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A progressive reduced basis/empirical interpolation method for

nonlinear parabolic problems∗

Amina Benaceur†‡, Virgine Ehrlacher†, Alexandre Ern†and Sébastien Meunier‡

Abstract

We investigate new developments of the combined Reduced-Basis and Empirical Interpolation
Methods (RB-EIM) for parametrized nonlinear parabolic problems. In many situations, the cost of
the EIM in the offline stage turns out to be prohibitive since a significant number of nonlinear time-
dependent problems need to be solved using the high-fidelity (or full-order) model. In the present
work, we develop a new methodology, the Progressive RB-EIM (PREIM) method for nonlinear
parabolic problems. The purpose is to reduce the offline cost while maintaining the accuracy
of the RB approximation in the online stage. The key idea is a progressive enrichment of both
the EIM approximation and the RB space, in contrast to the standard approach where the EIM
approximation and the RB space are built separately. PREIM uses high-fidelity computations
whenever available and RB computations otherwise. Another key feature of each PREIM iteration
is to select twice the parameter in a greedy fashion, the second selection being made after computing
the high-fidelity solution for the firstly selected value of the parameter. Numerical examples are
presented on nonlinear heat transfer problems.

1 Introduction

The Reduced-Basis (RB) method devised in [14, 17] (see also the recent textbooks [11, 18]) is a com-
putationally effective approach to approximate parametrized Partial Differential Equations (PDEs)
encountered in many problems in science and engineering. For instance, the RB method is often used
in real-time simulations, where a problem needs to be solved very quickly under limited computational
resources, or in multi-query simulations, where a problem has to be solved repeatedly for a large num-
ber of parameter values. Let P denote the parameter set. The RB method is split into two stages:
(i) an offline stage where a certain number of so-called High-Fidelity (HF) trajectories are computed
for a training subset of parameters Ptr ( P(typically a finite element space based on a fine mesh);
(ii) an online stage for real-time or multi-query simulations where the parameter set P is explored
more extensively. The output of the offline phase includes an approximation space of small dimension
spanned by the so-called RB functions. The reduced space then replaces the much larger HF space
in the online stage. The crucial point for the computational efficiency of the overall procedure is that
computations in the HF space are allowed only in the offline stage.

In the present work, we are interested in nonlinear parabolic problems for which a RB method
has been successfully developed in [7, 8]. A key ingredient to treat the nonlinearity so as to enable
an online stage without HF computations is the Empirical Interpolation Method (EIM) [1, 15]. The
EIM provides a separated approximation of the nonlinear (or non-affine) terms in the PDE. This
approximation is built using a greedy algorithm as the sum of M functions where the dependence
on the space variable is separated from the dependence on the parameter (and the time variable for
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parabolic problems). The integer M is called the rank of the EIM and controls the accuracy of the
approximation. Although the EIM is performed during the offline stage of the RB method, its cost
can become a critical issue since the EIM can require an important number of HF computations for
an accurate approximation of the nonlinearity. The cost of the EIM typically scales with the size of
the training set Ptr.

The goal of the present work is to overcome this issue. To this purpose, we devise a new method-
ology, the Progressive RB-EIM (PREIM) method, which aims at reducing the computational cost of
the offline stage while maintaining the accuracy of the RB approximation in the online stage. The
key idea is a progressive enrichment of both the EIM approximation and the RB space, in contrast
to the standard approach where the EIM approximation and the RB space are built separately. In
PREIM, the number of HF computations is at most M , and it is in general much lower than M in a
time-dependent context where the greedy selection of the pair (µ, k) to build the EIM approximation
(where µ is the parameter and k refers to the discrete time node) can lead to repeated values of µ
for many different values of k. In other words, PREIM can select multiple space fields within the
same HF trajectory to build the EIM space functions. In this context, only a modest number of
HF trajectories needs to be computed, yielding significant computational savings with respect to the
standard offline stage. PREIM is driven by convergence criteria on the quality of both the EIM and
the RB approximation, as in the standard RB-EIM procedure. Moreover, as the PREIM iteration
progresses, more and more HF functions are used to approximate the nonlinearity, thus attaining the
same quality as the standard approach at convergence. The benefit of PREIM is to deliver accurate
EIM and RB approximations at moderate offline costs. This is possible in situations where the com-
putation of HF trajectories dominates the cost of the progressive construction of the EIM and the RB,
which is observed to be the case in our numerical experiments. Moreover, PREIM is expected to bring
computational savings whenever the nonlinearity can be represented by a separated approximation
of relatively modest rank since otherwise PREIM will need to compute a number of HF trajectories
comparable to that of the standard procedure.

The idea of a progressive enrichment of both the EIM approximation and the RB space has been re-
cently proposed in [3] for stationary nonlinear PDEs, where it is called Simultaneous EIM/RB (SER).
Thus, PREIM extends this idea to time-dependent PDEs. In addition, there is an important differ-
ence in the greedy algorithms between SER and PREIM. Whereas SER uses only RB computations,
PREIM uses HF computations whenever available, both for the greedy selection of the parameters
and the time nodes, as well as for the space-dependent functions in the EIM approximation. These
aspects are particularly relevant since they improve the accuracy of the EIM approximation. This is
illustrated in our numerical experiments on nonlinear parabolic PDEs. The progressive construction
of the EIM and the RB has been recently addressed within the Empirical Interpolation Operator
Method in [4]. Therein, the enrichment criterion is common to both the EIM and the RB, and the
snapshot maximizing an a posteriori error estimator is selected to enrich both bases. Instead, PREIM
has dedicated criteria for the quality of the EIM approximation and for the RB approximation. Fur-
thermore, PREIM systematically exploits the knowledge of the HF trajectories whenever available,
and an update step is performed so as to assess the current parameter selection. We also mention the
Proper Orthogonal Empirical Interpolation Method from [20] where a progressive construction of the
EIM approximation is devised using POD-based approximations of the HF trajectories.

The paper is organized as follows. In Section 2, we introduce the model problem. In Section 3,
we briefly recall the main ideas of the nonlinear RB method devised in [7, 8], and in Section 4, we
briefly recall the EIM procedure in the standard offline stage as devised in [1, 15]. The reader familiar
with the material can jump directly to Section 5 where PREIM is introduced and discussed. Section 6
presents numerical results illustrating the performance of PREIM on nonlinear parabolic problems
related to heat transfer. Finally, Section 7 draws some conclusions and outlines some perspectives.
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2 Model problem

In this section, we present a prototypical example of a nonlinear parabolic PDE. The methodology we
propose is illustrated on this model problem but can be extended to other types of parabolic equations.
We consider a spatial domain (open, bounded, connected subset) Ω ⊂ Rd, d ≥ 1, with a Lipschitz
boundary, a finite time interval I = [0, T ], with T > 0, and a parameter set P ⊂ Rp, p ≥ 1, whose
elements are generically denoted by µ ∈ P. Our goal is to solve the following nonlinear parabolic PDE
for many values of the parameter µ ∈ P: find uµ : I × Ω→ R such that

∂uµ
∂t
−∇ ·

(
(κ0 + Γ(µ, uµ))∇uµ

)
= f, in I × Ω,

−
(
κ0 + Γ(µ, uµ)

)∂uµ
∂n

= φe, on I × ∂Ω,

uµ(t = 0, ·) = u0(·), in Ω,

(1)

where κ0 > 0 is a fixed positive real number, Γ : P×R→ R is a given nonlinear function, f : I×Ω→ R
is the source term, φe : I × ∂Ω→ R is the time-dependent Neumann boundary condition on ∂Ω, and
u0 : Ω→ R is the initial condition. For simplicity, we assume without loss of generality that f , φe, and
u0 are parameter-independent. We assume that f ∈ L2(I;L2(Ω)) and φe ∈ L2(I;L2(∂Ω)) (this means
that f(t) ∈ L2(Ω) and φe(t) ∈ L2(∂Ω) for (almost every) t ∈ I), and we also assume that u0 ∈ H1(Ω).
We make the standard uniform ellipticity assumption β1 ≤ κ0 + Γ(µ, z) ≤ β2 with 0 < β1 < β2 <∞,
for all (µ, z) ∈ P×R. We do not specify a functional setting for the nonlinear parabolic PDE (1); with
the above assumptions, it is reasonable to look for a weak solution u ∈ L2(I;Y ) with Y = H1(Ω).

Remark 1 (Initial condition) For parabolic PDEs, the initial condition is often taken to be in a
larger space, e.g., u0 ∈ L2(Ω). Our assumption that u0 ∈ Y is motivated by the RB method where
basis functions in Y are sought as solution snapshots in time and for certain parameter values. In this
context, we want to include the possibility to select the initial condition as a RB function.

Remark 2 (Heat transfer) One important application we have in mind for (1) is heat transfer
problems. In this context, the PDE can take the slightly more general form

α(uµ)
∂uµ
∂t
−∇ ·

(
(κ0 + Γ(µ, uµ))∇uµ

)
= f, in I × Ω,

where α(uµ) stands for the mass density times the heat capacity. Moreover, the quantity (κ0+Γ(µ, uµ))
represents the thermal conductivity. Note also that φe > 0 means that the system is heated.

In practice, one way to solve (1) is to use a Y -conforming Finite Element Method [6] to discretize
in space and a time-marching scheme to discretize in time. The Finite Element Method is based on
a finite element subspace X  Y defined on a discrete nodal subset Ωtr  Ω, where Card(Ωtr) = N .
To discretize in time, we consider an integer K ≥ 1, we let 0 = t0 < · · · < tK = T be (K + 1)

distinct time nodes over I, and we set Ktr = {1, · · · ,K}, Ktr
= {0} ∪ Ktr, Itr = {tk}

k∈Ktr , and

∆tk = tk − tk−1 for all k ∈ Ktr. As is customary with the RB method, we assume henceforth that
the mesh-size and the time-steps are small enough so that the above space-time discretization method
delivers HF approximate trajectories within the desired level of accuracy. These trajectories, which
then replace the exact trajectories solving (1), are still denoted uµ for all µ ∈ P. Henceforth, we use the
convention that the superscript k always indicates a time index; thus, we write ukµ(·) = uµ(tk, ·) ∈ X,

fk(·) = f(tk, ·) ∈ L2(Ω), and φke(·) = φe(t
k, ·) ∈ L2(∂Ω). Applying a semi-implicit Euler scheme, our

goal is, given u0
µ = u0 ∈ X, to find (ukµ)k∈Ktr ∈ XK such that, for all k ∈ Ktr,

∀v ∈ X, m(ukµ, v) + ∆tka0

(
ukµ, v

)
+ ∆tknΓ

(
µ, uk−1

µ , v
)

= m(uk−1
µ , v) + ∆tklk(v), (2)
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with the bilinear forms m : Y × Y → R, a0 : Y × Y → R and the linear forms lk : Y → R such that

m(v, w) =

∫
Ω
vw, a0(v, w) = κ0

∫
Ω
∇v · ∇w, lk(v) =

∫
Ω
fkv +

∫
∂Ω
φkev, (3)

and the nonlinear form nΓ : P × Y × Y → R such that

nΓ(µ, v, w) =

∫
Ω

Γ(µ, v)∇v · ∇w, (4)

for all µ ∈ P and all v, w ∈ Y . In (2), the nonlinearity is treated explicitly, whereas the diffusive
term is treated implicitly. This choice avoids dealing with a nonlinear solver at each time-step. The
computation of derivatives of discrete operators within Newton’s method is addressed, e.g., in [4].

3 The Reduced-Basis method

In this section, we briefly recall the Reduced-Basis (RB) method for the nonlinear problem (2) [8, 7].
Let X̂N ⊂ X be a so-called reduced subspace such that N = dim(X̂N ) � dim(X) = N . Let

(θn)1≤n≤N be a Y -orthonormal basis of X̂N . For all µ ∈ P and k ∈ Ktr
, the RB solution ûkµ ∈ X̂N

that approximates the HF solution ukµ ∈ X is decomposed as

ûkµ =

N∑
n=1

ûkµ,nθn, (5)

with real numbers ûkµ,n for all n ∈ {1, . . . , N}. Let us introduce the component vector ûkµ :=

(ûkµ,n)1≤n≤N ∈ RN , for all µ ∈ P and k ∈ Ktr
. Let û0 be the Y -orthogonal projection of the ini-

tial condition u0 ∈ X onto X̂N with associated component vector û0 ∈ RN . Replacing ukµ ∈ X in

the weak form (2) by the approximation ûkµ ∈ X̂N with associated component vector ûkµ ∈ RN , and
using the test functions (θp)1≤p≤N , we obtain the following problem written in algebraic form: Given
û0
µ = û0 ∈ RN , find (ûkµ)k∈Ktr ∈ (RN )K such that, for all k ∈ Ktr,

(M + ∆tkA0)ûkµ = ∆tkfk + Mûk−1
µ −∆tkG(ûk−1

µ ), (6)

with the matrices M,A0 ∈ RN×N and the vectors fk ∈ RN such that

M =
(
m(θn, θp)

)
1≤p,n≤N

, A0 =
(
a0(θn, θp)

)
1≤p,n≤N

, fk =
(
lk(θp)

)
1≤p≤N , (7)

and the vector g(ûk−1
µ ) ∈ RN such that

g(ûk−1
µ ) =

( N∑
n=1

ûk−1
µ,n

∫
Ω

Γ

(
µ,

N∑
n′=1

ûk−1
µ,n′θn′

)
∇θn · ∇θp

)
1≤p≤N

. (8)

The difficulty is that the computation of g(ûk−1
µ ) requires a parameter-dependent reconstruction using

the RB functions so as to compute the integral over Ω. To avoid this, we need to build an approximation

γM of the nonlinear function γ : P ×Ktr × Ω→ R such that

γ(µ, k, x) := Γ(µ, ukµ(x)), (9)

in such a way that the dependence on x is separated from the dependence on (µ, k). More precisely,

for some integer M > 0, we are looking for an (accurate) approximation γM : P ×Ktr × Ω → R of γ
under the separated form

γM (µ, k, x) :=
M∑
j=1

ϕkµ,jqj(x), (10)
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whereM is called the rank of the approximation and ϕkµ,j are real numbers that we find by interpolation
over a set of M points {x1, . . . , xM} in Ωtr by requiring that

γM (µ, k, xi) = γ(µ, k, xi) = Γ(µ, ukµ(xi)), ∀i ∈ {1, · · · ,M}. (11)

The interpolation property (11) is achieved by setting

ϕkµ,j = (B−1γkµ)j , ∀j ∈ {1, · · · ,M}, where γkµ :=
(
Γ(µ, ukµ(xi))

)
1≤i≤M ∈ R

M , (12)

and B = (qj(xi))1≤i,j≤M ∈ RM×M must be an invertible matrix. Therefore, (10) can be rewritten as
follows:

γM (µ, k, x) =
M∑
j=1

(B−1γkµ)jqj(x). (13)

The points (xi)1≤i≤M in Ωtr and the functions (qj)1≤j≤M defined on Ω are determined by the EIM
algorithm [1] which is further described in Section 4 below.

Let us now describe how we can use the EIM approximation (13) to allow for an offline/online
decomposition of the computation of the vector g(ûk−1

µ ) defined in (8). Under the (reasonable) as-

sumptions ûkµ ≈ ukµ and Γ(µ, ûkµ(x)) ≈ Γ
(
µ, ukµ(x)

)
, we obtain

Γ(µ, ûkµ(x)) ≈ Γ
(
µ, ukµ(x)

)
= γ(µ, k, x) ≈ γM (µ, k, x) =

M∑
j=1

(B−1γkµ)jqj(x) ≈
M∑
j=1

(B−1γ̂kµ)jqj(x) (14)

with the vector γ̂kµ := (Γ(µ, ûkµ(xi)))1≤i≤M ∈ RM . The problem (6) then becomes: Given û0
µ = û0 ∈

RN , find (ûkµ)k∈Ktr ∈ (RN )K such that, for all k ∈ Ktr,

(M + ∆tkA0)ûkµ = ∆tkfk +
(
M−∆tkDk−1

µ

)
ûk−1
µ , (15)

with the matrix Dk−1
µ ∈ RN×N such that

Dk−1
µ =

M∑
j=1

(
B−1γ̂k−1

µ

)
j
Cj where Cj =

(∫
Ω
qj∇θn · ∇θp

)
1≤p,n≤N

∈ RN×N , ∀1 ≤ j ≤M. (16)

The overall computational procedure can now be split into two stages:

(i) An offline stage where one precomputes on the one hand the RB functions (θn)1≤n≤N leading
to the vectors û0 ∈ RN , (fk)k∈Ktr ∈ (RN )K and the matrices M,A0 ∈ RN×N , and on the other
hand the EIM points (xi)1≤i≤M and the functions (qj)1≤j≤M leading to the matrices B ∈ RM×M
and Cj ∈ RN×N , for all j ∈ {1, . . . ,M}. The offline stage is discussed in more detail in Section 4.

(ii) An online stage to be performed each time one wishes to compute a new trajectory for a parameter
µ ∈ P. All what remains to be performed is to compute the vector γ̂k−1

µ ∈ RM and the matrix

Dk−1
µ ∈ RN×N and to solve the N -dimensional linear problem (15) for all k ∈ Ktr. The online

stage is summarized in Algorithm 1.

4 The standard offline stage

There are two tasks to be performed during the offline stage:

(T1) Build the rank-M EIM approximation (10) of the nonlinear function γ defined by (9);
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Algorithm 1 Online stage

Input : µ, (θn)1≤n≤N , û0, (fk)k∈Ktr , M, A0, (xi)1≤i≤M , (qj)1≤j≤M , and (Cj)1≤j≤M
1: Set k = 1 and û0

µ = û0

2: while k ∈ Ktr do
3: Compute Dk−1

µ using (16) and ûk−1
µ

4: Solve the reduced system (15) to obtain ûkµ
5: Set k = k + 1
6: end while

Output : (ûkµ)k∈Ktr

Algorithm 2 Standard EIM

Input : Ptr, Ktr
, Ωtr, and εeim > 0

1: Compute S = (ukµ)
(µ,k)∈Ptr×Ktr P HF trajectories

2: Set m = 1 and γ0 ≡ 0
3: Search (µm, km) ∈ argmax

(µ,k)∈Ptr×Ktr

‖Γ(µ, ukµ(·))− γm−1(µ, k, ·)‖`∞(Ωtr)

4: Set rm(·) := Γ(µm, u
km
µm(·))− γm−1(µm, km, ·) and xm ∈ argmax

x∈Ωtr

|rm(x)|

5: while (|rm(xm)| > εeim) do
6: Set qm := rm/rm(xm) and compute (Bmi)1≤i≤m by setting Bmi := (qi(xm))
7: Set m = m+ 1
8: Search (µm, km) ∈ argmax

(µ,k)∈Ptr×Ktr

‖Γ(µ, ukµ(·))− γm−1(µ, k, ·)‖`∞(Ωtr)

9: Set rm(·) := Γ(µm, u
km
µm(·))− γm−1(µm, km, ·) and xm ∈ argmax

x∈Ωtr

|rm(x)|

10: end while
11: Set M := m− 1

Output : (xi)1≤i≤M and (qj)1≤j≤M

(T2) Explore the solution manifold in order to construct a linear subspace X̂N ⊂ X of dimension N .

In the standard offline stage, these two tasks are performed independently.
Let us first discuss Task (T1), i.e., the construction of the rank-M EIM approximation. Recall

from Section 3 that the goal is to find the interpolation points (xi)1≤i≤M in Ωtr  Ω and the functions
(qj)1≤j≤M where qm : Ω→ R. The construction of the EIM approximation additionally uses a training
set Ptr ⊂ P for the parameter values; in what follows, we denote by P the cardinality of Ptr. For
a real-valued function v defined on Ωtr, we define ‖v‖`∞(Ωtr) := maxx∈Ωtr |v(x)|. Given an iteration

counter m ≥ 1 and a function γm−1 defined on Ptr × Ktr × Ω, with the convention that γ0 ≡ 0, an

EIM iteration consists of the following steps. First, one defines (µm, km) ∈ Ptr ×Ktr
by

(µm, km) ∈ argmax
(µ,k)∈Ptr×Ktr

‖Γ(µ, ukµ(·))− γm−1(µ, k, ·)‖`∞(Ωtr), (17)

where we notice the use of the HF trajectories for all values of the parameter µ in the training set
Ptr. Once (µm, km) has been determined, one sets

rm(·) := Γ(µm, u
km
µm(·))− γm−1(µm, km, ·), xm ∈ argmax

x∈Ωtr

|rm(x)|, (18)
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and one checks whether |rm(xm)| > εeim for some user-defined positive threshold εeim. If this is the
case, one sets

qm(·) :=
rm(·)
rm(xm)

, (19)

and one computes the new row of the matrix B by setting Bmi := (qi(xm)), for all 1 ≤ i ≤ m. The
standard EIM procedure is presented in Algorithm 2.

Let us now briefly discuss Task (T2) above, i.e., the construction of a set of RB functions with
cardinality N . First, as usual in RB methods, the solution manifold is explored by considering a
training set for the parameter values; for simplicity, we consider the same training set Ptr as for the EIM
approximation. This way, one only explores the collection of points {ukµ}(µ,k)∈Ptr×Ktr in the solution

manifold. For this exploration to be informative, the training set Ptr has to be chosen large enough.
The exploration can be driven by means of an a posteriori error estimator (see, e.g., [19]) which allows
one to evaluate only N HF trajectories. However, in the present setting where HF trajectories are to
be computed for all the parameters in Ptr when constructing the EIM approximation, it is natural to
exploit these computations by means of a Proper Orthogonal Decomposition (POD) [12, 13] to define
the RB. This technique is often considered in the literature to build the RB in a time-dependent setting,
see, e.g., [9, 11, 18]. In practice, a POD of the whole collection of snapshots may be computationally
demanding (or even unfeasible) when a very large number of functions is considered. Thus, we adopt
a POD-based progressive construction of the reduced basis in the spirit of the POD-greedy algorithm
from [9]. Therein, one additional RB function is picked at a time, whereas here we can pick more than
one function. The progressive construction of the RB is presented in Algorithm 3 where we have chosen
an enumeration of the parameters in Ptr from 1 to P . The initialization of Algorithm 3 is made by
computing (θn)1≤n≤N1 = POD(S1, εpod) for the trajectory S1 associated with the parameter µ1. That
is, we select the first N1 POD modes out of the set S1 with error threshold εpod (for completeness,
this procedure is briefly outlined in Appendix A). The next steps of the algorithm are performed in an
iterative fashion. For each new trajectory, we first subtract its projection on the current RB, and then
perform a POD on the projection and merge the result with the current RB. This specific part of the
procedure, called UPDATE RB, is presented in Algorithm 4; this part of the procedure is presented
separately since it will be re-used later on.

Algorithm 3 Progressive RB

Input : Ptr, Ktr
, and εpod > 0

1: Compute
(
Sp
)

1≤p≤P =
(
(ukµp)

k∈Ktr

)
1≤p≤P P HF trajectories

2: Compute (θn)1≤n≤N1 = POD(S1, εpod)
3: Set p = 1
4: while p < P do
5: Set p = p+ 1
6: Compute (θn)1≤n≤Np = UPDATE RB

(
(θn)1≤n≤Np−1 ,Sp, εpod

)
7: end while
8: Set N := NP

9: Compute û0, (fk)k∈Ktr , M, and A0

10: Compute the matrices (Cj)1≤j≤M
Output : (θn)1≤n≤N , û0, (fk)k∈Ktr , M, A0, and (Cj)1≤j≤M

Remark 3 (Threshold εpod) For the initialization (line 2 of Algorithm 3), one can use a relative
error threshold for εpod (for instance, εpod = 1%). Instead, for the iterative loop (line 6 of Algo-
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Algorithm 4 UPDATE RB

Input : Θ = (θn)1≤n≤N , S, and εpod > 0
1: if S = ∅ then
2: Θ remains unchanged
3: else
4: Define S̃ := (u−Πspan(Θ)u)u∈S
5: Set Ξ := POD(S̃, εpod)
6: if Ξ = ∅ then
7: Θ remains unchanged
8: else
9: Set Θ := Θ ∪ Ξ

10: end if
11: end if

Output : Θ

rithm 3), the threshold εpod can be set to the greatest singular value that has been truncated at the
initialization step.

Remark 4 (Order of EIM and RB) Algorithms 2 and 3 can be performed in whatever order. If
Algorithm 3 is performed first, the computation of the matrices (Cj)1≤j≤M is postponed to the end of
Algorithm 2. Moreover, the HF trajectories (ukµ)

(µ,k)∈Ptr×Ktr appearing in both algorithms are computed

only once.

5 The Progressive RB-EIM method (PREIM)

In this section, we first present the main ideas of the PREIM algorithm. Then we describe one
important building block called UPDATE EIM. Finally, using this building block together with the
procedure UPDATE RB from Algorithm 4, we present the PREIM algorithm.

5.1 Main ideas

PREIM consists in a progressive construction of the EIM approximation and of the RB. The key idea
is that, unlike the standard EIM for which HF trajectories are computed for all the parameter values in
the training set Ptr (Algorithm 2, line 1), PREIM works with an additional training subset PHF

m ⊂ Ptr

that is enriched progressively with the iteration index m of PREIM. The role of PHF
m is to collect the

parameter values for which a HF trajectory has already been computed. PREIM is designed so that
Card(PHF

m ) ≤ m for all m ∈ {1, . . . ,M}. This means that when the final rank-M EIM approximation
has been computed, at most M HF trajectories have been evaluated, whence the computational gain
with respect to the standard offline stage provided M � P .

At the iteration m ≥ 1 of PREIM, the trajectories for all µ ∈ PHF
m are HF trajectories, whereas

they are approximated by RB trajectories for all µ ∈ Ptr \ PHF
m . The RB functions can be modified

at each iteration m of PREIM; this happens whenever a new value of the parameter is selected in the
greedy stage of the EIM. To reflect this, we add a superscript m to the RB trajectories which are now
denoted (ûm,kµ )

k∈Ktr for all µ ∈ Ptr \ PHF
m . It is convenient to introduce the notation

ūm,kµ :=

{
ukµ if µ ∈ PHF

m ,

ûm,kµ otherwise,
(20)
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and the nonlinear function
γ̄m(µ, k, x) := Γ(µ, ūm,kµ (x)). (21)

The goal of every PREIM iteration is twofold:

(i) produce a set of RB functions (θmn )1≤n≤Nm (the RB functions and their number depend on m);

(ii) produce a rank-m approximation of the nonlinear function γ̄m defined by (21) in the form

γ̄m[PHF
m ,Xm,Qm](µ, k, x) :=

m∑
j=1

(ϕ̄m)kµ,j q̄j(x). (22)

The notation γ̄m
[PHF

m ,Xm,Qm]
in (22) indicates the data [PHF

m ,Xm,Qm] that is used to build the approx-

imation of the nonlinearity. More precisely, this construction uses the PREIM training set PHF
m , the

sequence of interpolation points Xm := (x̄i)1≤i≤m in Ωtr (with x̄m computed at iteration m), and
the sequence of functions Qm := (q̄j)1≤j≤m defined on Ω (with q̄m computed at iteration m). The
progressive construction of these three ingredients is described below. Then, considering the (invert-
ible) lower-triangular matrix B̄ ∈ Rm×m whose last row is calculated using B̄mj = q̄j(x̄m) for all
j ∈ {1, . . . ,m}, we compute the real numbers (ϕ̄m)kµ,j in (22) from the relations

m∑
j=1

B̄ij(ϕ̄
m)kµ,j = γ̄m(µ, k, x̄i), ∀i ∈ {1, . . . ,m}, (23)

for all (µ, k) ∈ P × Ktr
. All the real numbers (ϕ̄m)kµ,j depend on m since the right-hand side of (23)

depends on m.

5.2 The procedure UPDATE EIM

An essential building block of PREIM is the procedure UPDATE EIM described in Algorithm 5.
The input is the RB functions (θn)1≤n≤Nm−1 , the triple [PHF

in ,Xm−1,Qm−1] describing the current
approximation of the nonlinearity (the choice for the indices will be made clearer in the next section,
and is not important at this stage), and the threshold εeim. The output is the flag incr rk which
indicates whether or not the rank of the EIM approximation has been increased, and if incr rk =
TRUE, the additional output is the triple [PHF

out ,Xout,Qout] to devise the new EIM approximation,
possibly a new HF trajectory Sout, and a measure δeim

m on the EIM error.

First (see line 2), one selects a new pair (µm, km) ∈ Ptr ×Ktr
in a greedy fashion as follows:

(µm, km) ∈ argmax
(µ′,k′)∈Ptr×Ktr

‖Γ
(
µ′, ūk

′
µ′(·)

)
− γ̄m−1

[PHF
in ,Xm−1,Qm−1]

(µ′, k′, ·)‖`∞(Ωtr). (24)

In (24), ūk
′
µ′ is defined as in (20) using the set PHF

in . Therefore, the selection criterion (24) exploits

the knowledge of the HF trajectory for all the parameter values in PHF
in , and otherwise uses a RB

trajectory. This is an important difference with respect to the standard offline stage. There are
now two possibilities: (i) either µm is already in PHF

in ; then, no new HF trajectory is computed and
we set PHF

out := PHF
in (line 8); (ii) or µm is not in PHF

in ; then we compute a new HF trajectory for
the parameter µm and we set PHF

out := PHF
in ∪ {µm} (line 5). Our numerical experiments reported

in Section 6 below will show that at many iterations of PREIM, the pair (µm, km) selected in (24)
differs from the previously selected pair by the time index and not by the parameter value; this means
that for many PREIM iterations, no additional HF computation is performed. Nonetheless, in case of
non-uniqueness of the maximizer in (24), one selects, if possible, a trajectory for which the parameter
is not already in the set PHF

in so as to trigger a computation of a new HF trajectory.
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Algorithm 5 UPDATE EIM

Input : (θn)1≤n≤Nm−1 , PHF
in , Xm−1, Qm−1, and εeim

1: Compute (ūkµ)
(µ,k)∈Ptr×Ktr using (θn)1≤n≤Nm−1

2: Search (µm, km) ∈ argmax
(µ′,k′)∈Ptr×Ktr

‖Γ
(
µ′, ūk

′
µ′(·)

)
− γ̄m−1

[PHF
in ,Xm−1,Qm−1]

(µ′, k′, ·)‖`∞(Ωtr) based on RB/HF

3: Define r̃m(·) = Γ
(
µm, ū

km
µm(·)

)
− γ̄m−1

[PHF
in ,Xm−1,Qm−1]

(µm, km, ·).
4: if µm /∈ PHF

in then
5: Compute Sout = (ukµm)

k∈Ktr and set PHF
out = PHF

in ∪ {µm} one HF trajectory

6: Search (µ̄m, k̄m) ∈ argmax
(µ′,k′)∈PHF

out×K
tr

‖Γ
(
µ′, uk

′
µ′(·)

)
− γ̄m−1

[PHF
in ,Xm−1,Qm−1]

(µ′, k′, ·)‖`∞(Ωtr)

7: else
8: Set Sout = ∅, PHF

out = PHF
in , and (µ̄m, k̄m) = (µm, km)

9: end if
10: Define r̄m(·) := Γ

(
µ̄m, u

k̄m
µ̄m(·)

)
− γ̄m−1

[PHF
in ,Xm−1,Qm−1]

(µ̄m, k̄m, ·)
11: if ‖r̄m‖`∞(Ωtr) < εeim then
12: Set incr rk = FALSE
13: Define rm(·) = r̃m(·) discard the EIM selection

14: Set Xout = Xm−1 and Qout = Qm−1

15: else
16: Set incr rk = TRUE
17: Define rm(·) = r̄m(·)
18: Set Xout = (Xm−1, x̄m) and Qout = (Qm−1, q̄m) with x̄m, q̄m as in Algorithm 2 (lines 6 and 9).
19: end if
20: Define δeim

m = ‖rm‖`∞(Ωtr)

Output : incr rk, PHF
out , Sout, Xout, Qout, and δeim

m

An additional feature of PREIM is that, whenever a new HF trajectory is actually computed,
one can either confirm or update the selected pair (µm, km) using the following HF-based re-selection
criterion (see line 6):

(µ̄m, k̄m) ∈ argmax
(µ′,k′)∈PHF

out×K
tr

‖Γ
(
µ′, uk

′
µ′(·)

)
− γ̄m−1

[PHF
in ,Xm−1,Qm−1]

(µ′, k′, ·)‖`∞(Ωtr). (25)

We notice that this re-selection criterion only handles HF trajectories since the parameter values
are in PHF

out . Moreover, (25) only requires to probe the values for µm, since the values for the other
parameters, which are in PHF

in , have already been evaluated in (24). Finally, to prevent division by
small quantities, the value of the residual ‖r̄m‖`∞(Ωtr) is checked in line 11. If this value is too small,
the re-selected pair (µ̄m, k̄m) is rejected and the rank of the EIM approximation is not increased.

5.3 The PREIM algorithm

We are now ready to describe the PREIM procedure, see Algorithm 6. PREIM is an iterative method
that builds progressively the RB and the EIM approximation. The iteration is controlled by three
tolerances: εpod > 0 which is used in the progressive increment of the RB, εeim > 0 which is used to
check the quality of the EIM approximation, and εrb > 0 which is used to check the quality of the
RB. The termination criterion involves the quality of both the EIM and the RB approximations, see
line 7. Note that this is the same criterion as in the standard RB-EIM approach.
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Algorithm 6 Progressive RB-EIM (PREIM)

Input : Ptr, Ktr
, Ωtr, εpod > 0, εeim > 0, and εrb > 0

1: Set m = 1
2: Choose PHF

1 ( Ptr and compute S1 = (ukµ)
(µ,k)∈PHF

1 ×K
tr J ≥ 1 HF trajectories

3: Compute (θ1
n)1≤n≤N1 = POD(S1, εpod).

4: Compute û0 ∈ RN1
, (fk)k∈Ktr ∈ (RN1

)K , M ∈ RN1×N1
, and A0 ∈ RN

1×N1

5: Compute (X1,Q1, δ
eim
1 ) = INIT EIM(PHF

1 ) and C1 ∈ RN1×N1

6: Compute δrb
1 = maxµ∈Ptr ∆1(µ)

7: while (δeim
m > εeim or δrb

m > εrb) do
8: Set m = m+ 1 and PHF

in := PHF
m−1

9: (incr rk, PHF
out , Sout, Xout, Qout, δ

eim
m ) = UPDATE EIM ((θm−1

n )1≤n≤Nm−1 , PHF
in , Xm−1, Qm−1,

εeim)
10: while incr rk = FALSE do
11: PHF

in = PHF
out

12: (θm−1
n )1≤n≤Nm−1 = UPDATE RB

(
(θm−1
n )1≤n≤Nm−1 ,Sout, εpod

)
13: (incr rk, PHF

out , Sout, Xout, Qout, δ
eim
m ) = UPDATE EIM ((θm−1

n )1≤n≤Nm−1 , PHF
in , Xm−1,

Qm−1, εeim)
14: if incr rk = TRUE then
15: Step to line 20
16: end if
17: Compute µm ∈ argmax

µ∈Ptr

∆Xout,Qout

(θm−1
n )1≤n≤Nm−1

(µ)

18: Compute Sout = (ukµm)
k∈Ktr one HF trajectory

19: end while
20: Set PHF

m = PHF
out , Sm = Sout, Xm = Xout, and Qm = Qout

21: Compute (θmn )1≤n≤Nm = UPDATE RB
(
(θm−1
n )1≤n≤Nm−1 ,Sm, εpod

)
22: Update û0 ∈ RNm

, (fk)k∈Ktr ∈ (RNm
)K , and the matrices M, A0, (Cj)1≤j≤m in RNm×Nm

23: Compute δrb
m = max

µ∈Ptr
∆Xm,Qm

(θmn )1≤n≤Nm
(µ)

24: end while
25: Set M := m

Output : (θn)1≤n≤NM , û0, (fk)k∈Ktr , M, A0, XM , QM , and (Cj)1≤j≤M

Within each PREIM iteration, the two previously-described procedures UPDATE EIM and UP-
DATE RB are called. First, one attempts to improve the EIM approximation (line 9). If this is
successful (i.e., if incr rk = TRUE), the RB is updated by using the possibly new HF trajectory
Sm (line 21). Otherwise (i.e., if incr rk = FALSE), the RB is possibly updated (line 12) and a new
improvement of the EIM is attempted (line 13). In general, the RB is improved because a new HF
trajectory has been computed. Whenever this is not the case, a new HF trajectory is anyway com-
puted in line 18 so as to steer the progress in the iterations. The choice of this new HF trajectory can
be driven by a standard greedy algorithm based on the use of a classical a posteriori error estimator.
More precisely, for a given reduced basis (θn)1≤n≤N and given sets of training points X and functions
Q used for the current EIM approximation of the nonlinearity, the associated a posteriori error esti-
mator for a given value of the parameter µ ∈ P is denoted by ∆X ,Q(θn)1≤n≤N

(µ). Finally, we observe that

the reduced matrices and vectors in line 22 of Algorithm 6 need to be updated since these quantities
depend on the RB functions which can change at every iteration.

Let us now discuss the initialization of PREIM. In line 2, one can choose an initial PREIM training
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set PHF
1 composed of a single parameter, as is often the case with greedy algorithms. Although the

nonlinearity may not be well-described initially, one can expect that the description will improve
progressively. Still, to allow for more robustness in the initialization, one can consider an initial set
PHF

1 composed of several parameters. One can then compute the HF trajectories for all µ ∈ PHF
1 and

compress them using the POD procedure with threshold εpod (if PHF
1 contains more than one value,

a progressive version is used). Finally, one selects

(µ1, k1) ∈ argmax
(µ′,k′)∈PHF

1 ×K
tr

‖Γ
(
µ′, uk

′
µ′(·)

)
‖`∞(Ωtr), (26)

one defines r1(·) = Γ(µ1, u
k1
µ1(·)) and computes X1 = (x̄1), Q1 = (q̄1) (as in the standard EIM proce-

dure), and one sets δeim
1 = ‖r1‖`∞(Ωtr).

Remark 5 (PREIM-NR and U-SER variants) We can consider two variants in the procedure
UPDATE EIM (Algorithm 5) and therefore in PREIM. A first variant consists in skipping the re-
selection step in line 6 of Algorithm 5. This variant, which we call PREIM-NR (for ‘no re-selection’),
will be tested numerically in the next section so as to highlight the actual benefits brought by the re-
selection. A second variant is to replace ūm,kµ with ûm,kµ in lines 1 and 2 of Algorithm 5, and to skip
the re-selection step in line 6. We call this variant U-SER since it can be viewed as an extension of
SER [3] to the unsteady setting. The crucial difference between PREIM-NR and U-SER is that U-
SER uses RB trajectories to compute the space-dependent functions in the EIM approximation whereas
PREIM-NR uses HF trajectories.

6 Numerical results

In this section, we illustrate the above developments by numerical examples related to transient heat
transfer problems with two different types of nonlinearities. The first example uses a nonlinearity
on the solution whereas the second investigates a nonlinearity on its partial derivatives. Our goal
is to illustrate the computational performance of PREIM and to compare it to the standard EIM
approach described in Section 4 and to the variants PREIM-NR and U-SER described in Remark 5.
We consider a two-dimensional setting based on the perforated plate illustrated in Figure 1 with
Ω = (−2, 2)2\[−1, 1]2 ⊂ R2. HF trajectories are computed using a Finite Element subspace X ⊂ Y =
H1(Ω) consisting of continuous, piecewise affine functions. The HF computations use the industrial
software code aster [5] for the first test case and FreeFem++ [10] for the second test case, whereas the
reduced-order modeling algorithms have been developed in Python. In both test cases, the dominant
error component turns out to be the one resulting from the approximation of the nonlinearity, rather
than the one resulting from the RB. For this reason, PREIM has been run using only the stopping
criterion δeim

m > εeim in line 7 of Algorithm 6.

Figure 1: Computational domain: perforated plate.
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6.1 Test case (a): Nonlinearity on the solution

We consider the nonlinear parabolic problem (1) with the nonlinear function Γ(µ, v) := sin
(

2πµ
20

(
v−u0
um−u0

)2)
,

with u0 = 293 K (20 oC) and um = 323 K (50 oC). We define κ0 = 1.05 m2·K−2·s−1 and φe = 3 K·m·s−1

(these units result from our normalization by the density times the heat capacity). For space discretiza-
tion, we use a mesh containing N = 1438 nodes (see Figure 1). Regarding time discretization, we
consider the time interval I = [0, 5], the set of discrete times nodes Ktr = {1, · · · , 50}, and a constant
time step ∆tk = 0.1 s for all k ∈ Ktr. Finally, we consider the parameter interval P = [1, 20], the
training set Ptr = {1, · · · , 20}, and we use the larger set {0.25i | 0 ≤ i ≤ 80} to verify our numerical
results. In Figure 2, we show the HF temperature profiles over the perforated plate at two different
times and for two different parameter values. We can see that, as the simulation time increases, the
temperature is, overall, higher for larger values of the parameter µ than for smaller values. Also, for
larger values of µ, the temperature variation tends to be less uniform over the plate than for smaller
values of µ.

Figure 2: Test case (a): HF solutions for the parameter values µ = 1 (left) and µ = 18
(right) at t = 2 s (top) and t = 5 s (bottom).

m 1 2 6 14 15 20 25

‖rm‖`∞(Ωtr) 2.0 8.1E−1 1.1E−1 5.2E−3 2.6E−3 1.1E−3 1.6E−4

Table 1: Test case (a): Evolution of the standard EIM error. m is the rank of the EIM
approximation.

During the standard offline stage, we perform P = 20 HF computations. Knowing that K = 50, the
set S (Algorithm 2, line 1) contains 1020 fields, each consisting of N = 1438 nodal values. Applying
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the POD in a progressive manner (see Algorithm 3 with the parameters enumerated using increasing
values) based on the H1-norm and a truncation threshold εpod = 10−3, we obtain N = 6 RB functions.
Afterwards, we perform the standard EIM algorithm whose convergence is reported in Table 1. For
εeim = 5 · 10−2, the final rank of the EIM approximation is M = 8, whereas for εeim = 10−3, the final
rank of the EIM approximation is M = 15.

m 1 2 3 4 5 6 7 8 9 10 11 12 13

PREIM
µ̄ 1 20 20 20 20 20 20 20 16 20 20 18 20
µ 1 20 20 20 20 18 20 20 16 20 20 18 20
k 50 45 48 50 43 42 39 46 50 49 33 50 47

Table 2: Test case (a): Selected parameters and time nodes in PREIM. The gray cells
correspond to a new parameter selection and, therefore, to a new HF computation.

We now investigate PREIM, which we first run with thresholds εpod = 10−3 and εeim = 5 · 10−2.
Table 2 shows the selected parameters and discrete time nodes at each stage of PREIM. We can make
two important observations from this table. First, after 13 iterations, PREIM has only selected four
different parameter values, and has therefore computed only four HF trajectories (the iterations for
which a new parameter value is selected are indicated in gray in Table 2). In the other 9 out of the 13
iterations, a different time snapshot of an already existing HF trajectory has been selected. Second, by
comparing the lines in Table 2 related to µ and µ̄, we can see that a parameter re-selection happened
at iteration m = 7.

Figure 3: Test case (a): EIM approximation error as a function of m for εpod = 10−3 and
εeim = 5 · 10−2. Left: Errors for the standard RB-EIM procedure, PREIM, and U-SER.
Right: Errors ‖r̃m‖`∞(Ωtr) and ‖r̄m‖`∞(Ωtr) for PREIM.

The left panel of Figure 3 displays the error on the approximation of the nonlinear function Γ
for the standard RB-EIM procedure and for PREIM as a function of the iteration number m (the
additional curve concerning U-SER will be commented afterwards), i.e., we plot ‖r̄m‖`∞(Ωtr) (line 3
of Algorithm 5) and ‖r̃m‖`∞(Ωtr) (line 10 of Algorithm 5) as a function of m, see (22). We can see
that the quality of the approximation of the nonlinearity is almost the same for PREIM as for the
standard RB-EIM procedure; yet, the former achieves this accuracy by computing 20% of the HF
trajectories computed by the latter (4 instead of 20 HF trajectories). The right panel of Figure 3
shows the values of ‖r̃m‖`∞(Ωtr) and ‖r̄m‖`∞(Ωtr) as a function of m. The two quantities differ when

the parameter µm in line 2 of Algorithm 5 is not in the set PHF
m−1 so that ‖r̃m‖`∞(Ωtr) is computed using

a RB approximation whereas ‖r̄m‖`∞(Ωtr) results from a HF trajectory. Discarding the initialization,
this happens for m ∈ {6, 9, 10}. The fact that ‖r̃m‖`∞(Ωtr) and ‖r̄m‖`∞(Ωtr) take rather close values
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indicates that the RB provides an accurate approximation of the HF trajectory.

Figure 4: Test case (a): RB approximation error ‖uµ− ûµ‖`2(Itr;H1(Ωtr)) for εpod = 10−3 and
εeim = 5 · 10−2.

The left panel of Figure 4 compares the space-time errors (measured using the `2-norm in time
and the H1-norm in space) on the trajectories produced by the standard RB-EIM and the PREIM
procedures for the whole parameter range. The error is generically denoted ‖uµ − ûµ‖`2(Itr;H1(Ωtr)).
We observe an excellent agreement over the whole parameter range. In the right panel of Figure 4,
we also consider the space-time errors on the trajectories produced using the approximation of the
nonlinearity resulting from PREIM with the RB resulting from the standard algorithm. We do not
observe any significant change with respect to the left panel, which indicates that the dominant
error component is that associated with the approximation of the nonlinearity. We consider the
tighter couple of thresholds εpod = 10−5 and εeim = 5 · 10−3 in Figure 5. Here, we can observe some
differences in the errors produced by the standard RB-EIM and PREIM procedures, although both
errors remain comparable and reach similar maximum values over the parameter range. While the
standard procedure is slightly more accurate for most parameter values, the conclusion is reversed for
some other values. Moreover, the curves on the right panel of Figure 5 corroborate the fact that once
again, the dominant error component is that associated with the approximation of the nonlinearity.

Let us further explore the PREIM algorithm by comparing it to its variants U-SER and PREIM-
NR introduced in Remark 5. Table 3 reports the selected parameters and time nodes in U-SER and
PREIM-NR (compare with Table 2 for PREIM). Both U-SER and PREIM-NR need to compute five

Figure 5: Test case (a): RB approximation error ‖uµ− ûµ‖`2(Itr;H1(Ωtr)) for εpod = 10−5 and
εeim = 5 · 10−3.
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m 1 2 3 4 5 6 7 8 9 10 11 12 13

U-SER
µ 1 20 20 20 16 20 19 20 20 19 17 20 19
k 50 49 50 46 42 49 44 39 50 49 48 47 50

PREIM-NR
µ 1 20 20 20 20 16 20 20 20 20 20 17 19
k 50 47 50 46 42 49 48 46 39 50 45 50 50

Table 3: Test case (a): Selected parameters and time nodes in U-SER and PREIM-NR. The
gray cells correspond to a new parameter selection and, therefore, to a new HF computation.

Figure 6: Test case (a): RB approximation error ‖uµ− ûµ‖`2(Itr;H1(Ωtr)) for εpod = 10−3 and
εeim = 5 · 10−2.

HF trajectories, which is only 25% of those needed with the standard RB-EIM procedure, but this
is still one more HF trajectory than with PREIM. One difference between U-SER and PREIM-NR
is that new parameters are selected earlier with U-SER. Interestingly, after 13 iterations, U-SER and
PREIM-NR have selected the same five parameters. Another interesting observation is that U-SER
actually selects the same couple (µ, k) twice (this happens for m = 2 and m = 6); this can be
interpreted by observing that owing to the improvement of the RB using HF trajectories between
iterations m = 2 and m = 6, the algorithm detects the need to improve the approximation of the
nonlinearity by using the same pair (µ, k). The same observation can be made for PREIM-NR (this
happens for m = 4 and m = 8). We emphasize that re-selecting the same pair (µ, k) is not possible
within PREIM since the selection is based on HF trajectories. The left panel of Figure 3 displays the
error on the approximation of the nonlinear function Γ obtained with U-SER and compares it to the
error obtained with the standard RB-EIM and PREIM procedures that were already discussed. The
U-SER error is evaluated as sup

(µ,k)∈Ptr×Ktr ‖Γ(µ, ûkµ(·)) − γm
[PHF

m ,Xm,Qm]
(µ, k, ·)‖`∞(Ωtr). We observe

that the approximation of the nonlinearity is somewhat less sharp with U-SER than with PREIM.
Figure 6 reports the space-time errors (measured using the `2-norm in time and the H1-norm in space)
on the trajectories produced by PREIM and U-SER for the whole parameter range. We observe that
the U-SER error is always larger, sometimes up to a factor of five, but for the larger parameter values
which produce the larger errors, the quality of the results produced by PREIM and U-SER remains
comparable.

Finally, we provide an assessment of the runtimes in Table 4. We can see that for the standard
RB-EIM procedure, the computation of the HF trajectories dominates the cost of the offline phase.
For both PREIM and U-SER, the cost of these HF computations is substantially reduced. At the
same time, the cost of the greedy algorithm (which includes the construction of the EIM and of the
RB) is increased by 50% with respect to the standard RB-EIM procedure. However, the impact on
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RB-EIM PREIM U-SER

HF computations 99% 20.0% 25.0%

greedy runtime 1% 1.5% 2.3%

Total runtime 100% 21.5% 26.3%

Table 4: Test case (a): Runtime measurements.

the total runtime is marginal.
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6.2 Test case (b): Nonlinearity on the partial derivatives

Figure 7: Test case (b): HF solutions for the parameter values µ = 1 at t = 1 s (left, values
from 20.2 to 22.1) and at t = 2.5 s (right, values from 34.5 to 37.3).

We consider the nonlinear parabolic problem (1) with the nonlinear function Γ(µ, z) := sin
(
ωµ
(
(∂u∂x)2+

(∂u∂y )2
))2

, where ω = 6.25·10−3. We define u0 = 293 K (20 oC), κ0 = 1 m2·K−2·s−1 and φe = 3 K·m·s−1

(these units result from our normalization by the density times the heat capacity). For the space dis-
cretization, we use a mesh containing N = 1429 nodes. Regarding time discretization, we consider the
time interval I = [0, 2.5], the set of discrete times nodes Ktr = {1, . . . , 50}, and a constant time step
∆tk = 0.05 s for all k ∈ Ktr. Finally, we consider the parameter interval P = [1, 40] and the training
set Ptr = {1, . . . , 40}. In Figure 7, we show the temperature isovalues over the perforated plate at two
different times for µ = 1. We can observe different boundary layers depending on the time (the same
observation can be made by varying the parameter value).

p 1 2 3 8 20 23 24 26 32 33 36 37 39 40

RB size 3 4 5 6 7 8 9 10 11 12 13 14 15 15

Table 5: Test case (b): Size of the reduced basis in the standard algorithm with εpod =
5 · 10−2.

m 2 10 13 20 30 36 37 79 96 144

‖rm‖`∞(Ωtr) 1.6 1.3 9.7E−1 4.7E−1 1.7E−1 1.2E−1 8.0E−2 9.1E−3 4.6E−3 9.4E−4

Table 6: Test case (b): Evolution of the standard EIM error. m is the rank of the EIM
approximation and ‖rm‖`∞(Ωtr) is the residual norm in (18).

During the standard offline stage, we perform P = 40 HF computations. Knowing that K = 50, the
set S (Algorithm 2, line 1) contains 2040 fields, each consisting of N = 1429 nodal values. Applying
Algorithm 3 based on the H1-norm, a truncation threshold εpod = 5·10−2, and parameters enumerated
with increasing values, we obtain N = 15 RB functions. Table 5 shows the dimension of the RB space
as a function of the enumeration index p. Table 6 shows the evolution of the error on the nonlinearity
within the standard EIM. The fact that the nonlinearity depends on the partial derivatives of the
solution challenges the EIM; indeed, the error decay is not as fast as in the previous test case. This
observation is corroborated by the fact that the functions (qj)1≤j≤M all look quite different.

We now investigate the performance of PREIM, which we run with thresholds εpod = 5 · 10−2

and either εeim = 10−1 or εeim = 10−3. Table 7 shows the selected parameters and time nodes at
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m 1 2 3 4 5 6 7 8 9

µ̄ 21 8 21 8 21 21 21 8 9
µ 21 8 21 8 21 21 21 8 9
k 2 5 3 2 50 4 49 3 4

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

µ̄ 21 21 21 8 21 21 21 8 9 21 9 21 9 9 9 6 21 21 40 40
µ 21 8 21 8 21 21 21 8 9 21 9 7 6 9 9 5 4 3 40 40
k 2 5 3 2 50 4 49 3 4 10 50 25 49 5 10 4 6 9 15 40

Table 7: Test case (b): Selected parameters and time nodes in PREIM for εeim = 10−1 (top)
and εeim = 10−3 (bottom). The gray cells correspond to a new parameter selection and,
therefore, to a new HF computation.

m 1 2 9 17 18 20

RB size 5 6 6 7 9 9

Table 8: Test case (b): Size of RB generated within PREIM for εpod = 5 · 10−2; for
εeim = 10−1, one stops at m = 9, and for εeim = 10−3, one stops at m = 20.

each iteration. For εeim = 10−1, PREIM performs 9 iterations, and three parameters are selected for
HF computations, whereas for εeim = 10−3, PREIM performs 11 further iterations and six more HF
computations to reach the requested threshold. Moreover, the evolution of the size of the reduced
basis within PREIM is shown in Table 8. As can be noticed, the approximation of the nonlinearity
requires more computational effort than that of the solution manifold.

Figure 8: Test case (b): EIM approximation errors ‖r̃m‖`∞(Ωtr) and ‖r̄m‖`∞(Ωtr) as a function
of m for PREIM with εpod = 5 · 10−2 and εeim = 10−3.

Figure 8 shows the decrease of the EIM approximation error on the nonlinearity for PREIM with
εpod = 5 · 10−2 and εeim = 10−3. We observe that each time a new HF trajectory is computed, i.e.,
whenever the quantities ‖r̃m‖`∞(Ωtr) and ‖r̄m‖`∞(Ωtr) differ, the difference is actually rather small,
thereby confirming the already accurate approximation of the nonlinearity by the RB solutions in
PREIM. The left panel of Figure 9 illustrates the space-time errors (measured in the `2(Itr;H1(Ωtr))-
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Figure 9: Test case (b): RB approximation error ‖uµ − ûµ‖`2(Itr;H1(Ωtr)) for εpod = 5 · 10−2

and εeim = 10−3.

Figure 10: Test case (b): RB approximation error ‖uµ− ûµ‖`2(Itr;H1(Ωtr)) for εpod = 2.5 ·10−2

and εeim = 10−4.

norm) on the trajectories produced by the standard RB-EIM and the PREIM procedures for the
whole parameter range. We observe that for lower parameter values, PREIM delivers somewhat
less accurate results, whereas the conclusion is reversed for higher parameter values. Altogether,
both errors stay within comparable upper bounds. The right panel of Figure 9 shows that the error
component associated with the approximation of the nonlinearity is still the dominant one, except
for the parameter range [1, 5] where the RB from the standard algorithm helps improve the error.
Incidentally, we observe that these smaller values of the parameter were not selected within PREIM
for approximating the nonlinearity. Finally, Figure 10 shows the same results for the tighter thresholds
εpod = 5 · 10−2 and εeim = 10−4. Here, 14 HF computations and 100 PREIM iterations were needed.
We can see that the PREIM error closely matches that of the standard RB-EIM procedure.

7 Conclusion and perspectives

In this work, we have devised a new methodology, called PREIM, that allows one to diminish the
offline expenses incurred in the nonlinear RB method applied to unsteady nonlinear PDEs, as long
as the computation of high-fidelity trajectories is the dominant part of the offline cost. Numerical
tests on two-dimensional nonlinear heat transfer problems with nonlinear thermal conductivities have
illustrated the computational efficiency and the accuracy of the algorithm. In addition, the application
of PREIM to an industrial test case of a three-dimensional flow-regulation valve is ongoing.
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A Proper Orthogonal Decomposition

The goal of this appendix is to briefly describe the procedure associated with the notation

(θ1, . . . , θN ) = POD(S, εpod), (27)

which is used in Algorithms 3, 4, and 6, where S = (v1, . . . , vR) is composed of R ≥ 1 functions in
the space X and εpod is a user-prescribed tolerance. For simplicity, we adopt an algebraic description,
and we refer the reader to [2] for further insight. Let (%1, . . . , %N ) be a basis of X where dim(X) = N .
For a function w ∈ X, we denote by w := (wj)1≤j≤N its coordinate vector in RN , so that w =∑N

j=1wj%j . The algebraic counterpart of (27) is that we are given R vectors forming the rectangular

matrix S := (v1, . . . ,vR) ∈ RN×R, and we are looking for N vectors forming the rectangular matrix
Θ := (θ1, . . . ,θN ) ∈ RN×N . The vectors (θ1, . . . ,θN ) are to be orthonormal with respect to the Gram
matrix of the inner product in X. In the present setting, we consider the Gram matrix CN ∈ RN×N
such that

CN =
(
m(%n, %p) + ηa0(%n, %p)

)
1≤p,n≤N

, (28)

where η > 0 is a user-prescribed weight and the bilinear forms m and a0 are defined in (3). Thus, we
want to have θT

nCNθp = δn,p, the Kronecker delta, for all n, p ∈ {1, . . . , N}.
Let us set T := (CN )

1
2 S ∈ RN×R and consider the integer D = min(N , R) (in most situations,

we have D = R and D � N ). Computing the Singular Value Decomposition [16] of the matrix
T, we obtain the real numbers σ1 ≥ σ2 ≥ · · · ≥ σD ≥ 0, the orthonormal family of column vectors
(ξn)1≤n≤D ∈ (RN )D (so that ξT

n ξp = δp,n) and the orthonormal family of column vectors (ψ̂n)1≤n≤D ∈
(RR)D (so that ψ̂T

n ψ̂p = δp,n), and we have

T =

D∑
n=1

σnξnψ̂
T
n . (29)

From (29), it follows that Tψ̂n = σnξn and TTξn = σnψ̂n for all n ∈ {1, . . . , D}. The vectors we

are looking for are then given by θn := (CN )−
1
2 ξn for all n ∈ {1, . . . , N} with N := max{1 ≤ n ≤

D | σn ≥ εPOD}. It is well-known that the N -dimensional space spanned by the vectors (θn)1≤n≤N
minimizes the quantity infz∈ZN

∑R
r=1(vr − z)TCN (vr − z) among all the N -dimensional subspaces

ZN of RN . Moreover, we have ‖v −ΠZN
v‖X ≤ σN+1‖v‖X , for all v ∈ S.

In practice, when D = R, we can avoid the computation of the matrix (CN )
1
2 and of its inverse

by considering the matrix of smaller dimension TTT = STCNS ∈ RR×R. Solving for the eigenvalues
of TTT, we obtain the vectors ψ̂n with associated eigenvalues σ2

n since we have TTTψ̂n = σnT
Tξn =

σ2
nψ̂n. Then, the vectors (θn)1≤n≤N are obtained as θn =

(
CN

)− 1
2 ξn = 1

σn

(
CN

)− 1
2 Tψ̂n = 1

σn
Sψ̂n.
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