanks to the unique encoding per node. We notice that a
node n can have neighbours with a higher or a lower height than
its own: the encoding of its neighbours can have a different
number of digits. The detailed selection of the relevant neighbours
of a node n can be found in Vareilles (2005).

The propagation of consistent and inconsistent regions is done
in four steps. In the first place, yellow nodes indicate to their
red and green neighbours on which side of the border they
belong, by using interval arithmetic applied to the isolated piece
their are intersecting. If they belong to the consistent side,
red and green neighbours turn white or if not, blue. Let us
notate Boroer the algorithm which colours the red and green
nodes in white or blue depending on the side of the border they
belong to. Fig. 7 illustrates this first step on the piecewise
constraint named ‘Milestone’.

For instance, let us look at the yellow node, defined by the
pair (d, =[1,1.25],d” = [2.25,2.5]) and encoded (4,9),. We can see
that this node has told its green neighbours on its left that it
belongs to the inconsistent side: therefore, the green neighbour
on the left turns blue, and it has told its green neighbour on its
right, that it belongs to the consistent side: therefore, the
green neighbour on the right turns white.

Y Mileston
4A
I:_/ \::
/A NN
i i
2 N
N\
NN
X
0 2 4

Fig. 7. Propagation from the yellow nodes to their red and green neighbours.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Y Milestone
4
// N Blue
/ AN A\Red
Green

. White

0 2 4 X

Fig. 8. Propagation from the blue nodes to their red and green neighbours. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

In the second place, blue nodes tell their ignorant neighbours
(the red and green ones) that they belong to the inconsistent
region, therefore they turn blue. Let us notate TURN BLUE
the algorithm which propagates the inconsistent region to the
ignorant nodes. Fig. 8 shows the propagation of the inconsistent
region on the constraint ‘Milestone’.

In the third place, white nodes tell their ignorant neighbours
that they belong to the consistent region, therefore they become
white. Let us notate Turn wHITE the algorithm which propagates
the consistent region on the ignorant nodes. Fig. 9 shows the
propagation of the consistent region on the piecewise constraint
‘Milestone’.

Finally, yellow and orange nodes turn either white if we
choose to keep the border within the consistent region or blue if
only the regions which are completely legal with the piecewise
constraint need to be kept. Let us notate OutLNe the algorithm
which colours the yellow and orange nodes in white or blue
depending on the case we are studying. Fig. 10 illustrates the
coloration of yellow and orange nodes in white on the piece-
wise constraint ‘Milestone’.

The generation of the Quad Tree relevant to a piecewise
constraint assembling inequalities needs different algorithms:

e BuiLp INequaLITY QuaD TREE, presented by the Algorithm 2, which
divides the sub-space of a node n into four child nodes, whose
grade of information has to be found,

e Buip Quap Treg, presented by the Algorithm 1, which builds the
Quad Tree of a continuous constraint passed as parameter,

o Boroer which colours the red and green nodes in white
or blue depending on the side of the border they belong to,

e Turn BLUE which propagates the inconsistent regions on
red and green nodes,

e Turn wHITE which propagates the inconsistent regions on
red and green nodes,

o OutuNe which colours the yellow and orange nodes in white.

The detailed algorithms Borper, TuRN BLUE, TURN WHITE and OUTLINE
can be found in Vareilles (2005).

Milestone

X
0 2 4

Fig. 9. Propagation from the white nodes to their red and green neighbours.

(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Milestone

X
0 2 4

Fig. 10. Colouration of the yellow and orange nodes in white. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

4.3.2. Piecewise constraints assembling equalities

The generation of Quad Trees of piecewise constraints
assembling equalities is easier, because the consistent region is
defined by the path of the piecewise constraint itself. Therefore,
the generation is achieved in only one step: during recursive
decomposition, we colour directly ignorant nodes in blue,
because they always belong to the inconsistent regions, informed
nodes are coloured grey and classical Quad Tree generation is
launched from the isolated piece and over-informed nodes are
coloured grey and split into four children. Only informed and
over-informed unitary nodes are coloured white.

5. Conclusion

The aim of this paper has been to propose an approach that
permits us to handle binary piecewise constraints in CSPs. Quad

Trees, proposed by Sam (1995), allow single continuous constraint
to be taken into account thanks to a recursive decomposition of
the search area into nodes, whose consistency with the constraint
is computed and marked with particular colours.

We have extended this method to piecewise constraints, with
respect to some insubstantial assumptions on their general
outline. Our method follows the idea of classical Quad Trees
(recursive decomposition) but the generation of Quad Trees of
piecewise constraints is somewhat more complex. We have to
identify the grade of information of each node. Indeed, some
regions can be covered by several domains of the pieces and/or by
several pieces, or by none at all. These kinds of areas cannot alone
determine their consistency with the piecewise constraint. Four
grades of information have been identified to characterize the
different types of nodes. In the case of piecewise constraints
assembling inequalities, when the grade of information of each
node is found, the consistent and inconsistent regions are
propagated from the nodes which know their consistency to
those which do not. The consistent and inconsistent regions
defined by the piecewise constraint are then established.

The filtering methods and the mechanism of ‘fusion’ proposed
by Sam (1995), to compute the intersection of constraints
represented by Quad Trees, can be applied to Quad Trees
associated to piecewise constraints, without any particular
problems. Indeed, these mechanisms work on the white and
blue nodes of the resulting Quad Trees. This study has been
necessary when designing a knowledge based system in order to
take into account experimental knowledge, relevant to the heat
treatment domain during a European project.

Algorithm 1. Build Quad Tree(Node: n)

— .. — This algorithm builds the Quad Tree T, of the constraint
C(x,y) from one of its nodes passed as parameter.
If (None of the decomposition steps is reached) Then
The node n turns grey and is split into four child nodes
For each of the children s of n Do
Encoding of the node s
If (s is completely inconsistent with C(x,y)) Then
The node s turns blue
Else
If (s is completely consistent with C(x,y)) Then
The node s turns white
Else
— .°. — The node s is partially consistent with C(x,y): it must
decomposed once more
s < Buip Quap Tree(s) (Algorithm 1)
End If
End If
End For
Else
. The node n is unitary
If (n is partially consistent with C(x,y)) Then
The node n turns white
Else
The node n is completely inconsistent and turns blue
End If
End If
Return the current node

Algorithm 2. Build inequality Quad Tree(Node : n)

— .". — This algorithm builds the Quad Tree T, of the constraint
C(x,y) from one of its nodes passed as parameter.
While (None of the decomposition steps is reached) Do
Creation of the four child nodes of n
For each of the children s of the current node n Do
Pieces_Dom list of all the pieces ¢; whose domain intersects the node
frdfnDG#0AdfND§#0
If (Pieces_Dom = 0) Then
— .°. — The node s is an empty node
The node s turns red

Else
— .7. — At least one domain of a piece f;(x,y) intersects the node s.
If (the node s is an informed node) Then
.". — We have to generate the Quad Tree associated to isolated
piece f; on the sub-space of the node (d,d)
s < Buip Quap Treg(s) (Algorithm 1 on the proceeding page)
Else
If (The node s is an over-informed nodes) Then
— .°. — The node s must be decomposed once more
s < Buip iNequaLiTy Quap Tree(s) (Algorithm 2)
Else
— .°. — The node s is a poorly-informed node
The node s turns green
End If
End If
End If
End For
End While
If (The node n is a unitary informed node (only one piece f;(x,y) intersects it))
Then
The node turns yellow
Else
If (The node n is a unitary over-informed node (several pieces f;(x,y) intersect it))
Then
The node turns orange

Else
If (The node n is a unitary poorly informed node) Then
The node turns green
Else
The node is a unitary empty node: it turns red
End If
End If
End If

Return n

References

Aldanondo, M., Vareilles, E., Lamesle, P, Hadj-Hamou, K., Gaborit, P., 2005.
Interactive configuration and evaluation of a heat treatment operation. In:
Workshop on Configuration. International Joint Conference on Artificial
Intelligence.

Benhamou, F., McAllester, D., van Hentenryck, 1994. CLP(intervals) revisited. In:
Proceedings of the International Logic Programming Symposium.

Briggs, J., Peat, D., 1991. Un miroir turbulent—Guide illustré de la théorie du chaos.
Harper and Row publishers (translated by D. Stoquart).

Chenouard, R., Sebastian, P., Granvilliers, L., 2007. Solving an Air Conditioning
System Problem in an Embodiment Design Context Using Constraint Satisfac-
tion Techniques, CP, pp. 18-32.

David, P., Veaux, M., Vareilles, E., Maury,]J., 2003. Virtual heat treatment tool for
monitoring and optimising heat treatment process. In: 2nd International
Conference on Thermal Process Modelling and Computer Simulation.

Lamesle, P, Vareilles, E., Aldanondo, P., 2005. Towards a KBS for a qualitative
distortion’s prediction for heat treatments. In: International Conference on
Distortion Engineering.

Lhomme, 0., 1993. Consistency technique for numeric CSP. In: International Joint
Conference on Artificial Intelligence, pp. 283-311.

Lottaz, C., 2000. Collaborative design using solution spaces. Ph.D. Thesis, Ecole
Polytechnique Fédérale de Lausanne.

Moore, R.E., 1966. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.

Sam, D., 1995. Constraint consistency techniques for continuous domains. Ph.D.
Thesis, Ecole Polytechnique Fédérale de Lausanne.

Samet, H., 1984. The quadtree and related hierarchical structures. Computing
Surveys, 187-260.

Vareilles, E., 2005. Conception et approches par propagation de contraintes:
contribution i la mise en oeuvre d'un outil d’aide interactif. Ph.D. Thesis, Ecole
des Mines d’Albi-Carmaux.

Vareilles, E., Aldanondo, M., Gaborit, P., 2007. Evaluation and design: a knowledge
based approach. International Journal of Intelligent Manufacturing 20 (7),
639-653.

