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 Abstract - This communication deals with mass 
customization and the association of the product 
configuration task with the planning of its production 
process while trying to optimize cost and cycle time. In 
some previous works, we have proposed an optimization 
algorithm, called CFB-EA. This communication 
concerns a way to improve CFB-EA for large problems. 
Previous experiments have highlighted that CFB-EA is 
able to find quickly a good approximation of the Pareto 
Front. This led us to propose to decompose the 
optimization in two tasks. First, a “rough” 
approximation of the Pareto Front is quickly searched 
and proposed to the user. Then the user indicates the 
area of the Pareto Front that he is interested in.  The 
problem is filtered and the solution space reduced. A 
second optimization is launched on the focused area. Our 
goal is to compare the classical single task optimization 
with the two tasks proposed approach. 
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I.  INTRODUCTION 

 
 This contribution is dealing with a two steps aiding 
decision system that sequentially supports: (i) the 
interactive configuration of a product and the interactive 
planning and scheduling of its production process (ii) the 
optimization of the conflicting criteria cost and cycle 
time. In this context, the goal of this communication is to 
propose and evaluate an approach that allows reducing the 
optimization computation time. Section II introduces 
concurrent configuration and planning. Section III 
presents the model to optimize and the used optimization 
algorithm. Then it proposes the approach that reduces the 
computation time. Section IV describes experimental 
results that show the interest of the proposition. The 
configuration of a private aircraft illustrates the paper. 
 

II. CONCURRENT CONFIGURATION AND 
PLANNING 

 
 Many authors, since [1] or [2], have defined 
configuration as the task of deriving the definition of a 
specific or customized product (through a set of 
properties, sub-assemblies or bill of materials, etc…) from 
a generic product or a product family, while taking into 
account specific customer requirements. Some authors, 
like [3] or [4] have shown that the same kind of reasoning 
process can be considered for production process 
planning. They therefore consider that deriving a specific 
production plan (operations, resources to be used, etc...) 

from some kind of generic process plan while respecting 
product characteristics and customer requirements, can 
define production planning. 
 It has also been shown by many authors, as [5] and 
[6], that configuration and planning problems can be 
efficiently modelled and processed when considered as a 
Constraints Satisfaction Problem (CSP). CSP filtering 
allows interactive solution space reduction while CSP 
solving is open to various optimization techniques. We 
therefore assume that a constraint based model (product 
variables and constraints) of a generic product and the 
same kind of model for a generic production plan (process 
variables and constraints) can be established and we 
restrict the configuration and planning tasks to the 
instantiation of these two models. Finally in order to 
achieve concurrent configuration and planning, we merge 
the two CSPs in a single problem. This allows 
propagating the consequences of each decision or 
requirement: 
- relevant to product configuration towards the planning 
of its production process (for example, a luxury finish 
requires at least two additional months), 
- relevant to process planning or scheduling towards the 
configuration of the product (for example, such assembly 
duration forbids the use of such a kind of engine). 
 In [7] and [8], we have described how user 
requirements (for example, number of seats belongs to [6, 
8] or due date is prior to 31/10/2010) can be processed 
while leaving some choices undecided (for example flying 
speed and range remain not set).  These undecided 
characteristics are frequently set by commercial 
configuration systems with default values. Instead of 
using these default values, we explained that it is much 
better to use these undecided characteristics to optimise 
some criteria. In our case, we consider cost and cycle time 
(performance could be also considered) and propose 
compromise solutions on a Pareto Front. This is the basis 
of our two steps aiding decision system (figure 1) that 
allows interactive configuration and planning (all 
requirements are sequentially filtered) followed by a 
multi-criteria optimization (undecided characteristics are 
set). 
 When the problem size is small, branch and bound 
techniques provide Pareto Fronts in a small computation 
time. When the problem gets larger many authors, see [9] 
or [10], propose to use evolutionary algorithms to handle 
the problem. In this idea, we have proposed and discussed 
in [7] and [8] a constrained evolutionary algorithm, called 
CFB-EA for Constraint Filtering Based Evolutionary 
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Algorithm. However, for larger problem (> 1012 solutions) 
Pareto computing time is quantified in days. Our goal is 
therefore to reduce this computing time. 

 
Fig 1. Concurrent Configuration and planning process 

 
III. OPTIMIZING THE PROBLEM  

 
A.  Optimization problem 

  
Given previous elements, the optimization problem can 

be generalized as the one shown in figure 2. The 
constrained optimization problem (O-CSP) is defined by 
the quadruplet <V, D, C, f > where V is the set of decision 
variables, D the set of domains linked to the variables of 
V, C the set of constraints on variables of V and f the 
multi-valuated fitness function. The set V gathers the 
product and process variables. The set C gathers product 
constraints (Cc) and process constraints (Cp). Total cost is 
a numerical constraint that calculates the sum of product 
and process cost variables. Cycle time is also a numerical 
constraint that calculates the sum of the process operation 
durations. Discrete constraints filtering is processed using 
a conventional arc consistency technique [11] while 
numerical constraints are processed using bound 
consistency [12].   

 
Fig 2. Optimization problem 

 
B.  Optimization algorithm used and quality measure 
  
 Initially, EAs deal with large combinative 
unconstrained problems. But real-world problems are 
generally constrained. Many research studies try to 

integrate constraints in EA. C. Coello Coello proposes a 
wide state of art of these methods [13]. The current 
tendencies in the resolution of constrained optimization 
problem using EAs are penalty functions, stochastic 
ranking, ε-constrained, multi-objective concepts, 
feasibility rules and special operators. CFB-EA belongs to 
this last family. The special operators’ class gathers 
methods that try to deal only with feasible individuals like 
repairing methods, preservation of feasibility methods or 
operator that move solutions within a specific region of 
interest within the search space. 
CFB-EA is based on SPEA-2 [14] and considers only 
valid individuals thanks to the following modification. 
Each time an individual is created (initialization operator) 
or modified (crossover and mutation operators), every 
gene (decision variable of V) is randomly instantiated into 
its current domain. To avoid the generation of unfeasible 
individuals, the domain of every remaining gene is 
updated by constraint filtering. Thanks to consult [7] and 
[8] for more details. 
 As our goal is to reduce computing time, we will have 
to measure performances in terms of result quality and 
computation time. In terms of quality, as we want to 
compare Pareto fronts, we use the Hypervolume 
measurement proposed by [15] which is illustrated in 
figure 3. It measures the hypervolume of the space 
dominated by a set of solutions. It thus allows evaluating 
both convergence and diversity proprieties (the fittest and 
most diversified set of solutions is the one that maximizes 
hypervolume).  

Fig 3. Hyper volume definition 
 

C.  Approach for computation time reduction 
 

 The idea proposed in this communication is to replace 
the Pareto front computation by two successive tasks: (i) a 
first rough Pareto computation that provides a global idea 
of possible compromises (ii) a second computation on a 
restricted area selected by the user. This is shown in the 
illustration of figure 4. The left part of figure 4 shows 
what we call now a “single shot Pareto”. The right part of 
figure 4 shows a “two-task Pareto” where a first rough 
Pareto is quickly obtained (first task, with less 
investigated solutions), followed by a zoom selected by 
the user (max cost and max time) and a second Pareto 
computation only on this restricted area (second task with 
a higher solution density).  
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Two key points of this proposition disserve to be 
highlighted. First, the restricted area is obtained by 
constraining the two criteria total cost and cycle time (or 
interesting area). As these two criteria are formalized as 
numerical constraints, they can be filtered and reduce the 
solution space of the whole problem. Second, the second 
zoom optimization task does not restart from scratch. It 
benefits from the individuals of the archive that belongs to 
the restrained area founded during first task. Next section 
will show how this idea reduces computation time. 

 
 Fig 4. Single shot and two-task optimization principles 
 
IV. EXPERIMENTATIONS 

 
A.  Model used 

 
The goal of the proposed experiments is to compare 

these two optimization approaches: single-shot and two-
task. In terms of quality we compare the two fronts with 
the Hypervolume. In terms of computation time, we 
evaluate, for a given Hypervolume result, the time 
reduction provided by the second approach (two-task). 

In terms of problem size, we consider a model called 
“full_ aircraft” that gathers 92 variables (symbolic, 
integer or float variables) linked by 67 constraints 
(compatibility tables, equations or inequalities). Among 
these variables, we consider 21 decision variables that 
will be manipulated by the optimization algorithms 
(chromosome in EAs): 12 product variables (each with 6 
possible discrete values) and 9 process variables (each 
with 9 possible discrete values). 

Without any constraints, this provides a number of 
possible combinations around 1018 (≈ 612 x 99). An 
average constraint level, that rejects 93% of solutions, 
allows 7.3*1016 feasible solutions. Results of 
experimentations with other model sizes and other 
constraint levels can be consulted in [8].  

Figure 5 shows the Pareto Fronts obtained with CFB-
EA after 3 and 24 hours of computation. The rough Pareto 
front obtained after 3 hours of computation allows the 
user to decide in which area he is interested in. In the next 
sub-section, we will study a division of this Pareto front 

in three restricted areas. These areas have been selected in 
order to evaluate performance of the proposed two-task 
approach, but it also corresponds with some classical 
preference of a user who could wish:  

- - solutions with shortest cycle times, zoom_1:  with a 
cycle time less than 410 

- - solutions with lowest total costs, zoom_3: with a total 
cost less than 475 

- - compromise solutions, zoom_2: cycle time less than 470 
and a total cost less than 535. 

 

 
 

Fig 5. Pareto-fronts after 3 and 24 hours of computation 
 

B.  Experimental evolutionary settings 
 

We use classical evolutionary settings similar for both 
approaches: Population size: 80, Archive size: 100, 
Individual Mutation Probability: 0.3, Gene Mutation 
Probability: 0.2, Crossover Probability: 0.8.  

The only other difference between single-shot CFB-EA 
and two-task CFB-EA is the stopping criterion. While in 
single-shot approach, we use a fix time limit (24 hours), 
the two-task approach uses a conditional stopping test that 
stops if there is no HV improvement after 2 hours (that 
are added to the three initial hours for getting the rough 
Pareto Front).  

The goal of the following sections is to evaluate the 
two-task optimization on the three selected areas of the 
figure 5 (zoom 1, zoom 2 and zoom3) with respect to the 
single-shot optimization. 

 
C.  First specific result  

 
Figure 6 shows an example of three Pareto fronts that 

can be obtained on the zoom 1 area: 
- rough Pareto obtained after 3 hours (fig 9 squares), 
- two-task, after 3+12 hours (fig 9 triangles), 
- single-shot, stopped after 24 hours (fig 9 diamonds). 
The Pareto Fronts obtained by the two approaches 

(single-shot and two-task) are very close when cycle is 
greater than 355, for lower cycle times, the proposed two-
task approach is a little better. However, these curves 
correspond with a specific run. In order to derive stronger 
conclusions, 10 executions of the two approaches have 
been achieved for each of the three zoom areas.  
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 Fig 6. Example of Pareto fronts obtained on  Zoom 1 
 

D.  Detailed results and comparisons 
 
Detailed experimental results achieved on the three 

zoom areas are presented in figure 7 and table 1. On each 
graph of figure 7, the vertical axis corresponds to the 
hyper volume (average of ten runs) reach and horizontal 
one is the computer time. At time 0, the single-shot 
optimization is launched (dotted line). After 3 hours 
(10800 seconds): 
- the single-shot keeps going on (dotted line), 
-  a zoom is performed and the two-task is launched (solid 
line). 

 
The table 1 provides numeric results for each zoom 

area. The columns display the single-shot, two-task and % 
gap of: 
- average final hypervolume, 
- average computation time, 
- maximum value of hypervolume (among the 10 runs). 

In terms of quality or hypevolume, the new proposed 
approach (two-task optimization) allows obtaining a 
similar performance with respect to single-shot one: 
- 0.4% worse on zoom1, despite a higher max HV, 
- 1% worse on zoom2  
- 4% better on zoom3 
but in around half of computing time: 
- 13 h instead of 24h for zoom1 
- 13.5h instead of 24h for zoom2 
- 10.5h instead of 24h for zoom 3. 

Furthermore, this computing time includes the 2 hours 
of computation without any hypervolume reduction 
before stopping (stopping criterion of the two-task 
approach). 

It can be seen on the figure 7 that when the single-shot 
CFB-EA has trouble to obtain a good Pareto Front during 
the first three hours, the more the two-task CFB-EA is 
performing. On zoom1 area, single-shot CFB-EA reaches 
relatively quickly a near-final Pareto Front; while on 
zoom3 area, it reaches it very slowly.  

 
 

 

Fig 7. Evolution of hypervolume 
 

TABLE 1  Comparison of the two approaches 
 

Zoom 1 Single-shot 
CFBEA 

Two-task 
CFBEA gap in % 

Average 
Final HV 5849 5823 -0.4 

Average 
Comp.time 86400(24h) 47996 (§13h) -44.6 

Max HV 6043 6057 0.2 
Zoom 2  
Average 
Final HV 1758 1740 -1. 

Average 
Comp.time 86400(24h) 48501 (§13.5h) -44 

Max HV 1795 1776 -1 
Zoom 3    
Average 
Final HV 1765 1844 4.4 

Average 
Comp.time 86400(24h) 38185 (§10.5h) -55.9 

Max HV 1831 1845 0,7 



 

 
IV. CONCLUSIONS 

 
The goal of this communication was to evaluate an 

optimization principle that reduces the computation time 
of the optimization of a concurrent configuration and 
planning process. First the background of concurrent 
configuration and planning has been recalled with 
associated constrained modeling elements. Then the initial 
optimization approach (single-shot CFB-EA) was recalled 
followed by the description of the two-task approach 
object of this communication. Instead of computing a 
Pareto Front on the whole solution space, the key idea is: 
to compute quickly a rough Pareto Front, to ask the user 
about an interesting area, to filter the solution space on 
this area and to launch a second Pareto computation only 
on this restricted area. 

According to the experimental results, the proposed 
two-task approach allows a significant time saving around 
half of the previous time needed by the single-shot 
optimization approach. In terms of quality, Hypervolume 
computations are very close or even a little better in some 
case. Furthermore, these results have been obtained on a 
rather large problem that contains around 1016/1017 
solutions. With smaller problems, the proposed approach 
should perform much better. 

These interesting results highlight two already 
mentioned key points of the proposition: (i) as the two 
criteria are formalized as numerical constraints that can be 
filtered, the selected area allows an efficient reduction of 
the solution space of the whole problem (ii) the second 
zoom optimization task is initialized with the results of 
the first one and therefore starts with a good quality 
archive. 

Only two criteria: cycle time and cost have been used. 
There would be no problem to include a performance 
criterion as far as it can be formalized as a numerical 
constraint that can be filtered with bound consistency. We 
are already working on a more extensive test with 
different model sizes and different levels of constraint.  
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