N
N

N

HAL

open science

Concurrent product configuration and process planning,

towards an approach combining interactivity and
optimality

Paul Pitiot, Michel Aldanondo, Elise Vareilles, Paul Gaborit, Meriem Djefel,

Sabine Carbonnel

» To cite this version:

Paul Pitiot, Michel Aldanondo, Elise Vareilles, Paul Gaborit, Meriem Djefel, et al..
current product configuration and process planning, towards an approach combining interactiv-
ity and optimality. International Journal of Production Research, 2013, 51 (2), pp.524-541.
10.1080/00207543.2011.653449 . hal-01599437

HAL Id: hal-01599437
https://hal.science/hal-01599437
Submitted on 10 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Con-

https://hal.science/hal-01599437
https://hal.archives-ouvertes.fr

Concurrent product configuration and process planning, towards an approach combining
interactivity and optimality

Paul Pitiot*, Michel Aldanondo™*, Elise Vareilles®, Paul Gaborit?, Meriem Djefel* and Sabine Carbonnel®

“Toulouse University, Mines Albi, Albi, France; 53IL, CCI Rodez, Rodez, France

In mass customisation, defining concurrently the configured product and the planning of the associated
production process is a key issue in the customer/supplier relationship. Nevertheless, few studies propose
supporting the decision-maker during the resolution of this significant problem. After studying the
decision-maker’s needs and problem characterisation (modelling and scale aspects), we propose in this paper a
two-step approach with the aid of some tools. The first step allows the customer or internal requirements to be
captured interactively with a constraint-based approach. However, this step does not lead to one single
solution, e.g. there are many uninstantiated remaining decision variables. In this paper, we suggest adding an
original optimisation step to complete this task. Thus, the contribution of the study is twofold: first,
methodologically to define a new two-step approach that meets industrial needs; and second, to provide
adapted tools especially for the optimisation step. The optimisation step, using a multi-criteria constrained
evolutionary algorithm, allows the user to select their own cost/cycle time compromise among a set of Pareto
optimised solutions. A conventional evolutionary algorithm is adapted and modified, with the inclusion of
filtering processing, in order to avoid generating invalid solutions. Experimentations are described, and a
comparison is made with a branch-and-bound approach that outlines the interest in the propositions.

Keywords: product configuration; process planning; constraint filtering; evolutionary algorithm; optimisation

1. Introduction

During negotiations with a customer for a customised product, the ability to offer an optimised set of solutions that
meets customer requirements is a major challenge for an industrial decision-aiding system. This is especially the case
when requirements include, concurrently, product aspects (components, options, performance, cost, functionali-
ties...) and production process aspects (tasks, resources, cost, cycle time...). The goal of this paper is to present a
two-step aiding system with the following features: first, the possibility — interactively and concurrently — to
configure a product and to plan the production process involved to obtain this product; and second, to minimise
conflicts between criteria such as performance, cost, and cycle time. Our aim is twofold: first, methodologically to
define a new two-step approach that meets industrial needs (for interactivity and optimisation); and second,
to provide effective software tools for this approach, especially for the optimisation step. An example dealing with
the customisation of a light aircraft runs throughout the paper. This initial section introduces the problem and the
organisation of the paper.

1.1 Product configuration and production planning issues

Product configuration can be described as defining a specific or customised product (through a set of properties, or
bill of materials, etc.) from a generic product or a product family while respecting specific customer requirements
(Mittal and Frayman 1989). Production planning can be considered as defining a specific production plan (a set of
scheduled operations, resources to be used, quantity needed, etc.) from some kind of generic process plan while
taking into account product characteristics and customer requirements (Bartak es al. 2010). Although product
configuration and production planning activities, along with the relevant supporting software, are known to be key
elements in the development of mass customisation (Pine 1993), most of the research dealing with these two domains
is strongly independent, and scientific results deal either with configuration or with planning. Consequently, the two

*Corresponding author. Email: michel.aldanondo@mines-albi.fr

activities are often considered in sequence: product configuration, then production planning. However, decisions
relevant to each of these activities are closely dependent on the following:

e decisions associated with the configuration of a product can have strong consequences on the planning of
its production process (for example, a luxury finish requires additional manufacturing time);

e planning decisions can provide tough constraints to product configuration (for example, a given assembly
duration forbids the use of a particular kind of engine).

Therefore, iterations will become inevitable in order to fulfil customer requirements. For example, once a plane
is fully configured or defined, planning can come up with a delivery time that is too late, requiring modifications in
the configuration of the plane, thus causing iteration in the process. In order to avoid these time-consuming
iterations and to be able to consider product and planning requirements concurrently, we propose associating them
in a single problem. This would allow, for example, the two requirements: ‘plane capacity = 12 seats’ and ‘delivery
time =4 months’ to be considered before any others (speed, flight range, cost, etc.).

As the constraint satisfaction problem (CSP) framework has been successfully used for many configuration and
planning studies (section 2), we will consider configuration and planning problems as two CSPs and will associate
them. As we seek to provide interactive assistance, we shall need to compute, and show to the user, the consequences
of each ‘user’s elementary requirement’. An elementary requirement is a restriction of the domain of a variable
involved in configuration (for example ‘plane capacity belongs to Clevenger et al. (2005) and Hvam et al. (2002)’), or
in planning (for example ‘due date is prior to 31/10/2011°). We shall consequently use the filtering capabilities of the
CSP to reflect user requirements through the network of constraints and lead the user progressively towards
a solution for both configuration and planning.

1.2 Optimising product configuration and production planning

In a similar way, optimisation work is very often carried out separately for configuration and planning. Given our
problem, we must consider the optimisation of the complete problem of both configuring and planning. In this
situation, various criteria can characterise a solution:

e on the product configuration side, we should consider product performance (speed, range . ..) and product
cost;

e on the planning side, we should consider production cycle time (or customer delivery date) and production
process cost.

We are consequently dealing with a multi-criteria optimisation problem. As these criteria are in conflict, it is
better to offer the customer a set of possible compromises in the form of a Pareto front (for example performance/
cost, performance/time or time/cost) rather than a single solution that aggregates criteria.

Moreover, if the two aspects (product and process) are taken into account, the size of the constrained search
space is considerably increased. The optimisation tool used has to deal with a huge number of possible solutions.
Consequently, we will use — and adapt to constrained problems — an Evolutionary Algorithm that has the advantage
of avoiding the aggregation of criteria and can provide solutions on a Pareto front in an efficient way.

1.3 Proposal for a two-step approach

The two processes, (1) interactive configuration and planning and (2) configuration and planning optimisation, can
be used independently. However, as explained in the introduction, we propose a two-step aiding system.

Our idea is that a product and associated production process can require a large number of variables in order to
be entirely described, and that the customer or the system user is only interested in a small subset of these variables
that correspond to their requirements. For example, a customer can be mainly interested in flight range and cost,
and not in speed and delivery time. We assume that the user is able to decompose their requirement set into two
sub-sets: non-negotiable requirements and negotiable ones. Our proposal is to process interactive configuration and
planning with the first sub-set of requirements only (non-negotiable ones) and achieve a first reduction in the
solution space. Remaining variable affectations (negotiable requirements) are kept for multi-criteria optimisation
and provide solutions belonging to Pareto fronts that minimise cost, cycle time, or performance. With these Pareto
fronts, the user can finish the process by selecting the solution that fits their specific compromise.

ACost ACost ACost ACost

Cycle 1ime’ Cycle time’ Cycle time’ Cycle time
Beginning : After step 1 : After step 2 End :
Initial solution space Interactive Pareto front Final user decision
configuration
and planning

Figure 1. Proposed optimal configuration and planning process.

The resulting process is shown in Figure 1 with a cycle/cost compromise. The first step can be considered as a
kind of partially interactive configuration and planning, while the second one is an autonomous optimisation
process that terminates the job. In order to deal with negotiable requirements, industrial configuration software
frequently proposes default values or static preference ordering. Our purpose is to avoid these weak solutions by
minimising performance, cycle time, and cost.

As we are dealing with mass customisation, the response time of the aiding system must be considered.
A response time of s, for processing each elementary requirement, is generally accepted by users and achieved by
configuration and planning software. Consequently, it can be derived that step 1 — with various attempts — lasts
around 1h. For the optimisation task of step 2, the response time unit is closer to an hour. We therefore have a
rough order of magnitude of 1h for each step. It is clear that such a problem can address different kinds of
configured products: a personal computer of €1000, a car of €50,000, a boat of €500,000 or a plane of €5,000,000.
Therefore, if a 1 h process sounds an adequate goal for a PC or a car, it is probable that a night of computation will
not be a problem for the configuration of a plane.

The proposed aiding system provides concurrent product configuration and production planning, which makes
it possible to take into account product and planning constraints and requirements simultaneously, thus avoiding
iterations. The proposed two-step approach first interactively respects the customer’s detailed requirements and
then, in an autonomous way, proposes optimal compromises (performance, cycle time, cost).

1.4 Problem restriction and organisation of the paper

As we have presented initial ideas relevant to concurrent configuration and planning in Aldanondo et al. (2010), the
main contribution of this paper is to the second step (optimisation) where an evolutionary algorithm will be adapted
so as to take constraints into account. However, an example of the full problem must be considered in order to make
some comparisons with a standard branch-and-bound optimisation approach.

The new decision-aiding approach described in this paper needs to provide suitable support for decision-makers
who negotiate directly with customers to define what product will be made (configuration) and in what terms
(process). Therefore, our method involves the presence of generic models for product (configuration), production
process (planning) and coupling. For clarity, we have limited the scope of this paper to: (1) problems with only two
criteria: cycle time and cost (grouping product and process cost); (2) problems that can be described on a single level
of abstraction (issues dealing with composite configuration (Sabin and Freuder 1996) or multi-level planning with
constraints (Mouhoub and Sukopan 2005) will not be addressed); and (3) infinite capacity planning, where we
consider that production is launched according to each customer order, and production capacity is adapted
accordingly.

The rest of the paper is organised as follows. The second section discusses related works. The third presents the
constraint model supporting concurrent configuration and planning with the aircraft example. The fourth section is
concerned with the evolutionary algorithm including specific constraint-based operators. The branch-and-bound

procedure that is used for comparison is also explained. Finally, detailed experimentation results and relevant
discussions are proposed.

2. Related works
2.1 Works relevant to product configuration and production planning with CSP

In the field of configuration, many authors, including Mittal and Frayman (1989), originally, and later (Mailharro
1998, Junker 2006, Aldanondo and Vareilles 2008) showed that configuring a product can be efficiently modelled
and aided when considered as a Constraints Satisfaction Problem (CSP). In a similar way, authors, such as Dechter
et al. (1991) or Bartak et al. (2010), interested in planning and scheduling have shown that these problems could also
be modelled and aided when considered as a CSP. As explained above, we will concentrate on the filtering
possibilities of the constraint approaches in order to provide interactivity. When dealing with the association of the
two problems, significant works have been published on associating product and process design. Axiomatic Design
(Suh 1990) and Design Structure Matrices (Lindemann 2007) have proposed some kinds of causality models that
link product and production process. Dealing more specifically with configuration, Jiao et al. (2007) and Zhang
et al. (2009) have proposed interesting generic modelling approaches that extend product configuration towards
process configuration. However, these works did not examine how decision consequences could be propagated
between product configuration and production planning. Propagation is addressed in Stewart and Tate (2000) and
Aldanondo et al. (2010), where axiomatic design and constraint propagation are mixed, a feature that constitutes
one of the bases of our proposal.

2.2 Works relevant to optimisation of product configuration and production planning

The first specificity of the optimisation problem under consideration is that the solution space is very large. It is
reported in Amilhastre ef al. (2002) that a configuration solution space of more than 1.4 x 10'? is required. It is clear
that when planning is added, the combinatorial structure becomes very large indeed. Another aspect lies in the fact
that the shape of the solution space is not continuous and, in most cases, shows many singularities. Furthermore, the
multi-criteria aspect and the need for Pareto optimal results are also significant problem characteristics. These
points explain why most of the articles published on this subject, such as Li et al. (2006), Hong et al. (2008), and
Zhou et al. (2008) consider genetic or evolutionary approaches to deal with this problem. As our configuration and
planning problem is considered as a CSP, our optimisation process should be able to take constraints into account.
Clevenger et al. (2005) and Coello Coello’s (2011) website describe various evolutionary approaches that handle
constraints. These works will be detailed in Section 4 in order to introduce our optimisation proposals.

2.3 Works relevant to our two-step proposal

Very few works consider this issue directly. However, existing works dealing with the sequential association of
configuration and/or planning with optimisation are linked either with studies relevant to the mass-customisation
business process or with studies that associate interactive configuration and autonomous configuration completion.
In the first case, some authors, coming mainly for the operation management community, such as Forza and
Salvador (2002) or Hvam et al. (2002), discuss various ways to organise configuration, production, and planning
activities. In the second case, the problems addressed are more relevant to the constraint community. Amilhastre
et al. (2002) and Ullman (2007), for example, deal mainly with backtracking avoidance in interactive configuration
or optimisation in autonomous configuration. As far as we know, there is no work that exactly matches our
two-step proposal, although we have seen demos of configuration software solutions that are very close to our
proposals.

3. Concurrent configuration and planning with constraint processing

We therefore assume that a constraint-based model of a generic product and a same kind of model for a generic
production plan can be established, and we restrict configuration and planning tasks to the instantiation of these
two models. The goal of this section is to describe, for configuration and for planning: each problem,

™. Product

bevy SNC ENC ESC sTC FIC % Cost
% Variables
- o - - - oo :
s, roduct
’SN\ ,EN |+ Cs - FR FI' | Descriptive :
’ N e ; 4 ’ Variables H
POV 27 Ny === ES ST .]
P Sl 3 ——— JGIbI Global
¢ 7 - - oba oba
! (, ? S - e chle timu)(cost >
{ : / -
I Opyqpst) ‘ ’ 0
: ‘\ 'Ogngdt "] Opmpst I OpsopSt Op‘mPSt Opspst 0] i |
N Op“rrs o < Opgpft <0p20pﬂ {Op‘mpﬁ Opsgpft Dpera.tlo.n
\ 1 2Opgp dt -, Opggpdt -, Opggpdt = Opsgpdt -, escription
\‘ . I \Opznqrr _,o‘. ”"Opggql’f ot “. \Opmqrr _.0 -... Opsnrrs ..E:‘ Yariables
14 Opli pSt I'.. ". .' ‘-l‘l 0 P5DCI P -~ «l.
\ Opyppft ., , ., "
v 2 Opygpdt - s - :
\QD\A ~ Opgqrr - | | '). B i
#Operation
ocY OpyC Opy C OpgC OpypC OpggC OpgC] Cost
Y ' % - : L 4 Variables

Configuration constraints
Temporal constraints
-------------- Cost constraints
= = = = Coupling constraints

Figure 2. Configuration and planning constraint model.

each associated constraint model, and each relevant interactive constraint propagation process. Their association is
explained in Aldanondo et al. (2010) where more details can be found. The constraint model of the aircraft example
presented in Figure 2 is progressively detailed throughout the section.

3.1 Configuration problem, relevant constraint model, and example

In this paper, we consider that a generic product can be described by a set of properties or a set of components, or a
mix of both, as proposed in Aldanondo and Vareilles (2008). Therefore, the proposed configuration model gathers a
first sub-set of configuration variables called PDV for ‘product description variables’. PDV variables can be
associated with product properties (e.g. flight range, types of finish...) or component type (for example: tank
reference, engine reference. ..). The definition domains of these variables are either symbols (for example: type of
finish...) or discrete numbers (e.g. flight range...). The configuration constraints that link these PDV variables
show the allowed combinations of variable values. They are shown in the upper part of Figure 2 with black plain
lines.

Each PDYV variable can have an influence on the product cost and therefore can be associated with variables
belonging to a second sub-set of configuration variables called ‘product cost variables’ (PCV). These variables (last
letter ‘C’ notation) are defined on a real domain. Configuration cost constraints link PDV with PCV variables and
are shown in the upper part of Figure 2 with black dotted lines.

For the whole configuration model, gathering variables belonging to PDV and PCV, all the constraints describe
allowed the combination of variable values and are discrete. There is no calculus or numerical constraint. The
associated CSP is therefore discrete, and the filtering provided by arc consistency techniques, synthesised in Bessiere
(20006), allows interactive configuration and an estimation of product cost variables.

Our example deals with a simplified version of a configuration of a small plane. The plane is characterised by
seven product description variables (PDV subset): SN (seat number), EN (engine), CS (cruising speed), FR (flight
range), FI (finish reference), ES (engine setting), and ST (supplementary tank) reference. Three configuration

constraints show allowed combinations between: plane size and engine (SN, EN); engine and speed that imply an
engine setting (EN, CS, ES); speed and flight range with a supplementary tank (CS, FR, ST). The plane is
characterised by five PCV associated with product variables with cost constraints: SNC (seat number), ENC
(engine), FIC (finish), ESC (engine setting), and STC (supplementary tank). This part of the model is shown in the
upper part of Figure 2.

3.2 Planning problem and relevant constraint model

We consider that a generic production process can be described with a set of planning operations (supplying,
manufacturing, assembling, etc.) linked to anteriority constraints. Each operation is defined with:

e three operation temporal variables: possible starting time (pst), possible finish time (pft), possible duration
(pdt), defined on a real domain;

e two operation resource variables: required resource (rrs) defined on a symbolic domain, quantity of
resource (qrr) defined on integer domain;

which belong to a first sub-set of planning variables called ‘operation description variables’ (ODV). Two kinds of
planning constraints exist. The first kind is temporal constraints, which gathers:

e for each operation (Op;), a duration constraint explaining that finish time equals start time plus duration:
Opipft=Opipst + Op;pdt;

e for each sequence of two operations (Op; — Op;1), a precedence constraint explaining that next operation
start time (Op;pst) is larger or equal than previous operation finish time (Op;pft): Op;,pst > Op;ipft.

These temporal constraints are numerical and shown in the lower part of Figure 2 with plain grey lines. The
second group of constraints corresponds to resource constraints that link operation resource variables (rrs, qrr) with
the duration of the operation (pdt). These are mixed constraints that show allowed combinations of values.

Among these five kinds of variables, only the two resource variables, resource (rrs) and quantity (qrr), can
influence the production process cost. They can be associated with ‘operation cost variables’, which are denoted as
‘Op;C’, defined on a real domain and belong to the subset OCV. Production-cost constraints, which are also mixed
constraints, link ODV with OCV variables. They are shown in the lower part of Figure 2 with black dotted lines

For the whole planning model, gathering variables belonging to ODV or OCV, cost constraints are discrete,
while temporal constraints are numerical. As these numerical constraints are elementary calculations (+, —, X, /, =,
>, <), they respect the hypothesis of bound consistency proposed in Lhomme (1993). Based on interval arithmetic,
bound consistency is associated with discrete arc consistency and allows interactive planning and estimation of
production cost variables.

In our example, the production process of the plane involves six operations. Each operation Op; is characterised
by the six variables (Op;pst, Op;pft, Op;pdt, Op;rrs Op;qrr, Op;C) with the relevant resource and cost constraints.
The production process begins with two simultaneous operations, supplying Op;; and manufacturing Op»,
followed by assembling Op,,, tank assembling Ops;, finishing Opy, and finally packaging and delivery Opso. This
part of the model is shown in the lower part of Figure 2.

3.3 Associated problems and optimisation criteria

The global problem gathers configuration and planning models using coupling constraints. A coupling constraint
links at least one variable of the configuration model with at least one variable of the planning model. Any variable
belonging to PDV can belong to a coupling constraint, while only resource variables (Op;rrs, Op;qrr) or the duration
variable (Op;pdt) of ODV can. These constraints are shown in the centre of Figure 2 with black broken lines.
They are either discrete or mixed constraints with no calculus or numerical constraint; therefore, arc consistency
techniques allow a configuration decision to be propagated towards planning, and in the opposite way, a planning
decision towards configuration.

In terms of Pareto criteria, the global cost and the global duration can be defined as follows. The global cost
(GC) is the sum of all product cost and operation cost variables (PCV and OCV). Global cycle time (GT)
corresponds to the earliest possible finishing time of the last operation of the production process.

In our example, the association of the two models requires five coupling constraints. The last operation,
packaging and delivery (Opsp), is not influenced by the plane configuration. The coupling constraints link: supplying
(Opy;) with engine (EN), manufacturing (Op;,) with seat number (SN), assembling (Op»,) with both engine and seat
number (EN, SN), tank assembling (Opso) with supplementary tank reference (ST), finishing (Opso) with finish (FT).
The global cost GC is obtained with the following numerical constraints:

GC = (SNC + ENC + FIC + ESC + STC) + (Op;,C + Op,,C + Op,C + Op3,C + Op,C + Ops,C).

The global cycle time corresponds to the finishing time of the packaging and delivery operation: GT = Opsqpft.

The definition of these coupling constraints completes the model and allows the representation in Figure 2 of the
global constraint model associating configuration and planning. In terms of model size, each configuration variable
(PDV) has a domain size between 4 and 6, while each process operation (ODV) has an average combinatory
(required resource x resource quantity) of between 3 and 25. Without taking constraints into account, the solution
space of the product model is 5184, and the planning model is 96,000. The size of the global problem model is
497,664,000. This model can be consulted and interactively used at http://cofiade.enstimac.fr/cgi-bin/cofiade.pl
select model ‘Aircraft-CSP-EA-10".

4. Optimisation problem and evolutionary algorithm proposals

This section first deals with the optimisation problem; then the modified evolutionary algorithm is presented in
detail. A short presentation of the branch-and-bound procedure, required for experimental computations, concludes
this section.

4.1 Definition of the optimisation problem

The previous first step leads to the restriction of the initial feasible space (first graph of Figure 1) to a restrained area
(second graph of Figure 1). This corresponds to the filtering of the customer’s non-negotiable requirements. The
filtering system provides domain bounds for every criteria variable (minimal and maximal values for global cost and
global cycle time). The restrained area contains solutions corresponding to different remaining decisions to fulfil.
But this area might also contain unfeasible solutions owing to the constraints of the problem. The aim of the
optimisation process is to find a selection of solutions close to the optimal Pareto front (third graph of Figure 1).
To solve this problem, we focus on evolutionary algorithms for their ability to propose multiple solutions while
solving a multiobjective problem. But classic evolutionary algorithms have to be adapted to take into account the
constraints of the problem.

The constrained optimisation problem (O-CSP) is defined by the quadruplet (V, D, C, f), where V is the set of
decision variables, D the set of domains linked to each variable of V, C the set of constraints on variable of V, and f
the multi-valuated fitness function. Here the aim is to minimise both global cost and global cycle time. The set V
gathers the product descriptive variables and the operation resource variables. Constraints link the variables of V.
The filtering system dynamically updates the domain of these variables with respect to the constraints. This O-CSP
is a difficult problem to solve. The existing methods to handle constraints in EA are often computationally
expensive.

4.2 Overview of constrained optimisation approaches

Initially, EAs deal with large combinative unconstrained problems, but real-world problems are generally
constrained. Many research studies have tried to integrate constraints in EA. Coello Coello (2002, 2011) proposes a
wide state-of-the-art study of these methods and a brief overview. Four kinds of methods deal with this problem:
penalty functions (Richardson et al. 1989), repairing methods (Salcedo-Sanz 2009), approaches that separate
objectives and constraints (Multiobjective Optimisation techniques for example proposed by Clevenger et al. 2005),
and specific representations or operators (Michalewicz and Nazhiyath 1995, Kowalczyk 1997).

Penalty functions are the most common way to integrate violation of constraints in an objective function. For
each individual, the level of violation of constraint is added to the fitness function. The main drawback of such an
approach is that the boundary between feasible and unfeasible regions is usually difficult to grasp. Furthermore, it
requires the definition of the weights needed to aggregate the violation of different constraints.

- Npop size of population P,
: . - Naon size of archive A
e, T number of generation
- Probabilities Pgross and Pyt

T : Generate Py with N, individuals
Intialisation P~ using filtering system

g v
Fitness ey Assign fitness of
assignment individuals in P, and A;
‘L Copy Pareto individuals of P;and A, in A4

Environmental P if |Aw1] > Naren then truncate archive
Selection else if [Aw1] < Naren then fill Py with fittest
dominated individuals in P, and A,

= Pareto individuals of
A, provide to user

Matting ¢ Fill a matting pool M using a binary
Selection tournement on Ay

¥

Evolutiona Apply crossover and mutation opertators on
operatorsry (— matting pool M to obtain P..; using filtering

system
.,

Figure 3. Adapted SPEA?2 algorithm.

Repairing methods only try to deal with feasible individuals. As soon as an unfeasible individual is generated,
a specific operator redirects it towards the feasible space. The difficulty is thus to elaborate an effective repairing
algorithm that preserves the diversity of individuals. The same problem appears with Multiobjective Optimisation
approaches. These integrate the satisfaction of each constraint (or a group of constraints) as a specific objective.

Finally, the specific operators or representation approaches aim at preserving the feasibility of the individuals
during their construction. Kowalczyk (1997) proposed first ideas relevant to the use of constraint consistency to
prevent variable instantiations that are not consistent with the constraints of the problem. In this paper, we accept
this idea and focus on specific evolutionary operators that prune search space using constraint filtering.

4.3 Proposed approach for a constraint-based evolutionary algorithm
4.3.1 Overview of modified EA

The EA used here is adapted from the SPEA2 method (Zitzler et al. 2001) with classic evolutionary steps illustrated
on Figure 3. It is a useful Pareto-based method founded on the preservation of a selection of best solutions in a
separate archive (archive on generation ¢ is denoted A, and population P,). It ensures both a good convergence speed
and the preservation of diversity of solutions. Five parameters are required: size of archive (Ng.p), size of
population (Npep), number of generations (7)) (or any stopping criterion), probabilities for crossover (Peross), and
mutation (Pp,,) operators.

After initialisation, SPEA2 includes an efficient evaluation strategy that brings a well-balanced density of
population on each area of search space. The calculation of fitness is based on the Pareto dominance between
individuals (relative performance of a solution) and the measurement of solution density. The information on
density makes it possible to discern individuals with identical scores according to the density of individuals in the
surrounding area. Following fitness assignment, the step of environmental selection updates individuals of the
archive. The archive is filled with a selection of best individuals in the population and the previous archive. Finally,
if the stopping criterion is not reached, the mating selection step selects Ny, individuals in the archive to constitute
the mating pool. This is done by a binary tournament between individuals of the archive. Crossover and mutation
operators will use this mating pool to build the next generation. See Zitzler et al. (2001) for more details on SPEA2
calculations.

For our situation, the initialisation and evolutionary operators steps (framed with a bold line on Figure 3) have
been modified to interact with a filtering system in order to build or modify the individuals according to the
constraints of the problem (e.g. to keep them in the feasible space). The following sections detail the initialisation,
crossover, and mutation operators that interact with the filtering system.

4.3.2 Initialisation operator

This operator provides a well-diversified set of initial individuals. The pseudo-algorithm below details its general
behaviour. For each individual to create, every gene (decision variable) is randomly instantiated into its current
domain. To avoid the generation of unfeasible individuals, the domain of every remaining gene is dynamically
updated by filtering after each instantiation. If an individual is inconsistent, a limited backtrack process cancels one
of the previous choices; then the individual is filtered again until the values of the remaining variable are consistent.
If the backtrack limit is reached, the individual is abandoned to bound the computational time spent by the filtering.
This process (random instantiation then filtering) is repeated until all the genes of every individual are instantiated.

Pseudo-algorithm of initialisation operator:
Input: Empty initial population P,
Required size of population N,
Start
While (size(Py) < Npop)
Select an individual not finished
Select an uninstantiated variable on it
Select a value in variable domain
Ask for a filtering of individual
If (consistent instantiation) then
Update domains of remaining genes
Else
While (individual is unfeasible) do
If (Backtrack counter limit reach) then
Restart with empty individual
Else
Randomly select an instantiated variable
Uninstantiate it
Increase Backtrack counter
Ask for a filtering of individual
EndIf
EndWhile
EndIf
if (every gene is instantiated) then
Add individual to the population Py
Endif
EndWhile
End

4.3.3 Uniform mutation operator

This operator introduces a random perturbation on the evolutionary process that allows escape from sub-optimal
areas. It modifies the instantiation of some genes on individuals selected according to the mutation probability P,
among mating pool M. For each randomly selected individual, the randomly selected genes are uninstantiated. The
filtering system updates the domain of these variables according to the instantiation of other genes. Finally, the
mutation of the selected genes itself is achieved in the same way as during the initialisation (instantiation, filtering
and backtrack limit). The generated individuals are added to the next generation P,.

4.3.4 Uniform crossover operator

This operator allows random and uniform shuffling of the genes of two individuals (named parents) selected in the
mating pool M according to P...s. The pseudo-algorithm on the next page describes its general behaviour.

Gene number | 2 5 1 6 3 4

Crossoverflag| 0 | 1 1 0|0 |1

Memoryflag| 0 | 0 | O | O | O | O

Parent1 | 1 312 |5 1 1

Parent2 | 2 1 3 5 2 1

Child1 | 1 1135 |1 1

Chid2 | 2 | 3| 2|5 |2 1

1% step

Y

Filling sens

Gene2 GeneS Gene1 Gene6
| | |

I I

I I

| |

|

|

e

Initial path that
corresponds to
the 2™ row in
the table

0
1
0
T
0
1
0
1

Crossover or no
crossover of gene

Figure 4. Crossover table and tree.

To achieve this task, a crossover table (represented on the upper part of Figure 4) makes it possible to select which
genes will be exchanged between parents. The crossover corresponds to a selected path on a binary tree (represented
on the lower part of Figure 5), where each branch is linked to the crossover of a particular gene. An instantiation of
the crossover table (lines that correspond to child) is equivalent to the selection of a path on the crossover tree.

First, the two first lines of the table are randomly filled in (the first line corresponds to the order of treatment of
genes, and the second one selects which genes will be crossed). The order of treatment of a specific gene is chosen
randomly to avoid the dominance of genes by their position in the chromosome. The initialisation of crossover flags
corresponds to a random selection of a path in the graph.

The system tries to achieve this random crossover. At every gene instantiation, the filtering system updates the
domain of remaining genes. The crossover table is initially filled in identically for both children, but if an individual
becomes unfeasible, a specific backtrack is carried out by changing a crossover flag in their specific table.
A supplementary flag (third line) is added to the table that memorises the unfeasible path on the tree in case of
backtrack. Then, a backtrack counter limits the number of backtracks. If the backtrack limit is reached, the
corresponding child is abandoned. Finally, every feasible child is added to the next generation.

Pseudo-algorithm of crossover operator:
Input: P, Crossover probability
M mating pool with N, individuals
Start
For(all individuals in M) do
If(Random(0, 1) < P.ss) then
Randomly select another Parent of M
Create corresponding crossover table

Search tree

S Branching on node with
t0p@) the fowest heurtstic value

GC:a2

Splitting on values
Step@ of one variable

_________ Node bound evaluation
L I 6 ” 8 ” 10 H 12 I Step(2) and heuristic caiculation

lccaa com oea8 oot L wFilteri
\lGTan Gran Gras GTas Filtering

I
) : | “: Ho1s MO8 HO19 HO2 Consistant Inconsistant
EN :) ;’Z’;ﬁ;g Bounds: Branch abandoned
IR -
TR : every solution Minimal
""""" with SN =3 Cost (GC): 42
Cycle Time (GT) : 83
! ; I \ \\ \\ 83-40 42-20
l : | 1 - 5
Leaves [S1 |[S2][3 |[S4 |[S5][S6 |~ MON=12)= o+ o0
Solution S1:
EN_= 8 —» Filtering Update tree by cutting branches
SN =1LP Exact criteria values Step@ dominated by Pareto-Front
GC(81) =32, GT{S1)=105 solutions found

Figure 5. Search tree of BB algorithm.

Fill randomly with gene number the 1st line
Fill according to P, With 0 or 1 the flags of 2nd line
Fill systematically with 0 memory the flags of 3rd line
While (crossover done for both children) do
Apply next crossover according to 2nd line (1 cross/0 no cross)
Ask for a filtering of both individuals
If(a child is unfeasible) then
If(Backtrack counter limit reach) then
Abandon corresponding child
Else
While (memory flag of current gene=1) do
Set memory flag of current gene to 0
Go back to previous gene
EndWhile
Set memory flag of current gene to 1
Switch crossover flag of current gene
EndIf
EndIf
EndWhile
EndIf
EndFor
End

4.4 Branch-and-bound procedure using filtering system

The branch-and-bound (BB) method is a classic systematic algorithm for finding optimal solutions to various
optimisation problems. This method was first proposed in Land and Doig (1960) for linear programming. It consists
of a systematic enumeration of all candidate solutions, where large subsets of fruitless solutions are discarded by
using the upper and lower estimated bounds of the quantity being optimised. The key idea of the BB algorithm is to
explore a search tree but using a cutting procedure that stops exploration of a branch when a better branch has
already been found (e.g. during search-tree exploration, if the lower bound for some tree-node A is greater than the

upper bound for some other node B, then A may be safely discarded from the search). So, a branch-and-bound
procedure requires three tools: a splitting procedure, a bound-evaluation procedure and a heuristic.

The splitting procedure, given a set S of candidates, returns two or more smaller sets (S, S, etc. .. .) whose union
covers S. Note that the minimum of f{x) over S is Min(vy, v»}, where each v; is the minimum of f{x) within S;. This
step is called branching, since its recursive application defines a tree structure whose nodes are the subsets of S. For
our problem, the splitting procedure corresponds to the selection of one variable of the problem and to the
instantiation of this variable for each possible value. For example, the first split could be on seat-number variable
(SN) and generates six child nodes as illustrated on Figure 5, step 1.

The second tool needed is a node-bound evaluation procedure. The filtering process is used to achieve this task.
With a partial instantiation (e.g. a node of the search tree, for example the node (SN = 12) on the tree on Figure 5,
step 2), the filtering system is able to evaluate if the partial instantiation is consistent with the constraints of the
problem, and, if this is the case, to provide the lower bound of each criterion. Notice that these lower bounds are
optimistic values for each criterion taken separately. When the search reaches a leaf of the search tree (e.g. a
complete instantiation, see step 4 on Figure 5), the filtering system gives the exact evaluation of the solution. Thus,
the values of leaf solutions can be used to compute the current Pareto front and then to cut remaining unexplored
branches that are dominated by any aspect of the Pareto front solution (e.g. the upper bounds of the leaf solution
dominate the minimal bounds of the branch to cut).

Finally, the last tool needed is a heuristic that allows selection of the next node to explore. The heuristic used is
the lowest normalised aggregation of lower bounds of each remaining node. For example, if node A has (GC 4, GT)
as lower bounds for global cost (GC) and global cycle time (GT), its heuristic value will be:

GTA — MinGT GCA — MinGc
Maxgr — Mingr = Maxge — Minge

H(A) = (M
where Min; and Max; are minimal and maximal values of each criterion i.

This behaviour is illustrated in Figure 5 with the third step (branching on node with lowest heuristic value).
Among the six possible values, the node (SN = 3) has the lowest heuristic value (H(SN =3)=0.17). The algorithm
goes on with this node, and the other nodes are saved on an ordered list of remaining nodes (according to their
heuristic value).

5. Experimental results and discussions

We performed various tests on the aircraft problem. The optimisation algorithms were implemented in C++
programming language and interacted with the filtering system coded in Perl language. The completed system was
designed to work with a multiple parallel filtering system (to take advantage of using a population of parallel
solutions to filter). However, in order to evaluate the performance of the algorithm clearly, we used only one
filtering system for the results presented in this paper. All tests were done using a laptop computer powered by an
Intel core i5 CPU (2.27 GHz; only one CPU core is used) and using 2.8 GB of RAM. These tests compared the
behaviour of our constrained EA algorithm with the exact BB algorithm.

In a first sub-section, two model sizes and two constraint levels were considered in order to qualify our EA
proposition. Neither user reduction nor an initial configuration/planning process was considered for these first
experiments. Then, optimisation following a user reduction, corresponding to the process in Figure 1, is studied in a
second sub-section.

For a multiobjective aiding problem, the user expects an efficient and diversified set of solutions in a reasonable
lapse of time. To evaluate the algorithm results, we used the hypervolume metric defined by Zitzler and Thiele (1998)
and illustrated in Figure 6. It measures the hypervolume of space dominated by a set of solutions. It thus allows
evaluation of both convergence and diversity properties (the fittest and most diversified set of solutions is the one
that maximises hypervolume).

5.1 Impact of the model size and level of constraint without user reduction

Different versions of the aircraft model were investigated in order to evaluate the impact of the model size and the
constraint density on the algorithm performance.

Worst Point W

Max_cost
C;= (Cost-Max_cost)* (time-Max_time)

% e

o

o b

® HV = C;

£ 5

G | Pareto

individual /
O —
Cycle time Max_time

Figure 6. Example of hypervolume linked to a Pareto front.

Regarding model size, the model presented in Section 2 was reduced by the suppression of the last task and the
reduction in possible values for the type of resource on the first task. Thus, algorithm behaviour (EA and BB) was
evaluated on a full model or on a small one characterised by:

e full model: 497,664,000 solutions without constraints;
e small model: 6,220,800 solutions without constraints.

Density of constraints: density of constraints is linked with the number of allowed combinations between
problem variables. To evaluate the impact of constraints density, two versions of the aircraft model were produced:
one with a weak density of constraints (20% of possible combinations between configuration variables were
prohibited) and the other with a higher density of constraints (50% of possible combinations between configuration
variables were excluded). This provides four models characterised by:

e full model: around 47,600,000 feasible solutions for the low-constrained model (9.5% of search space),
around 12,288,000 feasible solutions for the high-constrained model (1.9% of search space)

e small model: around 595,000 feasible solutions for the low-constrained model, around 153,000 feasible
solutions for the high-constrained model.

Those numbers are evaluated by a sampling of search space (percentage of solutions feasible obtained with a
random sampling of around 50,000 solutions). The curves in Figure 7 illustrate the evolution of the hypervolume
dominated by the Pareto front solutions (the horizontal axis corresponds to the time in seconds) for each model
investigated:

e small model in the upper part of Figure 7 and full model in the lower part of the same figure;
e low-constrained model in the left part of Figure 7 and high-constrained model in the right part of the same
figure.

Notice that the curves that represent EA performance are average results for 30 executions. Two sets of
evolutionary settings are used to obtain these results:

e For the small models, we used evolutionary settings adapted to the small search space: population size: 50;
archive size: 40; Py 0.4; Peross: 0.8. The ending criterion used is a limit of time (algorithm stopped if time
consumed after each generation is greater than 1800s, half an hour).

e For the full models, we adapt settings for a wider search: population size: 150; archive size: 100; Py 0.4;
P.ross: 0.8. The ending criterion used is a limit of time that corresponds to the time consumed by the BB
algorithm.

Notice that parameter settings are one of the main drawbacks to an efficient use of evolutionary algorithms. The
setting of population and archive sizes is a compromise between speed convergence and final performance. Indeed, a
small population and archive size allows a quick improvement of solution quality, but it also increases the time
needed to reach the optimal Pareto front, whereas larger population and archive sizes reduce the convergence speed
but allow the optimal Pareto front to be found quickly.

Small and low constrained model Small and high constrained model

290000 290000
280000 J o —— 280000 o — e
~)
o 270000 1 o 270000
£ 260000 | £ 20000 |
§ 250000 | g 250000 |
@
& 240000 & 240000 |
230000 230000
220000 220000
210000 210000
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
time in seconds time in seconds
—EA — — BB EA — — BB
Full and low constrained model Full and high constrained model
310000 310000
300000 o 300000 =
@ . -
E 230000 Y - E 290000
'S 280000 - QI E
§ _ g 260000
s r
Z 270000 - [5 270000 - ;
260000 : 260000 |
250000 ' 50000 |
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
time in seconds time in seconds
—FEA — — BB —EA — — BB

Figure 7. Experimentation with different model sizes and constraint densities.

For the small models (first two curves), the BB algorithm reaches the optimal Pareto front much faster compared
with EA performance (290 s for the low-constrained model and 163 for the high-constrained one. See Table 1 for
more detail). Both algorithms start with a lapse of time where performance is null. For the BB algorithm, this
corresponds to the time needed to reach a first leaf on the search tree, while for the EA, it corresponds to the time
consumed to constitute the initial population. The EA, after a rapid increase in hypervolume, stagnates and
converges very slowly to the optimal Pareto front (less than 0.5% of improvement on the last 400s). This is indeed
one of the weak points of classic EA.

On the other hand, the EA greatly outperform the BB algorithm on the full model. For example, on the
low-constrained model, the BB algorithm took 20 times longer to reach a good set of solutions (less than 0.5% of the
optimal hypervolume) for the complete model compared with the small one, while the EA needed only five times
longer (for a model 20 times larger).

The impact of constraints density could also be analysed. Table 1 shows values obtained on these models. As can
be seen, the BB algorithm performance is improved when the density of constraints is high. This is because the
filtering allows more branches to be cut on the search tree, in such way that the algorithm reaches leaf solutions and,
consequently, optimal solutions more quickly. The EA performance moves in the opposite way. The more the model
is constrained, the more the random crossover operation will have to backtrack to find feasible solutions, and thus
the time needed by the algorithm will be consequent.

The main conclusion of this section is that the proposed EA algorithm is clearly better than the BB algorithm
when the size of the problem increases. A second conclusion is that an increase in the density of constraints tends to
limit the tendency of the previous conclusion. In the next section, we therefore consider only the full problem with a
low level of constraint and user reduction that is our ultimate goal.

5.2 Optimising a full problem with user reduction
Our ultimate goal is to associate configuration and planning with optimisation of the compromise cycle/cost.
As previously explained, the user specifies non-negotiable requirements in a first interactive phase. The first step

690 69°0— 0S°0 LY¥'96T 867°86T 001 ovee TI'0 cro— 91°0 €06°10€ ySTTOE 001 LYY
SL'T 79 LSO Y9T'€6T 065°SLT 0S 0L91 SE0 008 0€°0 80T°10€ Y68'8LT 0S LETE
€L9 001 90°C 66£°8LT 0 Y4 ges 8S°1 001 09°0 98%°L6T 0 ST 6191
[opow paurerIsuod y3iy pue [[ng [opOW PAUTBIISUOD MO] PUE [N
0 0 0 Y6T'6LT 9011 P18l €00 €0°0— S0°0 £YT 8T $T9 CI8l
90°0 LT9— wy €6L°19T Y6T'6LT 001 ¥91 08'l 08'1— SO'1 80T'6LT £TE 8T 001 06C
010 9¢'L— SL'S 9TI'IST £90°1LT 0S [81°L SEvy— (284 668°€9C 016°SLT 0S 94!
81°0 S8YI— o 1€0°8CC 86L°L9T Y4 v STl Sv'L— 304 0€€°TST LY9°TLT ST L
[opoW pauIRIISUOd YSIY pueR [[RWS [9POW PIUIRIISUOD MO] PUR [[BUWIS
(%) (%) suni og) va pim wyuosie gg wpuose gg £q (5) (%) on[eA (%) UONBIASD SUNI (¢ AY) VA qim wyjuos[e gg wyiuode gg (s) owiL
onjea UONBIADD 10 uoy) qnm pownsuod own owll [ewndo qad/va 10J uay) wyjLIos[e ynm £q
rewndo qdq/vd swnjoaradAy wpuose ggq swnjoAradAy JO 98rjuadIng wolj swnjoAaradAy qad ynm swnjoA1xdAy pawnsuod dwry
woly Jo uoneiaap qnm 10J swnjoarddAH uoneAdq Jo uoneiadp swmn[oAlddAy 10J Jo a3euaordg
uoneaaq plepuels swnjoAaradAy piepuels 10§ swnjoardAH
EINSRE N 10J ownjoAlddAH AT R[Y swinjoardAH

"SONISUQP JUIBIISUOD PUB SIZIS [9powW 0} JUIPIOddk gy puk Yy Jo uosuedwo) ‘| 9|qeL

Table 2.

Comparison of EA and BB on a full problem with user reduction.

Percentage of

Hypervolume for

Hypervolume for
hypervolume with

time consumed by hypervolume with BB algorithm then

Relative standard
deviation of
hypervolume for

EA/BB

Deviation from

Time (s) BB algorithm BB algorithm with EA the 30 runs deviation (%) optimal value (%)
2996 25 0 189,064 0.37 100 0.33
5991 50 0 189,427 0.35 100 0.14

12,060 100 189,697 189,530 0.34 —0.09 0.09

e Reduced full and low constrained model
195000
190000 :
-!
" . 185000 - —
4 5 180000 ?
S .
§ 175000 et
£ y
170000]
ol : 165000 {
0 50 100 150 200 250 300 350 I
cle time 1Py
. k4 e] 2000 4000 6000 6000 100000 12000
- Solutions space ——Pareto 1h /initial model e I Sa s
——Pareto 1h/reduced model EA == BB

Figure 8. Experimentation on a full problem with user reduction.

suggests that the user defines these non-negotiable requirements by selecting the required values for some decision
and asks for a filtering of the model. The previous full model is considered, and the following reductions on the
variables are made:

e SN: seat number: two values are kept instead of six;
e FI: finish: two values are kept instead of four.

For this model, the number of feasible solutions is around 6,350,000 solutions. The initial search-space shape
(space of existing solutions for the whole problem without any restriction requested by the user) is represented in the
left part of Figure 8 with the Pareto front provided by the EA algorithm after 1h. In the same figure, the Pareto
front obtained by the EA algorithm after 1 h on the reduced model is also shown. In Table 2 and in the right part of
Figure 8, the evolution of the hypervolume of EA and BB algorithms on the reduced problem are shown.

When comparing the two Pareto fronts, it is clear that the user’s requirements exclude the most economical
solutions. The hypervolume progression shows that it is possible rapidly to obtain a first idea of the possible
cycle/cost compromises that can be proposed to the user.

As shown by the hypervolume curves in Figure 8, a reduction made by the user can have a huge impact on BB
algorithm performance while AE is relatively unaffected by this operation. For the BB algorithm, reductions made
by the user suppress some branches on the search tree, so its execution would be faster. However, with the reduction
proposed, the optimal Pareto front is in a highly dense area of the search space (a large number of solutions exist in
this area as shown in the search spaces of Figure 8). This aspect greatly impacts the performance of the BB
algorithm because a large number of solutions seem to be interesting, but considerable backtracking occurred before
it reached the leaves of the search tree. Therefore the search tree needs to be developed to a considerable depth to
find the optimal set of solutions.

These results match our expectations, because they lead to the conclusion that, with EA, it is possible to propose,
in a reasonable amount of time, a set of solutions that permits the user to decide on their own cost/cycle time

compromise, whatever the reduction made by the user. Therefore, the two-step process described in this paper can

doubtless be considered as being of significant assistance to achieve optimal configuration and planning.

6. Conclusions

In this paper, we have presented an efficient tool that is able to assist product configuration and production process
planning concurrently, using an interactive constraint-filtering system and an evolutionary optimisation system.
This aiding tool operates with respect to a two-phase process. The first phase consists of an interactive configuration
of the product and the relevant production process. This configuration is carried out using a set of non-negotiable
variables on which the user can make choices. The second phase involves optimising the previous result regarding
two antagonist criteria, which, in our case, are the cost and cycle time of the product.

The first phase is based on constraint-filtering algorithms that allow the user to interactively manipulate the
configuration and planning models, and to process their non-negotiable requirements. The main interest in this
approach is to enable the propagation of configuration decisions towards planning and, in the opposite direction,
the propagation of planning decisions towards configuration. Thus, configuration and planning are achieved
interactively, simultaneously, and progressively. The traditional sequence ‘configure the product first and then plan
its production process’ is no longer a necessity. Consequently, time-consuming iterations between configuration and
planning are greatly reduced.

The second phase is based on a modified EA that allows the constraints to be taken into account during the
optimisation process. The modified EA uses the filtering system to prune the search space and thus to reduce search
efforts by limiting it to the feasible individuals. Standard evolutionary operators are adapted to take advantage of
the filtering. In particular, we propose an original limited backtracking crossover operator. Our proposals have been
compared with a BB algorithm. Initial experiments indicate that this method seems to be very well adapted for
optimising configuration and planning concurrently. It generates near-optimal Pareto solutions in a reasonable
computing time. The comparison of both performance and diversity of Pareto fronts is ensured by the hypervolume
metric.

The combination of these two phases means that our aiding tool is able to configure the best solutions and to
give an idea of what they are to the user. It allows the user to decide efficiently about his cost/cycle-time compromise
when dealing simultaneously with configuration and planning. This promising work introduces a large number of
prospective studies: scale aspects, evolutionary parameter tuning, comparison with other constrained evolutionary
approaches, and also problems grouping more than two objectives. For scale aspects or larger problems, we are
currently developing an iterative optimisation process that aims to reduce considerably the time required to obtain a
near-optimal Pareto front using a kind of zoom on a specific area selected by the user during the optimisation
process. For the tuning of EA parameters, we could consider the possibility of an automated setting with a variable
population and archive size. For comparison with other constrained evolutionary approaches, according to the
density of constraints and the model size, we have included a study of penalty functions in our list of future works.
Finally, configuration and planning problems taking into account objectives such as performance, risk, or quality
will also be considered.

References

Aldanondo, M. and Vareilles, E., 2008. Configuration for mass customization: how to extend product configuration towards
requirements and process configuration. Journal of Intelligent Manufacturing, 19 (5), 521-535.

Aldanondo, M., Vareilles, E., and Djefel, M., 2010. Towards an association of product configuration with production planning.
International Journal of Mass Customisation, 3 (4), 316-332.

Amilhastre, J., Fargier, H., and Marquis, P., 2002. Consistency restoration and explanations in dynamic csps — application to
configuration. Artificial Intelligence, 135 (1-2), 199-234.

Bartak, R., Salido, M., and Rossi, F., 2010. Constraint satisfaction techniques in planning and scheduling. Journal. of Intelligent
Manufacturing, 21 (1), 5-15.

Bessiere, C., 2006. Constraint propagation. /n: F. Rossi, P. Van Beek and T. Walsh, eds. Handbook of constraint programming.
Amsterdam: Elsevier, 29-70.

Clevenger, L., Ferguson, L., and Hart, W.E., 2005. Filter-based evolutionary algorithm for constrained optimization.
Evolutionary Computation, 13 (3), 329-352.

Coello Coello, C., 2002. Theoretical and numerical constraint-handling techniques used with EAs: a survey of the state of art.
Computer Methods in Applied Mechanics and Engineering, 191 (11-12), 1245-1287.

Coello Coello, C., 2011. List of references on constraint-handling techniques used with evolutionary algorithms: CINVESTAYV,
WWW.cs.cinvestav.mx/~constraint/.

Dechter, R., Meiri, 1., and Pearl, J., 1991. Temporal constraint satisfaction problems. Artificial Intelligence, 49, 61-95.

Forza, C. and Salvador, F., 2002. Managing for variety in the order acquisition and fulfilment process: the contribution of
product configuration systems. International Journal of Production Economics, 76 (1), 87-98.

Hong, G., et al., 2008. Identification of the optimal product configuration and parameters based on individual customer
requirements on performance and costs in one-of-a-kind production. International Journal of Production Research, 46 (12),
3297-3326.

Hvam, L., Riis, J. and Malis, M., 2002. A multi-perspective approach for the design of configuration systems. In: ECAI
configuration workshop proceedings, Lyon, France, 56-62.

Jiao, J., Zhang, L., and Pokharel, S., 2007. Process platform planning for variety coordination from design to production in mass
customisation manufacturing. IEEE Transactions on Engineering Management, 54 (1), 112-129.

Junker, U., 2006. Configuration. /n: F. Rossi, P. Van Beek and T. Walsh, eds. Handbook of constraint programming. Elsevier:
Amsterdam, 835-875.

Kowalczyk, R., 1997. Constraint consistent genetic algorithms. In: IEEE evolutionary computation conference proceedings,
343-348.

Land, A.H. and Doig, A.G., 1960. An automatic method of solving discrete programming problems. Econometrica, 28 (3),
497-520.

Lhomme, O., 1993. Consistency techniques for numerical CSPs. In: IJCAI 1993 proceedings, Chambery France, 232-238.

Li, L., et al., 2006. Product configuration optimization using a multiobjective genetic algorithm. International Journal of
Advanced. Manufacturing Technology, 30 (1-2), 20-29.

Lindemann, U., (2007). A vision to overcome ‘chaotic’ design for X processes in early phases. In: Engineering design conference
proceedings, Paris, 231-232.

Mailharro, D., 1998. A classification and constraint-based framework for configuration. Artificial Intelligence for Engineering,
Design, Analysis and Manufacturing, 12 (4), 383-397.

Michalewicz, Z. and Nazhiyath, G., 1995. Genocop III: a co-evolutionary algorithm for numerical optimization with non linear
constraints. IEEE evolutionary computation conference proceedings, 647-651.

Mittal, S. and Frayman, F., 1989. Towards a generic model of configuration tasks. In: IJCAI 1989 proceedings, Detroit, MI,
1395-1401.

Mouhoub, M. and Sukopan, A., 2005. A new temporal CSP framework handling composite variables and activity constraints.
In: Conference on tools with artificial intelligence proceedings, Hong Kong, 143-149.

Pine, B., 1993. Mass customisation — the new frontier in business competition. Boston: Harvard Business School Press.

Richardson, J.T., et al., 1989. Some guidelines for genetic algorithms with penalty functions. In: Conference on genetic algorithms
proceedings, Fairfax, VA, 191-197.

Sabin, D. and Freuder, E., 1996. Configuration as composite constraint satisfaction. In: Artificial intelligence and manufacturing
research planning workshop proceedings, AAAI, 37-44.

Salcedo-Sanz, S., 2009. A survey of repair methods used as constraint handling techniques in evolutionary algorithms.
Computer Science Review, 3 (3), 175-192.

Steward, D. and Tate, D., 2000. Integration of axiomatic design and project planning. In: Axiomatic design conference
proceedings, Boston, 285-289.

Suh, N., 1990. The principles of design. Oxford University Press.

Ullman, J.R., 2007. Partition search for non-binary constraint satisfaction. Information Sciences, 177 (18), 3639-3678.

Zhang, L., et al., 2009. Supply chain configuration with coordinated product, process and logistics decision: an approach based
on Petri nets. International Journal of Production Research, 47 (23), 6681-6706.

Zhou, C., Zhihang, L., and Chuntao, L., 2008. Customer-driven product configuration optimization for assemble-to-order
manufacturing enterprises. International Journal of advanced manufacturing technology, 38 (1-2), 185-194.

Zitzler, E. and Thiele, L., 1998. Multiobjective optimization using evolutionary algorithms — a comparative case study.
In: Conference on parallel problem solving from nature proceedings, Amsterdam, 292-301.

Zitzler, E., Laumanns, M. and Thiele, L., 2001. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective
optimization. In: Evolutionary methods for design, optimisation and control with application to industrial problems
proceedings, Athens, 95-100.

