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How does information from low and high spatial frequencies interact during
scene categorization?
Louise Kauffmanna,b†, Alexia Roux-Sibilona†, Brice Beffaraa, Martial Mermilloda, Nathalie Guyaderc and
Carole Peyrina
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Communication Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; cImage and Signal
Department, University of Grenoble Alpes, GIPSA-lab UMR5216, Grenoble, France

ABSTRACT
Current models of visual perception suggest that, during scene categorization, low spatial
frequencies (LSF) are rapidly processed and activate plausible interpretations of visual input. This
coarse analysis would be used to guide subsequent processing of high spatial frequencies (HSF).
The present study aimed to further examine how information from LSF and HSF interact and
influence each other during scene categorization. In a first experimental session, participants had
to categorize LSF and HSF filtered scenes belonging to two different semantic categories
(artificial vs. natural). In a second experimental session, we used hybrid scenes as stimuli made
by combining LSF and HSF from two different scenes which were semantically similar or
dissimilar. Half of the participants categorized LSF scenes in hybrids, and the other half
categorized HSF scenes in hybrids. Stimuli were presented for 30 or 100 ms. Session 1 results
showed better performance for LSF than HSF scene categorization. Session 2 scene
categorization was faster when participants attended and categorized LSF than HSF scene in
hybrids. The semantic interference of a semantically dissimilar HSF scene on LSF scene
categorization was greater than the semantic interference of a semantically dissimilar LSF scene
on HSF scene categorization, irrespective of exposure duration. These results suggest a LSF
advantage for scene categorization, and highlight the prominent role of HSF information when
there is uncertainty about the visual stimulus, in order to disentangle between alternative
interpretations.
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Introduction

At a glance, the human visual system is able to
robustly process and categorize complex stimuli
such as natural scenes (e.g., Thorpe, Fize, & Marlot,
1996), despite their infinite variability in terms of
objects they contained, or their spatial configuration.
Converging data from neurophysiological recordings
in primates (Bullier, 2001; De Valois, Albrecht, &
Thorell, 1982; Poggio, 1972; Shams & von der Malsburg,
2002; Shapley & Lennie, 1985; Van Essen & Deyoe,
1995) and psychophysical studies in human (Hughes,
Nozawa, & Kitterle, 1996; Parker, Lishman, & Hughes,
1996; Schyns & Oliva, 1994; for a review see Sowden
& Schyns, 2006) indicate that the visual system

extract visual information through a set of channels/
filters differently tuned to specific orientations and
spatial frequency bands of the visual input. Based on
these data, current models of visual perception have
emphasized the role of spatial frequency information
for visual categorization (Bar, 2003; Hegdé, 2008;
Kauffmann, Ramanoël, & Peyrin, 2014; Peyrin et al.,
2010). According to these models, visual analysis
begins with the parallel extraction of different elemen-
tary features at different points of the spatial fre-
quency spectrum that provide different information
about the visual scene. Lower spatial frequencies
(LSF) provide coarse information, such as the global
shape and structure of a visual scene, and are
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predominantly conveyed through fast magnocellular
channels. Higher spatial frequencies (HSF) provide
finer information about the scene, such as edges or
object details, and are conveyed more slowly through
parvocellular channels. On the basis of the neurophy-
siological properties of the magno- and parvocellular
pathways (Bullier, 2001; Maunsell et al., 1999) and
results of psychophysical studies in humans (Hughes
et al., 1996; Kauffmann, Chauvin, Guyader, & Peyrin,
2015; Musel, Chauvin, Guyader, Chokron, & Peyrin,
2012; Parker, Lishman, & Hughes, 1992; Schyns &
Oliva, 1994), it has been suggested that visual scene
analysis follows a predominantly coarse-to-fine proces-
sing sequence. LSF information would be extracted
first, allowing a coarse parsing of the visual input,
prior to the analysis of fine information contained in
HSF. In this theoretical framework, it was also hypoth-
esized that rapid LSF information may guide the sub-
sequent processing of HSF (Bar, 2003; Kauffmann
et al., 2014; Peyrin et al., 2010; Trapp & Bar, 2015).

A predominant coarse-to-fine processing of scenes
was first evidenced in a behavioural study by Schyns
and Oliva (1994). The stimuli used by these authors
were hybrid scenes made by adding a scene filtered
in LSF (e.g., a highway) to another scene filtered in
HSF (e.g., a city) and presented for 30 or 150 ms.
They showed that, for short exposure (30 ms), categ-
orical perception of hybrids was based on the cat-
egory of the LSF scene which illustrates a perception
dominated by the scene in LSF. However, for longer
exposure (150 ms), the perception of hybrids was
dominated by the scene in HSF. Importantly, partici-
pants were not aware that the hybrids contained
two different scene categories. These results therefore
suggested that, in the absence of awareness of any
apparent conflict between two scenes in the stimulus,
LSF information is predominantly used at early stages
of visual processing whereas HSF are used at later
stages in accordance with a coarse-to-fine visual pro-
cessing sequence. Further studies supported these
results by showing for example that scenes filtered
in LSF are categorized more quickly than scenes fil-
tered in HSF (e.g., Kauffmann, Ramanoël, Guyader,
Chauvin, & Peyrin, 2015) and that the processing of
LSF before HSF information is more advantageous
for scene categorization than the reverse processing
sequence (i.e., HSF before LSF; e.g., Kauffmann,
Chauvin, et al., 2015; Musel et al., 2012). However,
little is known about the integration of LSF and HSF

before the full recognition of scenes and the potential
influence of LSF information on HSF processing.

Recent neuroimaging studies investigated that
issue using hybrid scenes as stimuli and examining
directly how the categorization of the HSF component
in hybrids is influenced by the LSF component (Kauff-
mann, Bourgin, Guyader, & Peyrin, 2015; Mu & Li,
2013). In these studies, participants were aware of
the two different scenes in hybrids and were
instructed to ignore the LSF scene in hybrids, attend
the HSF scene, and categorize the latter. The two
scenes composing the hybrids were either semanti-
cally similar (e.g., a natural scene in LSF superimposed
with a natural scene in HSF) or dissimilar (e.g., a natural
scene in LSF superimposed with a man-made scene in
HSF). The categorization of HSF scenes was impaired
when the two scenes composing the hybrids were
semantically dissimilar. Although it was not relevant
to perform the task, the semantic information con-
tained in the LSF scene was still processed and inter-
fered with the categorization of the HSF scene when
the two scenes were semantically dissimilar. This
semantic interference effect was even greater when
the two scenes composing the two semantically dis-
similar scenes were physically similar (Mu & Li, 2013),
suggesting that the spatial overlap between LSF and
HSF caused greater impairment of HSF categorization
in the absence of any semantic congruence between
the two scenes. The semantic interference effect was
thus interpreted as the signature of the integration
of semantic information from both LSF and HSF and
the influence of LSF over HSF scene categorization.

On a neurobiological level, results from ERP record-
ings (Mu & Li, 2013) revealed that the semantic inter-
ference effect was associated with a negative frontal
component (N1) 122 ms after stimulus onset,
suggesting that this short amount of time is sufficient
for the integration of semantic information from both
LSF and HSF in frontal areas. Results from fMRI (Kauff-
mann, Bourgin, et al., 2015) further showed that the
semantic interference effect involved the inferior
frontal gyrus (including the orbitofrontal cortex) and
the inferotemporal cortex, and was associated with
greater functional connectivity between these two
regions. Overall, results from these two studies sup-
ported the proactive model of visual recognition
(Bar, 2003, 2007; Trapp & Bar, 2015). In that theoretical
context, the semantic interference effect in frontal and
inferotemporal areas was interpreted as reflecting
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erroneous predictions generated in the inferior frontal
cortex based on LSF information of hybrids in the
semantically dissimilar condition that led to impaired
HSF scene categorization in the inferotemporal
cortex, resulting in greater connectivity between
these areas.

These studies provided supplementary argument in
favour of a coarse-to-fine categorization of scenes, by
showing that fast processing of LSF information is
automatic and cannot be voluntarily inhibited. Fur-
thermore, they suggested that the extraction of
semantic information contained in LSF strongly influ-
ences the processing of HSF information during
scene categorization. However, whether HSF proces-
sing can also influence LSF categorization was not
the main focus of these studies. Although the promi-
nent role of LSF information for rapid scene categoriz-
ation has been extensively investigated and
documented (Hughes et al., 1996; Schyns & Oliva,
1994; for a review see Hegdé, 2008; Kauffmann et al.,
2014), there is also considerable experimental evi-
dence of a predominant processing of HSF infor-
mation even for very short stimuli exposure duration
(Campagne et al., 2016; Harel & Bentin, 2009; Morrison
& Schyns, 2001; Rotshtein, Schofield, Funes, & Hum-
phreys, 2010; Schyns, 1998; Schyns & Oliva, 1999). Fur-
thermore, many studies have shown that the use of
spatial frequency information during the processing
of complex stimuli such as scenes is highly flexible
and depends on many factors such as stimulus
exposure duration (Schyns & Oliva, 1994), category
(e.g., Awasthi, Sowman, Friedman, & Williams, 2013;
Collin & McMullen, 2005; Rotshtein et al., 2010; Van-
nucci, Viggiano, & Argenti, 2001), or task constraints
(Abrams, Barbot, & Carrasco, 2010; Campagne et al.,
2016; Caplette, West, Gomot, Gosselin, & Wicker,
2014; Fradcourt, Peyrin, Baciu, & Campagne, 2013;
Morrison & Schyns, 2001; Ozgen, Payne, Sowden, &
Schyns, 2006; Schyns & Oliva, 1999; Sowden, Özgen,
Schyns, & Daoutis, 2003). For example, different
spatial frequency bands would be used according to
their diagnosticity to categorize a specific visual stimu-
lus. It has been shown that spatial frequencies below 2
cpd are diagnostic to perform basic-level categoriz-
ation of scenes (e.g., forest, highway, mountain;
McCotter, Gosselin, Sowden, & Schyns, 2005).
However, intermediate spatial frequencies of 2.3–4
cpd would be required for basic-level categorization
of objects (Caplette et al., 2014). Importantly, most of

these studies focused on the preferential use, the rel-
evance, or the diagnosticity of a specific spatial fre-
quency band for a given timescale or task constraint.
However, how information from a spatial frequency
band that is not directly relevant for the task at
stake can contribute to categorization has received
little interest. For example, in the context of a predo-
minant coarse-to-fine sequence of spatial frequency
processing, little is known about the relative role of
HSF information and its impact on LSF processing. In
their study, Mu and Li (2013) reported the results of
an independent control experiment in which partici-
pants were instructed to attend and categorize the
LSF scene in hybrid and ignore the HSF scene. In this
experiment, they also observed a semantic interfer-
ence effect suggesting that information from HSF
also influenced LSF categorization. However, partici-
pants performance in the semantically dissimilar con-
dition was not significantly different than chance,
possibly indicating that they were not able to
perform the task. Additionally, the authors did not
address whether the semantic interference effect
was greater in one attentional condition than the
other (i.e., Attention to the LSF or HSF scene), that is,
whether LSF interfered/influenced more strongly HSF
categorization than the other way around. It is also
likely that the relative weight of information from
LSF and HSF varies over the time-course of scene cat-
egorization. In that sense, the influence of LSF infor-
mation might be prominent at early stages of scene
categorization, whereas information from HSF would
take over at later stages.

The aim of the present behavioural study was to
further examine how information from LSF and HSF
interact and influence each other during visual scene
categorization. To this end, we used a semantic inter-
ference paradigm (Kauffmann, Bourgin, et al., 2015;
Mu & Li, 2013). We presented hybrid stimuli made
by combining the LSF and HSF components of two
different scene categories, and we manipulated the
semantic and physical similarity between the two
scenes. Critically, we also manipulated attentional con-
straints. One group of participants had to attend and
categorize the HSF scene in hybrids (HSF attentional
condition), whereas the other group had to attend
and categorize the LSF scene (LSF attentional con-
dition). Additionally, to examine whether the relative
weight of LSF and HSF varies over time, we manipu-
lated the exposure duration of stimuli which were
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presented for 30 or 100 ms. Prior to the attentional
task, all participants had to categorize the individual
LSF and HSF scenes used in hybrids in order to
examine the processing of filtered scenes indepen-
dently of attentional constraints. This also allowed us
to ensure that filtered scenes composing the hybrids
could be accurately categorized at both exposure dur-
ations. We expected the semantic interference effect
to be modulated by the attentional task and the
exposure duration of stimuli. In the context of a predo-
minant coarse-to-fine processing of scenes, we
hypothesized that at short exposure duration the
semantic interference effect would be greater in the
HSF than LSF Attentional condition, suggesting
greater interference of LSF over HSF categorization
than of HSF over LSF categorization. However, we
expected this effect to be weaker at longer exposure
duration, or perhaps reversed in such a way that HSF
would interfere more with LSF categorization than
the other way around.

Method

Participants

A total of 52 right-handed participants (15 male; Mean
age ± SD: 22 ± 3 years, range: 18–30 years) with normal
or corrected-to-normal vision and no history of neuro-
logical disorders were included in this experiment. All
participants gave their informed written consent
before participating in the study in accordance with
the Code of Ethics of the World Medical Association
(Declaration of Helsinki) for experiments involving
humans.

Stimuli and procedure

The stimuli used in the present study were black and
white photographs (256-level grey-scales, 256 × 256
pixels) taken among the scenes of the Labelme data-
base (Oliva & Torralba, 2001) and subtended 6 × 6
degrees of visual angle. In order to select our stimuli,
we first classified the 2687 scenes from this database
into two distinct categories: natural (e.g., forests,
coasts, open countryside) and man-made (e.g., high-
ways, streets, buildings). We then assessed the phys-
ical similarity of scenes in the database using (1) the
correlation between images based on their pixel
intensity values (PI correlation) and (2) the correlation

between their amplitude spectra (AS correlation, i.e.,
correlation between pixel intensity values of ampli-
tude spectra; see Kauffmann, Bourgin, et al., 2015,
for a similar procedure). We considered two scenes
as physically similar if their PI and AS correlation coef-
ficients were superior to 0.6 (only 1.59% of images
pairs matched both criteria). We considered two
scenes as physically dissimilar if their PI correlation
coefficient was inferior to 0.01 and their AS correlation
coefficient was inferior to 0.6 (only 1.37% of image
pairs matched both criteria). Based on these compu-
tations, we selected among the pairs of images with
similar physical properties 40 pairs of scenes semanti-
cally similar (20 for each category; PI: 0.75 ± 0.08; AS:
0.67 ± 0.03) and 40 pairs of scenes semantically dissim-
ilar (PI: 0.73 ± 0.06; AS: 0.66 ± 0.03), and among the
pairs of images with dissimilar physical properties 40
pairs of scenes semantically similar (20 for each cat-
egory; PI: 0.01 ± 0.00; AS: 0.43 ± 0.06) and 40 pairs of
scenes semantically dissimilar (PI: 0.01 ± 0.00; AS:
0.44 ± 0.05). This resulted in a total of 160 scenes
that were used as stimuli. With respect to the physical
similarity conditions, scenes were selected to have
similar PI and AS correlation values for the semanti-
cally similar and dissimilar pairs of images. Further-
more, mean energy was similarly distributed across
spatial frequencies for the semantically similar and dis-
similar image groups (see Figure 1(d)).

Each scene was filtered to preserve either LSF or
HSF information, using the MATLAB image processing
toolbox (Mathworks Inc., Sherborn, MA, USA). Filtered
scenes were obtained by multiplying the Fourier trans-
form of the original images with Gaussian filters. The
standard deviation of Gaussian filters was a function
of the spatial frequency cut-off for a standard attenu-
ation of 3 dB. We removed spatial frequencies above 4
cycles per degree of visual angle (cpd, i.e., 24 cycles
per image) in LSF scenes1 and below 6 cpd (i.e., 36
cycles per image) in HSF scenes. The resulting filtered
scenes were then normalized to obtain a mean lumi-
nance of 0.5, for pixel intensity values between 0
and 1 (i.e., mean luminance of 128 on a grey-level
scale). It should be noted that, for some images, this
luminance normalization procedure resulted in
obtaining luminance values below 0 or above 1.
These values were reset to 0 and 1, respectively,
after conversion of values into integer luminance
values ranging from 0 to 255 (i.e., conversion into 8-
bit data type). However, this did not affect the mean
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Figure 1. (a) Examples of black and white of photographs of scenes used with their amplitude spectrum (AS). On the amplitude spec-
trum images, low spatial frequencies (LSF) are close to the centre and high spatial frequencies (HSF) are on the periphery. (b) In the
Individual scene experimental session (Session 1), we presented artificial and natural scenes filtered in LSF of in HSF. All participants had
to categorize LSF and HSF scenes. (c) Examples of the stimuli used in the Hybrid experimental session (Session 2). Hybrid scenes were
made by adding a LSF scene and a HSF scene. The two scenes in hybrids were either (1) semantically and physically similar (SSPS; e.g.,
LSF of a natural scene superimposed with HSF of another natural scene with similar physical properties), (2) semantically similar and
physically dissimilar (SSPD; e.g., LSF of a man-made scene superimposed with HSF of another man-made scene with dissimilar physical
properties), (3) semantically dissimilar and physically similar (SDPS; e.g., LSF of a natural scene superimposed with HSF of a man-made
scene with similar physical properties), or (4) semantically and physically dissimilar (SDPD; e.g., LSF of a natural scene superimposed
with HSF of a man-made scene with dissimilar physical properties). Half of the participants had to attend and categorize the LSF scene
in hybrids (LSF-Attention) whereas the other half had to attend and categorize the HSF scene (HSF-Attention). (d) Mean energy distri-
bution across spatial frequencies of images in the four experimental conditions (SDPD, SDPS, SSPD, SSPS).
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luminance of filtered scenes which stayed at 0.5 (i.e.,
128 on a grey-level scale) after this conversion. Root-
mean square (RMS) contrast of filtered scenes was
not modified (see note 1) and was higher for LSF
than HSF scenes (LSF natural: mean RMS ± SD: 0.24 ±
0.06; LSF man-made: 0.24 ± 0.05; HSF natural: 0.06 ±
0.02; HSF man-made: 0.07 ± 0.02). The displayed lumi-
nance of filtered scenes was slightly higher for LSF
(mean luminance ± SD: 14.89 ± 2.26 candela/m²) than
HSF scenes (mean luminance ± SD: 11.75 ± 1.33
candela/m²). RMS contrast of filtered scenes was
higher for LSF than HSF scenes (mean RMS ± SD: LSF:
13.29 ± 3.95 candela/m²; HSF: 3.23 ± 0.95 candela/m²).
Hybrid stimuli were created by combining the LSF
component in one scene with the HSF component in
another scene. The two scenes which made up the
hybrids could be either semantically similar (SS; e.g.,
LSF component of a natural scene superimposed
with HSF component of another natural scene) or
semantically dissimilar (SD; e.g., LSF component of a
natural scene superimposed with HSF component of
a man-made scene). Furthermore, the two scenes
composing the hybrid could be either physically
similar (PS) or physically dissimilar (PD). There were,
therefore, four hybrid conditions (SSPS, SSPD, SDPS,
and SDPD, see Figure 1) and 160 hybrid stimuli (40
per hybrid condition, see Supplemental data 1–4 for
illustration of all stimuli). The 160 filtered scenes
used to create the hybrids were also used in a separate
experimental session where they were presented indi-
vidually (either in LSF or HSF, see Figure 1(a)). Stimuli
were displayed using E-prime software (E-prime Psy-
chology Software Tools Inc., Pittsburgh, USA) on a
17-inch monitor, with a resolution of 1024 × 768
pixels, at a refresh rate of 80 Hz and with a viewing dis-
tance of 73 cm. In order to maintain the distance and
the central position, participants’ heads were sup-
ported by a chinrest.

All participants underwent two successive exper-
imental sessions. In Session 1, they were presented
with the individual LSF and HSF filtered scenes that
were used to build up the hybrids. They were
divided into two groups (N = 26 each) for which
scenes were presented for either 30 or 100 ms. LSF
and HSF filtered scenes were randomly presented to
the participants. Participants had to categorize the fil-
tered scenes as natural or man-made. In Session 2, par-
ticipants were presented with hybrid scenes. Each
group of exposure duration was divided into two

groups (N = 13 each) for which the attention was
either directed on LSF or HSF. In the LSF Attentional
group, they were instructed to ignore the HSF scene
in hybrids, attend the LSF scene, and categorize it as
natural or man-made. In the HSF Attentional group,
they were instructed to ignore the LSF scene in
hybrids, attend the HSF scene, and categorize it as
natural or man-made. In total, there were four differ-
ent groups according to the exposure duration of
stimuli and the attentional task on hybrids (LSF-Atten-
tion/30 ms, LSF-Attention/100 ms, HSF-Attention/
30 ms, and HSF-Attention/100 ms).

In both experimental sessions, each trial began with
a central fixation point that was presented for 500 ms
(in order to control the gaze direction to the centre of
the screen) immediately followed by the stimulus
(individual scene or hybrid) and a backward mask
(built with 1/f noise) presented for 30 ms to prevent
retinal persistence. All participants were requested to
give their categorical answer as quickly and as accu-
rately as possible, by pressing the corresponding key
with the forefinger and the middle finger of their
dominant hand. Response keys were counterbalanced
across participants. The experiment lasted about 20
min and response accuracy and reaction times (in
ms) were recorded. Before the experiment, partici-
pants underwent a training session to get familiarized
with tasks and stimuli.

Results

Data analysis

For both sessions we performed two ANOVAs on
mean error rates (mER, in %) and mean correct
response times (mRT, in ms). The ANOVAs in Session
1 included Attentional group in Session 2 (LSF-Atten-
tion, HSF-Attention) and Exposure duration (30 ms,
100 ms) as between-subject factors and Spatial fre-
quency (LSF, HSF) of scenes as within-subject factor.
It should be noted that the Attentional group factor
was included in the analyses in order to assess
whether there were any differences between the
two attentional groups in Session 2 (LSF-Attention
vs. HSF-Attention) during the processing of LSF and
HSF scenes. For Session 2 the ANOVAs included Atten-
tional condition (LSF-Attention, HSF-Attention) and
Exposure duration of hybrids (30 ms, 100 ms) as
between-subject factors and Semantic similarity
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(semantically similar [SS], semantically dissimilar [SD]),
and Physical similarity (physically similar [PS], phys-
ically dissimilar [PD]) of scenes in hybrids as within-
subject factors. Because in some conditions error
rates were close to ceiling, the ANOVA on mER for
both sessions was performed after an Arcsine square
root transformation, in order to reduce ceiling effects
and ensure variance homogeneity. For both sessions,
RT for each subject’s correct response in each con-
dition was trimmed in order to reduce the effect of
extreme values, by removing responses inferior and
superior to three times the interquartile interval. This
resulted in removing an average 1.09% of the trials
for Session 1 and 0.46% of the trials for Session 2. Ana-
lyses were performed using the Statistica 10.0 soft-
ware (Statsoft, Tulsa, USA). Further pairwise
comparisons were corrected using Bonferroni correc-
tion for the number of performed comparisons and
corrected p-values are reported. Effect sizes were esti-
mated by calculating the partial eta-squared (η²). The
significant level of tests was set at 0.05.

Session 1: LSF and HSF filtered scenes

The ANOVA performed on mER (see Figure 2(a))
revealed a main effect of Exposure duration (F(1,48)
= 54.24, p < .001, η² = 0.53). Participants made more
errors when scenes were presented for 30 ms (mean
± SE: 16.30 ± 8.69%) than during 100 ms (4.47 ±
4.39%). We also observed a main effect of Spatial Fre-
quency (F(1,48) = 11.04, p = .002, η² = 0.19). Partici-
pants made more errors when categorizing HSF
(12.40 ± 6.96%) than LSF scenes (8.36 ± 6.12%). Impor-
tantly, there was also a significant interaction between
Exposure duration and Spatial frequency (F(1,48) =
6.35, p < .05, η² = 0.12). Participants made more
errors when categorizing HSF than LSF scenes when
presented for 30 ms (LSF: 12.69 ± 8.18%; HSF: 19.90
± 9.20%, p < .001), but there was no difference in cate-
gorizing LSF and HSF scenes when presented for
100 ms (LSF: 4.04 ± 4.07%; HSF: 4.90 ± 4.72%, p = 1).
There was no main effect of Attentional group (F
(1,48) < 1, p = .37) and this factor did not interact
with Exposure duration (F(1,48) < 1, p = .40), Spatial
frequency (F(1,48) < 1, p = .81), or their interaction (F
(1,48) < 1, p = .86). This ensures that differences
observed between the categorization of LSF scenes
in hybrids by the LSF-Attention group and the categ-
orization of HSF scenes in hybrids in the HSF-Attention

group in Session 2 are not biased by differences
between groups in spatial frequency processing in
Session 1.

The ANOVA performed on mRT (see Figure 2(b))
revealed a main effect of Exposure duration (F(1,48)
= 19.56, p < .001, η² = 0.29) and of Spatial Frequency
(F(1,48) = 25.41, p < .001, η² = 0.35). Participants cate-
gorized the scenes more quickly when presented for
100 than 30 ms (30 ms: 670 ± 97 ms; 100 ms: 573 ±
65 ms) and when they were filtered in LSF than in
HSF (LSF: 604 ± 72 ms; HSF: 639 ± 90 ms). There was
no significant interaction between these two factors
(F(1,48) = 2.72, p = .11). Furthermore, there was no
main effect of Attentional group (F(1,48) = 2.10,
p = .15), this factor did not interact with either
Exposure duration (F(1,48) = 2.72, p = .37) or with
Spatial frequency (F(1,48) < 1, p = .93), and the three-
way interaction between these three factors was not
significant (F(1,48) = 1.68, p = .20).

In summary, results of Session 1 showed that par-
ticipants were able to accurately categorize the fil-
tered scenes, even at short exposure duration.
Results also indicated that participants performed
better when categorizing LSF scenes than HSF
scenes at short exposure duration of 30 ms and were
overall faster in categorizing LSF than HSF scenes irre-
spective of their exposure duration. This suggests a
LSF advantage (in terms of accuracy and reaction
time) during scene categorization.

Session 2: hybrid scenes

The ANOVA performed on mER (see Figure 3(a))
revealed a main effect of the Semantic similarity
between the scenes composing the hybrids (F(1,48)
= 61.28, p < .001, η² = 0.56). Participants made more
errors when the scenes in hybrids were semantically
dissimilar (36.13 ± 13.84%) than similar (19.76 ±
15.02%). This indicated that when the two scenes
were semantically dissimilar, the unattended scene
was however processed at the semantic level and
interfered with the categorization of the attended
one (semantic interference effect). The main effect of
Attentional condition was not significant (F(1,48) < 1,
p = .77). However, this factor significantly interacted
with the Semantic similarity of the two scenes com-
posing the hybrids (F(1,48) = 19.57, p < .001, η² =
0.29). Pairwise comparisons revealed that participants
made more errors when the two scenes in hybrids
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Figure 2. (a) Mean error rates (in %) and (b) mean correct response times (in ms) for the categorization of the individual scenes filtered
in LSF and in HSF, for exposure duration of 30 and 100 ms. Error bars indicate standard error.

Figure 3. (a) Mean error rates (in %) and (b) mean correct reaction times (in ms) for the categorization of hybrids according to the
Semantic similarity of scenes in hybrids (semantically similar-SS, semantically dissimilar-SD), their Physical similarity (physically
similar-PS, physically dissimilar-PD), their Exposure duration (30 or 100 ms), and the Attentional condition (LSF-Attention, HSF-Atten-
tion). Error bars indicate standard error.

860 L. KAUFFMANN ET AL.



were semantically dissimilar than similar in both the
LSF-Attention group (SS: 15.19 ± 10.35%; SD: 40.82 ±
11.37%; p < .001) and the HSF-Attention group (SS:
24.33 ± 17.54%; SD: 31.44 ± 14.31%; p < .05). Impor-
tantly, this semantic interference effect was greater
in the LSF (25.63%) than HSF (7.12%) attentional con-
dition group.

We also observed a significant main effect of
Exposure duration of hybrid scenes (F(1,48) = 12.98,
p < .001, η² = 0.21). Participants made more errors in
categorizing hybrids when they were presented for
30 ms (32.50 ± 12.63%) than during 100 ms (23.39 ±
14.52%). However, the expected Attentional con-
dition × Exposure duration × Semantic similarity inter-
action was not significant (F(1,48) = 2.46, p = .12).

Results analysis additionally revealed a significant
interaction between the Physical similarity of scenes
in hybrids, their Semantic similarity, and the Atten-
tional condition (F(1,48) = 9.77, p < .005, η² = 0.17),
due to a significant interaction between Physical and
Semantic similarity in the LSF-attention condition (p
< .001), but not in the HSF-attention condition (p =
1). Pairwise comparisons revealed that when partici-
pants had to attend the LSF scene in hybrids, the
semantic interference effect was greater when the
two scenes in hybrids were physically similar than dis-
similar (SSPS = 14.33 ± 10.45%; SDPS = 45.48 ± 9.72%;
p < .001; SSPD = 16.06 ± 10.25%; SDPD = 36.15 ±
13.02%; p < .001).

It should be noted that there was also a significant
interaction between the Exposure duration of scenes
in hybrids, their Semantic similarity, and their
Physical similarity (F(1,48) = 9.67 p < .05, η² = 0.17).
Pairwise comparisons showed that, for exposure
duration of 100 ms, semantic interference effect
was greater when the two scenes were physically
similar than dissimilar (p < .001), whereas there was
no interaction between semantic and physical simi-
larity of hybrids for exposure duration of 30 ms
(p = 1). Finally, the four-way Attentional group ×
Exposure duration × Semantic similarity × Physical
similarity interaction was not significant (F(1,48) < 1,
p = .36).

The ANOVA performed on mRT (see Figure 3(b))
revealed a main effect of the Semantic similarity
between the two scenes composing the hybrids (F
(1,48) = 56.65, p < .001, η² = 0.54). Response times
were slower when the two scenes composing
hybrids were semantically dissimilar (785 ± 142 ms)

than similar (729 ± 147 ms), suggesting a semantic
interference effect on response times. There was also
a main effect of the Attentional condition (F(1,48) =
24.10, p < .001, η² = 0.33). Participants categorized
the attended scene faster when it was in LSF (678 ±
93 ms) than in HSF (836 ± 143 ms) attentional con-
dition. Importantly, there was a significant interaction
between these two factors (F(1,48) = 6.65, p < .05, η² =
0.12). Pairwise comparisons revealed that participants
categorized the scenes more slowly in the semanti-
cally dissimilar than similar condition, but this seman-
tic interference effect was greater in the LSF-Attention
condition (SS: 641 ± 78 ms; SD: 716 ± 108 ms, p < .001)
than in the HSF-Attention condition (SS: 818 ± 147 ms;
SD: 855 ± 140 ms, p < .005).

The expected Semantic similarity × Exposure dur-
ation × Attentional group was not significant (F(1,48)
= 2.11, p = .15). However, we observed a significant
four-way interaction between the Semantic similarity
of scenes, their Physical similarity, their Exposure dur-
ation, and the Attention condition (F(1,48) = 5.99, p
< .05). Pairwise comparisons revealed that when par-
ticipants had to categorize the LSF scene in hybrids
(LSF-Attention), scenes were categorized faster in the
semantically similar than dissimilar condition for
each Physical similarity condition (Physically similar
and Physically dissimilar) of each Exposure duration
condition (30 ms and 100 ms; all ps < .05). However,
when participants had to categorize the HSF scene
in hybrids (HSF-Attention), they categorized the
scenes faster when they were semantically similar
than dissimilar only for exposure duration of 100 ms
and when the two scenes were physically similar
(100 ms PSSS: 695 ± 119 ms; 100 ms PSSD: 877 ±
129 ms; p < .001; all other ps > .05).

Finally, to assess whether performances in categor-
izing LSF and HSF filtered scenes in Session 1 are
linked to performances during categorization of
hybrids (Session 2), we performed Pearson correlation
analyses for mER and RTs between (1) categorization
of LSF scenes in Session 1 and categorization of
hybrids in the LSF-Attention condition in Session 2
and (2) categorization of HSF scenes in Session 1
and categorization of hybrids in the HSF-Attention
condition in Session 2. Accuracy and reaction times
for categorizing LSF scenes in Session 1 correlated
positively with the ones for categorizing LSF scenes
in hybrids in Session 2, irrespective of semantic simi-
larity, physical similarity, and duration (mER: r = 0.64,
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p < .001; mRTS: r = 0.45, p = .021). Similarly, accuracy
and reaction times for categorizing HSF scenes in
Session 1 correlated positively with the ones for cate-
gorizing HSF scenes in hybrids in Session 2, irrespec-
tive of semantic similarity, physical similarity, and
duration (mER: r = 0.53, p = .006; mRTS: r = 0.49, p
= .011).

Discussion

The present behavioural study aims at examining how
information from low and high spatial frequencies
interact and influence each other during scene categ-
orization. To this end, we presented individual scenes
and hybrids to participants who had to attend and cat-
egorize their LSF or HSF content. We manipulated the
exposure duration of the stimuli which were pre-
sented for 30 or 100 ms. For hybrids stimuli, we also
manipulated the semantic and physical similarity
between the two scenes composing the hybrids. We
used the semantic interference effect (i.e., poorer per-
formance when the two scenes in hybrids are seman-
tically dissimilar than similar) as the signature of the
integration of semantic information from both
spatial frequencies and as an estimate of their relative
weight for scene categorization. Critically, this exper-
imental paradigm allowed us to examine how infor-
mation from a spatial frequency band that is not
supposed to be explicitly processed implicitly influ-
ences processing of another spatial frequency
content. Based on the hypothesis of a predominant
coarse-to-fine processing sequence during scene cat-
egorization, we expected that information from LSF
would weight more at short exposure duration (i.e.,
stronger interference of LSF over HSF scene categoriz-
ation than the other way around), whereas infor-
mation from HSF would take over with increasing
exposure duration (i.e., stronger interference of HSF
over LSF scene categorization than the other way
around).

Low spatial frequency processing advantage

Results on individual LSF and HSF scenes (Session 1)
revealed that participants were able to accurately cat-
egorize the LSF and HSF scenes (average error rate
below 20%) when presented alone at all exposure dur-
ations. This allowed us to ensure that the semantic
information contained in the LSF and HSF scenes

used in hybrids could be accurately extracted even
at short exposure duration of 30 ms. Furthermore,
we observed that LSF scenes were categorized more
quickly than HSF scenes irrespective of the exposure
duration of scenes, and more accurately than HSF
scenes for the 30 ms condition only. These results
are consistent with previous findings of a temporal
precedence of LSF over HSF scene categorization
observed in numerous studies using a simple categor-
ization task of LSF and HSF stimuli (De Cesarei &
Loftus, 2011; Kauffmann, Ramanoël, et al., 2015;
Loftus & Harley, 2005; Parker et al., 1996). A similar
pattern of results was found in the Hybrid experimen-
tal session (Session 2). Participants were also faster to
categorize the attended scene when it was in LSF (LSF-
Attention condition) than in HSF (HSF-Attention con-
dition), irrespective of the semantic similarity of the
unattended scene. Furthermore, performance for cate-
gorizing LSF and HSF individual scenes in Session 1
was positively correlated with the one for categorizing
respectively LSF and HSF scenes in hybrids in Session
2. In other words, performances were consistent
between Session 1 and Session 2 for the spatial fre-
quency band that was explicitly processed and the
LSF advantage observed in Session 1 remained in
Session 2. Taken together, these results suggest that
LSF information allows for accurate and rapid scene
categorization. Furthermore, they support the view
that, within a short amount of time, categorization is
more efficient when based on LSF than HSF infor-
mation (Schyns & Oliva, 1994), in accordance with a
coarse-to-fine processing strategy. It is important to
note that the cut-off frequency used to filter LSF
scenes in the present study (4 cpd, i.e., 24 cpi) was rela-
tively high as compared to the ones used in previous
studies (usually around 2 cpd; see Kauffmann, Bourgin,
et al., 2015; Mu & Li, 2013; Schyns & Oliva, 1994). LSF
scenes in the present study thus included a rather
large part of the scene spatial frequency spectrum
including low to intermediate spatial frequencies
and therefore contained the most diagnostic features
for scene and object categorization, which have be
found to lie at 0–4 cpd (see Caplette et al., 2014;
McCotter et al., 2005). Therefore, it is likely that the
advantage for LSF processing observed in the
present study also reflects the fact that the LSF
scenes contained the most relevant information for
categorization. It should also be noted that, in the
present study, contrast was not equalized between
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LSF and HSF filtered scenes. Because in natural scenes,
luminance contrast typically decreases with increasing
spatial frequencies (Field, 1987), LSF scenes were
characterized by a higher contrast than HSF scenes.
As it has been shown that reaction times decrease
as contrast increases (Harwerth & Levi, 1978), it is
therefore possible that the LSF advantage observed
in the present study also results in part from a differ-
ence in contrast between LSF (mean displayed RMS
contrast: 13.29 cd/m²) and HSF (mean displayed RMS
contrast: 3.23 cd/m²) filtered scenes. The relative con-
tribution of differences in contrast between spatial fre-
quencies for a coarse-to-fine advantage during rapid
scene categorization was the focus of a recent study
conducted by our group (Kauffmann, Chauvin, et al.,
2015). We used a design allowing us to examine sep-
arately the effect of spatial frequencies, contrast, and
their combination, while participants performed a cat-
egorization task on sequences depicting a coarse-to-
fine or a fine-to-coarse processing. Our results
revealed an advantage for categorizing coarse-to-
fine sequences relative to fine-to-coarse sequences.
Importantly, we observed that, although this advan-
tage was in part driven by differences in contrast
between spatial frequencies, it predominantly relied
on differences in terms of spatial frequencies.

Spatial frequency semantic interference

Results in the Hybrid experimental session (Session
2) additionally revealed that the categorization of
scenes was impaired when the two scenes in
hybrids were semantically dissimilar than similar.
This result indicates that, although it was irrelevant
to the task, the semantic information contained in
the unattended scene in hybrids was processed
and interfered with the categorization of the
attended one. This semantic interference effect
thus suggests the integration of semantic infor-
mation contained in both scenes in hybrids. Further-
more, as expected, the semantic interference effect
was modulated by the attentional constraints, i.e.,
by the spatial frequency content of the attended/
unattended scenes in hybrids. Consistent with pre-
vious studies (Kauffmann, Bourgin, et al., 2015; Mu
& Li, 2013), participants exhibited a semantic inter-
ference of LSF information on the categorization of
attended HSF scenes in hybrids (HSF-Attention con-
dition). In an original way, the present study also

revealed a semantic interference of HSF information
on the categorization of attended LSF scenes (LSF-
Attention condition), and that the semantic
interference effect was greater in the LSF than HSF
attentional condition, suggesting that information
from HSF interfered more strongly with LSF scene
categorization than the other way around. These
results indicate that, when there is a semantic con-
flict within the stimulus, information from HSF
weights more than LSF information for achieving
scene categorization. We did not find the expected
modulation of the semantic interference effect by
the exposure duration of stimuli. Results rather indi-
cated that the semantic interference effect was
always stronger in the LSF than HSF attentional con-
dition, irrespective of the exposure duration of
stimuli.

This last result thus partially contradicts our
hypotheses. Indeed, we expected that LSF would
weight more than HSF at short exposure duration,
and that the weight of HSF would increase with
exposure duration. Although our results were not
consistent with these predictions, we however
believe that they do not necessarily speak against a
predominant coarse-to-fine processing strategy
during scene categorization. First, numerous studies
have previously shown that, although LSF infor-
mation is preferentially used at short exposure dur-
ation to enable efficient and rapid scene
categorization, it does not follow that it is always
used first to support visual recognition. Indeed, and
as suggested by our results, HSF can also be
extracted very early in the visual processing time-
course, and their preferential use would be deter-
mined by the demands of the visual task (Campagne
et al., 2016; Harel & Bentin, 2009; Morrison & Schyns,
2001; Oliva & Schyns, 1997; Ozgen et al., 2006; Rotsh-
tein et al., 2010; Schyns, 1998; Schyns & Oliva, 1994,
1999). For example, in Schyns and Oliva (1994), the
perception of hybrids at short exposure duration of
30 ms was dominated by the HSF scene in 28% of
the trials. Further studies from the same authors
(Schyns & Oliva, 1999) showed that, during the categ-
orization of hybrid faces presented for 50 ms, HSF
were preferentially used to determine whether the
face was expressive or not whereas LSF were prefer-
entially used to determine the nature of the emotion.
Overall, these results suggested that all spatial fre-
quencies are available very early for categorization,
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and that their selection may depend on interactions
between the perceptual information available and
the demands of a given visual task, thus speaking
against a strictly coarse-to-fine processing sequence.
Interestingly, it is very likely that the relatively greater
interference of HSF information observed in the
present study reflects such flexible use of spatial fre-
quency information according to the task constraints
– in our case the presence of an apparent conflict
within the stimulus. Indeed, when there was no ambi-
guity within the stimulus (LSF and HSF scenes in
Session 1), participants performed better when cate-
gorizing LSF than HSF scenes, especially at short
exposure duration. As previously mentioned, this
indicates that, by default, processing of LSF might
be more efficient than that of HSF to rapidly access
the scene category. However, when semantic infor-
mation contained in LSF and HSF was incongruent
(semantically dissimilar hybrids in Session 2), partici-
pants were interfered more strongly by the unat-
tended scene when it was in HSF (LSF-Attention)
than in LSF (HSF-Attention). As previously mentioned,
the LSF scenes in hybrids had a higher contrast than
the HSF scenes and included intermediate spatial fre-
quencies diagnostic for categorization. The greater
semantic interference in the LSF-Attention condition
thus suggests a critical and irrepressible influence of
HSF information for categorization, despite a priori
more salient and relevant information contained in
the LSF scene. Overall, results suggest that when
there is uncertainty or ambiguity about the category
of the visual stimulus, the processing of fine details
contained in HSF might be the most relevant and
reliable to disentangle between alternative interpret-
ations and would thus strongly weight for scene cat-
egorization. It should be noted as a limitation of the
present study that due to the hybrid methodology
employed, potentially important spatial frequencies
were not considered in the stimuli (i.e., spatial fre-
quencies of 4–6 cpd). It is thus possible that these
spatial frequencies also weight for scene categoriz-
ation. Further studies explicitly manipulating the
cut-off frequencies of filtered scenes in hybrids
would allow us to provide further insight on that
question and refine the present results. It is also note-
worthy that overall, participants took longer to cat-
egorize the attended scene in hybrids when it was
in HSF (HSF-Attention) than in LSF (LSF-Attention),
irrespective of the semantic similarity of the

unattended scene. This suggests that fast categoriz-
ation is more efficient when based on LSF and that
more time is needed to process and categorize HSF.
It is thus possible that the semantic interference of
LSF over HSF categorization in the HSF-Attention
condition might have been less evident due to
initially poorer performances in that condition.

Effect of physical similarity

Our results additionally revealed that the semantic
interference effect was modulated by the physical
similarity between the two scenes composing the
hybrids. In particular, the semantic interference
effect was greater when the two scenes in hybrids
were physically similar than dissimilar, especially for
exposure durations of 100 ms. In their study, Mu and
Li (2013) also reported such a modulation of the
semantic interference effect by the physical similarity
of scenes in hybrids, suggesting that the spatial
overlap between LSF and HSF caused even greater
impairment of scene categorization in the absence
of any semantic congruence between the two
scenes. Indeed, it is likely that, in the physically
similar condition, the spatial overlap between the
LSF and HSF scenes in hybrids might have hindered
perceptual categorization performed on the basis of
the attended scene physical properties. This could
have resulted in enhanced semantic processing of
the scenes in order to perform the task, especially
when more time was available, resulting in even
longer reaction times and error rates when the two
scenes were semantically dissimilar. This would indi-
cate that the processing of physical properties of LSF
and HSF in scenes plays an important role and actively
interacts with the processing of their semantic content
over the time-course of scene categorization.

Impact for neurobiological models of scene
perception

The semantic interference of LSF over HSF scene cat-
egorization was previously interpreted in the context
of the proactive model of visual recognition proposed
by Bar and colleagues (Bar, 2003, 2007; Bar et al., 2006;
Kveraga, Boshyan, & Bar, 2007; Trapp & Bar, 2015).
According to this model, fast processing of LSF infor-
mation allows us to generate coarse predictions
about the nature of the visual input in the
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orbitofrontal cortex. These predictions would enable
us to reduce the number of alternative interpretations
of the stimulus and thereby tune the bottom-up pro-
cessing of HSF via top-down influence to the infero-
temporal cortex. Critically, this model thus assumes
that it is the bottom-up processing of HSF information
that is ultimately used to refine the coarse predictions
and achieve recognition. Results of the present study,
however, revealed that LSF information interfered less
strongly with HSF categorization (HSF-Attention con-
dition) than did HSF information with LSF categoriz-
ation (LSF-Attention condition). In line with the
above-mentioned interpretation, this may suggest
that, in case of incongruence between LSF and HSF
semantic information, it might be difficult and coun-
terproductive to ignore the evidence accumulated in
HSF against LSF-based coarse predictions. In that
sense, the semantic interference of LSF over HSF pro-
cessing would reflect the effect of erroneous top-
down LSF-based predictions (Kauffmann, Bourgin,
et al., 2015), whereas the semantic interference of
HSF over LSF would rather reflect persistent and over-
taking bottom-up integration of HSF information
against these rapid LSF-based predictions.

Conclusions

To conclude, results of the present study support the
current model of visual perception (Bar, 2003; Bullier,
2001; Kauffmann et al., 2014; Peyrin et al., 2010)
suggesting that, during scene categorization, fast pro-
cessing of coarse LSF information allows us to effi-
ciently access the scene category and influence
further processing of fine HSF information. Our
results further allow us to refine them, by showing
that semantic processing of HSF information can
also occur very early and override processing of LSF
information when there is a semantic conflict within
the stimulus, thereby highlighting their critical role
in ultimately mediating scene categorization. Overall,
results of the present study indicate that the relative
weight of LSF and HSF information during scene cat-
egorization varies according to the task constraints
and the properties of the visual stimulus.

Note

1. We conducted a pilot study on 29 participants (1) to repli-
cate the results of Mu and Li (2013) and Kauffmann,

Bourgin, et al. (2015) when participants attend and cat-
egorize the HSF scene in hybrids, but also (2) to consider
the reverse attentional condition when participants
attend and categorize the LSF scene in hybrids. We
removed spatial frequencies content above 2 cpd (vs. 4
cpd in the present study). This value was chosen based
on Schyns and Oliva’s (1994) study on spatial frequency
processing during scene categorization. Contrast was
either not modified (LUM filtered scenes) or equalized
between LSF and HSF to obtain a RMS contrast of 0.1,
i.e., 25.6 on a grey-level scale (RMS filtered scenes) using
the MATLAB image processing toolbox. Hybrid stimuli
were then created by combining a LSF and a HSF scene
for which the contrast was not modified (LUM hybrids)
and by combining a LSF and a HSF scene for which the
contrast was equalized (RMS hybrids). LUM and RMS
hybrids were presented in distinct experimental blocks
(counterbalanced between participants). Fourteen par-
ticipants had to attend and categorize the HSF scene in
hybrids and 15 participants had to attend and categorize
the LSF scene in hybrids for both the LUM and RMS con-
ditions. Results showed that the mean error rate of the
SDPS condition of the LSF Attentional group was equal
to 50% ± 10 for LUM hybrids (not significantly different
from the chance level; t(14) = 0, p = 1) and to 64% ± 20
for RMS hybrids (significantly below chance; t(14) = 2.77,
p < .05). These results suggest that participants were not
able to categorize the LSF scene in hybrids and when
the contrast of the HSF scene was increased in RMS
hybrids. It should be noted that contrast normalization
induces severe modifications in the amplitude spectrum
properties of scenes thatmay bias behavioural responses.
For example, the enhancement of contrast in HSF scenes
using RMS normalization induces an additional unnatural
LSF content that could directly mask the LSF scene of
hybrids. Therefore, based on these pilot study’s results,
the present study was conducted without RMS contrast
normalization between LSF and HSF scenes, and we
chose to increase the spatial frequency cut-off of LSF
scenes at 4 cpd. Using these values, participants had per-
formances above chance in the SDPS condition of the LSF
Attentional group (45.48% ± 9.72, t(25) =−2.37, p < .05).
We also included a first experimental session to ensure
that participants were able to categorize filtered scenes
when they were not embedded in hybrids and indepen-
dently of attentional constraints.
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