
HAL Id: hal-01599434
https://hal.science/hal-01599434v1

Submitted on 17 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open Packing for Facade-Layout Synthesis Under a
General Purpose Solver

Andres Felipe Barco Santa, Jean-Guillaume Fages, Élise Vareilles, Michel
Aldanondo, Paul Gaborit

To cite this version:
Andres Felipe Barco Santa, Jean-Guillaume Fages, Élise Vareilles, Michel Aldanondo, Paul Gaborit.
Open Packing for Facade-Layout Synthesis Under a General Purpose Solver. CP 2015 - 21st Interna-
tional Conference on the Principles and Practice of Constraint Programming, Aug 2015, Cork, Ireland.
p. 508-523, �10.1007/978-3-319-23219-5_36�. �hal-01599434�

https://hal.science/hal-01599434v1
https://hal.archives-ouvertes.fr

Open Packing for Facade-Layout Synthesis
Under a General Purpose Solver

Andrés Felipe Barco1(B), Jean-Guillaume Fages2, Elise Vareilles1,
Michel Aldanondo1, and Paul Gaborit1

1 Université de Toulouse, Mines d’Albi, Route de Teillet Campus Jarlard,
81013 Albi Cedex 09, France
abarcosa@mines-albi.fr

2 COSLING S.A.S., 2 Rue Alfred Kastler, 44307 Nantes Cedex 03, France

Abstract. Facade-layout synthesis occurs when renovating buildings to
improve their thermal insulation and reduce the impact of heating on the
environment. This interesting problem involves to cover a facade with a
set of disjoint and configurable insulating panels. Therefore, it can be
seen as a constrained rectangle packing problem, but for which the num-
ber of rectangles to be used and their size are not known a priori . This
paper proposes an efficient way of solving this problem using constraint
programming. The model is based on an open variant of the DiffN global
constraint in order to deal with an unfixed number of rectangles, as well
as a simple but efficient search procedure to solve this problem. An empir-
ical evaluation shows the practical impact of every choice in the design
of our model. A prototype implemented in the general purpose solver
Choco is intended to assist architect decision-making in the context of
building thermal retrofit.

1 Introduction

Currently buildings energetic consumption represents more than one third of
the total energy consumption in developed countries [4,6,16]. One strategy for
reducing such energy consumption lies on buildings thermal retrofit achieved
either by an internal or an external insulation [9]. Among several options [9], an
external insulation may be based on covering the entire building with an envelope
made out of rectangular wood-made panels [7,23]. However, some difficulties
are present when targeting such renovation in industrial proportions, e.g. in a
country. These difficulties include slow conception using by hand configuration,
human scheduling and craft assembly. In consequence, it is essential to assist
this massive retrofit of buildings with decision support systems [10].

A crucial aspect of the retrofit automation lies in its facade layout-synthesis.
Simply stated, given a rectangular facade surface and an undetermined number

Open Packing for Facade-Layout Synthesis Under a General Purpose Solver 509

of rectangular panels, find a solution on how to determine the number of panels,
assign size to them and place them over the facade. The family of these problems
is called layout synthesis [13] and are by nature combinatorial problems [5,24].
Three characteristics make this problem novel and interesting:

1. Unlike most works [12,13], the number of panels to be allocated in a non-
overlapping fashion is not known a priori.

2. Some rectangular areas inside facades (existing windows and doors) are
meant to be completely overlapped by panels. Each area must be covered
by one and only one panel in which the corresponding hole will be manufac-
tured once the layout definition is done.

3. Facades have specific areas to attach panels that are strong enough to sup-
port their weight.

Due to the rectangular geometry of panels and facades, this problem may be
treated as a constrained two-dimensional packing problem [8]. By doing this, we
may take advantage of the great body of literature on two-dimensional packing
while exploiting technological tools, such as general purpose constraint solvers,
to tackle the problem. Indeed, Constraint Programming (CP) is, arguably, the
most used technology at the crossroads of Artificial Intelligence and Operations
Research to address combinatorial problems. CP provides a declarative language
and efficient solvers to model and solve complex decision problems where vari-
ables are subject to various constraints. It is known to solve efficiently packing
problems [3] having, among other abstractions, the geometrical constraint GEOST
[2]. However, as we only deal with rectangular shapes, the constraint GEOST [2]
seems too complex for our need and would bring an unnecessary risk from a
software maintenance point of view. Instead, we use the simpler and well known
non overlapping DiffN global constraint [3]. Moreover, we exploit the possibil-
ities, provided by general purpose CP solvers, to implement ad hoc constraints
and search procedures that fit the problem structure. Thus, we consider a CP
solver as an algorithm integration framework for the development of a decision
support application.

Nevertheless, not having a predefined number of rectangles becomes a draw-
back given that the great majority of constraint programming environments
implement global constraints and search engines with a fixed set of variables. In
fact, performing filtering and searching using an unfixed number of variables, i.e.,
a dynamically changing problem, is an active research topic in the constraint pro-
gramming community. In [1], the author solves the problem of unknown variables
by dynamically adding variables while exploring the search tree. In essence, it
introduces a setup in which constraints may be deactivated to be replaced with
new activated constraints involving more or less variables. Nonetheless, even
though the idea seems simple, a good implementation is intricate. Instead, our
work is inspired from [22], where the authors introduce open global constraints.
An open global constraint is an extension of an existing global constraint that
includes a set variable (or an array of binary variables) to indicate the subset of
decision variables the former constraint holds on. In other words, some decision

510 A.F. Barco et al.

variables of the problem become optional (see [11,19] and Section 4.4.16 in [18]
for further information).

The aim of this paper is to propose a solution to the facade-layout synthe-
sis problem as a two-dimensional packing problem with optional rectangles. We
do so by using an open variant of the DiffN constraint [3] to handle rectan-
gles that are potentially in the solution. Also, we present a simple yet efficient
search heuristic which captures the problem structure. The proposed solutions
are implemented using the open-source constraint environment Choco [17]. An
empirical evaluation shows the practical impact of every contribution and pro-
vides a better understanding of the solving process. The paper is divided as
follows. In Section 2 the facade-layout elements are introduced. In Section 3, the
constraint-based definition of the problem is presented. In Section 4 we provide
technical details of our implementation. In Section 5, a search heuristic that cap-
tures the problem structure is presented. Afterwards, in Section 6, we show some
performance evaluation of our methods. Finally, some conclusions are discussed
in Section 7.

2 Retrofit Industrialization

This work is part of project called CRIBA (for its acronym in French of Con-
struction and Renovation in Industrialized Wood Steel) [7]. This project focuses
on the industrialization of energetic renovation for residential buildings. The
challenge, very ambitious, is to have a building energetic performance under
25kWh/m2/year after the renovation. The complete renovation (internal and
external retrofit) started at the beginning of 2015 with the internal part only.

The industrialization is based on an external new thermal envelope which
wraps the whole buildings. The envelope is composed of prefabricated rectan-
gular panels comprising insulation and cladding, and sometimes including in
addition, doors, windows and solar modules. As a requirement for the reno-
vation, facades have to be strong enough to support the weight added by the
envelope.

Within CRIBA several tools, needed to industrialize the renovation process,
will be developed:
a. a new method for three-dimensional building survey and modeling (building

information model),
b. a configuration system for the design of the new thermal envelope (topic of

this paper), and
c. a working site planning model with resource constraints.

This section introduces the problem of facade layout-synthesis from the
industrial point of view.

2.1 Elements

Facades. A facade is represented by a two-dimensional coordinate plane (see
Figure 1), with origin of coordinates (0,0) at the bottom-left corner of the facade,
and contains rectangular zones defining:

Open Packing for Facade-Layout Synthesis Under a General Purpose Solver 511

– Perimeter of facade with it size (height and width in meters).
– Frames (existing windows and doors over the facade) play an important role
as they are meant to be completely overlapped by one and only one panel.
Frames are defined with:
• Origin point (x,y) with respect to origin of facade.
• Width and height (in meters).

– Supporting areas. As the layout problem must deal with a perpendicular
space plan, gravity must be considered. It turns out that some areas over
the facade have load bearing capabilities that allow us to attach panels.
Supporting areas have well-defined:
• Origin point (x,y) with respect to origin of facade.
• Width and height (in meters).

Fig. 1. Facades: Frames and supporting areas.

Rectangular panels. Panels are rectangular (see Figure 2), of varying sizes and
may include different equipment (solar modules, window-holes, shutters, etc.).
These panels are designed one at a time in the process of layout synthesis and
manufactured in the factory prior to shipment and installation on the building
site. These panels have a well-defined:

– Size (height and width in meters). Height and width are constrained by a
given lower and upper bound provided that is consequence of environmental
or manufacturing limitations.

– Thickness and insulation. Thermal performance of a given panel depends
on several properties: Size, thickness and insulation type. Consider that the
smaller the thickness of the panel the better quality should be the insulation
in order to reach performance objectives.

– New frames (such as new doors and new windows). Given internal structure
of rectangular panels, new frames must respect a parameterizable minimum
distance (∆) with respect to panel’s borders.

– Cost depending mainly on size and attached equipment (in Euros).
– Thermal performance (in watts per meter square-kelvins, w.m−2.k−1)
depending on size, chosen thickness and insulation type.

Fig. 2. Rectangular parameterizable panel.

2.2 Problem Features

As mentioned in the introduction, there are three key issues reflected from
the industrial scenario. The unfixed number of panels is the most problematic.
Figure 3 depicts restrictions of the last two issues. Partially overlapping a frame,
as is the case of panel P1 in Figure 3.1, is forbidden due to manufacturing limi-
tations. Also, due to the internal structure of panels, frames’ border and panels’
border must be separated by a minimum distance and thus panel P2 is not valid.
Additionally, in oder to attach panels, the corners of each panel must match a
supporting area, thus, the panel P3 is not valid. Figure 3.2 presents a valid
layout plan composed of six panels where all requirements are fulfilled.

Fig. 3. Ill-configured panels and layout-plan solution.

Frames mandatory overlapping is a complex requirement for the retrofit.
Essentially, a frame (e.g. window or door) should be completely overlapped by
one and only one panel. Figure 4 presents two cases in which panels have conflicts
w.r.t. frames and possible solutions for them.

Fig. 4. Frame mandatory overlapping.

2.3 Assumptions

The following assumptions have been taken into account for the present work.
First, all supporting areas are strong enough in such a way that the problem
only deals with the placement of panel’s corners over supporting areas. In other
words, there is unlimited load-bearing capabilities in supporting areas and no
capabilities in the remaining of the facade area. Second, in order to compute
costs and thermal performance, we assume panel’s thickness to be a constant
and we consider only one insulation type. And third, we assume that costs and
thermal performance depends only and are in proportion with panel’s size.

2.4 Cost Function

In the industrial scenario the ranking is made w.r.t. cost and thermal perfor-
mance of the layout plan. The cost of a layout plan depends on the price of
isolated panels plus attached equipment. In this work however, we do not take
into account attached equipment as it depends on user’s preferences and not
in the layout plan. Experts have provided us a way to compute the cost of an
insulation envelope w.r.t. panels’ size. Formula 1 expresses this knowledge.

cfac =
N∑

i=1

(wi × hi) + (α − wi − hi) (1)

where wi and hi represent the width and height, respectively, of panel i,
and α is a factor provided by the manufacturer that depends on the particular
manufacturing process. As the formula express it, the term (α−wi−hi) decreases
with the size of the panel. Thus manufacturing large panels is less costly, globally,
than manufacturing small ones.

Now, from a thermal performance point of view having large panels is good
because it minimizes the joints between panels. In fact, due to the thermal char-
acteristics of the retrofit, the less panels, the better, because most of the thermal
transfer is present in the intersection of two consecutive panels (junctions) plus
facade perimeter. Therefore, the performance of a layout plan depends on the
length of junctions between two consecutive panels. Computing the length of

514 A.F. Barco et al.

the junctions for a given envelope is straightforward, formula (2) expresses this
knowledge:

ttcfac = wfac + hfac +
N∑

i=1

(wi + hi) (2)

where ttcfac stands for thermal transfer coefficient for facade fac, wfac and
hfac are the facade width and height, respectively, wi and hi represent the width
and height of panel i, respectively, and N is the number of panels composing
the envelope. According to formulas 1 and 2, using large panels is appropriated
to reduce costs and improve thermal insulation. As the larger the panels the
smaller the number of used panels, our optimization function lies on minimizing
the number of used panels.

3 Facade-Layout Synthesis as a CSP

In this section we introduce a constraint satisfaction model for the facade-
layout synthesis problem. Recall that a constraint satisfaction problem (CSP)
is described in terms of a set of variables V, a collection of potential values D
for each variable and a set of relations C over those variables, referred to as
constraints [14,15]. A CSP solution is an assignment of values for each variable
in such a way that every constraint in C is satisfied.

Let F denote the set of frames and S the set of supporting areas. Let oe.d and
le.d denote the origin and length, respectively, of a given entity e in the dimension
d, with d ∈ {1, 2}. For instance, ofr.1 denotes the origin in the horizontal axis
and lfr.1 denotes the width of frame fr. Additionally, lbd and ubd respectively
denote the minimum and maximum size, in dimension d, for all rectangles.

3.1 Variables

At first glance, we know that decision variables will be related to rectangles
(i.e., panels). One of the major difficulties for tackling the problem using CP
is that the number of rectangles to be allocated is unfixed. Therefore, we first
heuristically bound this number from above. Let n denote an estimate of the
maximum number of rectangles to cover the facade. Given the lower and upper
bounds for rectangles’ size and the facade size, we consider n =

⌈
fac1×fac2
lb1×lb2

⌉
.

We then create a set of n optional rectangle variables, each one referring to a
panel that may or may not belong to the solution. Each rectangles 0 ≤ p ≤ n is
described by its presence, origin and size attributes:

– bp ∈ {0, 1} indicates whether or not rectangles p is used in the solution.
– op.d ∈ [0, ofac.d] is the origin of rectangles p in dimension d.
– lp.d ∈ [lbp.d, ubp.d] is the length of rectangles p in dimension d.

Open Packing for Facade-Layout Synthesis Under a General Purpose Solver 515

Note that, as a rectangle is already defined by an array of integer variables
(its coordinates and size), it is more natural to extend it with a fifth binary
variable representing its presence in the solution than introducing a set variable
to represent all present rectangles [22]. Domains for each variable depends on
the variable semantics. For instance, the origin op.1 is in the interval [0, lfac.1].
Thus, for dealing with attaching points for rectangles, we use auxiliary variables
to represent op.2 + lp.2 and assign as domain those points over the facade where
supporting areas exists. Thus, these variables are instantiated using a domain
with holes, hence avoiding posting a constraint to deal with attaching points.

Finally, we introduce an objective variable z representing the number of
rectangles that are used in a solution. We then have

⌈
fac1×fac2
ub1×ub2

⌉
≤ z ≤ n.

3.2 Business Constraints

In order to configure the layout of a given facade we use constraints to ensure
relations over the variables representing entities. We shall begin the description
of four constraints that are related to the problem specifications.

(C1) Manufacturing and transportation limitations constrain panel’s size with a
give lower bound lb and upper bound ub in one or both dimensions:

∀p, 0 ≤ p < n, d ∈ {1, 2} lbd ≤ lp.d ≤ ubd

(C2) The entire facade area must be covered with panels:

n−1∑
p=0

(
bp × lp.1 × lp.2

)
= lfac.1 × lfac.2

It is worth noticing that this constraint will lead to a very weak filtering,
because the domain of the l variables may be large and the constraint allows
panel overlaps. Therefore, it will be strengthened by the search heuristic.

(C3) Any two distinct panels that both belong to the solution do not overlap:

OpenDiffN(b, o, l)

This corresponds to the Open [22] variant of the DiffN [3] constraint, i.e.
a generalization of DiffN to handle optional rectangles.

(C4) Each frame over the facade must be completely overlapped by one and only
one panel. Additionally, frame borders and panel borders must be separated
by a minimum distance denoted by ∆:

∀f ∈ F,∃p, 0 ≤ p < n, d ∈ {1, 2} |
op.d + ∆ ≤ of.d ∧ of.d + lf.d ≤ op.d + lp.d + ∆

This constraint is implemented as a dedicated global constraint and will
be discussed further.

516 A.F. Barco et al.

3.3 Symmetry-Breaking Constraints

As we want to present to the end-user (e.g. an architect) a diverse set good if not
optimal solutions, we must avoid to enumerate symmetrical ones. The following
constraints break symmetries for rectangles in the solution as well as unused
rectangles.

(C5) Panels are ordered:

LexChainLessEq({{(1 − bp), op,1, op,2}| 0 ≤ p < n})

This lexicographic constraint [21] ensures that priority is given to use the
first rectangles and that rectangles that are used in the solution are ordered
geometrically.

(C6) Unused panels are arbitrarily fixed:

∀p, 0 ≤ p < n,∀d ∈ {1, 2}, bp = 0 ⇒ op,d = 0 ∧ lp,d = lbd

In order to avoid wasting time on unused rectangles, we may fix their origin
variables to the first possible attachment point as well as its size variables
to their minimum values. In the (C6) constraint network, it is assumed
that there is a valid supporting area at point (0,0).

4 Implementation

This section provides details on the model implementation. Basically, our solu-
tion follows the approach in [22] where a set variable is used to handle decision
variables that are potentially in the solution. In this work however, as rectan-
gle variables are already composed of several integer attributes, we found more
natural to use an extra binary variable per rectangle instead of a set variable.
Intuitively, an open constraint with boolean variables may be implemented fol-
lowing traditional filtering algorithms and may be enhanced by targeting the
structure of the problem.

4.1 An Open Constraint for Rectangle Non-Overlapping (C3)

As can be seen in the literature, the OpenDiffN constraint has already been
implemented (see No-Overlap with optional rectangles in Section 4.4.16 in [18]
for instance) but we consider it is necessary to provide a brief description of its
behavior. The filtering algorithm of the OpenDiffN checks whether two panels
that are part of the solution, i.e., whose bi is equal 1, do overlap, and proceeds to
domain filtering to prevent overlaps, as traditional DiffN propagators do. Con-
versely, if two panels do overlap in space, then domain filtering on the boolean
variables ensures that at least one of the two panels is not used. The overall fil-
tering is strengthened by a constructive disjunction algorithm that computes an
attaching point for the bottom left corner of each rectangle, that is valid (from
the packing point of view only) with respect to already fixed panels.

Open Packing for Facade-Layout Synthesis Under a General Purpose Solver 517

4.2 A Constraint Dedicated to Frame Covering (C4)

The C4 constraint is propagated using a dedicated approach. The filtering algo-
rithm is pretty simple and works as follows: For every frame, two support panels
(i.e. panels the frame fits in) are computed. In case no support panel is found
then the solver fails. In case only a single panel is found, then a filtering proce-
dure is applied to enforce it to cover the frame. Finally, in case two panels have
been found, then no propagation is triggered because we do not know which
panel will be used to cover the facade.

4.3 Embedding Symmetry-Breaking

The lexicographic constraint has a strong influence on the model. It enables
to output different solutions, to reduce the size of the search tree but that is
not all: It is possible to speed up the other global constraints by taking that
information into account while filtering. For instance, any for loop seeking all
used rectangles (bi = 1) can stop as soon as one undetermined rectangle (bi =
{0, 1}) has been found because further rectangles are either undetermined or
unused. Thus, it is possible to exploit the problem structure to improve the
implemented constraints.

We will now see how to exploit the problem structure within search.

5 The Search Heuristic

The search heuristic is responsible of bounding rectangle’s decision variables
when propagation cannot infer more information. Our heuristic is described in
Algorithm 1. It is a constructive approach that considers each rectangle i one
by one and uses the following variable selection priority: bi, oi1, oi2, li1 and
finally li2. We apply a traditional binary branching scheme over stated variables
[20]. It means that, instead of iterating over domain values, the heuristic assigns
a value to a variable and removes that value from the variable domain upon
backtracking.

The originality of our method is that some decisions cannot be negated:
Instruction d.once() in line 27 tells the solver not to try different values on
failure. For instance, if o1 = 1 and the node fails, it will not try to propagate
o1 ̸= 1 and compute a new decision. Instead, it will backtrack once more (to the
decision associated with the size of the previous rectangle).

The heuristic implements the following key design choices:

1. We set the b variables to 1 in order to arrive rapidly to solutions.
2. The position variables o1 and o2 are fixed to their lower bounds in order to

leave no uncovered places between the considered rectangle and previously
placed rectangles. In short, the real decision variables are b, l1 and l2. But
o1 and o2 should be set in a deterministic way without backtracking. As
rectangles are ordered, trying a larger value would lead to a hole on the
facade, which is forbidden. Note that this is only possible because the filtering

Algorithm 1. Dedicated Search Heuristic
1 def Function getBranchingDecision:
2 int r ← −1; // compute the first unfixed rectangle;
3 for i ← 0 to n do
4 if |dom(bi)|+ |dom(oi1)|+ |dom(oi2)|+ |dom(li1)|+ |dom(li2)| > 5 then
5 r ← i; break;

6 if r == −1 then
7 return null; // all rectangles are fixed (a solution has been found)
8 // Find the next variable-value assignment to perform
9 IntegerVariable var, int val;

10 if |dom(bi)| > 1 then
11 var ← bi;
12 val ← 1;

13 else if |dom(oi1)| > 1 then
14 var← oi1;
15 val ← dom(oi1).lb;

16 else if |dom(oi2)| > 1 then
17 var← oi2;
18 val ← dom(oi2).lb;

19 else if |dom(li1)| > 1 then
20 var← li1;
21 val ← dom(li1).ub;

22 else
23 var← li2;
24 val ← dom(li2).ub;

25 Branch d = new Branch(var, val);
26 if var == oi1 ∨ var == oi2 then
27 d.once(); // prevents the solver from trying different values upon

backtracking
28 return d;

is strong enough: The lower bound is indeed a valid support from the packing
point of view.

3. The size variables l1 and l2 are set to their upper bounds in order to try
rectangles as large as possible and thus cover the largest possible area. This
enables to get a first solution that is very close to the optimal value.

Overall, the search mechanism combines two different principles. First, it is
based on a greedy constructive approach that is efficient but limited. Second, it
uses a customized (some decisions cannot be negated) backtracking algorithm
to explore alternatives.

Open Packing for Facade-Layout Synthesis Under a General Purpose Solver 519

6 Evaluation

In this section we empirically evaluate our model, which has been implemented in
Java, with the Choco solver [17]. We consider a dataset of 20 instances, generated
from realistic specifications. The total area of the facade ranges from 104 to 106
to test the scalability of the approach. Panels are generated using a lower bound
of 20 (pixels) and an upper bound of 150 (pixels), for both width and height.

6.1 A Two-Step Approach

In a first experiment we want to evaluate whether or not the maximum number of
used panels is a good approximation of the optimum. Figure 5 presents the number
of used panels and the number of optional panels for every instance. Themaximum
number of panels, which represents the worst case scenario where panels’ size lower
bounds are used, is never reached.We can see that the first solution is actually very
far from the optimum. Further, this maximum number is an upper bound far to
high: For a facade of size 2300 × 575, the solver handles 3220 optional panels to
compute a first solution that uses only 96 panels. This means that we create too
many useless variables that will slow down the solving process. Therefore, we set
up a 2-step approach: First a solution is computed using our model. Second, we
create a new model with the value of the previous solution as maximum number
of panels. Then, we enumerate all optimal solutions.

6.2 Impact of Symmetry Breaking

In a second experiment, wemeasure the impact of adding symmetry-breaking con-
straints. More precisely we compare the time to find a first solution (Figure 6.a)
and the number of computed solutions (Figure 6.b) with and without symmetry-
breaking constraints. Because of the huge amount of solutions, we use a time limit

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0ഃ100 2ഃ105 4ഃ105 6ഃ105 8ഃ105 1ഃ106 1ഃ106 1ഃ106

Nu
m

be
r o

f p
an

el
s

Facade surface

Used panels versus facade surface

Number of used panels
Maximum number of optional panels

Fig. 5. Maximum number of optional panels and number of used panels in the first
solution, for every instance.

520 A.F. Barco et al.

of 60 seconds. As we can see it on Figure 6, symmetry-breaking constraints speed
up the search. Moreover, it enables to skip thousands of solutions that are identi-
cal for the end user. This is even more important than saving computational time.
Note that it seems that the number of solutions decreases when the facade area
increases: this is due to the time limit. As the problem gets bigger, the solving
process gets slower and enumerates less solutions in a given time.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0ഃ100 2ഃ105 4ഃ105 6ഃ105 8ഃ105 1ഃ106 1ഃ106 1ഃ106

Ti
m

es
 in

 s
ec

on
ds

Facade surface

Time of first solution versus facade surface

Without symmetry breaking
With symmetry breaking

 0

 500

 1000

 1500

 2000

 2500

 0ഃ100 2ഃ105 4ഃ105 6ഃ105 8ഃ105 1ഃ106 1ഃ106 1ഃ106
Nu

m
be

r o
f S

ol
ut

io
ns

Facade surface

Number of solutions versus facade surface

Without symmetry breaking
With symmetry breaking

(a) (b)

Fig. 6. Time to reach a first solution and number of computed solutions, with a 60
seconds time limit.

6.3 Search Comparison

In regard to different search heuristics, we have not found any well-suited for
addressing the problem. Actually, well-known black-box search strategies such
as domOverWDeg, impact-based search or activity-based search, do not per-
form well given the problem particularities. These heuristics are designed to
solve problems in a blind way, when we have no expert knowledge of the prob-
lem. In our case, we mix very different kind of variables (booleans, positions,
sizes) that we are able to group by rectangles and order. Introducing random-
ness on either the variable selection or the value selection may be disastrous. In
particular, using arbitrary values for o1 and o2 makes a huge amount of possi-
bilities for uncovered places. Nonetheless, in order to validate the relevance of
our dedicated heuristic, we have tested 16 predefined heuristics from Choco on
a small facade (400 × 100). We present the results for those ones that threw
at least one solution. These strategies are: domOverWDeg which selects the vari-
able with the smallest ratio |d(x)|

w(x) , where |d(x)| denotes the domain size of a
variable x and w(x) its weighted degree; lexico_LB which chooses the first non-
instantiated variable, and assigns it to its lower bound; lexico_Split which
chooses the first non-instantiated variable, and removes the second half of its
domain; maxReg_LB which chooses the non-instantiated variable with the largest
difference between the two smallest values in its domain, and assigns it to its
lower bound; minDom_LB which chooses the first non-instantiated variable with
the smallest domain size, and assigns it to its lower bound and; minDom_MidValue
which chooses the first non-instantiated variable with the smallest domain size,

Open Packing for Facade-Layout Synthesis Under a General Purpose Solver 521

and assigns it to the value closest to the middle of its domain. The last entry is
our own search heuristic. Recall that variables are ordered as b, o1, o2, l1 and l2.

Table 1. Heuristic comparison on a 400 × 100 (pixels) facade.

Strategy First solution time (s) Total time (s) #nodes #solutions
domOverWDeg 18.77 19.94 1412897 66

lexico LB 0.03 0.22 2380 66
lexico Split 0.03 0.16 441 66
maxReg LB 0.03 0.22 2380 66
minDom LB 0.74 19.96 1411183 66

minDom MidValue 43.43 47.32 4755206 66
dedicated 0.03 0.85 10978 66

Table 2. Heuristic comparison on a 400 × 200 (pixels) facade with a 3−minute time
limit

Strategy First solution time (s) #nodes #solutions
domOverWDeg - 7286594 0

lexico LB - 5772501 0
lexico Split - 4966920 0
maxReg LB - 5490088 0
minDom LB - 11961712 0

minDom MidValue - 11157755 0
dedicated 0.039 3499527 726

Tables 1 and 2 respectively provide the results for a 400× 100 and 400× 200
instance. Although some predefined heuristics have a good performance on the
first (small) instance, none of them scales. In fact, no predefined search heuristic
finds a solution for a facade with size 400 × 200 in reasonable computational
time whereas our dedicated heuristic already finds 726 different solutions in
180 seconds. Our heuristic clearly outperforms the others. More importantly, it
enables to always output a solution fast, which is critical for the user.

7 Conclusions

This paper presents a solution to the facade-layout synthesis problem treated as
a two-dimensional packing problem. Although there exists a great body of lit-
erature on two-dimensional packing, our industrial scenario includes three char-
acteristics never considered simultaneously: Its deals with the allocation of an
unfixed number of rectangular panels that must not overlap, frames over the
facade must be overlapped by one and only one panel, and facades have specific
areas to attach panels. Thus, as far as we know, no support system nor design
system is well-suited for addressing such particularities.

We have used constraint satisfaction and constraint programming as under-
lying model and solving technique. Constraint programming technology is well-
suited for addressing this industrial problem because on the one hand, an objec-
tive function is identified, namely minimize number of panels, and on the other

522 A.F. Barco et al.

hand, the building of a prototype using an open constraint programming envi-
ronment is much easier, thanks to all the pre-defined constraints, search and
provided abstractions. The modeling decisions was made by a four-person team
whereas the development was carried out by a two-person team with knowl-
edge on open constraint programming environments (e.g. Choco, Gecode, finite
domain module of Mozart-Oz). The development was done in one month of
work.

Considering that the number of panels is not know in advance we have used
a variant of the DiffN constraint to handle optional rectangles by means of
boolean variables. We have implemented a constraint for the mandatory frame
overlapping and a dedicated search heuristic that takes advantage of the problem
structure and thus is able to enumerate optimal solutions w.r.t. the number of
used panels. Our proposed solutions have been implemented in the Choco solver
and demonstrate the validity of our method. In particular, our model takes
the benefit of both a greedy and a tree-search approach in order to output
several good solutions very fast, which was the most critical requirement from
the client. This highlights the importance of the great flexibility of Constraint
Programming.

Future directions of this work include the definition of different heuristics
that take into account aesthetic aspects, the inclusion of weight constraints over
panels and supporting areas as well as variables for panel’s thickness and isolation
type that have an impact on the layout solution. In addition, the packing of
different (convex) shapes should be stressed.

References

1. Barták, R.: Dynamic global constraints in backtracking based environments.
Annals of Operations Research 118(1–4), 101–119 (2003)

2. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geomet-
rical constraint kernel in space and time for handling polymorphic k -dimensional
objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer,
Heidelberg (2007)

3. Beldiceanu, N., Carlsson, M., Demassey, S., Poder, E.: New filtering for the cumu-
lative constraint in the context of non-overlapping rectangles. Annals of Operations
Research 184(1), 27–50 (2011)

4. The Energy Conservation Center: Energy Conservation Handbook. The Energy
Conservation Center, Japan (2011)

5. Charman, P.: Solving space planning problems using constraint technology (1993)
6. U.S. Green Building Council: New Construction Reference Guide (2013)
7. Falcon, M., Fontanili, F.: Process modelling of industrialized thermal renovation

of apartment buildings. In: eWork and eBusiness in Architecture, Engineering and
Construction, pp. 363–368 (2010)

8. Imahori, S., Yagiura, M., Nagamochi, H.: Practical algorithms for two-dimensional
packing. Chapter 36 of Handbook of Approximation Algorithms and Metaheuris-
tics (Chapman & Hall/Crc Computer & Information Science Series) (2007)

9. Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation
materials and solutions - properties, requirements and possibilities. Energy and
Buildings 43(10), 2549–2563 (2011)

Open Packing for Facade-Layout Synthesis Under a General Purpose Solver 523

10. Juan, Y.-K., Gao, P., Wang, J.: A hybrid decision support system for sustain-
able office building renovation and energy performance improvement. Energy and
Buildings 42(3), 290–297 (2010)

11. Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol.
5547, pp. 148–162. Springer, Heidelberg (2009)

12. Lee, K.J., Hyun, W.K., Lee, J.K., Kim, T.H.: Case- and constraint-based project
planning for apartment construction. AI Magazine 19(1), 13–24 (1998)

13. Robin, S.: Liggett. Automated facilities layout: past, present and future. Automa-
tion in Construction 9(2), 197–215 (2000)

14. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences 7, 95–132 (1974)

15. Olarte, C., Rueda, C., Valencia, F.D.: Models and emerging trends of concurrent
constraint programming. Constraints 18(4), 535–578 (2013)

16. Pérez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption
information. Energy and Buildings 40(3), 394–398 (2008)

17. Prud’homme, C., Fages, J.G.: An introduction to Choco 3.0, an open source java
constraint programming library. In: International workshop on CP Solvers: Mod-
eling, Applications, Integration, and Standardization, Uppsala, Sweden (2013)

18. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode
(2010)

19. Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628–644. Springer, Heidelberg
(2013)

20. Smith, B.M.: Modelling for constraint programming (2005)
21. van Hoeve, W.-J., Hooker, J.N. (eds.): CPAIOR 2009. LNCS, vol. 5547. Springer,

Heidelberg (2009)
22. van Hoeve, W.-J., Régin, J.-C.: Open constraints in a closed world. In: Beck, J.C.,

Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 244–257. Springer, Heidel-
berg (2006)

23. Vareilles, E., Barco Santa, A.F., Falcon, M., Aldanondo, M., Gaborit, P.: Config-
uration of high performance apartment buildings renovation: a constraint based
approach. In: 2013 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), pp. 684–688, December 2013

24. Zawidzki, M., Tateyama, K., Nishikawa, I.: The constraints satisfaction prob-
lem approach in the design of an architectural functional layout. Engineering
Optimization 43(9), 943–966 (2011)

