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Abstract

Some scales of spaces of ultra-differentiable functions are introduced, having good
stability properties with respect to infinitely many derivatives and compositions.
They are well-suited for solving non-linear functional equations by means of hard
implicit function theorems. They comprise Gevrey functions and thus, as a limiting
case, analytic functions. Using majorizing series, we manage to characterize them in
terms of a real sequence M bounding the growth of derivatives.

In this functional setting, we prove two fundamental results of Hamiltonian per-
turbation theory: the invariant torus theorem, where the invariant torus remains
ultra-differentiable under the assumption that its frequency satisfies some arithmetic
condition which we call BRM , and which generalizes the Bruno-Rüssmann condi-
tion; and Nekhoroshev’s theorem, where the stability time depends on the ultra-
differentiable class of the pertubation, through the same sequence M . Our proof
uses periodic averaging, while a substitute of the analyticity width allows us to by-
pass analytic smoothing.

We also prove converse statements on the destruction of invariant tori and on
the existence of diffusing orbits with ultra-differentiable perturbations, by respec-
tively mimicking a construction of Bessi (in the analytic category) and Marco-Sauzin
(in the Gevrey non-analytic category). When the perturbation space satisfies some
additional condition (we then call it matching), we manage to narrow the gap be-
tween stability hypotheses (e.g. the BRM condition) and instability hypotheses, thus
circumbscribing the stability threshold.

The formulas relating the growth M of derivatives of the perturbation on the one
hand, and the arithmetics of robust frequencies or the stability time on the other
hand, bring light to the competition between stability properties of nearly integrable
systems and the distance to integrability. Due to our method of proof using width
of regularity as a regularizing parameter, these formulas are closer to optimal as the
the regularity tends to analyticity.
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1 Introduction

1.1 High regularity in perturbation theory

The purpose of this article is two-fold. First, we introduce and study the general properties
of a class of ultra-differentiable functions well-suited for solving non-linear functional equa-
tions with iterative methods. Second, within this framework, we generalize the fundamental
results of Hamiltonian perturbation theory such as the KAM theorem on the preservation
of invariant tori or the Nekhoroshev theorem on the long-time stability of solutions; we also
prove “converse” statements such as the destruction of tori or the construction of unstable
orbits (the so-called Arnold diffusion).

First recall that real-analytic functions in m variables are characterized by a growth
of their derivatives of order s−|k||k|! for k ∈ Nm and some analyticity width s > 0; in the
periodic case, this is equivalent to a decay of Fourier coefficients of order e−s|j| for j ∈ Zm.

In his foundational paper [Kol54], Kolmogorov proved that an invariant torus in a
real-analytic non-degenerate integrable Hamiltonian system can be preserved, as a real-
analytic embedded torus, under an arbitrary small real-analytic perturbation, provided
the frequency vector satisfies a Diophantine condition. This theorem of Kolmogorov has
generated a tremendous amount of work, and new proofs of more general statement ap-
peared. Among them, still in the analytic case, by using very accurate approximation
results of analytic functions by polynomials, Rüssmann ([Rüs01]) was able to improve the
arithmetic condition, and get what is now called the Bruno-Rüssmann condition (BR-
condition for short). This condition, which was introduced earlier (in a different form) by
Bruno ([Bru71], [Bru72]) in the Siegel linearization problem (a different problem involving
small divisors), is known to be optimal in the Siegel problem in complex dimension one
(this is a celebrated result of Yoccoz [Yoc88], [Yoc95]). Whether BR is optimal in higher
dimension or in the Hamiltonian problem is open. A different proof of the Kolmogorov
theorem with the BR-condition was then given in [BF13], [BF14]; instead of approximating
the real-analytic perturbation by a polynomial, the idea consists in approximating the fre-
quency vector by suitable periodic vectors. Let us point out that all these proofs crucially
use a complex extension of the domain and of the Hamiltonian in order to use methods
of complex analysis. Also, even though it is not known if the BR-condition is optimal, a
construction of Bessi [Bes00], inspired by the theory of Arnold diffusion, shows that BR
cannot be improved much, if at all.

A second fundamental result is due to Nekhoroshev, who showed in [Nek77], [Nek79]
that all solutions of a perturbed “generic” real-analytic integrable Hamiltonian system are
stable for an exponentially long interval of time. This generic class of integrable Hamilto-
nians, which are known as steep, includes as a particular case the quasi-convex functions
for which the proof of Nekhoroshev theorem greatly simplifies. As a consequence, bet-
ter quantitative results were obtained in [Loc92], [LN92], [LNN94] and in [Pös93] for the
quasi-convex case. Together with the improvements obtained in [BM11] and in [ZZ17] and
the examples of analytic Arnold diffusion in [Bes96], [Bes97] and [Zha11], all these results
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determine precisely the time-scale of stability. The quantitative result of the quasi-convex
case was recently extended to the general steep case in [GCB16]; however, no examples
of Arnold diffusion are known for steep non-convex integrable Hamiltonians. Let us also
remark that even though linear integrable Hamiltonians are non-steep, they are stable for
a long interval of time provided the (constant) frequency is non-resonant; this is a well-
known result assuming the frequency to be Diophantine, but in the general case this was
observed in [Bou12] along with the fact that the stability estimates thus obtained are op-
timal as examples of Arnold diffusion with controlled speed are quite easily constructed in
this context.

Next, given a real parameter α ≥ 1, allowing a growth of the derivatives of order
s−|k||k|!α for k ∈ Nm or, equivalently, a decay of Fourier coefficients of order e−(s|j|)1/α for
j ∈ Zm in the periodic case, one is led to consider α-Gevrey functions of m variables,
which thus reduce to real-analytic functions when α = 1. The “width” s > 0 extends
the significance of the analyticity width of analytic functions. Since the introduction by
Gevrey of the class of functions now baring his name ([Gev18]), there has been a huge
amount of works on Gevrey functions, mainly for PDEs, but also more recently in other
fields, including dynamical systems.

The theorem of Kolmogorov, under the classical Diophantine condition, was extended
to this Gevrey context by Popov [Pop04]. His proof, which is based on approximation
of Gevrey functions by real-analytic ones, did not allow him to reach weaker arithmetic
condition even though one would expect the statement to be true under a condition which
generalizes the BR-condition. Recently, we introduced in [BF17] such a condition that we
called the BRα-condition and under which an invariant torus is preserved as an α-Gevrey
torus for a non-degenerate close to integrable α-Gevrey system. The proof in [BF17] was
direct, in the sense that in the real-analytic case it does not use any complex extension,
and in the Gevrey case it does not use analytic approximation. Actually, one of the main
difficulties was to obtain functional estimates (and in particular product, derivatives and
composition estimates) which were not known and were clearly required if one wants to
implement an iterative scheme (typical of KAM) within the α-Gevrey category. Indeed,
of particular importance was to obtain a norm estimate for the composition of a function
by a diffeomorphism in which the loss of “width” is arbitrarily small provided the dif-
feomorphism is arbitrarily close to the identity; such an estimate is needed if one insists
on having some “width” parameter left after infinitely many compositions. These crucial
estimates were obtained in [BF17], and with further work using the method introduced
in [BF13], [BF14] the result was achieved. Also we observed that Bessi’s example could
be modified to give a necessary condition close to the sufficient BRα-condition; in partic-
ular, invariant torus with a frequency which satisfy the BR-condition can be destroyed by
an arbitrarily small perturbation which is α-Gevrey for any α > 1, and this is in sharp
contrast with some other small divisors problem (as for instance the formal Gevrey Siegel
problem considered in [CM00] and [Car03]).

As for the Nekhoroshev theorem, the extension to α-Gevrey quasi-convex Hamiltonians
was achieved in [MS02]. Here precise composition estimates were not needed (even though
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the authors were aware that their composition result was not accurate). Indeed, it is known
since the work of Lochak that for quasi-convex Hamiltonians, one only needs a normal form
at periodic frequency and thus, from an analytical point of view, one is dealing with the
problem of eliminating the time-dependence in a slow-fast periodic system. This problem
always has a formal solution which of course may be divergent: in [RS96] it was proved
that for an analytic system, the associated formal series has a Gevrey character, and this
was extended (in a Hamiltonian setting) for an arbitrary α-Gevrey system. Once one
knows the existence of a formal solution with such a Gevrey Character, techniques of re-
summation allow to find a Gevrey (convergent) normal form with an exponentially small
remainder, and this is all what is needed to prove the Nekhoroshev theorem for quasi-
convex Hamiltonians. Examples of Arnold diffusion were also obtained in [MS02] but in
the Gevrey non-analytic case α > 1, as the method uses the existence of bump functions.
However, even though the improvement of [BM11] does extend to the more general Gevrey
setting, for the moment this is not the case of [ZZ17] and thus the optimal time-scale of
stability in the Gevrey case is not yet completely determined. Nekhoroshev estimates have
been obtained also in the general steep case for Gevrey Hamiltonians (see [Bou11]), yet
the quantitative result is very poor compared to the analytic case studied in [GCB16].
Finally, for Gevrey linear integrable Hamiltonians, precise and essentially optimal stability
and instability result are proved in [Bou13a].

More generally, for a sequence of positive real numbers M = (Ml)l∈N, we can consider
the class of smooth functions having a growth of derivatives of order s−|k|M|k| for k ∈ Nm

and some s > 0 which we still call a “width”. This defines a class of ultra-differentiable
functions associated to M , or simply M-ultra-differentiable functions. The real-analytic
and α-Gevrey regularity are nothing but the particular cases where respectively Ml = l!
and Ml = l!α. In terms of Fourier coefficients for periodic functions, this amounts to
a decay of order e−Ω(s|j|) for j ∈ Zm, for some suitable positive increasing function Ω;
again the real-analytic and α-Gevrey regularity correspond to respectively Ω(y) = y and
Ω(y) = y1/α. It is one of our goal here to introduce a class of ultra-differentiable functions
in which non-linear problems can be solved by an iterative method within this class. To do
so, we will restrict the allowed sequence M by requiring two conditions to be satisfied (see
§ 1.2 for the precise definition ofM-ultra-differentiable functions and these two conditions).
The first of these conditions (which we will call (H1)) is a kind of regularity condition and
it is classical and very often satisfied. In particular it implies stability by product and by
composition; for the composition a loss of “width” occur so in order to be able to perform
infinitely many compositions, we will have to show that the loss can be arbitrarily small
when the composition involves a diffeormorphism arbitrarily close to the identity. The
second condition (which we will call (H2)) is, however, more restrictive as it requires the
sequence M not to grow too fast at infinity; it implies not only stability by derivation
but moreover that the loss of width can be taken arbitrarily small, and thus one may say
that this condition amounts to stability under ‘infinitely many derivations”. This growth
restriction is quantified by a function which we will call C, and in good cases it will be
related to the function Ω which controls the decay of Fourier coefficients in the periodic case
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(see § 1.3 for more information on these functions C and Ω). The functional estimates we
obtained in [BF17] in the Gevrey setting will be generalized to this M-ultra-differentiable
setting where M satisfies these two conditions (H1) and (H2).

As a first application, we will give the proof of KAM type theorems within this class
of M-ultra-differentiable functions (see § 1.5 for precise statements). We will introduce
an arithmetic condition, the BRM -condition, and under which an invariant torus is pre-
served as an M-ultra-differentiable torus for a non-degenerate close to integrable M-ultra-
differentiable Hamiltonian system (see § 1.4 for the definition of this arithmetic condition).
This BRM -condition reduces to the BRα-condition whenMl = l!α so this includes the main
result of [BF17] but it encompasses many more cases. Let us point out that this BRM -
condition does not depend directly on M but rather on the associated function C that was
mentioned above. Again, Bessi’s example could be modified to give a necessary condition
for the preservation of an invariant torus, yet this necessary condition now involves the
function Ω and not C and thus only in the good cases (where these two functions are
related; this will be called matching in the sequel) this necessary condition shows that the
sufficient condition cannot be improved too much, if any.

As a second application, we will extend Nekhoroshev theory to this class of M-ultra-
differentiable functions (see § 1.6 for precise statements). As we already explained, in the
analytic case we have a good knowledge, the main issue being the Arnold diffusion for
steep non-convex systems. In the more general Gevrey case, the time-scale of stability is
not yet completely determined in the quasi-convex case but also only poor quantitative
statement are known in the general steep case. In the ultra-differentiable setting, basically
we will be able to extend the knowledge we have for the general Gevrey case but not the
more precise knowledge of the analytic case. First, for linear integrable Hamiltonians, we
will give accurate and essentially optimal stability and instability result, which completely
extends the analytic and Gevrey case; exactly like for the KAM type results, the stability
(that is, positive) result involves the C function whereas the diffusion (that is, negative)
result involves the Ω function and so one has to consider the result to be accurate only for
matching sequences. Then, for quasi-convex integrable Hamiltonians, our stability result
again will be a complete generalization of the analytic and Gevrey case, however, exactly
like for the Gevrey case, the improvement of [ZZ17] cannot be reached and the construction
of Arnold diffusion, following [MS02], requires bump function and thus a further assumption
of non-quasi-analyticity. Finally, in the steep case, a result generalizing [Bou11] will be
obtained but the quantitative result will be again quite far from the more accurate analytic
case [GCB16].

1.2 Ultra-differentiable functions

Recall that n ≥ 1 is an integer, Tn = Rn/Zn and let D ⊆ Rn be the open ball of radius one
centered at the origin. For a small parameter ε ≥ 0, we consider a Hamiltonian function
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H : Tn ×D → R of the form
{
H(θ, I) = h(I) + εf(θ, I),

∇h(0) := ω0 ∈ Rn.
(∗)

We shall assume that the Hamiltonian H is ultra-differentiable on Tn×D, in the following
sense. Let us fix a sequenceM := (Ml)l∈N of positive real numbers withM0 =M1 = 1. The
function H is said to be ultra-differentiable with respect to M (or M-ultra-differentiable)
if H is smooth and there exists s > 0 such that, using multi-indices notation (see § 2),

|H|M,s := c sup
(θ,I)∈Tn×D

(
sup
k∈N2n

(|k|+ 1)2s|k||∂kH(θ, I)|
M|k|

)
<∞, c := 4π2/3. (1)

The space of such Hamiltonians will be denoted by UM,s(T
n×D) or, more simply, Us(T

n×
D). This definition can be extended to vector-valued functions X : Tn×D → Rp by setting

|X|M,s := c sup
(θ,I)∈Tn×D

(
sup
k∈N2n

(|k|+ 1)2s|k||∂kX(θ, I)|1
M|k|

)
<∞ (2)

where | . |1 is the l1-norm of vectors in Rp, or the sum of the absolute values of the com-
ponents, thus defining the space Us(T

n × D,Rp). As a rule, we will use the l1-norm for
vectors, so for simplicity we shall write | . |1 = | . |.

Condition (1) may be imaged as some modification of the Taylor series of H having
radius of convergence at least s. Thus, the parameter s extends the concept of width of an-
alyticity of an analytic function (see example 1), and will be called the (ultra-differentiable)
width. To emphasize its role, we shall also say that H is (M, s)-ultra-differentiable if (1)
holds. These classes of ultra-differentiable functions we are considering here are usually
called Denjoy-Carleman classes (of Roumieu type) in the literature; we refer to [Thi08] for
a nice survey.

General properties of these ultra-differentiable norms (under certain assumptions we
will introduce below) are described in § 2. In particular we explain there the (inessential)
role of the factor (|k|+ 1)2 and the normalizing constant c > 0 in (1).

Let us now give the main example of ultra-differentiable class of functions.

Example 1. Given α ≥ 1, let us define the sequence

Mα := (l!α)l∈N. (3)

Observe that a function is Mα-ultra-differentiable if and only if it is α-Gevrey, and thus it
isM1-ultra-differentiable if and only if it is real-analytic, in which case the parameter s > 0
is the width of analyticity. (The case when 0 ≤ α < 1 corresponds to entire functions and
will not be considered in this work.) More examples of sequences will be given in § 1.4.

Without further information on the sequence M , one cannot expect much structure on
the space of M-ultra-differentiable functions. For our purposes here, we will have to make

7



two assumptions. But first associated to the sequence M we define three other sequences
µ := (µl)l∈N, N := (Nl)l∈N and ν := (νl)l∈N by

µl :=
Ml+1

Ml
, Nl :=

Ml

l!
, νl :=

Nl+1

Nl
=

µl

l + 1
. (4)

As M0 =M1 = 1, we have N0 = N1 = 1 and µ0 = ν0 = 1. Clearly, the knowledge of one of
these sequences determines the other three. The two assumptions we will require are the
following:

The sequence N is log-convex, i.e., the sequence ν is non-decreasing. (H1)

The sequence µ is sub-exponential, i.e., lim
l→+∞

l−1 ln(µl) = 0. (H2)

Let us briefly describe the role of these two assumptions.
The log-convexity condition (H1) is a very classical assumption in the literature, in

particular it implies that the space of M-ultra-differentiable function is closed under prod-
uct and composition; as a matter of fact, for this to be true slightly weaker conditions are
required (see Lemma 12 and Lemma 15 in respectively § 2.4 and § 2.5). Clearly, if ν is
increasing then so is µ thus the log-convexity of N implies the log-convexity of M (but
the reverse implication is not true in general). Let us also point out that (H1) and the
normalization N0 =M0 = 1 imply

Nl ≥ 1, Ml ≥ l!, l ∈ N

with the limiting case where Nl = 1, Ml = l!, corresponding to the space of analytic
functions.

Up to our knowledge, the sub-exponential condition (H2) hasn’t been used so far in the
literature. This condition implies that our space of functions is closed under derivation,
which is easily seen to be equivalent to the condition

sup
l∈N

µ
1
l
l = sup

l∈N

(
Ml+1

Ml

) 1
l

< +∞,

but it is definitely stronger: instead of just requiring that the sequence
(
µ
1/l
l

)
l∈N

is

bounded, (H2) demands that this sequence converges to 1.
However, (H2) is not an inordinate property. Indeed, a condition commonly assumed in

the literature on ultra-differentiable functions is the following, so-called moderate growth:

sup
l,j∈N

(
Ml+j

MlMj

) 1
l+j

< +∞ (MG)

As Lemma 46 shows (Appendix A), this condition is stronger than our hypothesis (H2).
Actually, one can image (H2) as the guarantee that our functional space is “stable

by infinitely many derivations”. Indeed, in view of our choice of norms, the condition
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(H2) is exactly the one that ensures we have an analogue of the Cauchy estimates for
analytic functions: if f is (M, s)-ultra-differentiable, then its derivative f ′ is (M, s′)-ultra-
differentiable for any s′ < s and we can bound the (M, s′)-norm of f ′ in terms of the
(M, s)-norm of f and a function of s− s′, that we call C(s− s′) (C stands for Cauchy). As
s′ converges to s, this function blows up and its asymptotics plays an important role in the
sequel. It will be defined and briefly studied in the next section, along another function,
which we call Ω (this function was already mentioned in the introduction) and which can
actually be defined without any assumption on the sequence M .

1.3 Functions C and Ω

Given 0 < σ < 1, we define the Cauchy function C = CM by

C(σ) := sup
l∈N

µle
−σl = sup

l∈N

Ml+1

Ml
e−σl (5)

where the sequence µ was defined in (4): that C(σ) is finite for all σ > 0 follows from (and
in fact is equivalent to) (H2) which guarantees that µ has a sub-exponential growth. Let
us first remark that νl ≥ ν0 = 1 (this follows from (H1) and the normalization) and thus

C(σ) = sup
l∈N

(l + 1)νle
−σl ≥ sup

l∈N
(l + 1)e−σl ≥ (eσ)−1. (6)

Clearly, the supremum in (5) is in fact a maximum and the function C is thus continuous
on ]0, 1[. Besides, there exists some 0 < σ̄ < 1 which depends only on the sequence M such
that C(σ) = 1 for any σ̄ ≤ σ < 1 (we will assume that σ̄ is minimal with this property);
the interesting limit is when σ goes to zero (in the discussion above, this corresponds to
s′ = s(1 − σ) and the limit s′ → s amounts to σ → 0). For 0 < σ ≤ σ̄, the function C is
then decreasing, and so the restriction

C : ]0, σ̄] → [1,+∞[

is a homeomorphism, which has a continuous decreasing functionnal inverse

C−1 : [1,+∞[→]0, σ̄].

The behavior of C(σ), as σ tends to zero, translates into the behavior of C−1(y), as y tends
to infinity.

Let us now introduce another function, this one classically attached to the sequence
M , which we will call Ω = ΩM , and which is defined by

Ω(y) := ln

(
sup
l∈N

ylM−1
l

)
= sup

l∈N
(l ln y − lnMl) . (7)

One can show (see [CC94] or [Thi03]) that this defines a function

Ω : [0,+∞[→ [0,+∞[
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which is continuous, constant equal to zero for y ≤ 1 and strictly increasing for y ≥ 1.
Clearly, Ω(y) grows faster than ln

(
yl
)
for any l ∈ N as y goes to infinity, but also

lim
y→+∞

Ω(y)

ln(y)
= +∞. (8)

For a periodic function f ∈ Us(T
n), letting f =

∑
j∈Zn fjej be its Fourier expansion, one

easily checks that Ω controls the decay of the Fourier coefficients in the sense that

|fj | ≤ exp(−Ω(s|j|)), j ∈ Zn. (9)

Here too, it is the asymptotic of the function Ω at infinity which is of interest to us, so to
make things more precise, let us introduce the following definition.

Let us say that two real-valued functions f and g of one variable, defined in the neigh-
borhood of u, u ∈ {0,+∞}, are equivalent up to scalings (at u) if there exist positive
constants a and b such that

f(ax) ≤ g(x) ≤ f(bx), x→ u.

In the sequel we shall simply write f(x) ≍ g(x) without referring to the precise value u.

Example 2. Let us come back to the Example 1 where

Mα = (l!α)l∈N, µα = ((l + 1)α)l∈N.

Clearly, (H1) and (H2) are satisfied, and simple computations lead to

C(σ) ≍ σ−α, C−1(y) ≍ y−1/α, Ω(y) ≍ y1/α.

In the above example, one remarks that the inverse of Ω is equivalent up to scalings
(at infinity) to the functional inverse of C. Let us give a name to sequences with such a
property: a sequence M will be called matching if

C−1 ≍ 1/Ω (10)

where the functions C and Ω have been defined respectively in (5) and (7). In the sequel,
matching sequences will play a special role: these will be the sequences for which we will
be able to compare in the sharpest way stability results (KAM, Nekhoroshev) to instability
results (destruction of tori, Arnold diffusion).

1.4 An arithmetic condition for ultra-differentiable functions

Given ω0 ∈ Rn, define the function

Ψω0 : [1,+∞) → [Ψω0(1),+∞], Q 7→ max{|k · ω0|−1 | k ∈ Zn, 0 < |k| ≤ Q}. (11)

10



This function Ψω0 measures the size of the so-called small denominators. We will impose
a condition that prevents Ψω0 from growing too fast at infinity; the precise condition will
actually depends on the sequence M through C−1, the inverse of the Cauchy function C
we introduced in the previous section.

But first let us recall that the function Ψω0 is non-decreasing (thus with a countable
number of discontinuities) and piecewise constant. In the sequel, it will be more convenient
to work with a continuous version of Ψω0 : it is not hard to prove (see, for instance,
Appendix A of [BF13]) that one can find a continuous non-decreasing function Ψ : [1,∞) →
[Ψ(1),+∞) such that Ψ(1) = Ψω0(1) and

Ψω0(Q) ≤ Ψ(Q) ≤ Ψω0(Q + 1), Q ≥ 1. (12)

Clearly, for all k ∈ Zn \ {0}, we still have

|k · ω0| ≥ 1/Ψ(|k|)

and in the condition we will introduce below, one may use Ψ instead of Ψω0 .
Let us now define the function

∆ : [1,+∞) → [Ψ(1),+∞), Q 7→ QΨ(Q)

which is continuous and increasing; ∆ has therefore a functional inverse

∆−1 : [Ψ(1),+∞) → [1,+∞), ∆−1 ◦∆ = ∆ ◦∆−1 = Id

which is also continuous and increasing.
We are now ready to introduce our arithmetic condition adapted toM-ultra-differentiable

functions. We say that ω0 ∈ BRM if, for any c > 0,

∫ +∞

∆(1/c)

C−1(c∆−1(x))
dx

x
< +∞, (BRM)

where C−1 is the functional inverse of the Cauchy function C defined in (5). This definition
is somewhat involved, which calls for a few comments and examples.

First observe that the condition (BRM) is unchanged if one replaces C−1 by a function
which is equivalent to it up to scalings. In particular, instead of using the function Ψ,
we may as well use Ψω0 (the role of ∆−1 will then be played by a generalized inverse of
Q 7→ QΨω0(Q)) as one can easily check from (12) (see Appendix A of [BF13] for more
details). The set BRM may be empty (see Example 6 below) or not. Before giving concrete
examples, recall that the set Dτ of τ -Diophantine vectors (τ ≥ n− 1) is the set of vectors
for which there exists γ > 0 such that Ψω(Q) ≤ Qτ/γ for all Q ≥ 1. It is well-known and
easy to prove that Dτ is non-empty, and has full measure if τ > n− 1.

Example 3. Let us come back to the Examples 1 and 2, where

Mα = (l!α)l∈N, C−1(y) ≍ y−1/α.

11



As we already pointed out, Mα is matching. In this case, condition (BRM) is satisfied if
and only if ∫ +∞

∆(1)

1

x(∆−1(x))1/α
dx <∞ (Aα)

which is a condition we introduced in [BF17], and where it is shown to be equivalent to
the α-Bruno-Rüssmann condition

∫ +∞

1

ln(Ψω0(Q))

Q1+1/α
dQ <∞. (BRα)

Let us denote by BRα the set of vectors satisfying this latter condition. It is not hard to
check that BRα is strictly included in BRα′ if α′ < α and

∩α≥1BRα \ ∪τ≥n−1Dτ

is non-empty.

Example 4. Given α ≥ 1 and β ≥ 0, let us now consider more generally the sequence
Mα,β defined by

(Mα,β)0 = 0, (Mα,β)l = l!α
l∏

i=0

(ln(e− 1 + i))β , l ≥ 1.

Clearly, Mα,0 =Mα and (H1) and (H2) are satisfied. We have

µj = (j + 1)α(ln(e + j))β

and elementary computations show that

C(σ) ≍ σ−α(ln(σ−1))β, C−1(y) ≍ y−1/α(ln(y))β/α

but also
Ω(y) ≍ y1/α(ln(y))−β/α

and so Mα,β is matching. In this case, condition (BRM) is satisfied if and only if

∫ +∞

∆(1)

(ln(∆−1(x)))β/α

x(∆−1(x))1/α
dx <∞. (BRα,β)

By extension, let us denote by BRα,β the set of vectors satisfying this latter condition, then
BRα,β is strictly included in BRα′,β′ if α′ < α or α′ = α and β ′ < β, and

∩α≥1, β≥0BRα,β = ∩α≥1BRα \ ∪τ≥n−1Dτ .

12



Example 5. Let us now give an example in which the growth of the sequence M is wilder.
Equivalently, it is sufficient to prescribe the sequence µ, and let us choose

µl = exp((ln(l))2), Ml ∼ exp(l(ln(l))2).

As before, one easily check that (H1) and (H2) are satisfied. One can then computes

C(σ) ≍ exp
((

ln σ−1
)2

+ ln σ−1 ln ln σ−1
)

and
C−1(y) ≍ exp

(
−(ln y − ln ln y)1/2

)
.

Here, one can check that the sequence is not matching. But observing for instance that
given any d > 1, for y large one has

C−1(y) ≤ (ln y)−d

then one easily sees that the set of vectors satisfying condition (BRM) contains all Dio-
phantine vectors (actually the inclusion is strict, though it is cumbersome to make the
condition (BRM) explicit in this case).

To conclude, let us give another example in which the growth is so wild that no vectors
satisfy the condition (BRM).

Example 6. Let
µl = exp(l1/2), Ml ∼ exp(l3/2).

Here too, (H1) and (H2) are satisfied but it is easy to compute

C(σ) ≍ exp

(
1

4σ

)
, C−1(y) ≍ 1

4 ln y
.

Again, this sequence is not matching. Recalling that ∆−1(x) grows at most like x1/n when
x goes to infinity (this is an easy consequence of Dirichlet’s box principle), one verifies that
the integral in (BRM) is always divergent, and hence the set (BRM) is empty.

1.5 KAM type results

Now let us come back to the Hamiltonian H as in (∗), which we recall is given by
{
H(θ, I) = h(I) + εf(θ, I), (θ, I) ∈ Tn ×D

∇h(0) := ω0 ∈ Rn.

The integrable Hamiltonian h is said to be non-degenerate at 0 ∈ D if the Hessian matrix
∇2h(0) ∈ Mn(R) has a non-zero determinant. The image of the map Θ0 : Tn → Tn × B,
θ 7→ (θ, 0), is an embedded torus invariant by the flow of h carrying a quasi-periodic flow
with frequency ω0. We shall prove that this quasi-periodic invariant embedded torus is
preserved by an arbitrary small perturbation, provided h is non-degenerate, H is M-ultra-
differentiable with M satisfying (H1) and (H2), and ω0 satisfies the BRM-condition.

13



Theorem A. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M satisfying
(H1) and (H2), ω0 ∈ Rn satisfying (BRM) and h is non-degenerate. Then there exists
0 < s′ < s such that for all ε small enough, there exists an (M, s′)-ultra-differentiable torus
embedding Θω0 : T

n → Tn ×D such that Θω0(T
n) is invariant by the Hamiltonian flow of

H and quasi-periodic with frequency ω0. Moreover, Θω0 is close to Θ0 in the sense that

|Θω0 −Θ0|M,s′ ≤ c
√
ε

for some constant c ≥ 1 independent of ε.

Theorem A is deduced from a KAM theorem for a Hamiltonian with parameters, for
which a quantitative statement is given in § 3.1. In the analytic case M = M1, this is a
result of Rüssmann [Rüs01] and in the Gevrey case M = Mα, α ≥ 1, this is a result we
proved in [BF17]. Theorem A is more general, and it applies for instance to the family
Mα,β given in Example 4 or to the more rapidly growing sequence described in Example 5.
As Example 6 shows, if the sequence M grows too fast, the above result is actually void;
in the sequel when we will refer to Theorem A we will make the implicit assumption that
the BRM-condition is non-empty.

According to Theorem A, the BRM-condition is sufficient for the preservation of an
invariant torus under an M-ultra-differentiable perturbation. A natural question is: is it
necessary? To this question, here we only bring a partial answer. Following Bessi [Bes00],
one can show that if ω = ω0 satisfies a condition (the condition (BM), which is defined
below), the torus can be destroyed. In general, this condition seems unrelated to the BRM-
condition. In the case of matching sequencesM = (Ml)l∈N one can compare them easily. In
the case of moderate growth sequences M one can also compare the two conditions, albeit
more loosely, since the sequence M may then be upper and lower bounded by matching
sequences, as shown by lemma 46. Recall that associated to M is a function Ω which was
defined in (7), and that by definition M is matching if

C−1(y) ≍ 1/Ω(y), y ∼ +∞.

Theorem B. Given α ≥ 1, assume that the vector ω ∈ Rn satisfies the following condition:
there exists c > 0 such that

lim sup
Q→+∞

ln(Ψω(Q))

Ω(cQ)
> 0. (BM)

Then an invariant torus with frequency ω can be destroyed by an arbitrary small M-ultra-
differentiable perturbation.

Thus the condition that ω0 does not satisfy (BM), namely

∀ c > 0, lim
Q→+∞

ln(Ψω(Q))

Ω(cQ)
= 0, (RM)

is a necessary condition for Theorem A to hold true. Actually, we expect that this con-
dition (RM) is a necessary and sufficient condition to solve the cohomological equation
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associated to ω in the M-ultra-differentiable case (in the case M =M1, that this condition
is sufficient was shown in [Rüs75]).

Now in the case where M is matching, condition (RM) is equivalent to

∀ c > 0, lim
Q→+∞

C−1(cQ) ln(Ψω(Q)). (13)

It is not hard to check that in general, condition (BRM) implies (13) but clearly they are
not equivalent to one another, so, in the matching case, there remains a gap between the
sufficient and necessary conditions.

Looking at the family Mα, the necessary condition (RM) reads

lim
Q→+∞

ln(Ψω(Q))

Q1/α
= 0

which shows that one cannot improve the value of the exponent in the sufficient condition

∫ +∞

1

ln(Ψω0(Q))

Q1+1/α
dQ <∞.

More generally, looking at the family Mα,β, α ≥ 1, β ≥ 0, the necessary condition (RM)
reads

lim
Q→+∞

ln(Q)β/α ln(Ψω(Q))

Q1/α
= 0,

which also shows that one cannot improve the values of the exponents in the sufficient
condition ∫ +∞

∆(1)

(ln(∆−1(x)))β/α

x(∆−1(x))1/α
dx <∞.

So the gap between the condition (BRM) and condition (RM) is narrow; in turn, this means
that Theorem A is quite accurate if one restricts attention to matching sequences. For non-
matching sequences, Theorem A still gives a non-trivial result (see the Example 5), albeit
not necessarily accurate.

We also have variants of Theorem A in the case where h is iso-energetically non-
degenerate or the perturbation depends periodically on time.

We say that the integrable Hamiltonian h is iso-energetically non-degenerate at 0 if the
so-called bordered Hessian of h,

(
∇2h(0) t∇h(0)
∇h(0) 0

)
,

has a non-zero determinant. Under this assumption, the unperturbed torus I = 0, with
energy h(0), can be continued to a torus with the same energy but with a frequency of the
form λω0 for λ close to one.
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Theorem C. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M satisfying
(H1) and (H2), ω0 ∈ Rn satisfying (BRM) and h is iso-energetically non-degenerate. Then
there exists 0 < s′ < s such that for all ε small enough, there exist λ ∈ R∗ and an (M, s′)-
ultra-differentiable torus embedding Θω0 : Tn → Tn × D such that Θω0(T

n) is invariant
by the Hamiltonian flow of H , contained in H−1(h(0)) and quasi-periodic with frequency
λω0. Moreover, λ is close to one and Θω0 is close to Θ0 in the sense that

|λ− 1| ≤ c
√
ε, |Θω0 −Θ0|M,s′ ≤ c

√
ε

for some constant c ≥ 1 independent of ε.

We can also look at the non-autonomous time-periodic version; we consider a slightly
different setting by looking at a Hamiltonian function H̃ : Tn ×D × T → R of the form

{
H̃(θ, I) = h(I) + ǫf(θ, I, t),

∇h(0) := ω0 ∈ Rn.
(∗̃)

It is better to consider the unperturbed torus I = 0 as an invariant torus for the integrable
Hamiltonian h̃ : D × R → R defined by h̃(I, J) := h(I) + J : it is then quasi-periodic with
frequency ω̃0 := (ω0, 1), has dimension n + 1 and is the image of the trivial embedding
Θ̃0 : T

n × T → Tn ×D × T.

Theorem D. Let H̃ be as in (∗̃), where H̃ is (M, s)-ultra-differentiable with M satisfying
(H1) and (H2), ω0 ∈ Rn satisfying (BRM) and h is non-degenerate. Then there exists
0 < s′ < s such that for all ε small enough, there exists an (M, s′)-ultra-differentiable
torus embedding Θ̃ω0 : Tn × T → Tn × D × T such that Θ̃ω0(T

n × T) is invariant by the
Hamiltonian flow of H̃ and quasi-periodic with frequency ω̃0. Moreover, Θ̃ω0 is close to Θ̃0

in the sense that
|Θ̃ω0 − Θ̃0|M,s′ ≤ c

√
ε

for some constant c ≥ 1 independent of ε.

Theorem C and Theorem D are essentially equivalent statements and can be easily
deduced from Theorem A; in the analytic case details are given in [TZ10], Chapter 2, but
it is plain to observe that the arguments still work in the ultra-differentiable case.

We can also state a discrete analogue of Theorem A. Given a function h : D → R, we
define the exact-symplectic map

Fh : Tn ×D → Tn ×D, (θ, I) 7→ (θ +∇h(I), I).

Theorem E. Let F : Tn×D → Tn ×D be an (M, s)-ultra-differentiable exact symplectic
map, with M satisfying (H1) and (H2) and such that

|F − Fh|α,s0 ≤ ε.

Assume that ω0 = ∇h(0) satisfies (BRM) and that h is non-degenerate. Then there exists
0 < s′ < s such that for all ε small enough, there exists an (M, s′)-ultra-differentiable
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torus embedding Θω0 : T
n → Tn ×D such that Θω0(T

n) is invariant by F and Θω0 gives a
conjugacy between the translation of vector ω0 on Tn and the restriction of F to Θω0(T

n).
Moreover, Θω0 is close to Θ0 in the sense that

|Θω0 −Θ0|M,s′ ≤ c
√
ǫ

for some constant c ≥ 1 independent of ε.

Let us recall that Theorem A follows from a KAM theorem for a Hamiltonian with
parameters; from this last theorem we will also deduce Arnold’s normal form theorem for
vector fields on the torus close to constant, in the ultra-differentiable setting.

Theorem F. Let M be a sequence satisfying (H1) and (H2), ω0 ∈ Rn satisfying (BRM)
and X ∈ UM,s(T

n,Rn) a vector field on Tn of the form

X = ω0 +B, |B|M,s ≤ µ.

Then, for µ sufficiently small, there exist a vector ω∗
0 ∈ Rn and an (M, s/2)-ultra-differentiable

diffeomorphism Ξ : Tn → Tn such that X + ω∗
0 − ω0 is conjugate to ω0 via Ξ:

Ξ∗(X + ω∗
0 − ω0) = ω0.

Moreover, we have the estimate

|ω∗
0 − ω0| ≤ cµ, |Ξ− Id|M,s/2 ≤ cµ

for some constant c ≥ 1 independent of µ.

Observe that because of the shift of frequency ω∗
0 − ω0, in general this result does not

give any information on the vector field X . Under some further assumption (for instance,
if ω0 belongs to the rotation set of X , see [Kar16]), then this shift vanishes and Theorem F
implies that X is conjugated to ω0.

An even more restricted setting is when X is proportional to ω0 (so that the flow of X
is a re-parametrization of the linear flow of frequency ω0 and thus ω0 is the unique rotation
vector of X); Theorem F applies in this case to give a conjugacy to ω0, assuming that ω0

satisfies (BRM), but the proof is actually much simpler in this case (it boils down to solve
only once the cohomological equation) and should require the weaker condition that ω0

satisfies (RM), as it is stated in the analytic case M =M1 in [Fay02]. Still in [Fay02], it is
proved that for M = M1, if ω0 satisfies (BM), then there is a dense set of reparametrized
linear flow which are weak-mixing (and so cannot be conjugated to the linear flow); thus a
necessary condition for Theorem F to hold true is that ω0 satisfies (RM) (and this is also a
sufficient condition if we impose that X is proportional to ω0). Clearly, this should extend
to the general case of an matching sequence and thus (RM) is a necessary condition for
Theorem F to hold true, as in Theorem A.

Finally, to conclude this section, let us a give the discrete version of Theorem F. Given
ω0 ∈ Rn, let Tω0 be the translation of Tn of vector ω0:

Tω0 : T
n → Tn, θ 7→ θ + ω0.
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Theorem G. Let M be a sequence satisfying (H1) and (H2), ω0 ∈ Rn satisfying (BRM)
and T ∈ UM,s(T

n,Tn) a diffeomorphism of Tn of the form

T = Tω0 +B, |B|M,s ≤ µ.

Then, for µ sufficiently small, there exist a vector ω∗
0 ∈ Rn and an (M, s/2)-ultra-differentiable

diffeomorphism Ξ : Tn → Tn such that T + ω∗
0 − ω0 is conjugate to Tω0 via Ξ:

Ξ−1 ◦ (T + ω∗
0 − ω0) ◦ Ξ = Tω0 .

Moreover, we have the estimate

|ω∗
0 − ω0| ≤ cµ, |Ξ− Id|M,s/2 ≤ cµ

for some constant c ≥ 1 independent of µ.

1.6 Hamiltonian normal forms and Nekhoroshev type results

We are still considering a Hamiltonian H as in (∗) but we write ω instead of ω0, that is
{
H(θ, I) = h(I) + εf(θ, I), (θ, I) ∈ Tn ×D

∇h(0) := ω0 = ω ∈ Rn \ {0}.

We do not assume that ω is non-resonant, but we assume at least it is non-zero; without
loss of generality (up to a linear symplectic change of coordinates) it can always be written
as

ω = (ω̄, 0) ∈ Rd × Rn−d

for some 1 ≤ d ≤ n and where ω̄ ∈ Rd is non-resonant. One can still define Ψω, ∆ω and
∆∗

ω by
Ψω(Q) := Ψω̄(Q), ∆ω(Q) := QΨω(Q), Q ≥ 1

and
∆∗

ω(x) := sup{Q ≥ 1 | ∆ω(Q) ≤ x}, x ≥ Ψω(1).

Alternatively, one may also use their continuous and equivalent versions Ψ, ∆ and ∆−1.
From now on, let us denote by Lω the linear integrable Hamiltonian of constant fre-

quency ω, that is Lω(I) = ω · I. Our first result is a normal form statement up to a small
remainder, in the special case where the integrable Hamiltonian is linear.

Theorem H. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M satisfying
(H1) and (H2) and h = Lω with ω = (ω̄, 0) ∈ Rd × Rn−d and ω̄ non-resonant. For all ε
sufficiently small, there exists a (M, s/2)-ultra-differentiable symplectic transformation

Φ : Tn ×D1/2 → Tn ×D

such that
H ◦ Φ = h+ f̄ + f̂
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where {f̄ , h} = 0 and with the estimates

{
|Φ− Id|s/2 ≤ c1Ψ(∆−1(c2sε

−1))ε, |f̄ |s/2 ≤ c1ε,

|f̂ |s/2 ≤ c1ε exp
(
−c3 (C−1(c4s∆

−1(c2sε
−1)))

−1
)

where c1 > 1, c2 < 1, c3 < 1 and c4 < 1 depend only on n, ω and the function C.

This result was known in the analytic case (see [Fas90], [Pös93]) and in the Gevrey case
([Bou13a]). Theorem H implies the following “partial” stability result, in which we denote
by Πd : R

n → Rd the projection onto the first d components.

Corollary 1. Under the assumptions of Theorem H, for any I0 ∈ D1/8 and any r > 0 such
that

2c1Ψ(∆−1(c2sε
−1))ε ≤ r ≤ 1/4,

any solution (θ(t), I(t)) of H with I(0) = I0 satisfy

|Πd(I(t)− I0)| ≤ 2r, |t| ≤ c̃1rsε
−1 exp

(
−c3

(
C−1(c4s∆

−1(c2sε
−1))

)−1
)

as long as I(t) ∈ D1/4, where c1 > 1, c̃1 < 1 c2 < 1, c3 < 1 and c4 < 1 depend only on n,
ω and the function C.

Let us point out that these stability estimates actually apply to any solution; indeed,
if I(0) ∈ D1−δ for an arbitrary but fixed δ > 0, one would obtain

|Πd(I(t)− I(0))| < δ

for the same interval of time as long as I(t) stays in the domain, upon letting the constants
and the smallness assumption depend on δ. For convenience only, we sated the result for
any solution with I(0) ∈ D1/8 and the restriction on time was that I(t) stays in D1/4. In
general, this result does not give a confinement of the action variables for a long interval
of time because it may well happen that the orbit escape the domain very quickly; the
only exception is when d = n, that is when ω is actually non-resonant. The next corollary
follows at once from the preceding one.

Corollary 2. Under the assumptions of Theorem H and in the case where ω = ω̄ ∈ Rn is
non-resonant, for any I0 ∈ D1/8 and any r > 0 such that

2c1Ψ(∆−1(c2sε
−1))ε ≤ r ≤ 1/4,

any solution (θ(t), I(t)) of H with I(0) = I0 satisfy

|(I(t)− I0)| ≤ 2r, |t| ≤ c̃1rsε
−1 exp

(
−c3

(
C−1(c4s∆

−1(c2sε
−1))

)−1
)

where c1 > 1, c̃1 < 1 c2 < 1, c3 < 1 and c4 < 1 depend only on n, ω and the function C.
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A natural question is whether these last estimates can be improved in general. With-
out any assumption on the sequence M = (Ml)l∈N, we can always construct an example
of unstable orbits with controlled speed in the special case where the integrable Hamilto-
nian h is linear. In the statement below, for convenience we will measure the size of the
perturbation f not by its norm but rather by the norm of its Hamiltonian vector field Xf .

Theorem I. There exist a sequence of Hamiltonians Hj = h+fj = Lω+fj as in (∗) where
ω = (ω̄, 0) ∈ Rd × Rn−d with ω̄ non-resonant and

|Xfj |s ≤ 2cεj, lim
j→+∞

εj = 0,

such that Hj has a solution (θj(t), Ij(t)) which is globally defined and satisfies

|t|εj exp
(
−Ω(16πs∆∗

ω(2ε
−1
j ))

)
≤ |Πd(Ij(t)− Ij(0))| ≤ |t|εj exp

(
−Ω(8πs∆∗

ω((2εj)
−1))

)
.

In the analytic case, this theorem was proved in [Bou12] and then extended in [Bou13a]
in the Gevrey case.

In general, this last statement is not related to Theorem H or Corollary 1 because it
is the function Ω, and not C−1, which measures the speed of instability. Yet for matching
sequences, for which by definition 1/Ω is equivalent to C−1, Theorem I shows that in
general one cannot improve the conclusions of both Corollary 1 and Theorem H.

Theorem H gives a global normal form for a linear integrable Hamiltonian h = Lω and
Corollary 1 gives a global stability result. For an arbitrary nonlinear integrable Hamiltonian
h, these global results translate into local results, valid on a small ball of radius ρ > 0
around the origin. The only results we can obtain have an anistropic character, so for a
given ρ > 0, it is convenient to introduce the scalings

σρ(θ, I) := (θ, ρI), σ−1
ρ (θ, I) := (θ, ρ−1I).

Clearly, σρ is a diffeomorphism between Tn ×D and Tn ×Dρ.

Theorem J. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M satisfying
(H1) and (H2) and ω = (ω̄, 0) ∈ Rd × Rn−d with ω̄ non-resonant. For all ε and all ρ
sufficiently small with √

ε ≤ ρ ≤ 1,

there exists a (M, s/4)-ultra-differentiable symplectic transformation

Φ : Tn ×Dρ/2 → Tn ×Dρ

such that
H ◦ Φ = h+ f̄ + f̂

where {f̄ , Lω} = 0 and with the estimates
{
|σ−1

ρ ◦ Φ ◦ σρ − Id|s/4 ≤ c1Ψ(∆−1(c2sρ
−1))ρ−1ε, |f̄ ◦ σρ|s/4 ≤ c1ε,

|f̂ ◦ σρ|s/4 ≤ c1ε exp
(
−c3 (C−1(c4s∆

−1(c2sρ
−1)))

−1
)

where c1 > 1, c2 < 1, c3 < 1 and c4 < 1 depend only on n, ω, |h|s and the function C.
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In the analytic or Gevrey case, a similar result but with weaker estimates was obtained
in [Bou13a]. As before, Theorem J implies the following “partial” and local stability result.

Corollary 3. Under the assumptions of Theorem J, for any I0 ∈ Dρ/8 and any r > 0 such
that

2c1Ψ(∆−1(c2sε
−1))ε ≤ r ≤ ρ/4,

any solution (θ(t), I(t)) of H with I(0) = I0 satisfy

|I(t)− I0| ≤ 2r, |t| ≤ c̃1rsε
−1 exp

(
−c3

(
C−1(c4s∆

−1(c2sρ
−1))

)−1
)

as long as I(t) ∈ Dρ/4, where c1 > 1, c̃1 < 1 c2 < 1, c3 < 1 and c4 < 1 depend only on n,
ω, |h|s and the function C.

Again, we also have the special case where the frequency is non-resonant.

Corollary 4. Under the assumptions of Theorem J and in the case where ω = ω̄ ∈ Rn is
non-resonant, for any I0 ∈ Dρ/8 and any r > 0 such that

2c1Ψ(∆−1(c2sε
−1))ε ≤ r ≤ ρ/4,

any solution (θ(t), I(t)) of H with I(0) = I0 satisfy

|I(t)− I0| ≤ 2r, |t| ≤ c̃1rsε
−1 exp

(
−c3

(
C−1(c4s∆

−1(c2sρ
−1))

)−1
)

where c1 > 1, c̃1 < 1 c2 < 1, c3 < 1 and c4 < 1 depend only on n, ω, |h|s and the function
C.

For an arbitrary non-linear integrable Hamiltonian, one can only obtain local and partial
stability result; moreover we do not have an equivalent of Theorem I as Corollary 3 can be
improved in many cases.

In order to obtain global and full stability, one needs a further assumption on the
integrable part. Let us say that h : G → R is quasi-convex on some domain G ⊆ Rn if
there exist positive constants l and m, such that for all I ∈ G, it satisfies the following two
properties:

|∇h(I)| ≥ l (14)

and at least of the inequalities

|∇h(I) · ξ| ≥ l|ξ|, |∇2h(I)ξ · ξ| ≥ m|ξ|2 (15)

is satisfied for any ξ ∈ Rn. To emphasize the role of the constants l and m, we say that h is
(l, m)-quasi-convex. This definition is slightly more restrictive than the one used in [Pös93],
as (14) is not assumed in the latter reference; we actually require h not to have critical
points just for convenience, in order to have a statement which is uniform in phase space
(this is not the case in [Pös93]). Observe that if we assume (14) and only the second part
of (15) for all ξ ∈ Rn orthogonal to ∇h(I), then (15) is actually satisfied for a possibly
smaller constant l (see [MS02] for instance).

Under this quasi-convexity assumption, we will prove the following result.
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Theorem K. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M satisfying
(H1) and (H2) and h is (l, m)-quasi-convex. For all ε sufficiently small, any I0 ∈ D1/2 and
any solution (θ(t), I(t)) of H with I(0) = I0, we have

|I(t)− I0| ≤ c1s(s
−2ε)

1
2n , |t| ≤ c̃1s exp

(
c2

(
C−1

(
c3s(s

2ε−1)
1
2n

))−1
)

where c1 > 1, c2 < 1 and c3 < 1 depend only on n, |h|s, l, m and the function C.

In the analytic case M = M1, this theorem is due to Nekhoroshev ([Nek77],[Nek79])
with an exponent worse than 1/(2n); the acutal value 1/(2n) was later obtained in [Loc92],
[LN92], [LNN94] and [Pös93]. The Gevrey case M = Mα for α ≥ 1 was established
in [MS02], and so our Theorem K further extend these results for any sequenceM satisfying
(H1) and (H2).

As before, the natural question is whether these stability estimates can be improved
in general, and to do so, one has to construct unstable orbits. As a matter of fact, the
exponent 1/(2n) in the time-scale of stability in Theorem K can be improved if one is
willing to allows a drift arbitrarily close to one (that is, replacing the drift in the action
variables of order ε1/(2n) by a drift of order εb with b arbitrarily close to zero). In the
Gevrey caseM =Mα for α ≥ 1 (thus including the analytic case), it was proved in [BM11]
that one can get an exponent arbitrarily close to 1/(2(n− 1)) and in the analytic case, it
was proved in [ZZ17] that one can get an exponent arbitrarily close to 1/(2(n− 2)).

For analytic Hamiltonians, this ends the question of optimality as examples of unstable
orbits with exponent 1/(2(n−2)) where constructed in [Bes96] for n = 3, [Bes97] for n = 4
and [Zha11] for n ≥ 5. For Gevrey non-analytic Hamiltonians α > 1 a similar result was
obtained in [MS02], but the latter crucially use the assumption that the space of α-Gevrey
functions contains bump functions.

For a given sequence M = (Ml)l∈N, it is said to be non-quasi-analytic if the following
condition is satisfied:

The sequence (1/µl)l∈N = (Ml/Ml+1)l∈N is summable, i.e.,
∑

l∈N

Ml/Ml+1 < +∞. (H3)

Due to a famous theorem of Denjoy-Carleman, this condition exactly characterizes classes
which are non-quasi-analytic; we recall here that a function (say, on the real line) is quasi-
analytic if it vanishes identically if and only if its formal Taylor series vanishes at some
point. Actually, non-quasi-analytic classes contain bump functions (with arbitrarily small
support) and this follows from the proof of Denjoy-Carleman theorem.

As it turns out, we are not able to use the mechanism of [Bes96], [Bes97] and [Zha11]
but we can still use the construction of [MS02], for a sequence M which satisfy (H1), (H2)
but also (H3). Here is a precise statement.

Theorem L. Let n ≥ 3. There exist a sequence of Hamiltonians Hj = h + fj as in (∗),
where Hj is (M, s)-ultra-differentiable with M satisfying (H1), (H2) and (H3), h satis-
fies (14) and (15) and

|fj|s ≤ εj , lim
j→+∞

εj = 0,
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such that the following holds. The Hamiltonian Hj has a solution (θj(t), Ij(t)) which
satisfies

|Ij(τj)− Ij(0)| ≥ 1

where τj > 0 satisfies, for j large enough, the estimates

exp

(
2Ω

(
c1ε

− 1
2(n−2)

j

))
≤ τj ≤ exp

(
2Ω

(
c2ε

− 1
2(n−2)

j

))

for positive constants c1 < c2 < 1 which depend only n, s and the sequence M .

Leaving aside the question of the exponent 1/(2(n − 2)) that we already discussed,
Theorem L says that Theorem K is essentially optimal, at least for matching sequences
which satisfy (H3).

To conclude, we recall that Nekhoroshev actually proved Theorem K in the analytic
case not only for quasi-convex functions, but for a much larger and generic class of functions
that we now define.

We say that a differentiable function h : G → R is steep on some domain G ⊆ Rn if
there exist positive constants l, L, δ, pj , for any integer 1 ≤ j ≤ n − 1, such that for all
I ∈ G, we have |∇h(I)| ≥ l and, for all integer 1 ≤ j ≤ n− 1, for all vector space Λ ∈ Rn

of dimension j, letting λ = I +Λ the associated affine subspace passing through I and hλ
the restriction of h to λ, the inequality

max
0≤η≤ξ

min
|I′−I|=η, I′∈λ

|∇hλ(I ′)−∇hλ(I)| > Lξpj

holds true for all 0 < ξ ≤ δ. As before, to emphasize the role of the constants we say that
h is (l, L, δ, (pj)1≤j≤n−1)-steep on G and, if all the pj = p, we say that h is (l, L, δ, p)-steep
on G.

One may easily check that quasi-convex functions are steep, and in fact they are the
“steepest” as one has p = 1 in this case (in general pj are integers larger than one).
But steep functions form a much larger class of functions and among sufficiently smooth
functions they are generic in many senses (see [Nek79] or [BFN17]).

The original proof of Nekhoroshev, in the analytic case, was dealing with steep in-
tegrable Hamiltonians but the values of the stability exponents, which depend on the
steepness exponents pj for 1 ≤ j ≤ n, were not very sharp and even restricted to the quasi-
convex they would be of order 1/n2 which is obviously worse than the exponent 1/(2n) of
Theorem K. A different and somehow simpler proof was given in [BN12], using only rough
periodic approximations, but leading also to bad values for the exponents; the interest
was that this method was flexible enough to give results in the Gevrey (and even finitely
differentiable) case, see [Bou11]. Sharp exponents, generalizing those of the quasi-convex
case, were finally obtained in [GCB16] but so far it is restricted to the analytic case. So in
the more general setting of ultra-differentiable functions we are considering here, we were
not able to extend the results of [GCB16], but we will manage to use the method originally
introduced in [BN12] to obtain the following result.
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Theorem M. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M satisfying
(H1) and (H2) and h is (l, L, δ, p)-steep. For all ε sufficiently small, any I0 ∈ D1/2 and any
solution (θ(t), I(t)) of H with I(0) = I0, we have

|I(t)− I0| ≤ c1ε
1

2na , |t| ≤ s exp

(
c2

(
C−1

(
c3s(ε

−1)
1

2na

))−1
)

where a := (np)n−1 and c1 > 1, c2 < 1 and c3 < 1 which depend only on n, |h|s, l, L, δ, p
and the function C.

As we already explained before, the value of the exponent 1/(2na) is very bad here and
one should expect better exponents such as those obtained in [GCB16]. However unlike
the quasi-convex Theorem K which comes with Theorem L to test the optimality of the
exponents, we do not have such instability result in the steep non-quasi-convex case; this
is actually an open problem in any regularity, including the analytic one.

2 Estimates on ultra-differentiable functions

Let us start by recalling some notations and definitions. Given an integer m ≥ 1 and
k = (k1, . . . , km) ∈ Nm, we define

|k| =
m∑

i=1

ki, k! =
m∏

i=1

ki!.

Given x ∈ Rm, we set

xk =

m∏

i=1

xkii

and for a smooth function f : B → R defined on some open ball B ⊂ Rm (see Remark 1
at the end of § 2.1 for functions defined on an open set of Rm × Tn) and a ∈ B, we set

∂kf(a) = ∂k1x1
· · ·∂kmxm

f(a).

Given a sequence M = (Ml)l∈N with M0 = M1 = 1 and s > 0, recall from § 1.2 that the
function f is said to be (M, s)-ultra-differentiable if

|f |M,s := c sup
a∈B

(
sup
k∈Nm

(|k|+ 1)2s|k||∂kf(a)|
M|k|

)
<∞, c := 4π2/3. (16)

The space of such functions will be denoted by UM,s(B), and, equipped with the above
norm, it is a Banach space. On the one hand, the role of the factor (|k| + 1)2 is to make
easier the estimates for the product and for the composition of ultra-differentiable functions
(see respectively Lemmas 11 and 14). On the other hand, the role of the normalizing
constant c > 0 in the definition is to ensure that UM,s(B) is a Banach algebra with respect
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to multiplication (see Lemma 11). The factor (|k| + 1)2 is only here for convenience and
it can be removed (see § 2.4 and § 2.5); then one has to choose a different normalizing
constant to turn UM,s(B) into a Banach algebra.

The above definition can be extended to vector-valued functions f = (fi)1≤i≤p : K → Rp

for p ≥ 1 by setting

|∂kf(a)| :=
∑

1≤i≤p

|∂kfi(a)|, a ∈ K

in (16). The space of such vector-valued functions is still a Banach space with the above
norm, and it will be denoted by UM,s(B,R

p). The case of matrix-valued functions, say
with values in the space Mm,p(R) of matrices with m rows and p columns, is reduced to
the case of vector-valued functions by simply identifying Mm,p(R) to Rmp.

In the sequel, to lighten the notations, we will simply write | . |s (respectively Us(B)
and Us(B,R

p)) instead of | . |M,s (respectively UM,s(B) and UM,s(B,R
p)).

2.1 Majorant series and ultra-differentiable functions

The definition of ultra-differentiable functions can be conveniently reformulated in terms
of majorant series with one variable (see [Kom79], [Kom80] and also [SCK03]).

But first let us consider a formal power series in m variables X = (X1, . . . , Xm) with
coefficients in a normed real vector space (E, | . |E), which is a formal sum of the form

A(X) =
∑

k∈Nm

AkX
k, Ak = Ak1,...,km ∈ E.

Such a formal series is said to be majorized by another formal power series with real
non-negative coefficients

B(X) =
∑

k∈Nm

BkX
k, Bk = Bk1,...,km ∈ R+,

and we write A≪ B, if
|Ak|E ≤ Bk, ∀ k ∈ Nm. (17)

Next, following [SCK03], we introduce a notion of a smooth function being majorized by
a formal power series in one variable. So let f : B → Rp be a smooth function defined on
some open ball B ⊂ Rm, and F be a formal power series in one variable with non-negative
coefficients, that we shall write as

F (X) =

+∞∑

l=0

Fl

l!
X l.

We will say that f is majorized by F on B, and we will write f ≪B F (or f(x) ≪B F (X)),
if for all a ∈ B and all k ∈ Nm, we have

|∂kf(a)| ≤ F|k|. (18)
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It will be usefull to rephrase this relation in terms of the formal Taylor series of f at points
a ∈ B (taking values in Rp), defined by

Taf(X) :=
∑

k∈Nm

∂kf(a)

k!
Xk.

To the formal series F in one variable, one can associate a formal series F̂ in m variables
simply by setting

F̂ (X1, . . . , Xm) := F (X1 + · · ·+Xm).

Then

f ≪B F in the sense of (18) ⇔ ∀a ∈ B Taf ≪ F̂ in the sense of (17)

(with E = Rp and | . |E = | . |l1).
Now, given a sequence M and s > 0, let us define the following formal power series in

one variable

Us(X) := c−1
+∞∑

l=0

1

(l + 1)2
Ml

l!

(
X

s

)l

= c−1
+∞∑

l=0

Nl

(l + 1)2

(
X

s

)l

, c = 4π2/3 (19)

(recall from (4) that we have defined Nl := Ml/l!). The following characterization of
ultra-differentiable functions is evident from the definitions (16) and (18).

Proposition 5. If f : B → Rp is a smooth function and s > 0, then

|f |s = inf {C ∈ [0,+∞] | f ≪B CUs}

and
f ∈ Us(B,R

p) ⇔ |f |s <∞.

Remark 1. Note that being an ultra-differentiable function is a local property. So the
above immediately translates for functions defined on an open subet of the product of Tn

and Rm, by merely considering any local chart at any point of the torus. These definitions
thus encompass the space Us(T

n ×D,Rp) introduced in § 1.2.

2.2 Properties of majorant series

We collect here some properties of majorant series that will be used later on. It is clear
how to define the derivatives of a formal power series in one variable, and also a linear
combination and the product of two such formal power series. We then have the following
lemma.
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Lemma 6. Let f, g : B → Rp be smooth functions, F,G be two formal power series in one
variable, and assume that

f ≪B F, g ≪B G.

Then
∂kf ≪B ∂|k|F, k ∈ Nm, (20)

λf + µg ≪B |λ|F + |µ|G, λ ∈ R, µ ∈ R. (21)

Moreover, the scalar product f · g =∑p
i=1 figi : B → R satisfies

f · g ≪B FG. (22)

For a proof, we refer to [SCK03], Lemma 2.2, in which the case p = 1 is considered;
but the general case p ≥ 1 is entirely similar.

Given two formal power series in one variable F and G, we define the composition
F ⊙G of F and G by

F ⊙G(X) :=

+∞∑

l=0

Fl

l!
(G(X)−G(0))l .

Lemma 7. Let f : B → Rp, g : D → Rm be smooth functions where B and D are open
balls of Rm such that g(D) ⊆ B, and assume that

f ≪B F, g ≪D G.

Then
f ◦ g ≪D F ⊙G.

Once again, for a proof we refer to [SCK03], Lemma 2.3.

2.3 Derivatives

In this section, we will show that derivatives of a M-ultra-differentiable function are still
M-ultra-differentiable, at the expense of reducing the width parameter s > 0; these are
analogues of Cauchy estimates for analytic functions. It is precisely at this point that the
assumption (H2) on the sequence M is needed and that the Cauchy function C comes into
play.

Proposition 8. Let f ∈ Us(B,R
p) and 0 < σ < 1. Then for any k ∈ Nm with |k| = 1,

∂kf ∈ Gs(1−σ)(B,R
p) and we have

|∂kf |s(1−σ) ≤ s−1C(σ)|f |s.

We have stated the above proposition only for k ∈ Nm with |k| = 1 as this is the
only case we shall need; but clearly one could obtain an estimate for any k ∈ Nm by a
straightforward induction.

27



Proof. From Proposition 5 and (20) of Lemma 6, it is sufficient to prove that

∂1Us ≪ s−1C(σ)Us(1−σ) (23)

where Us is the formal power series defined in (19). We have

∂1Us(X) = c−1
+∞∑

l=1

1

(l + 1)2
Ml

(l − 1)!

X l−1

sl
= c−1

+∞∑

l=0

1

(l + 2)2
Ml+1

l!

X l

sl+1

and hence (23) is true if, for all l ∈ N,

Ml+1

Ml
(1− σ)l ≤ C(σ)

which is trivially true by the definition of the function C in (5) and since 1− σ ≤ e−σ for
0 ≤ σ ≤ 1.

For f : B → R, let ∇f : B → Rm be the vector-valued function formed by the partial
derivatives of f of order one, and more generally, for f : B → Rp, we let ∇f : B →
Mm,p(R) ≃ Rmp be the matrix-valued function whose columns are given by ∇fi where
f = (fi)1≤i≤p. Then we have the following obvious corollary of Proposition 8.

Corollary 9. Let 0 < σ < 1. If f ∈ Us(B,R), then ∇f ∈ Us(1−σ)(B,R
m) and

|∇f |s(1−σ) ≤ ms−1C(σ)|f |s

and if f ∈ Us(B,R
p), then ∇f ∈ Us(1−σ)(B,R

mp) and

|∇f |s(1−σ) ≤ mps−1C(σ)|f |s.

2.4 Products

In this section, we shall prove that the space of M-ultra-differentiable functions is stable
under multiplication, provided (H1) is satisfied.

Proposition 10. Let f, g ∈ Us(B,R
p), with M satisfying (H1). Then f ·g ∈ Us(B,R) and

we have
|f · g|s ≤ |f |s|g|s.

Once again, in view of Proposition 5 and (22) of Proposition 6, Proposition 10 is a
direct consequence of the following lemma.

Lemma 11. We have
U2
s ≪ Us.

To prove this lemma, we will need another elementary lemma which makes use of the
condition (H1).
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Lemma 12. If M satisfies (H1), then

NlNk ≤ Nl+k, (l, k) ∈ N2.

Proof. Since the sequence ν is increasing and N0 = 1, we have

NlNk = ν0 . . . νl−1ν0 . . . νk−1 ≤ ν0 . . . νl−1νl . . . νl+k−1 = Nl+k.

The proof of Lemma 11 given below follows [Lax53]. Observe that we only need the
conclusion of Lemma 12, which is thus weaker than the condition (H1). It is this latter
lemma that motivates the introduction of the normalizing constant in Us (and thus in the
ultra-differentiable norm); without this constant one would have U2

s ≪ cUs. Let us point
out that the proof given below is elementary thanks to the factor (|k|+1)2 in the definition
of the norm (16) (which gives the factor (l+1)2 in the defintion of Us); without this factor,
the statement is true (with a different normalizing constant) but the proof is more involved
(see Lemma 2.7 of [SCK03] for the sequence Mα, α ≥ 1).

Proof of Lemma 11. Recall that

Us(X) = c−1

+∞∑

l=0

1

(l + 1)2
Ml

l!

(
X

s

)l

= c−1

+∞∑

l=0

Nl

(l + 1)2

(
X

s

)l

and so the assertion of the lemma amounts to prove that for all l ∈ N,

l∑

j=0

NjNl−j

(j + 1)2(l − j + 1)2
≤ c

Nl

(l + 1)2
, c =

4π2

3
. (24)

Observe that the sum in the left-hand side of (24) is symmetric with respect to j 7→ l− j,
and that from Lemma 12, NjNl−j ≤ Nl for all l ∈ N and all 0 ≤ j ≤ l. Hence,

l∑

j=0

NjNl−j

(j + 1)2(l − j + 1)2
≤ 2

l/2∑

j=0

NjNl−j

(j + 1)2(l − j + 1)2
≤ 2Nl

l/2∑

j=0

1

(j + 1)2(l − j + 1)2
.

Then for any 0 ≤ j ≤ l/2, (l − j + 1)2 ≥ (l/2 + 1)2 ≥ (l + 1)2/4, and therefore

l∑

j=0

NjNl−j

(j + 1)2(l − j + 1)2
≤ 8Nl

(l + 1)2

l/2∑

j=0

1

(j + 1)2
≤ 8Nl

(l + 1)2

+∞∑

j=0

1

(j + 1)2
=

4π2

3

Nl

(l + 1)2

which is the inequality we wanted to prove.
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Proposition 10 can be extended to matrix-valued functions. More precisely, given f :
B →Mm,p(R) and g : B →Mp,q(R) where f = (fi,j)1≤i≤m, 1≤j≤p and g = (gj,k)1≤j≤p, 1≤k≤q,
we define f · g : B →Mm,q(R) by f · g := ((f · g)i,k)1≤i≤m, 1≤k≤q where

(f · g)i,k :=
p∑

j=1

fi,jgj,k.

Then the following statement is an obvious corollary of Proposition 10.

Corollary 13. Let f ∈ Us(B,Mm,p(R)), g ∈ Us(B,Mp,q(R)). Then f · g ∈ Us(B,Mm,q(R))
and we have

|f · g|s ≤ |f |s|g|s.

2.5 Compositions

Our goal here is to prove that the space of M-ultra-differentiable functions is stable under
composition, provided M satisfies (H1), at the expense of reducing the width s > 0 as
with derivatives. The main point is that we will be able to reduce the width by a factor
arbitrarily close to one provided the composition involves a map arbitrarily close to the
identity.

But first we need to define two additional formal power series associated to Us, the
latter being defined in (19). So we define Ūs by

Ūs(X) := Us(X)− Us(0) = c−1
+∞∑

l=1

Nl

(l + 1)2

(
X

s

)l

(25)

and Ũs by

Ũs(X) := c−1
+∞∑

l=0

Nl+1

(l + 2)2

(
X

s

)l

. (26)

It is clear that
s−1XŨs(X) = Ūs(X). (27)

Lemma 14. We have
Ũ2
s ≪ Ũs, ŨsŪs ≪ Ūs.

As for Lemma 11, the factor (l+1)2 in the definition of Us makes the proof simple, but
the statement is still true with this factor (see Lemma 2.4 of [SCK03] for the sequence Mα,
α ≥ 1). To prove Lemma 14, we shall need the following preliminary lemma, in which we
use the assumption (H1).

Lemma 15. If M satisfies (H1), then

NlNk ≤ Nl+k−1, (l, k) ∈ N2 \ {0}.
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Proof. We assume, without loss of generality, that l ≥ 1. Since the sequence ν is increasing
and N0 = 1, we have

NlNk = ν0 . . . νl−1ν0ν1 . . . νk−1 ≤ ν0 . . . νl−1ν0νl . . . νl+k−2 = ν0Nl+k−1

and the result follows since we normalized ν0 = N1/N0 = 1.

Observe that exactly as for Lemma 11, we only need the conclusion of Lemma 15 to
hold true, which is thus weaker than the condition (H1).

Proof of Lemma 14. It is enough to prove the first part of the statement, as the second
part of the statement follows from it; indeed, if Ũ2

s ≪ Ũs, then using (27) we have

Ũs(X)Ūs(X) = s−1XŨs(X)Ũs(X) ≪ s−1XŨs(X) = Ūs(X).

As in Lemma 11, to prove that Ũ2
s ≪ Ũs one needs to show

l∑

j=0

Nj+1Nl−j+1

(j + 2)2(l − j + 2)2
≤ c

Nl+1

(l + 2)2
, c =

4π2

3
. (28)

The sum in the left-hand side of (28) is still symmetric with respect to j 7→ l − j, and for
any l ∈ N and any 0 ≤ j ≤ l, we have Nj+1Nl−j+1 ≤ Nl+1 by Lemma 15. Therefore

l∑

j=0

Nj+1Nl−j+1

(j + 2)2(l − j + 2)2
≤ 2

l/2∑

j=0

Nj+1Nl−j+1

(j + 2)2(l − j + 2)2
≤ 2Nl+1

l/2∑

j=0

1

(j + 2)2(l − j + 2)2
.

Moreover, as in Lemma 11, for any 0 ≤ j ≤ l/2, (l− j +2)2 ≥ (l/2+ 2)2 ≥ (l+ 2)2/4, and
so the last inequality leads to

l∑

j=0

Nj+1Nl−j+1

(j + 2)2(l − j + 2)2
≤ 8Nl+1

(l + 2)2

l/2∑

j=0

1

(j + 2)2
≤ 4π2

3

Nl+1

(l + 2)2

which concludes the proof.

Proposition 16. Let f ∈ Us(B,R
p), 0 < σ < 1, g ∈ Us(1−σ)(D,R

p) where B and D are
open balls of Rm such that g(D) ⊆ B. If

|g − Id|s(1−σ) ≤ sσ, (29)

then f ◦ g ∈ Us(1−σ)(D,R
p) and

|f ◦ g|s(1−σ) ≤ |f |s.
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As it will be clear in the proof, the conclusions of Proposition 16 holds true under the
slightly weaker assumption that

|u|s(1−σ) − sup
x∈B

|u(x)| ≤ sσ

but this will not be needed.

Proof. Let u = g − Id ∈ Us(1−σ)(D,R
p) and

a := |f |s, b := |u|s(1−σ)

so that, from Proposition 5,

f(x) ≪B aUs(X), u(x) ≪D bUs(1−σ)(X)

and consequently

f(x) ≪B aUs(X), g(x) ≪D X + bUs(1−σ)(X).

We now apply Lemma 7 and, recalling the definition of Ūs and Ũs given respectively in (25)
and (26), we obtain

f(g(x)) ≪B aUs

(
X + bŪs(1−σ)(X)

)

= aUs(0) + aŪs

(
X + bŪs(1−σ)(X)

)

= aUs(0) + aŪs

(
X + b(s(1 − σ))−1XŨs(1−σ)(X)

)

= aUs(0) + a

+∞∑

l=1

Nl

(l + 1)2

(
X + b(s(1− σ))−1XŨs(1−σ)(X)

s

)l

= aUs(0) + a

+∞∑

l=1

Nl

(l + 1)2

(
X

s

)l (
1 + b(s(1− σ))−1Ũs(1−σ)(X)

)l
. (30)

From the first part of Lemma 14, for any j ∈ N, we have

Ũ j
s(1−σ) ≪ Ũs(1−σ)

and therefore

(
1 + b(s(1− σ))−1Ũs(1−σ)(X)

)l
=

l∑

j=0

(
l

j

)
bj(s(1− σ))−jŨs(1−σ)(X)j

≪ Ũs(1−σ)(X)

l∑

j=0

(
l

j

)
bj(s(1− σ))−j

= Ũs(1−σ)(X)
(
1 + b(s(1 − σ))−1

)l
.
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Now, from (29) we get
b = |u|s(1−σ) ≤ sσ

and thus
1 + b(s(1− σ))−1 ≤ 1 + σ(1− σ)−1 = (1− σ)−1.

This gives (
1 + b(s(1 − σ))−1Ũs(1−σ)(X)

)l
≪ Ũs(1−σ)(X)(1− σ)−l

which, together with (30), yields

f(g(x)) ≪D aUs(0) + aŨs(1−σ)(X)

+∞∑

l=1

Nl

(l + 1)2

(
X

(s(1− σ))

)l

= aUs(0) + aŨs(1−σ)(X)Ūs(1−σ)(X).

Using the second part of Lemma 14, this gives

f(g(x)) ≪D aUs(0) + aŪs(1−σ)(X)

and since Us(0) = Us(1−σ)(0), we arrive at

f(g(x)) ≪D a(Us(1−σ)(0) + Ūs(1−σ)(X)) = aUs(1−σ)(X).

Using Proposition 5, we eventually obtain

|f ◦ g|s(1−σ) ≤ a = |f |s
and this concludes the proof.

2.6 Flows

The goal of this section is to show that the flow of a M-ultra-differentiable vector field
is M-ultra-differentiable, under the assumptions (H1) and (H2), and to obtain a norm
estimate on this flow in terms of the norm of the vector field; to prove this we will use the
estimates on derivatives, products and composition we already obtained in § 2.3, § 2.4 and
§ 2.5 and the classical contraction fixed point theorem.

Here we will consider a situation adapted to the applications in § 3 and § 4; that is we
consider functions H = H(θ, I, ω) which are defined and ultra-differentiable on a domain
of the form

Tn ×Dr ×Dh(ω0) ⊆ Tn × Rn × Rn

where Dr is the open ball of radius r > 0 centered at the origin and Dh(ω0) is the open
ball of radius h > 0 centered at a vector ω0 ∈ Rn. In the statements below, the variables
ω ∈ Dh(ω0) play the role of a fixed parameter, hence to simplify the notations we will
explicitly suppress the dependence on ω ∈ Dh(ω0).

Let us first start with a vector-valued function D : Tn → Rn which depends only on
θ ∈ Tn, and that we shall considered as a vector field on Tn.
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Lemma 17. Given D ∈ Us(T
n,Rn), let 0 < σ < 1 and assume that

|D|s ≤ sσ. (31)

Then for any t ∈ [0, 1], the time-t map Dt of the flow of D belongs to Us(1−σ)(T
n,Tn) and

we have the estimate
|Dt − Id|s(1−σ)2 ≤ t|D|s. (32)

Observe that the width decreases from s to s(1 − σ)2 because we will have to apply
consecutively Propositions 16 and 8 (or, more precisely, Corollary 9), and each application
induces a decrease of s by a factor 1− σ.

Proof. The fact that Dt is smooth and defined for all t ∈ [0, 1] (in fact, for all t ∈ R)
follows from the compactness of Tn and the classical result on the existence and uniqueness
of solutions of differential equations (even though this will essentially be re-proved below);
the only thing we need to prove is the estimate (32), and clearly it is sufficient to prove
that for all t ∈ [0, 1],

|Dt − Id|s(1−σ)2 ≤ |D|s.
So let us consider the space V := C([0, 1],Us(1−σ)2(T

n,Tn)) of continuous map from [0, 1]
to Us(1−σ)2(T

n,Tn): given an element Φ ∈ V and t ∈ [0, 1], we shall write Φt := Φ(t) and
consequently Φ = (Φt)t∈[0,1]. We equip V with the following norm:

||Φ|| := max
t∈[0,1]

|Φt|s(1−σ)2

which makes it a Banach space, and if we set ρ := |D|s, we define

BρV := {Φ ∈ V | ||Φ− Id|| ≤ ρ}.

We can eventually define a Picard operator P associated to D by

P : BρV → V, Φ 7→ P (Φ)

where P (Φ) = (P (Φ)t)t∈[0,1] is defined by

P (Φ)t := Id +

∫ t

0

D ◦ Φτdτ.

To prove the lemma, it is sufficient to prove that P has a unique fixed point Φ∗ ∈ BρV ,
as necessarily (Φt

∗)t∈[0,1] = (Dt)t∈[0,1]. Therefore it is sufficient to prove that P sends BρV
into itself and that one of its iterate is a contraction, as BρV is a complete subset of the
Banach space V .

First we need to show that P maps BρV into itself. So assume Φ ∈ BρV , using (31)
this implies that for all t ∈ [0, 1],

|Φt − Id|s(1−σ)2 ≤ ρ ≤ sσ.
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Letting σ∗ be such that (1− σ)2 = 1− σ∗, we have σ < σ∗ and therefore

|Φt − Id|s(1−σ∗) = |Φt − Id|s(1−σ)2 ≤ sσ ≤ sσ∗

so that (29) of Proposition 16 is satisfied (with f = D and g = Φt for any t ∈ [0, 1]) and
the latter proposition applies: this gives

|D ◦ Φt|s(1−σ)2 = |D ◦ Φt|s(1−σ∗) ≤ |D|s = ρ, t ∈ [0, 1]

hence ∣∣P (Φ)t − Id
∣∣
s(1−σ)2

=

∣∣∣∣
∫ t

0

D ◦ Φτdτ

∣∣∣∣
s(1−σ)2

≤ tρ ≤ ρ, t ∈ [0, 1]

and therefore
||P (Φ)− Id|| ≤ ρ.

This proves that P maps BρV into itself.
It remains to show that some iterate of P is a contraction. So let Φ1,Φ2 ∈ BρV , then

for any t ∈ [0, 1],

P (Φ1)
t − P (Φ2)

t =

∫ t

0

(D ◦ Φτ
1 −D ◦ Φτ

2) dτ

=

∫ t

0

(∫ 1

0

∇D ◦ (sΦτ
1 + (1− s)Φτ

2)ds

)
· (Φτ

1 − Φτ
2)dτ

=

∫ t

0

Y τ · (Φτ
1 − Φτ

2)dτ.

Using (29), we can apply Proposition 16, and together with Corollary 9, we obtain, for any
0 ≤ τ ≤ t,

|Y τ |s(1−σ)2 ≤ |∇D|s(1−σ) ≤ n2s−1C(σ)|D|s.
Using Corollary 13, this gives, for any t ∈ [0, 1],

|P (Φ1)
t − P (Φ2)

t|s(1−σ)2 ≤ tn2s−1C(σ)|D|s max
0≤τ≤t

|Φτ
1 − Φτ

2 |s(1−σ)2

and hence, setting κ := n2s−1C(σ)|D|s,

max
0≤τ≤t

|P (Φ1)
τ − P (Φ2)

τ |s(1−σ)2 ≤ κt max
0≤τ≤t

|Φτ
1 − Φτ

2|s(1−σ)2

A well-known induction then gives, for any j ∈ N,

max
0≤τ≤t

|P j(Φ1)
τ − P j(Φ2)

τ |s(1−σ)2 ≤
(κt)j

j!
max
0≤τ≤t

|Φτ
1 − Φτ

2 |s(1−σ)2

and hence setting t = 1

||P j(Φ1)− P j(Φ2)|| ≤
κj

j!
||Φ1 − Φ2||.

This proves that some iterate of P is a contraction, which concludes the proof.
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Now let us consider a Hamiltonian function X on Tn ×Dr, of the form

X(θ, I) := C(θ) +D(θ) · I, C : Tn → R, D : Tn → Rn. (33)

The Hamiltonian equations associated to X are given by:

{
θ̇(t) = ∇IX(θ(t), I(t)) = D(θ(t)),

İ(t) = −∇θX(θ(t), I(t)) = −∇C(θ(t))−∇D(θ(t)) · I.

The equations for θ are uncoupled from the equations of I (and hence can be integrated
independently), while the equations for I are affine in I; it is well-known that these facts
lead to a simple form of the Hamiltonian flow associated to X (see, for instance, [Vil08]).

Proposition 18. Let X be as in (33) with C ∈ Us(T
n,R) and D ∈ Us(T

n,Rn). Let
0 < σ < 1 and assume that

|D|s ≤ sσ. (34)

Then for any t ∈ [0, 1], the time-t map X t of the Hamiltonian flow of X is of the form

X t(θ, I) = (θ + Et(θ), I + F t(θ) · I +Gt(θ))

where Et ∈ Us(1−σ)2(T
n,Rn), F t ∈ Us(1−σ)2(T

n,Rn2
) and Gt ∈ Us(1−σ)2(T

n,Rn) with the
estimates 




|Et|s(1−σ)2 ≤ t|D|s,
|F t|s(1−σ)2 ≤ n2s−1C(σ)|D|s exp(tn2s−1C(σ)|D|s),
|Gt|s(1−σ)2 ≤ ns−1C(σ)|C|s exp(tn2s−1C(σ)|D|s).

(35)

As a consequence, given 0 < δ < r, if we further assume that

ns−1C(σ) exp(tn2s−1C(σ)|D|s)(rn|D|s + |C|s) ≤ δ (36)

then X t maps Tn ×Dr−δ into Tn ×Dr.

Proof. The second part of the statement clearly follows from the first part, so let us prove
the latter. From the specific form of the Hamiltonian equations associated to X , one has,
for any t ∈ [0, 1],

X t(θ, I) = (θ + Et(θ), I + F t(θ) · I +Gt(θ))

with 



Et(θ) =
∫ t

0
D(θ + Eτ (θ))dτ,

F t(θ) = −
∫ t

0
∇D(θ + Eτ (θ))dτ −

∫ t

0
∇D(θ + Eτ (θ)) · F τ (θ)dτ

Gt(θ) = −
∫ t

0
∇C(θ + Eτ (θ))dτ −

∫ t

0
∇D(θ + Eτ (θ)) ·Gτ (θ)dτ.

Because of (34), Lemma 17 applies and the flow Dt(θ) = θ + Et(θ) satisfies (32), and
therefore

|Et|s(1−σ)2 = |Dt − Id|s(1−σ)2 ≤ t|D|s
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which gives the first estimate of (35). Using this estimate and (34), we can apply Propo-
sition 16 and Corollary 9 to obtain, for any 0 ≤ τ ≤ t ≤ 1,

|∇D ◦Dτ |s(1−σ)2 ≤ |∇D|s(1−σ) ≤ n2s−1C(σ)|D|s.
Looking at the expression of F t, this gives

|F t|s(1−σ)2 ≤ n2s−1C(σ)|D|s
(
1 +

∫ t

0

|F τ |s(1−σ)2dτ

)

which, by Gronwall’s inequality, implies that for all t ∈ [0, 1],

|F t|s(1−σ)2 ≤ n2s−1C(σ)|D|s exp(tn2s−1C(σ)|D|s)
which gives the second estimate of (35). For the third estimate of (35), observe that the
same argument yields

|Gt|s(1−σ)2 ≤ ns−1C(σ)|C|s + n2s−1C(σ)|D|s
∫ t

0

|Gτ |s(1−σ)2dτ

and again, by Gronwall’s inequality, for all t ∈ [0, 1] we have

|Gt|s(1−σ)2 ≤ ns−1C(σ)|C|s exp(tn2s−1C(σ)|D|s).
This concludes the proof.

The last lemma gives estimates on the Hamiltonian flow associated to a Hamiltonian
X on Tn ×Dr which is affine in I; the flow has then a special form and precise estimates
can be obtained (they are needed in § 3). On the other hand, in § 4, we will need estimates
valid for an arbitrary Hamiltonian Y on Tn×Dr; the lemma below gives rougher estimates
in this general case but they will prove sufficient for our purpose.

Proposition 19. Given Y ∈ Us(T
n ×Dr), let 0 < σ < 1 and assume that

|Y |s ≤ (2n)−1s2σC(σ)−1. (37)

Then for any t ∈ [0, 1], the time-t map Y t of the Hamiltonian flow of Y belongs to
Us(1−σ)3(T

n ×Dr(1−σ)3 ,T
n ×Dr(1−σ)2) and we have the estimate

|Y t − Id|s(1−σ)3 ≤ t|Y |s. (38)

Proof. The proof is just a variation of the proof of Lemma 17, so we just point out the
differences. As before, we know that the flow Y t exists and is smooth, so we only need to
prove that Y t maps Tn ×Dr(1−σ)3 into Tn ×Dr(1−σ)2 and that the estimate

|Y t − Id|s(1−σ)3 ≤ |Y |s (39)

holds true. Let XY be the Hamiltonian vector field: it follows from Corollary 9 and (37)
that

|XY |s(1−σ) ≤ 2ns−1C(σ)|Y |s ≤ sσ (40)

and thus Y t maps Tn × Dr(1−σ)i into Tn × Dr(1−σ)i−1 for i = 1, 2, 3. To prove the esti-
mate (39), at this point one can just repeat the proof of Lemma 17, with s(1− σ) instead
of s, XY instead of D; the required condition (31) translates into |XY |s(1−σ) ≤ sσ which is
nothing but (40).
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2.7 Inverse functions

In this last section, we shall prove that if anM-ultra-differentiable map is sufficiently close
to the identity, then its local inverse is still M-ultra-differentiable, provided M satisfies
(H1) and (H2). Exactly like in § 2.6, we will use the estimates on derivatives, products
and composition we obtained in § 2.3, § 2.4 and § 2.5 and the classical contraction fixed
point theorem.

Again, to prove this in a setting adapted to § 3, let us consider a map φ which depends
only on ω ∈ Dh(ω0), that is φ : Dh(ω0) → Rn.

Proposition 20. Given φ ∈ Us(Dh(ω0),R
n), let 0 < σ < 1 and assume that

|φ− Id|s < n−2sC(σ)−1, |φ− Id|s ≤ h/2. (41)

Then there exists a unique ϕ ∈ Gs(1−σ)2(Dh/2(ω0), Dh(ω0)) such that φ ◦ ϕ = Id and

|ϕ− Id|s(1−σ)2 ≤ |φ− Id|s. (42)

Proof. Let us define V := Us(1−σ)2(Dh/2(ω0),R
n), which is a Banach space with the norm

|| . || = | . |s(1−σ)2 , and for ρ := |φ− Id|s, we set

BρV := {ψ ∈ V | ||ψ − Id|| ≤ ρ}.

Let us define the following Picard operator P associated to φ:

P : BρV → V, ψ 7→ P (ψ) = Id− (φ− Id) ◦ ψ.

It is clear that φ◦ϕ = Id if and only if ϕ is a fixed point of P , and therefore the proposition
will be proved once we have shown that P has a unique fixed point in BρV , and to do this
it is enough to prove that P is a well-defined contraction of BρV .

First let us prove that P maps BρV into itself. So let ψ ∈ BρV , and using the second
part of (41), observe that since

sup
ω∈Dh/2(ω0)

|ψ(ω)− ω| ≤ ||ψ − Id|| ≤ ρ ≤ h/2

then ψ maps Dh/2(ω0) into Dh(ω0). Now recall that for any 0 < σ < 1, C(σ) ≥ (eσ)−1 so
the first part of (41) gives in particular

||ψ − Id|| ≤ ρ ≤ sσ

and allows us to apply Proposition 16 (with σ∗ > σ defined by (1− σ)2 = (1− σ∗)) to get

||(φ− Id) ◦ ψ|| = |(φ− Id) ◦ ψ|s(1−σ)2 ≤ |φ− Id|s = ρ

and thus
||P (ψ)− Id|| = ||(φ− Id) ◦ ψ|| ≤ ρ,
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that is, P maps BρV into itself. To show that P is a contraction, using Corollary 9,
Corollary 13 and Proposition 16 one gets (exactly as in the proof of Lemma 17) for any
ψ1, ψ2 ∈ BρV :

||P (ψ1)− P (ψ2)|| = ||(φ− Id) ◦ ψ1 − (φ− Id) ◦ ψ2|| ≤ n2s−1C(σ)|φ− Id|α,s||ψ1 − ψ2||

and thus the fact that P is a contraction follows from the first part of (41). This ends the
proof.

3 Application to KAM theory

In this section, we give applications to KAM theory, namely we prove Theorem A, Theo-
rem F and Theorem B; Theorem A and Theorem F will be deduced from a KAM theorem
with parameters (Theorem N below) and Theorem B is an adaptation of a result of [Bes00].
All the other KAM theorems we stated can be deduced from Theorem A, Theorem F or
Theorem N so we will not give details about their proof.

In the special case where the Hamiltonians are Gevrey regular, that is M = Mα for
α ≥ 1, these results are contained in [BF17] and so it is our purpose here to extend them
to the more general setting we are considering.

3.1 Statement of the KAM theorem with parameters

Let us now consider the following setting. Fix ω0 ∈ Rn \ {0}. Re-ordering the components
of ω0 and re-scaling the Hamiltonian allow us to assume without loss of generality that

ω0 = (1, ω̄0) ∈ Rn, ω̄0 ∈ [−1, 1]n−1.

Given real numbers r > 0 and h > 0, we let

Dr := {I ∈ Rn | |I| < r}, Dh(ω0) := {ω ∈ Rn | |ω − ω0| < h}.

Since ω0 is fixed, for simplicity we shall remove it from the notation write Dh = Dh(ω0),
and we set

Dr,h := Dr ×Dh.

Our Hamiltonians will be defined on Tn × Dr,h, a neighborhood of Tn × {0} × {ω0} in
Tn × Rn × Rn.

Let s > 0, η ≥ 0 a fixed parameter, ε ≥ 0 and µ ≥ 0 two small parameters. We consider
a function H ∈ Us(T

n ×Dr,h) of the form





H(θ, I, ω) = e(ω) + ω · I︸ ︷︷ ︸
N(I,ω)

+A(θ, ω) +B(θ, ω) · I︸ ︷︷ ︸
P (θ,I,ω)

+M(θ, I, ω) · I2︸ ︷︷ ︸
R(θ,I,ω)

|A|s ≤ ε, |B|s ≤ µ, |∇2
IR|s ≤ η

(∗∗)
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where the notationM(θ, I, ω) ·I2 stands for the vector I given twice as an argument to the
symmetric bilinear form M(θ, I, ω). Observe that A : Tn × Dh → R, B : Tn × Dh → Rn

whereas M : Tn ×Dr,h → Mn(R) with Mn(R) the ring of real square matrices of size n.
The function H in (∗∗) should be considered as an ultra-differentiable Hamiltonian

on Tn × Dr, depending on a parameter ω ∈ Dh; for a fixed parameter ω ∈ Dh, when
convenient, we will write

Hω(θ, I) = H(θ, I, ω), Nω(I) = N(I, ω), Pω(θ, I) = P (θ, I, ω), Rω(θ, I) = R(θ, I, ω).

The image of the map Φ0 : T
n → Tn ×Dr, θ 7→ (θ, 0) is an ultra-differentiable embedded

torus in Tn ×Dr, invariant by the Hamiltonian flow of Nω0 +Rω0 and quasi-periodic with
frequency ω0. The next theorem asserts that this quasi-periodic torus will persist, being
only slightly deformed, as an invariant torus not for the Hamiltonian flow of Hω0 but for
the Hamiltonian flow of Hω∗

0
, where ω∗

0 is a parameter close to ω0, provided ε and µ are
sufficiently small and ω0 satisfies the BRM-condition. Here is the precise statement.

Theorem N. Let H be as in (∗∗), with M = (Ml)l∈N satisfying (H1) and (H2), and ω0

satisfying (BRM). There exist positive constants c1 ≤ 1, c2 ≤ 1 and c3 ≥ 1 depending only
on n such that if

√
ε ≤ µ ≤ h/2,

√
ε ≤ r, h ≤ c1(Q0Ψ(Q0))

−1 (43)

where Q0 ≥ n + 2 is sufficiently large so that

C−1(c2(1 + η)−1sQ0) + (ln 2)−1

∫ +∞

∆(Q0)

C−1(c2(1 + η)−1s∆−1(x))
dx

x
≤ ln 2(4n+ 2)−1 (44)

then the following holds true. There exist a vector ω∗
0 ∈ Rn and an (M, s/2)-ultra-

differentiable embedding
Φ∗

ω0
: Tn ×Dr/2 → Tn ×Dr

of the form
Φ∗

ω0
(θ, I) = (θ + E∗(θ), I + F ∗(θ) · I +G∗(θ))

with the estimates

|ω∗
0 − ω0| ≤ c3µ, |E∗|s/2 ≤ c3Ψ(Q0)µ, |F ∗|s/2 ≤ c3∆(Q0)µ, |G∗|s/2 ≤ c3∆(Q0)ε (45)

and such that

Hω∗

0
◦ Φ∗

ω0
(θ, I) = e∗0 + ω0 · I +R∗(θ, I), R∗(θ, I) =M∗(θ, I) · I2,

with the estimates

|e∗0 − eω∗

0
| ≤ c3ε, |∇2

IR
∗ −∇2

IRω∗

0
|s/2 ≤ c3η∆(Q0)µ.
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Theorem A follows quite directly from Theorem N, introducing the frequencies ω =
∇h(I) as independent parameters, taking µ =

√
ε, and tuning the shift of frequency ω∗

0−ω0

using the non-degeneracy assumption on the unperturbed Hamiltonian. Theorem F follows
also from Theorem N by realizing X as the restriction of a Hamiltonian vector field on
an invariant torus, setting ε = η = 0 and letting µ be the only small parameter. These
arguments are made precise in § 3.5 - § 3.6, but we first concentrate on the proof of
Theorem N.

In all this section, we do not pay attention to how constants depend on the dimension
n as it is fixed. Hence in the sequel we shall write

u<· v (respectively u ·<v, u=· v, u ·= v)

if, for some constant c ≥ 1 depending only on n, we have

u ≤ cv (respectively cu ≤ v, u = cv, cu = v).

3.2 Approximation by rational vectors

Recall that we have written ω0 = (1, ω̄0) ∈ Rn with ω̄0 ∈ [−1, 1]n−1. For a given Q ≥ 1, it is
always possible to find a rational vector v = (1, p/q) ∈ Qn, with p ∈ Zn−1 and q ∈ N, which
is a Q-approximation in the sense that |qω0 − qv| ≤ Q−1, and for which the denominator
q satisfies the upper bound q ≤ Qn−1: this is essentially the content of Dirichlet’s theorem
on simultaneous rational approximations, and it holds true without any assumption on ω0.
In our situation, since we have assumed that ω0 is non-resonant, there exist not only one,
but n linearly independent rational vectors in Qn which are Q-approximations. Moreover,
one can obtain not only linearly independent vectors, but rational vectors v1, . . . , vn of
denominators q1, . . . , qn such that the associated integer vectors q1v1, . . . , qnvn form a Z-
basis of Zn. However, the upper bound on the corresponding denominators q1, . . . , qn is
necessarily larger than Qn−1, and is given by a function of Q that we can call here Ψ′

ω0
(see

[BF13] for more precise and general information, but note that in this reference, Ψ′
ω0

was
denoted by Ψω0 and Ψω0, which we defined in (11), was denoted by Ψ′

ω0
). A consequence

of the main Diophantine result of [BF13] is that this function Ψ′
ω0

is in fact essentially
equivalent to the function Ψω0.

Proposition 21. Let ω0 = (1, ω̄0) ∈ Rn be a non-resonant vector, with ω̄0 ∈ [−1, 1]n−1.
For any Q ≥ n + 2, there exist n rational vectors v1, . . . , vn, of denominators q1, . . . , qn,
such that q1v1, . . . , qnvn form a Z-basis of Zn and for j ∈ {1, . . . , n},

|ω0 − vj |<· (qjQ)−1, 1 ≤ qj <·Ψ(Q).

For a proof of the above proposition with Ψω0 instead of Ψ, we refer to [BF13], Theorem
2.1 and Proposition 2.3; now by (12), Ψω0 ≤ Ψ and so one may replace Ψω0 by Ψ.

Now given a q-rational vector v and a smooth function H defined on Tn × Dr,h, we
define

[H ]v(θ, I, ω) =

∫ 1

0

H(θ + tqv, I, ω)dt. (46)
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Given n rational vectors v1, . . . , vn, we let [H ]v1,...,vd = [· · · [H ]v1 · · · ]vd. Finally we define

[H ](I, ω) =

∫

Tn

H(θ, I, ω)dθ. (47)

The following proposition is a consequence of the fact that the vectors q1v1, . . . , qnvn form
a Z-basis of Zn.

Proposition 22 ([Bou13b, Corollary 6]). Let v1, . . . , vn be rational vectors, of denomina-
tors q1, . . . , qn, such that q1v1, . . . , qnvn form a Z-basis of Zn, and H a function defined on
Tn ×Dr,h. Then

[H ]v1,...,vn = [H ].

3.3 KAM step

Now we describe an elementary step of our iterative procedure. Such a step consists in
pulling back the Hamiltonian H by a transformation of the form

F = (Φ, ϕ) : (θ, I, ω) 7→ (Φ(θ, I, ω), ϕ(ω));

Φ is a parameter-depending change of coordinates and ϕ a change of parameters. Moreover,
our change of coordinates will be of the form

Φ(θ, I, ω) = Φω(θ, I) = (θ + E(θ, ω), I + F (θ, ω) · I +G(θ, ω))

with
E : Tn ×Dh → Rn, F : Tn ×Dh →Mn(R), G : Tn ×Dh → Rn

and for each fixed parameter ω, Φω will be symplectic. For simplicity, we shall write
Φ = (E, F,G); the composition of such transformations F = (Φ, ϕ) = (E, F,G, ϕ) is
again a transformation of the same form, and we shall denote by G the groupoid of such
transformations.

Proposition 23. Let H be as in (∗∗), with M = (Ml)l∈N satisfying (H1) and (H2) and
ω0 = (1, ω̄0) ∈ Rn non-resonant. Consider 0 < σ < 1, 0 < δ < r, Q ≥ n + 2, and assume
that
√
ε ≤ µ ≤ h/2,

√
ε ≤ r, h ·< (QΨ(Q))−1, rµ ·<δ(QΨ(Q))−1, (1 + η) ·<QsC(σ)−1.

(48)
Then there exists an (M, s(1− σ)2n+1)-ultra-differentiable transformation

F = (Φ, ϕ) = (E, F,G, ϕ) : Tn ×Dr−δ,h/2 → Tn ×Dr,h ∈ G,

with the estimates




|E|s(1−σ)2n <·Ψ(Q)µ, |∇E|s(1−σ)2n+1 <· s−1C(σ)Ψ(Q)µ,

|F |s(1−σ)2n <· s−1C(σ)Ψ(Q)µ, |∇F |s(1−σ)2n+1 <· s−2C(σ)2Ψ(Q)µ,

|G|s(1−σ)2n <· s−1C(σ)Ψ(Q)ε, |∇G|s(1−σ)2n+1 <· s−2C(σ)2Ψ(Q)ε,

|ϕ− Id|s(1−σ)2n ≤ µ, |∇ϕ− Id|s(1−σ)2n+1 <· s−1C(σ)µ

(49)
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such that

H ◦ F(θ, I, ω) = e+(ω) + ω · I︸ ︷︷ ︸
N+(I,ω)

+A+(θ) +B+(θ) · I︸ ︷︷ ︸
P+(θ,I,ω)

+M+(θ, I, ω) · I2︸ ︷︷ ︸
R+(θ,I,ω)

,

with the estimates
{
|A+|s(1−σ)2n+1 ≤ ε/16, |B+|s(1−σ)2n+1 ≤ µ/4,

|e+ − e ◦ ϕ|s(1−σ)2n+1 ≤ |A|s, |∇2
IR

+ −∇2
IR ◦ F|s(1−σ)2n+1 <· η|F |s(1−σ)2n .

(50)

Proof. We divide the proof of the KAM step into five small steps. Except for the last one,
the parameter ω ∈ Dh will be fixed, so for simplicity, in the first four steps we will drop
the dependence on the parameter ω ∈ Dh. Let us first notice that (48) clearly implies the
following seven inequalities:

h ·< (QΨ(Q))−1 (51)

Ψ(Q)µ ·<sC(σ)−1 (52)

ε ≤ rµ (53)

rµs−1C(σ)Ψ(Q) ·<δ (54)

µ ·< (QΨ(Q))−1 (55)

(1 + η) ·<QsC(σ)−1 (56)

µ ≤ h/2. (57)

It is also important to notice that the implicit constant appearing in (56) is independent
of the other ones; we may choose it as large as we want without affecting the other implicit
constants. In the first three steps, the term R which contains terms of order at least 2 in
I will be ignored, that is we will only consider Ĥ = H − R = N + P .

1. Rational approximations of ω0 and ω ∈ Dh

Since ω0 is non-resonant, given Q ≥ n + 2, we can apply Proposition 21: there exist
n rational vectors v1, . . . , vn, of denominators q1, . . . , qn, such that q1v1, . . . , qnvn form a
Z-basis of Zn and for j ∈ {1, . . . , n},

|ω0 − vj |<· (qjQ)−1, 1 ≤ qj <·Ψ(Q).

For any ω ∈ Dh, using (51) and qj <·Ψ(Q), we have

|ω − vj | ≤ |ω − ω0|+ |ω0 − vj |<·h + (qjQ)
−1<· (QΨ(Q))−1 + (qjQ)

−1<· (qjQ)−1. (58)

2. Successive rational averagings

Let us set A1 := A, B1 := B so that P1(θ, I) := A1(θ) + B1(θ) · I satisfies P1 = P .
Recalling that [ . ]v denotes the averaging along the periodic flow associated to a periodic
vector v ∈ Rn (see (46)), we define inductively, for 1 ≤ j ≤ n,

Aj+1 := [Aj ]vj , Bj+1 := [Bj ]vj , Pj+1 := [Pj ]vj
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so in particular Pj(θ, I) = Aj(θ) + Bj(θ) · I for 1 ≤ j ≤ n. Let us also define Xj, for
1 ≤ j ≤ n, by

Xj(θ, I) := Cj(θ) +Dj(θ) · I
where

Cj(θ) = qj

∫ 1

0

(Aj − Aj+1)(θ + tqjvj)tdt, Dj(θ) = qj

∫ 1

0

(Bj − Bj+1)(θ + tqjvj)tdt.

If we further define Nj by Nj(I) = e(ω) + vj · I, it is then easy to check, by a simple
integration by parts, that the equations

{Cj, Nj} = Aj − Aj+1, {Dj, Nj} = Bj −Bj+1, 1 ≤ j ≤ n, (59)

are satisfied and then
{Xj , Nj} = Pj − Pj+1, 1 ≤ j ≤ n, (60)

are also satisfied, where { . , . } denotes the usual Poisson bracket. Moreover, we have the
estimates

|Aj|s ≤ |A|s ≤ ε, |Bj|s ≤ |B|s ≤ µ, (61)

and then

|Cj|s ≤ qj |Aj|s ≤ qjε<·Ψ(Q)ε, |Dj |s ≤ qj |Bj|s ≤ qjµ<·Ψ(Q)µ. (62)

Next, for any 0 ≤ j ≤ n, define

rj := r − n−1jδ, ŝj := s(1− σ)2j , sj = s(1− σ)2j+1.

Let X t
j be the time-t map of the Hamiltonian flow of Xj . Using (62), together with

inequalities (52), (53), (54) and the fact that C(σ)−1<·σ (this is (6)), the condition (34)
and (36) of Proposition 18, § 2, are satisfied, so the latter proposition can be applied: for
1 ≤ j ≤ n, X t

j is (M, ŝj)-ultra-differentiable, it maps Tn × Drj into Tn × Drj−1
for all

t ∈ [0, 1] and it is of the form

X t
j(θ, I) = (θ + Et

j(θ), I + F t
j (θ) · I +Gt

j(θ))

with




|Et
j|ŝj ≤ |Dj|sj−1

<·Ψ(Q)µ, |∇Et
j |sj <· s−1C(σ)Ψ(Q)µ

|F t
j |ŝj <· s−1C(σ)|Dj|sj−1

<· s−1C(σ)Ψ(Q)µ, |∇F t
j |sj <· s−2C(σ)2Ψ(Q)µ

|Gt
j|ŝj <· s−1C(σ)|Cj|sj−1

<· s−1C(σ)Ψ(Q)ε, |∇Gt
j|sj <· s−2C(σ)2Ψ(Q)ε.

(63)

Now we define Φ0 := Id to be the identity and inductively Φj := Φj−1 ◦X1
j for 1 ≤ j ≤ n.

Then Φj maps Tn × Drj into Tn × Dr and one easily checks, by induction using the
estimates (63), that Φj is still of the form

Φj(θ, I) = (θ + Ej(θ), I + F j(θ) · I +Gj(θ))
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with the estimates, for j = 1, ..., n,





|Ej |ŝj <·Ψ(Q)µ, |∇Ej|sj <· s−1C(σ)Ψ(Q)µ,

|F j|ŝj <· s−1C(σ)Ψ(Q)µ, |∇F j|sj <· s−2C(σ)2Ψ(Q)µ,

|Gj|ŝj <· s−1C(σ)Ψ(Q)ε, |∇Gj|sj <· s−2C(σ)2Ψ(Q)ε.

(64)

3. New Hamiltonian

Let us come back to the Hamiltonian Ĥ = H − R = N + P = N + P1. We claim that
for all 0 ≤ j ≤ n, we have

Ĥ ◦ Φj = N + Pj+1 + P+
j+1, P+

j+1(θ, I) = A+
j+1(θ) +B+

j+1(θ) · I

with the estimates

|A+
j+1|ŝj <· (Qs)−1C(σ)ε, |B+

j+1|ŝj <· (Qs)−1C(σ)µ. (65)

Let us prove the claim by induction on 0 ≤ j ≤ n. For j = 0, we may set P+
1 := 0 and

there is nothing to prove. So let us assume that the claim is true for some j − 1 ≥ 0, and
we need to show it is still true for j ≥ 1. By this inductive assumption, we have

Ĥ ◦ Φj = Ĥ ◦ Φj−1 ◦X1
j = (N + Pj + P+

j ) ◦X1
j

with
|A+

j |ŝj−1
<· (Qs)−1C(σ)ε, |B+

j |ŝj−1
<· (Qs)−1C(σ)µ. (66)

Let Sj = ω · I − vj · I so that N = Nj + Sj and thus

Ĥ ◦ Φj = (Nj + Sj + Pj + P+
j ) ◦X1

j = (Nj + Sj + Pj) ◦X1
j + P+

j ◦X1
j .

Let us consider the first summand of the last sum. Using the equality (60), a standard
computation based on Taylor’s formula with integral remainder gives

(Nj + Sj + Pj) ◦X1
j = N + [Pj ]vj + P̃j+1 = N + Pj+1 + P̃j+1

with

P̃j+1 =

∫ 1

0

W t
j+1 ◦X t

jdt, W t
j+1 := {(1− t)Pj+1 + tPj + Sj , Xj}.

Clearly, W t
j+1 is still of the form

W t
j+1(θ, I) = W t

j+1(θ, 0) +∇IW
t
j+1(θ, 0) · I

as this is true for Pj , Sj, Xj and that this form is preserved under Poisson bracket. Using
the estimates for Pj(θ, 0), ∇IPj(θ, 0), Xj(θ, 0), ∇IXj(θ, 0) (given respectively in (61) and
in (62)), the fact that

Sj(θ, 0) = 0, ∇ISj(θ, 0) = ω − vj
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with the inequality (58), and the estimates for the derivatives and the product of Gevrey
functions (given respectively in Proposition 8, Corollary 9 and Proposition 10, Corollary 13,
§ 2), one finds, for all t ∈ [0, 1]

|W t
j+1(θ, 0)|ŝj <· (s−1C(σ)qjεµ+ s−1C(σ)qjεµ+ s−1C(σ)qjε(qjQ)

−1)

<· s−1C(σ)qjεµ+ (Qs)−1C(σ)ε.

Since qj <·Ψ(Q), using (55) the latter estimate reduces to

|W t
j+1(θ, 0)|ŝj <· (Qs)−1C(σ)ε.

Similarly, one obtains
|∇IW

t
j+1(θ, 0)|ŝj <· (Qs)−1C(σ)µ.

Then, using the expression of X t
j and the associated estimates (63), a direct computation,

still using (55), gives
|P̃j+1(θ, 0)|ŝj <· (Qs)−1C(σ)ε

and
|∇I P̃j+1(θ, 0)|ŝj <· (Qs)−1C(σ)µ.

Using again the estimates of X t
j given by (63), and the inductive assumption (66), we also

find
|P+

j ◦X1
j (θ, 0)|ŝj <· (Qs)−1C(σ)ε

and
|∇I(P

+
j ◦X1

j )(θ, 0)|ŝj <· (Qs)−1C(σ)µ.

Eventually, we may define
P+
j+1 := P̃j+1 + P+

j ◦X1
j

so that
Ĥ ◦ Φj = N + Pj+1 + P+

j+1, P+
j+1(θ, I) = A+

j+1(θ) +B+
j+1(θ) · I

and these last estimates imply that

|A+
j+1|ŝj <· (Qs)−1C(σ)ε, |B+

j+1|ŝj <· (Qs)−1C(σ)µ.

The claim is proved. So we may set

Φ := Φn, (E, F,G) := (En, F n, Gn),

with, as (64) tells us with j = n,





|E|ŝn <·Ψ(Q)µ, |∇E|sn <· s−1C(σ)Ψ(Q)µ

|F |ŝn <· s−1C(σ)Ψ(Q)µ, |∇F |sn <· s−2C(σ)2Ψ(Q)µ

|G|ŝn <· s−1C(σ)Ψ(Q)ε, |∇G|sn <· s−2C(σ)2Ψ(Q)ε.

(67)
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Observe that Pn+1 = [· · · [P ]v1 · · · ]vn = [P ]v1,...,vn, and thus by Proposition 22, Pn+1 = [P ],
and as a consequence

Ĥ ◦ Φ(θ, I) = e + ω · I + [A] + [B] · I + A+
n+1(θ) +B+

n+1(θ) · I

with the estimates

|A+
n+1|ŝn <· (Qs)−1C(σ)ε, |B+

n+1|ŝn <· (Qs)−1C(σ)µ. (68)

4. Estimate of the remainder

Now we take into account the remainder term R that we previously ignored: we have
H = Ĥ +R, and therefore

H ◦ Φ(θ, I) = e+ ω · I + [A] + [B] · I + A+
n+1(θ) +B+

n+1(θ) · I +R ◦ Φ(θ, I).

Let us decompose

R ◦ Φ(θ, I) = R ◦ Φ(θ, 0)︸ ︷︷ ︸
R0(θ)

+∇I(R ◦ Φ)(θ, 0)︸ ︷︷ ︸
R1(θ)

·I + R̃(θ, I)

and let us define
Ã := A+

n+1 +R0, B̃ := B+
n+1 +R1.

We have R(θ, I) = M(θ, I) · I2 and as H and R differ only by terms of order at most one
in I, ∇2

IH = ∇2
IR so

M(θ, I) =

∫ 1

0

(1− t)∇2
IH(θ, tI)dt =

∫ 1

0

(1− t)∇2
IR(θ, tI)dt

and therefore |M |s ≤ η. Then, as Φ(θ, 0) = (θ + E(θ), G(θ)), we have the expression

R0(θ) = R(Φ(θ, 0)) =M(θ + E(θ), G(θ)) ·G(θ)2

and so using the above estimate on M , together with the estimates on E, G and the esti-
mates for the product and compostion of Gevrey functions (given respectively in Proposi-
tion 10 and Proposition 16, § 2), we find

|R0|ŝn <· η|G|2ŝn <· η(s−1C(σ)Ψ(Q)µ)2ε<· η(Qs)−2C(σ)2ε<· η(Qs)−1C(σ)ε.

Then, we have ∇IR(θ, I) = M̂(θ, I) · I2 with

M̂(θ, I) =

∫ 1

0

∇2
IH(θ, tI)dt =

∫ 1

0

∇2
IR(θ, tI)dt

and hence |M̂ |s ≤ η also. Since

|∇IΦ− Id|ŝn = |F |ŝn <· s−1C(σ)Ψ(Q)µ ·< 1 (69)

47



we obtain, using the fact that ε ≤ µ2 and proceeding as before,

|R1|ŝn <· η|G|ŝn <· ηs−1C(σ)Ψ(Q)ε<· η(s−1C(σ)Ψ(Q)µ)µ<· η(Qs)−1C(σ)µ.

These last estimates on R0 and R1, together with (68), imply

|Ã|ŝn <· (1 + η)(Qs)−1C(σ)ε, |B̃|ŝn <· (1 + η)(Qs)−1C(σ)µ.

We can finally now use (56) to ensure that

|Ã|ŝn ≤ ε/16, |B̃|ŝn ≤ µ/4. (70)

It is important to recall here that we may choose the implicit constant in (56) as large as
we want (in order to achieve (70)) without affecting any of the other implicit constants.
Then observe also that H ◦ Φ and R̃ differ only by terms of order at most one in I, so

∇2
I(H ◦ Φ) = ∇2

IR̃, ∇2
IH = ∇2

IR

and therefore using the formula for the Hessian of a composition, (69) and the fact that
∇2

IΦ is identically zero, one finds

|∇2
IR̃−∇2

IR ◦ Φ|ŝn <· η|F |s. (71)

We also set ẽ := e + [A] and observe that

|ẽ− e|ŝn ≤ |[A]|s ≤ |A|s. (72)

5. Change of frequencies and final estimates

Let us now write explicitly the dependence on the parameter ω ∈ Dh: we have

H ◦ Φ(θ, I, ω) = ẽ(ω) + (ω + [B](ω)) · I + Ã(θ, ω) + B̃(θ, ω) · I + R̃(θ, I, ω).

Consider the map φ(ω) := ω + [B(ω)], it satisfies

|φ− Id|s ≤ |[B]|s ≤ |B|s ≤ µ

and therefore the conditions (41) of Proposition 20 are satisfied: the first condition of (41)
follows, from instance, from condition (52) and the fact that Ψ(Q) ≥ Q ≥ 1, whereas the
second condition of (41) is implied by condition (57). Hence Proposition 20 applies and
one finds a unique ϕ ∈ Gŝn(Dh/2, Dh) such that φ ◦ ϕ = Id and

|ϕ− Id|ŝn ≤ |φ− Id|s ≤ µ. (73)

We do have ϕ(ω) + [B(ϕ(ω))] = ω and thus, setting F := (Φ, ϕ), this implies that

H◦F(θ, I, ω) = H◦Φ(θ, I, ϕ(ω)) = ẽ(ϕ(ω))+ω·I+Ã(θ, ϕ(ω))+B̃(θ, ϕ(ω))·I+R̃(θ, I, ϕ(ω))
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and at the end we set

e+ := ẽ ◦ ϕ, A+ := Ã ◦ ϕ, B+ := B̃ ◦ ϕ, R+ := R̃ ◦ ϕ.

Using once again Proposition 16, the inequalities (70), (71) and (72) imply





|A+|sn = |Ã ◦ ϕ|sn ≤ |Ã|ŝn ≤ ε/16,

|B+|sn = |B̃ ◦ ϕ|sn ≤ |B̃|ŝn ≤ µ/4,

|e+ − e ◦ ϕ|sn = |(ẽ− e) ◦ ϕ|sn ≤ |ẽ− e|ŝn ≤ |A|s,
|∇2

IR
+ −∇2

IR ◦ F|sn = |(∇2
IR̃−∇2

IR ◦ Φ) ◦ ϕ|sn ≤ |∇2
IR̃−∇2

IR ◦ Φ|ŝn <· η|F |ŝn,

which were the estimates (50) we needed to prove. The transformation F = (Φ, ϕ) =
(E, F,G, ϕ) ∈ G maps Tn ×Dr−δ,h/2 into Tn ×Dr,h and it follows from (67) and (73) that





|E|ŝn <·Ψ(Q)µ, |∇E|sn <· s−1C(σ)Ψ(Q)µ,

|F |ŝn <· s−1C(σ)Ψ(Q)µ, |∇F |sn <· s−2C(σ)2Ψ(Q)µ,

|G|ŝn <·σ−αΨ(Q)ε, |∇G|sn <· s−2C(σ)2Ψ(Q)ε,

|ϕ− Id|ŝn ≤ µ, |∇ϕ− Id|sn <· s−1C(σ)µ

which were the wanted estimates (49). This concludes the proof.

3.4 Iterations and convergence

We now define, for i ∈ N, the following decreasing geometric sequences:

εi := 16−iε, µi := 4−iµ, δi := 2−i−2r, hi = 2−ih. (74)

Next, for a constant Q0 to be chosen below, we define ∆i and Qi, i ∈ N, by

∆i = 2i∆(Q0), Qi = ∆−1(∆i) = ∆−1(2i∆(Q0)). (75)

Let us now choose 0 < c2 ≤ 1, which depends only on n, for which the last inequality
of (48) is satisfied with implicit constant 2c2, that is

(1 + η)(2c2)
−1 ≤ QsC(σ)−1. (76)

We can now define σi, i ∈ N, by

σi = C−1(c2(1 + η)−1sQi) (77)

and finally, we define ŝi, si and ri, i ∈ N, by

ŝ0 = s0 = s, ŝi+1 = ŝi(1− σi)
2n, si+1 = si(1− σi)

2n+1, r0 = r, ri+1 = ri − δi. (78)
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Obviously, we have

lim
i→+∞

ri = r −
∑

i∈N

δi = r/2.

We claim that, assuming that ω0 satisfies (BRM), if we choose Q0 as in (44) we have

lim
i→+∞

si ≥ s/2 ⇐⇒
∏

i∈N

(1− σi)
2n+1 ≥ 1/2. (79)

Indeed, we have
∑

i∈N

σi = σ0 +
∑

i≥1

σi

= C−1(c2(1 + η)−1sQ0) +
∑

i≥1

C−1(c2(1 + η)−1s∆−1(2i∆(Q0)))

≤ C−1(c2(1 + η)−1sQ0) +

∫ +∞

0

C−1(c2(1 + η)−1s∆−1(2y∆(Q0)))dy

= C−1(c2(1 + η)−1sQ0) + (ln 2)−1

∫ +∞

∆(Q0)

C−1(c2(1 + η)−1s∆−1(x))
dx

x

≤ ln 2(4n+ 2)−1

where we used (44) in the last line. In particular, for any i ∈ N we have σi ≤ ln 2(4n+2)−1

which implies
ln(1− σi)

2n+1 = (2n+ 1) ln(1− σi) ≥ −(4n+ 2)σi

and thus ∑

i∈N

ln(1− σi)
2n+1 ≥ −(4n + 2)

∑

i∈N

σi ≥ − ln 2

and finally
∏

i∈N

(1− σi)
2n+1 = exp

(∑

i∈N

ln(1− σi)
2n+1

)
≥ 1/2.

This shows that (79) holds true with our choice of σi. Applying inductively Proposition 23
we will easily obtain the following proposition.

Proposition 24. Let H be as in (∗∗), with M = (Ml)l∈N satisfying (H1) and (H2) and
ω0 satisfying (BRM). Fix Q0 ≥ n+ 2 so that (44) is satisfied, and assume that

√
ε ≤ µ ≤ h/2,

√
ε ≤ r, h ·<∆(Q0)

−1. (80)

Then, for each i ∈ N, there exists an (M, si)-ultra-differentiable transformation

F i = (Φi, ϕi) = (Ei, F i, Gi, ϕi) : Tn ×Dri,hi
→ Tn ×Dr,h ∈ G,

such that F i+1 = F i ◦ Fi+1, with

Fi+1 = (Φi+1, ϕi+1) = (Ei+1, Fi+1, Gi+1, ϕi+1) : T
n ×Dri+1,hi+1

→ Tn ×Dri,hi
∈ G,
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satisfying the following estimates





|Ei+1|ŝi+1
<·Ψ(Qi)µi, |∇Ei+1|si+1

<· s−1
i C(σi)Ψ(Qi)µi,

|Fi+1|ŝi+1
<· s−1

i C(σi)Ψ(Qi)µi, |∇Fi+1|si+1
<· s−2

i C(σi)
2Ψ(Qi)µi,

|Gi+1|ŝi+1
<· s−1

i C(σi)Ψ(Qi)εi, |∇Gi+1|si+1
<· s−2

i C(σi)
2Ψ(Qi)εi,

|ϕi+1 − Id|ŝi+1
≤ µi, |∇ϕi+1 − Id|si+1

<· s−1
i C(σi)µi

(81)

and such that

H ◦ F i(θ, I, ω) = ei(ω) + ω · I︸ ︷︷ ︸
N i(I,ω)

+Ai(θ) +Bi(θ) · I︸ ︷︷ ︸
P i(θ,I,ω)

+M i(θ, I, ω) · I2︸ ︷︷ ︸
Ri(θ,I,ω)

with the estimates




|Ai|si+1
≤ εi, |Bi|si+1

≤ µi,

|ei+1 − ei ◦ ϕi+1|si+1
≤ |Ai|α,si,

|∇2
IR

i+1 −∇2
IR

i ◦ Fi+1|si+1
<· η|Fi+1|ŝi+1

.

(82)

Let us emphasize that the implicit constants in the above proposition depend only on
n and are thus independent of i ∈ N.

Proof. For i = 0, we let F0 be the identity, e0 := e, A0 := A, B0 := B, R0 := R,
M0 := M and there is nothing to prove. The general case follows by an easy induction.
Indeed, assume that the statement holds true for some i ∈ N so that H ◦ F i is (M, si)-
ultra-differentiable on the domain Tn × Dri,si. We want to apply Proposition 23 to this
Hamiltonian, with ε = εi, µ = µi, r = ri, s = si, h = hi, σ = σi and Q = Qi. First, by our
choice of Q0 and δ0 it is clear that 0 < σi < 1, 0 < δi < ri, and Qi ≥ n+2. Then, recalling
the definition of the constant c2, we need to check that the conditions

{√
εi ≤ µi ≤ hi/2,

√
εi ≤ ri, hi ·<∆(Qi)

−1,

riµi ·<δi∆(Qi)
−1, (1 + η)(2c2)

−1 ≤ QisiC(σi)
−1

are satisfied. From the definition of Qi and σi we have

∆(Qi) = ∆(∆−1(∆i)) = ∆i, C(σi) = C(C−1(c2(1 + η)−1sQi)) = c2(1 + η)−1sQi

and as 2−ir ≤ ri ≤ r, it is sufficient to check the conditions

√
εi ≤ µi ≤ hi/2,

√
εi ≤ 2−ir, hi ·<∆−1

i , rµi ·<δi∆−1
i , s/2 ≤ si. (83)

The last condition of (83) is satisfied, for all i ∈ N, simply by the choice of Q0 satis-
fying (44), as this implies (79). As for the other four conditions of (83), using the fact
that the sequences εi, µi, hi, ∆

−1
i and δi decrease at a geometric rate with respective ratio

1/16, 1/4, 1/2, 1/2 and 1/2, it is clear that they are satisfied for any i ∈ N if and only
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if they are satisfied for i = 0. The first three conditions of (83) for i = 0 are nothing
but (80). Moreover, using our choice of δ0 = r/4, the fourth condition of (83) for i = 0
reads µ ·<∆−1

0 and this also follows from (80).
Hence Proposition 23 can be applied, and all the conclusions of the statement follow

at once from the conclusions of Proposition 23.

We can finally conclude the proof of Theorem N, by showing that one can pass to the
limit i→ +∞ in Proposition 24.

Proof of Theorem N. Recall that we are given ε > 0, µ > 0, r > 0, s > 0, h > 0 and that
we define the sequences εi, µi, δi, hi in (74), and then we chose Q0 ≥ n + 2 satisfying (44)
to define the sequences ∆i, Qi in (75) and σi in (77) and finally, ŝi, si and ri were defined
in (78). Moreover, we have

{
limi→+∞ εi = limi→+∞ µi = limi→+∞ hi = 0,

limi→+∞ ri = r −∑i∈N δi = r/2, limi→+∞ si = s
∏

i∈N(1− σi)
2n+1 ≥ s/2

(84)

and for later use, let us observe that the following series are convergent and can be made
as small as one wishes thanks to condition (43) of Theorem N:

+∞∑

i=0

s−1C(σi)µi ≤
+∞∑

i=0

Qiµi =

+∞∑

i=0

(Ψ(Qi))
−1∆iµi ≤ 2(Ψ(Q0))

−1∆0µ = 2Q0µ (85)

+∞∑

i=0

µi ≤ 2µ (86)

+∞∑

i=0

s−1C(σi)Ψ(Qi)µi ≤
+∞∑

i=0

∆iµi ≤ 2∆0µ = 2Q0Ψ(Q0)µ (87)

+∞∑

i=0

Ψ(Qi)µi ≤
+∞∑

i=0

Q−1
i ∆iµi ≤ 2Q−1

0 ∆0µ = 2Ψ(Q0)µ (88)

+∞∑

i=0

s−1C(σi)Ψ(Qi)εi ≤
+∞∑

i=0

∆iεi ≤ 2∆0ε = 2Q0Ψ(Q0)ε. (89)

Now the condition (43) of Theorem N implies that the condition (80) of Proposition 24
is satisfied; what we need to prove is that the sequences given by this Proposition 24 do
convergence in the Banach space of (M, s/2)-ultra-differentiable functions. Recall that
F0 = (E0, F 0, G0, ϕ0) is the identity, while for i ≥ 0,

(Ei+1, F i+1, Gi+1, ϕi+1) = F i+1 = F i ◦ Fi+1 = (Ei, F i, Gi, ϕi) ◦ (Ei+1, Fi+1, Gi+1, ϕi+1)
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from which one easily obtains the following inductive expressions:





Ei+1(θ, ω) = Ei+1(θ, ω) + Ei(θ + Ei+1(θ, ω), ϕi+1(ω))

F i+1(θ, ω) = Fi+1(θ, ω) + F i(θ + Ei+1(θ, ω), ϕi+1(ω)) · (Id + Fi+1(θ, ω))

Gi+1(θ, ω) = (F i(θ + Ei+1(θ, ω), ϕi+1(ω)) + Id) ·Gi+1(θ, ω) +Gi(θ + Ei+1(θ, ω), ϕi+1(ω))

ϕi+1 = ϕi ◦ ϕi+1.

(90)
Let us first prove that the sequence ϕi converges. We claim that for all i ∈ N, we have

|∇ϕi|si <·
i∏

l=0

(1 + s−1C(σl)µl)<· 1

where the fact that the last product is bounded uniformly in i ∈ N follows from (85). For
i = 0, ϕ0 = Id and there is nothing to prove; for i ∈ N since ϕi+1 = ϕi ◦ ϕi+1 we have

∇ϕi+1 =
(
∇ϕi ◦ ϕi+1

)
· ∇ϕi+1

so that using the estimate for ϕi+1 and ∇ϕi+1 given in (81), Proposition 24, the claim
follows by induction. Using this claim, and writing

ϕi+1 − ϕi = ϕi ◦ ϕi+1 − ϕi =

(∫ 1

0

∇ϕi ◦ (tϕi+1 + (1− t)Id)dt

)
· (ϕi+1 − Id)

one finds
|ϕi+1 − ϕi|si+1

<· |ϕi+1 − Id|si+1
,

and therefore
|ϕi+1 − ϕi|si+1

<·µi.

Using the convergence of (84) and (86), one finds that the sequence ϕi converges to a trivial
map

ϕ∗ : {ω0} → Dh, ϕ∗(ω0) := ω∗
0

such that
|ω∗

0 − ω0|<·µ.
Now let us define

Vi+1(θ, ω) := (θ + Ei+1(θ, ω), ϕi+1(ω)), Vi+1 = (Id + Ei+1, ϕi+1)

and observe that since Ψ(Qi) ≥ 1, then the estimates for Ei+1, ∇Ei+1, ϕi+1 and ∇ϕi+1

given in Proposition 24 implies that

|Vi+1 − Id|si+1
<·Ψ(Qi)µi, |∇Vi+1 − Id|si+1

<· s−1C(σi)Ψ(Qi)µi.

Using these estimates, and the fact that Ei+1 can be written as

Ei+1 = Ei+1 + Ei ◦ Vi+1
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we can proceed as before, using the convergence of (87) to show first that

|∇Ei|si <·
i∑

l=0

s−1C(σl)Ψ(Ql)µl<· 1

and then
|Ei+1 −Ei|si+1

<· |Ei+1|si+1
<·Ψ(Qi)µi.

Using the convergence of (84) and (88), this shows that Ei converges to a map

E∗ : Tn × {ω0} → Tn ×Dh

such that
|E∗|s/2<·Ψ(Q0)µ.

For the F i, we do have the expression

F i+1 = Fi+1 + (F i ◦ Vi+1) · (Id + Fi+1)

or alternatively
F i+1 = (Id + F i ◦ Vi+1) · Fi+1 + F i ◦ Vi+1

and thus
F i+1 − F i = (Id + F i ◦ Vi+1) · Fi+1 + F i ◦ Vi+1 − F i.

As before, using the estimates on Fi+1 and ∇Fi+1 given in Proposition 24, one shows that

|∇F i|si <·
i∑

l=0

s−2C(σl)
2Ψ(Ql)µl

but however, here, the sum above is not convergent. Yet we do have

sC(σi)
−1|∇F i|si <· sC(σi)−1

i∑

l=0

s−2C(σl)
2Ψ(Ql)µl<·

i∑

l=0

s−1C(σl)Ψ(Ql)µl<· 1

from (88) and using the fact that the estimate for Vi+1 can be written as

|Vi+1 − Id|si+1
<· sC(σi)−1s−1C(σi)Ψ(Qi)µi

one obtains
|F i ◦ Vi+1 − F i|si+1

<· s−1C(σi)Ψ(Qi)µi.

By induction, one shows that

|F i|si <·
i∑

l=0

s−1C(σl)Ψ(Ql)µl<· 1
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from which one obtains
|Id + F i ◦ Vi+1|si <· 1

and as a consequence,
|F i+1 − F i|si+1

<· s−1C(σi)Ψ(Qi)µi.

Using the convergence of (84) and (87), this shows that F i converges to a map

F ∗ : Tn × {ω0} → Tn ×Dh

such that
|F ∗|s/2<·Q0Ψ(Q0)µ.

For Gi, we have the expression

Gi+1 = (F i ◦ Vi+1 + Id) ·Gi+1 +Gi ◦ Vi+1

and thus
Gi+1 −Gi = (F i ◦ Vi+1 + Id) ·Gi+1 +Gi ◦ Vi+1 −Gi.

Proceeding exactly as we did for Ei and F i, using the convergence of (84), (87) and (89),
one finds that Gi converges to a map

G∗ : Tn × {ω0} → Tn ×Dh

such that
|G∗|s/2<·Q0Ψ(Q0)ε.

In summary, the map F i converges to a map

F∗ : Tn ×Dr/2 × {ω0} → Tn ×Dr,h

which belongs to G, of the form
{
F∗(θ, I, ω0) = (Φ∗

ω0
(θ, I), ω∗

0),

Φ∗
ω0
(θ, I) = (θ + E∗(θ), I + F ∗(θ) · I +G∗(θ))

with the estimates

|E∗|s/2<·Ψ(Q0)µ, |F ∗|s/2<·Q0Ψ(Q0)µ, |G∗|s/2<·Q0Ψ(Q0)ε, |ω∗
0 − ω0|<·µ. (91)

Then from the estimates
|Ai|si ≤ εi, |Bi|si ≤ µi,

given in (82), Proposition 24, and the convergence (84), it follows that both Ai and Bi

converge to zero. Next from the estimates
{
|ei+1 − ei ◦ ϕi+1|si+1

≤ |Ai|si,
|∇2

IR
i+1 −∇2

IR
i ◦ Fi+1|si+1

<· η|Fi+1|si+1
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still given in (82), Proposition 24, one can prove in the same way as we did before, that ei

converges to a trivial map

e∗ : {ω0} → Dh, e∗(ω0) := e∗0

such that
|e∗0 − eω∗

0
|<· ε (92)

whereas M i converges to a map

M∗ : Tn ×Dr/2 × {ω0} → Tn ×Dr,h

such that, setting R∗(θ, I) =M∗(θ, I)I · I,

|∇2
IR

∗ −∇2
IRω∗

0
|s/2<· ηQ0Ψ(Q0)µ. (93)

Therefore we have

H ◦ F∗(θ, I, ω0) = Hω∗

0
◦ Φ∗

ω0
(θ, I) = e∗0 + ω0 · I +R∗(θ, I),

which, together with the previous estimates (91), (92) and (93), is what we wanted to
prove.

3.5 Proof of Theorem A

In this section, we show how Theorem N implies Theorem A, following [Pös01].

Proof of Theorem A. For simplicity, let us change the notation in (∗) to consider a Hamil-
tonian H : Tn ×D → R of the form

{
H(q, p) = h(p) + ǫf(q, p),

∇h(0) := ω0 ∈ Rn

where H is (M, s0)-ultra-differentiable for some s0 > 0: concretely, we just replaced the
variables (θ, I) by (q, p), ε by ǫ and s by s0. Recall that we may assume that ω0 is of the
form

ω0 = (1, ω̄0) ∈ Rn, ω̄0 ∈ [−1, 1]n−1.

For p0 ∈ B, we expand h in a small neighborhood of p0: writing p = p0 + I for I close to
zero, we get

h(p) = h(p0) +∇ph(p0) · I +
∫ 1

0

(1− t)∇2
ph(p0 + tI) · I2 dt.

Similarly, we expand ǫf with respect to p, in a small neighborhood of p0:

ǫf(q, p) = ǫf(q, p0) + ǫ∇pf(q, p0) · I + ǫ

∫ 1

0

(1− t)∇2
pf(q, p0 + tI) · I2 dt.
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Since ∇ph : B → Ω is a diffeomorphism, instead of p0 we can use ω = ∇ph(p0) as a new
variable, and letting ∇ωg := (∇h)−1, we write

h(p) = e(ω) + ω · I +Rh(I, ω)

with

e(ω) := h(∇ωg(ω)), Rh(I, ω) :=

∫ 1

0

(1− t)∇2
ph(∇ωg(ω) + tI) · I2 dt

and also, letting θ = q,

ǫf(q, p) = ǫÃ(θ, ω) + ǫB̃(θ, ω) · I + ǫRf (θ, I, ω)

with
Ã(θ, ω) := f(θ,∇ωg(ω)), B̃(θ, ω) := ∇pf(θ,∇ωg(ω))

and

Rf (θ, I, ω) := ǫ

∫ 1

0

(1− t)∇2
pf(θ,∇ωg(ω) + tI) · I2 dt.

Finally, we can set

A := ǫÃ, B := ǫB̃, R := Rh + ǫRf =M(θ, I, ω) · I2,

so that h+ ǫf can be written as

H(θ, I, ω) = e(ω) + ω · I + A(θ, ω) +B(θ, ω) · I +R(θ, I, ω),

and we have

∇2
IR(θ, I, ω) = ∇2

Ih(∇ωg(ω) + I) + ǫ∇2
If(θ,∇ωg(ω) + I).

By assumption, h and f are (M, s0)-ultra-differentiable on Tn ×B, and since the space of
ultra-differentiable functions is closed under taking derivatives, products, composition and
inversion (by the assumptions (H1) and (H2), up to restricting the parameter s0, see § 2
for the relevant estimates), we claim that we can find s > 0, r > 0, h > 0 and c̃ > 0 which
are independent of ǫ such that H is (M, s)-ultra-differentiable on the domain Tn × Dr,h

with the estimates
|A|s ≤ c̃ǫ, |B|s ≤ c̃ǫ, |∇2

IR|s ≤ c̃.

We may set
ε := c̃ǫ, µ :=

√
ε, η := c̃

and assuming ǫ small enough, we have c̃ǫ ≤ µ =
√
ε. Thus we have

|A|s ≤ ε, |B|s ≤ µ, |∇2
IR|s ≤ η.

Having fixed s > 0 and r > 0, we may choose Q0 sufficiently large so that (44) holds true,
and then by further restricting first h, and then ǫ, we may assume that the condition (43)
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is satisfied. Theorem N applies: there exist an (M, s/2)-ultra-differentiable embedding
Υω0 : T

n → Tn ×Dr, defined by

Υω0(θ) := Φω0(θ, 0) = (θ + E∗(θ), G∗(θ))

where Φω0 is given by Theorem N, and a vector ω∗
0 ∈ Rn such that Υω0(T

n) is invariant by
the Hamiltonian flow of Hω∗

0
and quasi-periodic with frequency ω0. Moreover, ω∗

0 and Υω0

satisfy the estimates

|ω∗
0 − ω0| ≤ cµ, |E∗|s/2 ≤ cΨ(Q0)µ, |G∗|s/2 ≤ cQ0Ψ(Q0)ε

for some large constant c > 1. Since h is non-degenerate, there exists p∗0 such that∇h(p∗0) =
ω∗
0 and, up to taking c > 1 larger and recalling that µ =

√
ε, the above estimates imply

|p∗0| ≤ c
√
ε, |E∗|s/2 ≤ cΨ(Q0)

√
ε, |G∗|s/2 ≤ cQ0Ψ(Q0)ε. (94)

Now observe that an orbit (θ(t), I(t)) for the Hamiltonian Hω∗

0
corresponds to an orbit

(q(t), p(t)) = (θ(t), I(t)+p∗0) for our original Hamiltonian. Hence, if we define T : Tn×Rn →
Tn × Rn by T (θ, I) = (θ, I + p∗0) and

Θω0 = T ◦Υω0 : T
n → Tn × Rn, Θω0(θ) = (θ + E∗(θ), G∗(θ) + p∗0)

then Θω0 is an (M, s/2)-ultra-differentiable torus embedding such that Θω0(T
n) is invariant

by the Hamiltonian flow of H and quasi-periodic with frequency ω0. The estimates on
the distance between Θω0 and the trivial embedding Θ0 follows directly from (94), which
finishes the proof.

3.6 Proof of Theorem F

Now we show how Theorem F follows from Theorem N.

Proof of Theorem F. Consider the vector field X = ω0 + B ∈ Us(T
n,Rn) as in the state-

ment. It can be trivially included into a parameter-depending vector field: given h > 0,
let X̂ ∈ Us(T

n ×Dh,R
n) be such that

X̂(θ, ω) = X̂ω(θ) = ω +B(θ), ω ∈ Dh, X̂ω0 = X.

Now given any r > 0, consider the Hamiltonian H defined on Tn ×Dr,h by

H(θ, I, ω) = Hω(θ, I) := ω · I +B(θ) · I. (95)

Clearly, for any parameter ω, the torus Tn × {0} is invariant by the Hamiltonian vector
field XHω , and, upon identifying Tn × {0} with Tn, the restriction of XHω to this torus
coincides with X̂ω.
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Now the Hamiltonian H defined in (95) is of the form (∗∗) with ε = η = 0 (and e = 0)
and therefore for µ sufficiently small, Theorem N applies: there exist a vector ω∗

0 ∈ Rn and
an (M, s/2)-ultra-differentiable embedding

Φ∗
ω0

: Tn ×Dr/2 → Tn ×Dr

here of the form
Φ∗

ω0
(θ, I) = (θ + E∗(θ), I + F ∗(θ) · I)

with the estimates

|ω∗
0 − ω0| ≤ c3µ, |E∗|s/2 ≤ c3Ψ(Q0)µ, |F ∗|s/2 ≤ c3∆(Q0)µ

and such that
Hω∗

0
◦ Φ∗

ω0
(θ, I) = ω0 · I. (96)

The embedding Φ∗
ω0

clearly leaves invariant the torus Tn×{0} and induces a diffeomorphism
of this torus that can be identified to Ξ := Id + E∗. Writing the equality (96) in terms
of Hamiltonian vector fields, we have, upon restriction to the invariant torus and recalling
that the restriction of XHω coincides with X̂ω,

Ξ∗(X̂ω∗

0
) = ω0.

But X̂ω∗

0
= X̂ω0 + ω∗

0 − ω0 = X + ω∗
0 − ω0 and therefore

Ξ∗(X + ω∗
0 − ω0) = ω0

which, together with the estimates on ω∗
0 and Ξ− Id = E∗, was the statement we wanted

to prove.

3.7 Proof of Theorem B

The goal of this short section is to show how Theorem B follows directly from the work of
Bessi in [Bes00].

In Bessi, one starts with a non-resonant vector ω ∈ Rn which is assumed to be “expo-
nentially Liouville” in the following sense: there exists s0 > 0 and a sequence kj ∈ Zn with
|kj| → +∞ as j → +∞ for which

0 < |kj · ω| ≤ e−s0|kj |. (C1,s0)

Given this sequence of kj ∈ Zn, one can find another sequence k̃j ∈ Zn such that for all
j ∈ N, |k̃j| ≤ |kj|, k̃j · kj = 0 and |k̃j · ω| ≥ c|k̃j| for some constant c > 0 independent of j.

Then one defines the following sequence of Hamiltonians on Rn/(2πZn) × Rn (which
are similar to the Hamiltonian considered by Arnold in [Arn64]):





H1,j
ε,µ(θ, I) :=

1
2
I · I + F 1,j

ε,µ(θ), (θ, I) ∈ Rn/(2πZn)× Rn

F 1,j
ε,µ(θ) := εν1,j,s(1− cos(kj · θ))(1 + µν̃1,j,s cos(k̃j · θ))

0 < ε ≤ 1, 0 < µ ≤ 1, ν1,j,s := e−s|kj |, ν̃1,j,s := e−s|k̃j |.

(H1,j,s)
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Observe that the only role of the sequences ν1,j,s and ν̃1,j,s is to ensure that the sequence
of perturbations F 1,j

ε,µ satisfy, for all j ∈ N and all 0 ≤ µ ≤ 1:

|F 1,j
ε,µ |s := sup

θ∈Cn/(2πZn), |Im(θ)≤s|

|F 1,j
ε,µ(θ)| ≤ 4ε.

In [Bes00], Bessi proved the following theorem.

Theorem 25 (Bessi). Assume that ω ∈ Rn satisfy (C1,s0). Then, if s0 > s, for any
0 ≤ ε ≤ 1, there exists µε > 0 and jε ∈ N such that for any 0 < µ ≤ µε and any j ≥ jε,
the Hamiltonian system defined in (H1,j,s) does not have any invariant torus T satisfying

(i) T projects diffeomorphically to Tn;

(i) There is a C1 diffeomorphism between Tn and T which conjugates the flow on T to
the linear flow on Tn of frequency ω.

It is clear that it is the regularity of the perturbation, here the analyticity which causes
the exponential decay of the Fourier coefficients, that forces the condition (C1,s0). If the
perturbation is assumed to be only of class Cr for some r ∈ N, then (C1,s0) can be weakened
to cover frequencies ω which are Diophantine with an exponent τ which is related to r (this
can be obtained from Bessi’s work; one can find a better quantitative result in [CW13],
which also uses ideas of [Bes00]).

Here we would like to consider the case where the perturbation isM-ultra-differentiable,
for a given sequence M = (Ml)l∈N; we will consider a slight modification of the family of
Hamiltonians (H1,j,s) to a family of Hamiltonians (HM,j,s) depending on M , which are
still analytic but for which the perturbation are bounded and small only in a M-ultra-
differentiable norm.

First we need to compute theM-norm of the function Pk(θ) := cos(k ·θ) for an arbitrary
k ∈ Zn. Using the fact that (l + 1)2 ≤ 4l for any l ∈ N and recalling the definition of the
function Ω in (7), we have

|Pk|s = c sup
l∈N

(l + 1)2sl|k|l
Ml

≤ c sup
l∈N

(4|k|s)l
Ml

= c exp(Ω(4|k|s)).

Now we introduce the following condition on the non-resonant vector ω ∈ Rn: there exists
s0 > 0 and a sequence kj ∈ Zn with |kj| → +∞ as j → +∞ for which

0 < |kj · ω| ≤ exp(−Ω(4|k|s0)). (CM,s0)

For the sequence M = M1, this condition reduces to (C1,s0), up to an unimportant factor
4. Then we consider the following modified sequence of Hamiltonians:





HM,j
ε,µ (θ, I) := 1

2
I · I + FM,j

ε,µ (θ), (θ, I) ∈ Rn/(2πZn)× Rn

FM,j
ε,µ (θ) := ενM,j,s(1− cos(kj · θ))(1 + µν̃M,j,s cos(k̃j · θ))

0 < ε, µ ≤ 1, νM,j,s := exp(−Ω(4|kj|s0)), ν̃M,j,s := exp(−Ω(4|k̃j|s0)).
(HM,j,s)
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With these choices of νM,j,s and ν̃M,j,s we have that, for all j ∈ N and all 0 ≤ µ ≤ 1:

|FM,j
ε,µ |s ≤ 4cε.

The argument of Bessi goes exactly the same of way for this family of Hamiltonians (HM,j,s)
under the condition (CM,s0), up to the following minor point one has to check: recall
from (8) that Ω satisfies

lim
t→+∞

Ω(t)

ln(t)
= +∞

and thus, using the condition that s0 > s, one obtains

lim sup
j→+∞

(exp(Ω(4|kj|s0)− Ω(4|kj|s))) = +∞

which is necessary for Bessi’s argument to go through. So we have the following statement.

Theorem 26. Assume that ω ∈ Rn satisfy (CM,s0). Then, if s0 > s, for any 0 ≤ ε ≤ 1,
there exists µε > 0 and jε ∈ N such that for any 0 < µ ≤ µε and any j ≥ jε, the
Hamiltonian system defined in (HM,j,s) does not have any invariant torus T satisfying

(i) T projects diffeomorphically to Tn;

(i) There is a C1 diffeomorphism between Tn and T which conjugates the flow on T to
the linear flow on Tn of frequency ω.

Now Theorem 26 implies Theorem B, as if ω satisfies (BM), then it satisfies (CM,s0) for
some s0 > 0 and it is sufficient to consider a Hamiltonian system as in (HM,j,s) with s < s0.

4 Application to Hamiltonian normal forms and Nekhoro-

shev theory

In this section, we give applications to Hamiltonian normal forms and Nekhoroshev theory:
we prove Theorem H and Theorem I, Theorem J, Theorem K and Theorem L, and finally
Theorem M.

In the special case where the Hamiltonians are Gevrey regular, proofs of all those results
are contained in [MS02], [Bou13b] and [Bou11]. Our purpose here is to give an extension to
ultra-differentiable Hamiltonians; our crucial technical result will be a flexible normal form
around a periodic frequency (Proposition 27 in § 4.1), as all the results will be deduced
from it.

As before, we shall write

u<· v (respectively u ·<v, u=· v, u ·= v)
if, for some unimportant “implicit” constant c ≥ 1, we have

u ≤ cv (respectively cu ≤ v, u = cv, cu = v).

Clearly, what we will consider as being unimportant depends on the precise setting, and it
will be made clear at the beginning of each of the next sections.
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4.1 Periodic averaging

Recall that a vector v ∈ Rn \ {0} is called periodic if there exists t > 0 such that tv ∈ Zn;
its period T is then defined as the smallest such t > 0. Let v be a T -periodic vector, and
let us denote by Lv(I) = v · I the linear integrable Hamiltonian with frequency v.

In this section, given positive real parameters s, δ, µ, ρ, ν, we shall consider the following
Hamiltonian: 




H(θ, I) = Lv(I) + S(I) +R(I) + F (θ, I),

H : Tn ×Dδ → R

|∇S|s ≤ µ, |∇R|s ≤ ρ, |F |s ≤ ν,

η := max{µ, ρ},

(♯)

where Dδ ⊂ Rn is the ball of radius δ around the origin.
The goal of this section is to prove the following result, in which implicit constants will

depend only on n and where { . } denotes the usual Poisson bracket.

Proposition 27. Let H be as in (♯), with M satisfying (H1) and (H2) and v T -periodic.
There exists a constant A=· 1 such that, for ξ > 1, if

ν ≤ C(κξ)
−1sη, C−1(s(ATη)−1) ≤ κξ, κξ := ln ξ(24)−1, (97)

then there exists a (M, s/ξ)-ultra-differentiable symplectic transformation

Φ : Tn ×Dδ/ξ → Tn ×Dδ

such that
H ◦ Φ = Lv + S +R + F̄ + F̂

with {F̄ , Lv} = 0 and the estimates

|Φ− Id|s/ξ ≤ 2Tν, |F̄ |s/ξ ≤ 2ν, |F̂ |s/ξ ≤ ν exp
(
−κξ

(
C−1(s(ATη)−1)

)−1
)
. (98)

Moreover, if I is an integrable Hamiltonian such that {I, F} = 0, then {I, F̄} = 0.

Proposition 27 will be proved by iterating a large number of times an elementary
averaging step we now describe. Let us consider the following slightly more general setting:





H(θ, I) = Lv(I) + S(I) +R(I) +G(θ, I) + F (θ, I),

H : Tn ×Dδ → R

|∇S|s ≤ µ, |∇R|s ≤ ρ, |F |s ≤ ν, |G| ≤ 2ν, {G,Lv} = 0,

η := max{µ, ρ}

(99)

which reduces to (♯) when G = 0. Given a T -periodic frequency v ∈ Rn\{0} and a function
K : Tn ×Dδ → R, let us define [K]v : T

n ×Dδ → R by

[K]v(θ, I) =

∫ 1

0

K(θ + tTv, I)dt.

Clearly, [K]v is the projection of K onto the kernel of the operator { . , Lv}, that is
{K,Lv} = 0 if and only then K = [K]v.
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Lemma 28. Let H be as in (99), with M satisfying (H1) and (H2) and v T -periodic.
Given 0 < σ < 1, assume that

C(σ)2Tν ·<s2. (100)

Then there exist a (M, s(1− σ)3)-ultra-differentiable symplectic transformation

Ψ : Tn ×Dδ(1−σ)3 → Tn ×Dδ

such that
H ◦Ψ = Lv + S +R +G+ [F ]v + F+

with the estimates

|Ψ− Id|s(1−σ)3 ≤ Tν, |F+|s(1−σ)3 <· (Tν2C(σ)2s−2 + TηνC(σ)s−1). (101)

Moreover, if I is an integrable Hamiltonian such that {I, F} = {I, G} = 0, then {I, [F ]v} =
{I, F+} = 0.

Proof. Let us define Y : Tn ×Dδ → R by

Y (θ, I) = T

∫ 1

0

(F − [F ]v)(θ + tTv, I)tdt.

It is easy to check, using an integration by part, that

{Y,Nv} = F − [F ]v = F + S +R +G− [F + S +R +G]v (102)

where the second equality follows from the fact that [S +R+G]v = S +R+G since S,R
are integrable and {G,Lv} = 0 by assumption. Moreover, we have the estimates

|Y |s ≤
T

2
|F − [F ]v|s ≤ T |F |s ≤ Tν. (103)

Recalling from (6) that (eσ)−1 ≤ C(σ), the inequalities (100) imply that (37) is satisfied,
and thus Proposition 19 can be applied: for any t ∈ [0, 1], the time-t map Y t of the
Hamiltonian flow of Y belongs to Us(1−σ)3(T

n × Dδ(1−σ)3 ,T
n × Dδ(1−σ)2) and we have the

estimate
|Y t − Id|s(1−σ)3 ≤ t|Y |s. (104)

We set Ψ = Y 1: then (104) and (103) gives the first estimate of (101). Now a well-known
computation using Taylor’s formula with integral remainder yields

H ◦Ψ = Lv + S +R +G+ [F ]v + F+

with

F+ :=

∫ 1

0

F̃t ◦ Y tdt, F̃t := {tF + (1− t)[F ]v + S +R +G, Y }.
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To estimate F+, observe that Y t maps Tn × Dδ(1−σ)3 into Tn × Dδ(1−σ)2 , so using (104)
and (100), we can apply Proposition 16 to get

|F+|s(1−σ)3 ≤ |F̃t|s(1−σ)2 .

Now F̃t, for any t ∈ [0, 1], can be easily estimated using Corollary 9 and thus we get

|F̃t|s(1−σ)2 <· (Tν2C(σ)2s−2 + Tν2C(σ)2s−2 + TνµC(σ)s−1

+TνρC(σ)s−1 + Tν2C(σ)2s−2)

<· (Tν2C(σ)2s−2 + TνηC(σ)s−1)

as η = max{µ, ρ} by definition. This gives the second estimate of (101).
It remains to prove the second part of the statement, so let I be an integrable Hamilto-

nian such that {I, F} = {I, G} = 0. Obviously, as I is integrable we also have {I, Lv} = 0,
which gives {I, [F ]v} = 0: indeed, letting LtT

v the tT -time of the Hamiltonian flow associ-
ated to Lv, as {I, Lv} = 0 we have I ◦ LtT

v = I hence

{I, [F ]v} =

{
I,

∫ 1

0

F ◦ LtT
v dt

}

=

∫ 1

0

{I, F ◦ LtT
v }dt

=

∫ 1

0

{I ◦ LtT
v , F ◦ LtT

v }dt

=

∫ 1

0

{I, F} ◦ LtT
v dt

= 0.

Using this, one obtains then {I, Y } = 0 by a similar argument. Now using {I, Y } = 0 and
again the same argument, to show that {I, F+} = 0 one needs to show that {I, F̃t} = 0 for
all t ∈ [0, 1]: but this in turns follows from Jacobi identity, as each element in the bracket
F̃t commutes with I. This concludes the proof.

To prove Proposition 27, it remains to apply inductively Lemma 28 m times, for some
optimized choice ofm, choosing the same σ ∼ m−1 at each step. Actually, to obtain sharper
estimates, we will use a trick due to Neishtadt which consists in applying Lemma 28 a first
time with σ ∼ 1 large, and then (m− 1) times with σ ∼ m−1 uniformly small.

Proof of Proposition 27. Let m ≥ 1 be an integer to be chosen below. We set σ1 :=
ln ξ(24)−1 and for m ≥ 2, σm := ln ξ(24(m− 1))−1. For all 0 ≤ j ≤ m, we define

νj := e−jν, γj :=

j−1∑

i=0

νi,
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and
sj := s(1− σ1)

3(1− σm)
3(j−1), δj := δ(1− σ1)

3(1− σm)
3(j−1).

We claim that if
ν ≤ C(σ1)

−1sη, Tη ·<C(σm)−1s (105)

then for all 1 ≤ j ≤ m, there exist a (M, sj)-ultra-differentiable symplectic transformation

Φj : T
n ×Dδj → Tn ×Dδ

such that
H ◦ Φj = Lv + S +R + F̄j + F̂j

with {F̄j , Lv} = 0 and the estimates

|Φj − Id|sj ≤ Tγj, |F̄j|sj ≤ γj, |F̂j|sj <· νj−1(TηC(σ1)s
−1) := χj .

Moreover, if I is an integrable Hamiltonian such that {I, F} = 0, then we have {I, F̄j} =

{I, F̂j} = 0. Observe that γj < 2ν and as σ1 ≥ σm, one can use (105) to ensure that
χj ≤ νj .

The statement follows from this claim: indeed, it suffices to choose the integer m as

ln ξ(24)−1
(
C−1(s(ATη)−1)

)−1 ≤ m ≤ 1 + ln ξ(24)−1
(
C−1(s(ATη)−1)

)−1

for a suitable constant A=· 1. Clearly (97) gives (105) and m ≥ 1, so we may set

Φ := Φm, F̄ := F̄m, F̂ := F̂m,

observe that sm ≥ s/ξ, δm ≥ δ/ξ, and thus

Φ : Tn ×Dδ/ξ → Tn ×Dδ

is a (M, s/ξ)-ultra-differentiable symplectic transformation such that

H ◦ Φ = Lv + S +R + F̄ + F̂

with {F̄ , Lv} = 0 and the estimates

|Φ− Id|s/ξ ≤ 2Tν, |F̄ |s/ξ ≤ 2ν,

and
|F̂ |s/ξ ≤ ν exp(−m) ≤ ν exp(− ln ξ(24)−1

(
C−1(s(ATη)−1)

)−1
).

So it remains to prove the claim, and we will do it by induction on j. The second part
of the claim is obvious by induction using the second part of Lemma 28, so we will only
prove the first part of the claim. For j = 1, (105) implies that

C(σ1)
2Tν ≤ C(σ1)Tηs ·<s2
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and thus (100) is satisfied: Lemma 28 applies, with σ = σ1 and G = 0, and we set Φ1 := Ψ,
F̄1 := [F ]v and F̂1 = F+. Clearly, {F̄1, Lv} = 0. As γ1 = ν0 = ν, we do have

|Φ1 − Id|s1 ≤ Tγ1, |F̄1|s1 ≤ γ1.

For F̂1, observe that from the first part of (105) one has

Tν2C(σ1)
2s−2 ≤ TνηC(σ1)s

−1

and thus
|F̂1|s1 <· (Tν2C(σ1)2s−2 + TνηC(σ1)s

−1)<·TνηC(σ1)s−1 = χ1.

Now assume that the statement is true for some 1 ≤ j ≤ m−1, and let us prove it remains
true for 2 ≤ j + 1 ≤ m. The inductive hypothesis gives a (M, sj)-ultra-differentiable
symplectic transformation

Φj : T
n ×Dδj → Tn ×Dδ

such that
H ◦ Φj = Lv + S +R + F̄j + F̂j

with {F̄j , Lv} = 0 and the estimates

|Φj − Id|sj ≤ Tγj, |F̄j|sj ≤ γj, |F̂j |sj <· νj−1(TηC(σ1)s
−1).

We wish to apply Lemma 28 to this Hamiltonian with σ = σm, F̄j instead of G and F̂j

instead of F : we have
|F̄j| ≤ γj ≤ 2ν

and, from the first part of (105)

Tχj ≤ Tνj−1TµC(σ1)s
−1 ≤ TνTηC(σ1)s

−1 ≤ (Tη)2 (106)

so that the second part of (105) implies (100). Lemma 28 applies to give a transformation
Ψj such that, if define Φj+1 := Φj ◦Ψj , then

Φj+1 : T
n ×Dδj+1

→ Tn ×Dδ

is an (M, sj+1)-ultra-differentiable symplectic transformation such that

H ◦ Φj+1 = Lv + S +R + F̄j + [F̂j ]v + F̂+
j

and hence, setting F̄j+1 := F̄j + [F̂j ]v and F̂j+1 := F̂+
j , we have

H ◦ Φj+1 = Lv + S +R + F̄j+1 + F̂j+1.

Clearly {F̄j+1, Lv} = 0 and as |F̂j|sj ≤ νj , we have

|F̄j+1|sj+1
≤ |F̄j|sj + |[F̂j]v|sj ≤ γj + νj = γj+1

66



and, using Proposition 16,

|Φj+1 − Id|sj+1
≤ |Φj − Id|sj + |Ψj − Id|sj+1

≤ Tγj + Tνj = Tγj+1.

For F̂j+1, using (106) and the second part of (105) we can estimate

|F̂j+1| <· (Tχ2
jC(σm)

2s−2 + TηχjC(σm)s
−1)

<· χj(T
2η2C(σm)

2s−2 + TηC(σm)s
−1)

<· χjTηC(σm)s
−1

≤ χj+1.

This proves the claim, and thus the proposition.

4.2 Stability in the linear case: proof of Theorem H

The goal here is to prove Theorem H and Corollary 1; implicit constants will depend only
on n, ω and the function C.

Our proof will use Proposition 27 (which can be seen as Theorem H in the special case
where d = 1) which we proved in § 4.1. We will also use a slightly more general version of
Proposition 21 (§ 3.2) which we now state and which is still contained in [BF13].

Proposition 29. Let ω = (ω̄, 0) ∈ Rd × Rn−d with ω̄ a non-resonant vector. For any
Q ≥ n+ 2, there exist d periodic vectors v1, . . . , vd ∈ Rd × {0}, of periods T1, . . . , Td, such
that T1v1, . . . , Tdvd form a Z-basis of Zd × {0} and for j ∈ {1, . . . , d},

|ω0 − vj |<· (TjQ)−1, 1 ≤ Tj <·Ψ(Q).

Given any ω ∈ Rn, let us now define

[H ]ω(θ, I) := lim
s→+∞

1

s

∫ s

0

H(θ + tω, I)dt. (107)

When ω = (ω̄, 0) ∈ Rd × Rn−d with ω̄ a non-resonant vector, clearly [H ]ω = [H ]d where

[H ]d(θ, I) =

∫

Td

H(θ, I)dθ1 . . . dθd.

We then have the following result, which, as before, is slightly more general than Proposi-
tion 30, and is a consequence of the fact that T1v1, . . . , Tdvd form a Z-basis of Zd × {0}.

Proposition 30. Let v1, . . . , vd ∈ Rd×{0} be the periodic vectors given by Proposition 29,
and H a function defined on Tn ×Dr. Then

[H ]v1,...,vd = [H ]ω = [H ]d

and {H,Lω} = 0 if and only if {H,Lvj} = 0 for any 1 ≤ j ≤ d.
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Given positive real parameters s, ρ, ν, we shall consider the following Hamiltonian:





H(θ, I) = Lω(I) +R(I) + F (θ, I),

H : Tn ×D → R, ω = (ω̄, 0) ∈ Rd × Rn−d

|∇R|s ≤ ρ, |F |s ≤ ν

(108)

where ω̄ is non-resonant. In the special case where R = 0, ρ = 0 and ν = ε, this is exactly
a Hamiltonian H as in (∗) with h = Lω, which is the setting of Theorem H.

We are now ready to prove the following statement, which will easily imply Theorem H.

Proposition 31. Let H be as in (108), where H is (M, s)-ultra-differentiable with M
satisfying (H1) and (H2) and h = Lω with ω = (ω̄, 0) ∈ Rd×{0} and ω̄ non-resonant. For
Q ≥ n+ 2, assume that

ρQΨ(Q) ·< 1, νQΨ(Q)s−1 ·< 1, λsQ>· 1, (109)

for some λ ·=1. Then there exists a (M, s/2)-ultra-differentiable symplectic transformation

Φ : Tn ×D1/2 → Tn ×D

such that
H ◦ Φ = Lω +R + F̄ + F̂

where {F̄ , Lω} = 0 and with the estimates

|Φ− Id|s/2<·Ψ(Q)ν, |F̄ |s/2<· ν, |F̂ |s/2<· ν exp
(
−κ21/d

(
C−1(λsQ)

)−1
)
.

Proof of Theorem H. Here R = 0, ρ = 0 and F = f with ν = ε, it suffices to choose

Q := ∆−1
(
c2sε

−1
)
, c2=· 1

and to verify that choosing ε sufficiently small allows indeed to apply Proposition 31.

Proof of Proposition 31. Recall that we are considering

H = Lω +R + F.

Since Q ≥ n+ 2, we can apply Proposition 29: there exist d periodic vectors v1, . . . , vd, of
periods T1, . . . , Td, such that T1v1, . . . , Tdvd form a Z-basis of Zd×{0} and for j ∈ {1, . . . , d},

|ω − vj|<· (TjQ)−1, 1<·Tj <·Ψω(Q).

For j ∈ {1, . . . , d}, let us define

Sj = Lω − Lvj , µj =· (TjQ)−1
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with a suitable implicit constant so that

|∇Sj|s = c|ω − vj| ≤ µj.

Note that Lω = Lvj + Sj , and that Tjνj =·Q−1 for any 1 ≤ j ≤ d. Let us further choose

ξ := 21/d and define, for 1 ≤ j ≤ d

sj := sξ−j, δj := ξ−j

so that in particular sd = s/2 and δd = 1/2.
We claim that for all 1 ≤ j ≤ d, there exists a (M, sj)-ultra-differentiable symplectic

map
Φj : T

n ×Dδj −→ Tn ×D

such that
H ◦ Φj = Lω +R + F̄j + F̂j,

with {F̄j , Lvi} = 0 for any 1 ≤ i ≤ j, and with the estimates

{
|Φj − Id|sj <·Ψ(Q)ν, |F̄j |sj <· ν,
|F̂j|sj <· ν exp(−κ21/d (C−1(λsQ))

−1
).

(110)

The proof of the proposition follows from this claim: it is sufficient to let

Φ := Φd, F̄ := F̄d, F̂ := F̂d

since from Corollary 22, {F̄ , Lvi} = 0 for 1 ≤ i ≤ d is equivalent to {F̄ , Lω} = 0.
Now let us prove the claim by induction on 1 ≤ j ≤ d. For j = 1, our Hamiltonian can

be written as
H = Lω +R + F = Lv1 + S1 +R + F

and this is nothing but Proposition 27, which can be applied with µ1 instead of µ, be-
cause (109) implies that η = max{µ1, ρ} = µ1 and (97): indeed, since T1<·Ψ(Q) and
T1µ1=·Q−1, the inequalities (109) imply

ρ ≤ µ1, ν ·<sη, Tη ·<s

which gives (97) for a proper choice of implicit constants. So now assume that the statement
holds true for some 1 ≤ j ≤ d − 1, and let us prove that it is true for 2 ≤ j + 1 ≤ d. By
the inductive assumption, there exists a (M, sj)-ultra-differentiable symplectic map

Φj : T
n ×Dδj −→ Tn ×D

such that
H ◦ Φj = Lω +R + F̄j + F̂j,
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with {F̄j , Lvi} = 0 for any 1 ≤ i ≤ j, and with the estimates
{
|Φj − Id|sj <·Ψ(Q)ν, |F̄j |sj <· ν,
|F̂j|sj <· ν exp(−κ21/d (C−1(λsQ))

−1
).

(111)

Let us consider the Hamiltonian

H̄j := H ◦ Φj − F̂j = Lω +R + F̄j

which is (M, sj)-ultra-differentiable on the domain Tn ×Dδj . It can also be written as

H̄j = Lvj+1
+ Sj+1 +R + F̄j

and because of (109), we can still apply Proposition 27 to this Hamiltonian with µj+1 and
a constant times ν instead of respectively µ and ν (and as before, η = µj+1). Therefore,
since sj/ξ = sj+1 and δj/ξ = δj+1, we can find a (M, sj+1)-ultra-differentiable symplectic
transformation

Φ̄ : Tn ×Dδj+1
→ Tn ×Dδj

such that
H̄j ◦ Φ̄ = Lω +R + ¯̄Fj +

̂̄Fj

with { ¯̄Fj , Lvj+1
} = 0 and the estimates

|Φ̄− Id|sj+1
<·Tj+1ν, | ¯̄Fj|sj+1

<· ν, |̂̄Fj |sj+1
<· ν exp(−κ21/d

(
C−1(λsQ)

)−1
).

Moreover, for 1 ≤ i ≤ j, since Lvi are integrable Hamiltonians for which {Lvi , F̄j} = 0,

then {Lvi ,
¯̄Fj} = 0 and thus { ¯̄Fj , Lvi} = 0 for 1 ≤ i ≤ j + 1. We may set

Φj+1 := Φj ◦ Φ̄, F̄j+1 :=
¯̄Fj , F̂j+1 :=

̂̄Fj + F̂j ◦ Φ̄

so that
H ◦ Φj+1 = Lω +R + F̄j+1 + F̂j+1.

We already explained that {F̄j+1, Lvi} = 0 for 1 ≤ i ≤ j + 1, and

|F̄j+1|sj+1
<· ν.

It is obvious that
Φj+1 : T

n ×Dδj+1
→ Tn ×Dδ

and using Proposition 16 and the fact that Tj+1<·Ψ(Q), one has

|Φj+1 − Id|sj+1
≤ |Φj+1 − Id|sj + |Φ̄− Id|sj+1

<·Ψ(Q)ν.

To conclude, using once again Proposition 16 we have

|F̂j+1|sj+1
≤ |̂̄Fj|sj+1

+ |F̂j |sj <· ν exp(−κ21/d
(
C−1(λsQ)

)−1
).

This proves that the statement holds true for j + 1, which finished the induction and the
proof.
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Let us conclude by giving the proof of Corollary 1.

Proof of Corollary 1. Since we are under the assumptions of Theorem H, let us first con-
sider the Hamiltonian in normal form

H ◦ Φ = h+ f̄ + f̂

where
Φ : Tn ×D1/2 → Tn ×D,

{f̄ , Lω} = 0 and with the estimates

{
|Φ− Id|s/2 ≤ c1Ψ(∆−1(c2sε

−1))ε, |f̄ |s/2 ≤ c1ε,

|f̂ |s/2 ≤ c1ε exp(−c3 (C−1(c4s∆
−1(c2sε

−1)))
−1
).

Let (θ̃(t), Ĩ(t)) be a solution of H ◦Φ with Ĩ(0) ∈ D1/4. Since {f̄ , Lω} = 0 and ω = (ω̄, 0) ∈
Rd × Rn−d with ω̄ non-resonant, we have ∂θj f̄ = 0 for 1 ≤ j ≤ d and thus

|Πd(Ĩ(t)− Ĩ(0))| ≤ |t| sup
(θ̃,Ĩ)∈Tn×D1/2

|∂θf̂(θ̃, Ĩ)|

for all t as long as Ĩ(t) ∈ D1/4. By Corollary 9 and the above estimate on f̂ , we have

sup
(θ̃,Ĩ)∈Tn×D1/2

|∂θf̂(θ̃, Ĩ)|<· s−1ε exp(−c3
(
C−1(c4s∆

−1(c2sε
−1))

)−1
)

hence if we define
T ·= rsε−1 exp(c3

(
C−1(c4s∆

−1(c2sε
−1))

)−1
)

we obtain
|Πd(Ĩ(t)− Ĩ(0))| ≤ r, |t| ≤ T

since r ≤ 1/4 and as long as Ĩ(t) ∈ D1/2. Now coming back to the original Hamil-

tonian H , any solution (θ(t), I(t)) with I(0) ∈ D1/8 gives rise to a solution (θ̃(t), Ĩ(t)) =

Φ−1(θ(t), I(t)) ofH◦Φ with Ĩ(0) ∈ 1/4, and therefore, for |t| ≤ T and such that I(t) ∈ D1/4,
we obtain

|Πd(I(t)− I(0))| ≤ |Πd(I(t)− Ĩ(t))|+ |Πd(Ĩ(t)− Ĩ(0))|+ |Πd(Ĩ(0)− I(0))|
≤ r + 2c1Ψ(∆−1(c2sε

−1))ε

≤ 2r

since we assumed r ≥ 2c1Ψ(∆−1(c2sε
−1))ε. This concludes the proof.

71



4.3 Diffusion in the linear case: proof of Theorem I

In this section we shall give the proof of Theorem I.

Proof. For convenience, let us write

ω = (ω̄, 0) = (1, ω̄1, . . . , ω̄d−1, 0) ∈ Rd × Rn−d

with |ω̄i| ≤ 1 for 1 ≤ i ≤ d−1. Let us denote by (pj/qj)j∈N the sequence of the convergents
of ω̄1 for instance. We have the classical inequalities

(qj + qj+1)
−1 < |qjω̄1 − pj| < q−1

j+1, j ∈ N,

and since qj+1 > qj , this gives

(2qj+1)
−1 < |qjω̄1 − pj | < q−1

j+1, j ∈ N. (112)

Now by definition of Ψω, we obtain

qj+1 < Ψω(qj) < 2qj+1. (113)

The perturbation fj will be of the form

fj(θ, I) = f 1
j (I) + f 2

j (θ), (θ, I) ∈ Tn × Rn.

First, we choose f 1
j (I) = vj · I − ω · I, where vj = (1, pj/qj , ω̄2, . . . , ω̄d−1, 0). We set

εj = |ω̄1 − pj/qj|

and observe that εj tends to zero as j tends to infinity. From the inequalities (112) and
(113), recalling the definitions of ∆ω and ∆∗

ω, we have

(2∆ω(qj))
−1 ≤ εj ≤ 2(∆ω(qj))

−1, ∆∗
ω((2εj)

−1) ≤ qj ≤ ∆∗
ω(2ε

−1
j ). (114)

Now by definition, |∂If 1
j |s = cεj. Then, if we let kj = (pj,−qj , 0, . . . , 0) ∈ Zn, we define

f 2
j (θ) = εjµj sin(2πkj · θ) with µj to be chosen. Note that

qj ≤ |kj| ≤ 2qj (115)

since |qj| ≥ |pj| (as |ω̄1| ≤ 1). It is easy to estimate

|∂θf 2
j |s ≤ cεjµj2π|kj| exp (Ω(8π|kj|s))

and so we choose
µj = (2π|kj|)−1 exp (−Ω(8π|kj |s))

so that |∂θf 2
j |s ≤ cεj. Finally, we set fj = f 1

j + f 2
j and we have

|Xfj |s ≤ |∂If 1
j |s + |∂θf 2

j |s ≤ 2cεj.
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Now we can write the Hamiltonian

Hj(θ, I) = Lω(I) + fj(θ, I)

= ω · I + vj · I − ω · I + εjµj sin(2πkj · θ)
= vj · I + εjµj sin(2πkj · θ)

and as kj · vj = 0, the associated system is easily integrated:

{
θ(t) = θ0 + tvj [Zn]
I(t) = I0 − t2πkjεjµj cos(2πkj.θ0).

Choosing any solution (θ(t), I(t)) with an initial condition (θ(0), I(0)) for which kj · θ(0)
is an integer, using the definition of µj, we obtain

|I(t)− I(0)| = |I1(t)− I1(0)|+ |I2(t)− I2(0)| = |t|εj exp (−Ω(8π|kj |s)) .

Using (115) and (114) this gives

|t|εj exp
(
−Ω(16πs∆∗

ω(2ε
−1
j ))

)
≤ |I(t)− I(0)| ≤ |t|εj exp

(
−Ω(8πs∆∗

ω((2εj)
−1))

)

which is what we wanted to prove, as |I(t)− I(0)| = |Πd(I(t)− I(0))|.

4.4 Stability in the non-linear case: proof of Theorem J

The goal here is to prove Theorem J and Corollary 3; implicit constants will depend only
on n, ω, |h|s and the function C.

As before, Theorem J will be an easy consequence of the following proposition, where
we recall that given ρ > 0, we let

σ = σρ : (θ, I) 7−→ (θ, ρI).

Proposition 32. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M sat-
isfying (H1) and (H2) and ω = (ω̄, 0) ∈ Rd × Rn−d with ω̄ non-resonant. For Q ≥ n + 2
and

√
ε ≤ ρ ≤ 1, assume that

ρQΨ(Q)s−1 ·< 1, λsQ>· 1, (116)

for some λ ·=1. Then there exists a (M, s/4)-ultra-differentiable symplectic transformation

Φ : Tn ×Dρ/2 → Tn ×Dρ

such that
H ◦ Φ = h+ f̄ + f̂

where {f̄ , Lω} = 0 and with the estimates

|σ−1 ◦ Φ ◦ σ − Id|s/2<·Ψ(Q)ε, |f̄ ◦ σ|s/2<· ε, |f̂ ◦ σ|s/2<· ε exp
(
−κ21/d

(
C−1(λsQ)

)−1
)
.
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Proof of Theorem J. It suffices to choose

Q := ∆−1
(
c2sρ

−1
)
, c2=· 1

and to verify that choosing ρ sufficiently small allows indeed to apply Proposition 31.

Proof of Proposition 32. To analyze our Hamiltonian H in the domain Tn ×Dρ, which is
a neighborhood of size ρ around the origin in action space, we rescale the action variables
using the map

σ = σρ : (θ, I) 7−→ (θ, ρI)

which sends the domain Tn ×D onto Tn ×Dρ, the latter being included in Tn ×D since
ρ ≤ 1. Let

H ′ = ρ−1(H ◦ σ)
be the rescaled Hamiltonian, so H ′ is defined on Tn ×D and reads

H ′(θ, I) = ρ−1H(θ, ρI) = ρ−1h(ρI) + ρ−1f(θ, ρI), (θ, I) ∈ Tn ×D.

Without loss of generality, we assume that h(0) = 0. Now, using Taylor’s formula, we can
expand h around the origin to obtain

h(ρI) = ρω · I + ρ2
∫ 1

0

(1− t)∇2h(tρI)(I, I)dt = ρω · I + ρ2h′(I)

and so we can write {
H ′ = Lω +R + F,

R := ρh′, F := ρ−1(f ◦ σ).
Now we know that |f |s ≤ ε, so that

|ρ−1(f ◦ σ)|s ≤ ρ−1ε.

Moreover, applying Corollary 9 we have the estimate

|∇h′|s/2<· s−1|h|s/2<· s−1

so eventually our Hamiltonian H ′ reads





H ′ = Lω +R + F,

R := ρh′, F := ρ−1(f ◦ σ)
|R|s/2<· s−1ρ, |F |s/2 ≤ ρ−1ε.

It has exactly the form (108) with s/2 instead of s, a constant times s−1ρ instead of ρ and
ρ−1ε instead of ν; using the assumption that

√
ε ≤ ρ, we have

ν = ρ−1ε ≤ ρ
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and (116) implies (109). It follows that Proposition 31 can be applied, and it gives the
existence of a (M, s/4)-ultra-differentiable symplectic transformation

Φ′ : Tn ×D1/2 → Tn ×D

such that
H ′ ◦ Φ′ = Lω +R + F̄ + F̂

where {F̄ , Lω} = 0 and with the estimates

|Φ′−Id|s/4<·Ψ(Q)ρ−1ε, |F̄ |s/4<· ρ−1ε, |F̂ |s/4<· ρ−1ε exp(−κ21/d
(
C−1(λsQ)

)−1
). (117)

Now, scaling back to our original coordinates, we define

Φ = σ ◦ Φ′ ◦ σ−1 : Tn ×Dρ/2 → Tn ×Dρ

so that

H ◦ Φ = ρH ′ ◦ Φ′ ◦ σ−1

= ρ(Lω +R + F̄ + F̂ ) ◦ σ−1

= (ρLω + ρ2h′) ◦ σ−1 + ρF̄ ◦ σ−1 + ρF̂ ◦ σ−1

where we used the definition of R. Observe that (ρLω + ρ2h′) ◦ σ−1 = h, so we may set

f̄ = ρF̄ ◦ σ−1, f̂ = ρF̂ ◦ σ−1,

and write
H ◦ Φ = h+ f̄ + f̂ .

Since {F̄ , Lω} = 0, {F̄ ◦σ−1, Lω} = 0 and thus {f̄ , Lω} = 0. To conclude, observe that the
estimates (117) can be written again as

{
|σ−1 ◦ Φ ◦ σ − Id|s/4<·Ψ(Q)ρ−1ε, |f̄ ◦ σ|s/4<· ε,
|f̂ ◦ σ|s/4<· ε exp

(
−κ21/d (C−1(λsQ))

−1
)

which is exactly what we wanted to prove.

Let us conclude by giving the proof of Corollary 3, which is just a slight variation on
the proof of Corollary 1.

Proof of Corollary 3. Since we are under the assumptions of Theorem J, let us first consider
the Hamiltonian in normal form

H ◦ Φ = h+ f̄ + f̂

where
Φ : Tn ×Dρ/2 → Tn ×Dρ,
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{f̄ , Lω} = 0 and with the estimates

{
|σ−1 ◦ Φ ◦ σ − Id|s/4 ≤ c1Ψ(∆−1(c2sε

−1))ρ−1ε, |f̄ ◦ σ|s/4 ≤ c1ε,

|f̂ ◦ σ|s/4 ≤ c1ε exp(−c3 (C−1(c4s∆
−1(c2sρ

−1)))
−1
).

Decomposing Φ = (Φθ,ΦI) into its angle and action space components, and observing that
∂θ(f̂ ◦ σ) = (∂θf̂) ◦ σ, one obtains from these last estimates and Corollary 9 that

|ΦI − IdI |s/4 ≤ c1Ψ(∆−1(c2sε
−1))ε

and
sup

(θ̃,Ĩ)∈Tn×Dρ/2

|∂θf̂(θ̃, Ĩ)|<· s−1ε exp(−c3
(
C−1(c4s∆

−1(c2sρ
−1))

)−1
).

Let (θ̃(t), Ĩ(t)) be a solution of H ◦Φ with Ĩ(0) ∈ Dρ/4. Since {f̄ , Lω} = 0 and ω = (ω̄, 0) ∈
Rd × Rn−d with ω̄ non-resonant, we have ∂θj f̄ = 0 for 1 ≤ j ≤ d and thus

|Πd(Ĩ(t)− Ĩ(0))| ≤ |t| sup
(θ̃,Ĩ)∈Tn×Dρ/2

|∂θf̂(θ̃, Ĩ)|

for all t as long as Ĩ(t) ∈ Dρ/4. So if we define

T ·= rsε−1 exp(c3
(
C−1(c4s∆

−1(c2sε
−1))

)−1
)

we obtain
|Πd(Ĩ(t)− Ĩ(0))| ≤ r, |t| ≤ T

since r ≤ ρ/4 as long as Ĩ(t) ∈ Dρ/2. Now coming back to the original Hamiltonian H , any

solution (θ(t), I(t)) with I(0) ∈ Dρ/8 gives rise to a solution (θ̃(t), Ĩ(t)) = Φ−1(θ(t), I(t))

of H ◦Φ with Ĩ(0) ∈ Dρ/4, and therefore, for |t| ≤ T and such that I(t) ∈ Dρ/4, we obtain

|Πd(I(t)− I(0))| ≤ |Πd(I(t)− Ĩ(t))|+ |Πd(Ĩ(t)− Ĩ(0))|+ |Πd(Ĩ(0)− I(0))|
≤ r + 2c1Ψ(∆−1(c2sε

−1))ε

≤ 2r

since we assumed r ≥ 2c1Ψ(∆−1(c2sε
−1))ε. This concludes the proof.

4.5 Stability in the quasi-convex case: proof of Theorem K

The aim of this section is to prove Theorem K; implicit constants will depend only on n,
|h|s and the function C (except at the very end of the proof where they will also depend
on l and m).

To prove Theorem K, we will have to establish several intermediate statements. The
first one is a normal form for an arbitrary non-linear Hamiltonian in a neighborhood of a
periodic frequency. In order not to assume that h is a local diffeomorphism, the following
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definition will be useful in the sequel. For a fixed integrable Hamiltonian h and for µ > 0,
a point I1 ∈ D in action space is said to be µ-close to be T -periodic if there exists a
T -periodic vector v ∈ Rn \ {0} such that

|∇h(I1)− v| ≤ µ. (118)

We will use the notation Dr(I1) to denote the ball of radius r > 0 centered at the point
I1. We have the following proposition, where we define

τ1(θ, I) := (θ, I − I1)

and we recall that, given ρ > 0,

σ(θ, I) = σρ(θ, I) = (θ, ρI).

Proposition 33. Let H be as in (∗), where H is (M, s)-ultra-differentiable with M satis-
fying (H1) and (H2). Let I1 ∈ D3/4 be µ-close to be T -periodic, and given ρ > 0, assume
that

µs ≤ ρ, ε ·<ρ2, T ρ ·<s2, ρ < 1/4. (119)

Then there exists a (M, s/4)-ultra-differentiable symplectic transformation

Φ : Tn ×Dρ/2(I1) → Tn ×Dρ(I1)

such that
H ◦ Φ = h+ f̄ + f̂

where {f̄ , Lv} = 0 and with the estimates

{
|τ−1

1 ◦ σ−1 ◦ Φ ◦ σ ◦ τ1 − Id|s/4 ≤ 2Tρ−1ε, |f̄ ◦ σ ◦ τ1|s/4 ≤ 2ε,

|f̂ ◦ σ ◦ τ1|s/4 ≤ ε exp
(
−κ2 (C−1(s2(ATρ)−1))

−1
)
.

Proof. Observe that since ρ < 1/4 and I1 ∈ D3/4, then Dρ(I1) is included in D. Without
loss of generality, we may assume that I1 = 0 so that τ1 is the identity, and we may also
assume that h(0) = 0. Let

H ′ = ρ−1(H ◦ σ)
be the rescaled Hamiltonian, so H ′ is defined on Tn ×D and reads

H ′(θ, I) = ρ−1H(θ, ρI) = ρ−1h(ρI) + ρ−1f(θ, ρI), (θ, I) ∈ Tn ×D.

Using Taylor’s formula, we can expand h around the origin to obtain

h(ρI) = ρω · I + ρ2
∫ 1

0

(1− t)∇2h(tρI)(I, I)dt = ρω · I + ρ2h′(I)

which can be written again as

h(ρI) = ρv · I + ρ(ω − v) · I + ρ2h′(I)
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and therefore {
H ′ = Lv + S +R + F,

S := Lω − Lv, R := ρh′, F := ρ−1(f ◦ σ).
From the assumptions that I1 is µ-close to be T -periodic we know that

|∇S|s ≤ cµ.

Then as |f |s ≤ ε, we have
|ρ−1(f ◦ σ)|s ≤ ρ−1ε

and moreover, applying Corollary 9, we have the estimate

|∇h′|s/2<· s−1.

Eventually our Hamiltonian H ′ reads





H ′ = Lω + S +R + F,

R := ρh′, S := Lω − Lv, F := ρ−1(f ◦ σ)
|∇S|s/2 ≤ cµ, |R|s/2<· s−1ρ, |F |s/2 ≤ ρ−1ε.

It has exactly the form (♯) with s/2 instead of s, cµ instead of µ, a constant times s−1ρ in-
stead of ρ and ρ−1ε instead of ν; one easily check that (119) implies η=· max{µ, s−1ρ}=· s−1ρ
and (97). It follows that Proposition 27 can be applied, and it gives, choosing δ = 1 and
ξ = 2, the existence of a (M, s/4)-ultra-differentiable symplectic transformation

Φ′ : Tn ×D1/2 → Tn ×D

such that
H ◦ Φ′ = Lv + S + F̄ + F̂

with {F̄ , Lv} = 0 and the estimates

{
|Φ′ − Id|s/4 ≤ 2Tρ−1ε, |F̄ |s/4 ≤ 2ρ−1ε,

|F̂ |s/4 ≤ ρ−1ε exp
(
−κ2 (C−1(s2(ATρ)−1))

−1
)
.

(120)

Now, scaling back to our original coordinates, we define

Φ = σ ◦ Φ′ ◦ σ−1 : Tn ×Dρ/2 → Tn ×Dρ

so that

H ◦ Φ = ρH ′ ◦ Φ′ ◦ σ−1

= ρ(Lω +R + F̄ + F̂ ) ◦ σ−1

= (ρLω + ρ2h′) ◦ σ−1 + ρF̄ ◦ σ−1 + ρF̂ ◦ σ−1
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where we used the definition of R. Observe that (ρLω + ρ2h′) ◦ σ−1 = h, so we may set

f̄ = ρF̄ ◦ σ−1, f̂ = ρF̂ ◦ σ−1,

and write
H ◦ Φ = h+ f̄ + f̂ .

Since {F̄ , Lω} = 0, {F̄ ◦σ−1, Lω} = 0 and thus {f̄ , Lω} = 0. To conclude, observe that the
estimates (120) can be written again as

{
|σ−1 ◦ Φ ◦ σ − Id|s/4 ≤ 2Tρ−1ε, |f̄ ◦ σ|s/4 ≤ 2ε,

|f̂ ◦ σ|s/4 ≤ ε exp
(
−κ2 (C−1(s2(ATρ)−1))

−1
)

which is exactly what we wanted to prove.

From the last proposition, it is easy to prove that the action variables of any solution
starting close to I1 have small variation for a long interval of time in the direction given
by the periodic vector v. Using the quasi-convexity assumption on h, we will prove that
the action variables have also small variation for a long interval of time in the directions
transverse to v but tangent to the energy level. Let us recall that h : D → R is (l, m)-
quasi-convex, for positive constants l and m, if for all I ∈ D, it satisfies

|∇h(I)| ≥ l

and at least of the inequalities

|∇h(I) · ξ| ≥ l|ξ|, |∇2h(I)ξ · ξ| ≥ m|ξ|2

holds true for all ξ ∈ Rn.

Proposition 34. Under the assumptions of Proposition 33 and if

µ ·<mρ, ρ ·< l, ε ·<mρ2, (121)

for any I0 ∈ Dµ(I1) and any solution (θ(t), I(t)) of H with I(0) = I0, we have

|I(t)− I0| ≤ ρ, |t| ·<mρ2sε−1 exp(κ2
(
C−1(s2(ATρ)−1)

)−1
)

where A=· 1.

The proof below follows [Pös93].

Proof. Let us define

T∗ ·=mρ2sε−1 exp(κ2
(
C−1(s(ATρ)−1)

)−1
).

For any solution (θ̃(t), Ĩ(t)) of H ◦ Φ with Ĩ(0) ∈ D2µ(I1), let Te ∈]0,+∞] be the time of
first exit of the ball centered at I0 of radius ρ/4; observe that µ ≤ ρ/8 can be arranged by
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the first inequality in (121) so this is well-defined. We claim it is sufficient to prove that
T∗ ≤ Te. Indeed, in this case one would have

|Ĩ(t)− Ĩ(0)| ≤ ρ/4, 0 ≤ t ≤ T∗

and as the image of D2µ(I1) (respectively Dρ/2(I1)) under Φ contains Dµ(I1) (respectively
is contained in Dρ(I1)), one would obtain that

|I(t)− I(0)| ≤ ρ, 0 ≤ t ≤ T∗

for any solution (θ(t), I(t)) of H with I(0) ∈ Dµ(I1).
So it remains to prove the claim, and we will do this by contradiction assuming that

T := min{Te, T∗} = Te. To simplify the notations, we remove the tilde from the notations
and we consider a solution (θ(t), I(t)) of H ◦ Φ with I(0) ∈ D2µ(I1). Let us write

∆I := I(T )− I(0), I(s) := I0 + s∆(I), ω(I(s)) := ∇h(I(s))

for 0 ≤ s ≤ 1. Observe that since we are assuming T = Te, then

|∆I| = ρ/4. (122)

Recalling that
|∇h(I1)− v| ≤ µ

for some T -periodic v, we let Πv be the orthogonal projection onto the line generated
by v and Π⊥

v = Id − Πv be the orthogonal projection onto the orthogonal of v. Since
I(0) ∈ D2µ(I1), we have

|ω(I(0))−∇h(I1)|<·µ (123)

and using (122) and the fact that µ ≤ ρ, we obtain

|ω(I(s))−∇h(I1)|<· ρ.

So from the last two inequalities

|ω(I(s))− v|<· ρ. (124)

Since Π⊥
v v = 0 we have

|Π⊥
v ω(I(s))| = |Π⊥

v (ω(I(s)− v))|<· ρ

and so
|ω(I(s)) ·Π⊥

v ∆I|<· |Π⊥
v (ω(I(s)− v))||Π⊥

v ∆I|<· ρ|∆I|. (125)

Observe that for s = 0, we have the better estimate

|ω(I(0)) · Π⊥
v ∆I|<·µ|∆I|. (126)
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On the other hand, our Hamiltonian is of the form

H ◦ Φ = h+ f̄ + f̂

with {f̄ , Lv} = 0, which implies that Πv

(
∂θf̄
)
= 0 and thus

|ω(I(s)) · Πv∆I| ≤
∫ T

0

|ω(I(s)) · ∂θf̂ |dt.

Using Corollary 9 one easily obtains an estimate of ∂θf̂ from the known estimate on f̂ ,
and, by the definition of T with a proper implicit constant, we arrive at

|ω(I(s)) · Πv∆I| < mρ2/96 = (mρ/24) |∆I| (127)

where the last equality follows from (122). From (125) and (127) we get

|ω(I(s)) ·∆I|<· ρ|∆I|

and by a proper choice of the implicit constant in the second condition of (121), we can
ensure that

|ω(I(s)) ·∆I| ≤ l|∆I|. (128)

To reach a contradiction, let ∆h := h(I(T ))−h(I(0)) so that Taylor formula with integral
remainder at the point I(0) gives

∆h = ω(I(0)) ·∆I +
∫ 1

0

(1− s)∇2h(I(s))∆I ·∆Ids.

Since h is (l, m)-convex, using (128) we know that

|∇2h(I(s))∆I ·∆I| ≥ m|∆I|2

and therefore

m|∆I|2 ≤ 2|∆h|+2|ω(I(0)) ·∆I| ≤ 2|∆h|+2|ω(I(0)) ·Π⊥
v ∆I|+2|ω(I(0)) ·Πv∆I|. (129)

Using the preservation of energy, the last part of (121) and (122), we have

2|∆h|<· ε < m

3

ρ2

16
=
m

3
|∆I|2. (130)

Next, from (126) we obtain

2|ω(I(0)) · Π⊥
v ∆I|<·µ|∆I| ≤ C

µ2

m
+
m

6
|∆I|2

for some C =· 1, and, using the first part of (121) and (122), we can ensure that

2|ω(I(0)) ·Π⊥
v ∆I| <

m

6
|∆I|2 + m

6
|∆I|2 = m

3
|∆I|2. (131)
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Finally, recall from (127) that

2|ω(I(s)) · Πv∆I| < mρ2/48 =
m

3
|∆I|2. (132)

and thus (129), (130), (131) and (132) yields

m|∆I|2 < m|∆I|2

which is absurd.
This proves the proposition for positive times, but for negative times the argument is

completely similar so this concludes the proof.

To finish the proof of Theorem K, we just need the following lemma which is a direct
application of Dirichlet’s box principle.

Lemma 35. Let ω ∈ Rn \ {0}, and Q ≥ 1 a real number. Then there exists a T -periodic
vector v ∈ Rn \ {0} such that

|ω − v| ≤ (n− 1)(TQ)−1, |ω|−1 ≤ T ≤ n|ω|−1Qn−1.

Proof. Fix Q ≥ 1. Up to a re-ordering of its component, we can write ω = |ω|∞(±1, x) for
some x ∈ Rn−1 and by Dirichlet’s approximation theorem, there exists a primitive rational
vector p/q ∈ Qn−1, such that

|qx− p|∞ ≤ Q−1, 1 ≤ q ≤ Qn−1.

The vector v = |ω|∞(±1, p/q) ∈ Rn is then T -periodic, for T = |ω|−1
∞ q, and we have

|ω − v| ≤ T−1|qx− p|, |ω|−1
∞ ≤ T ≤ |ω|−1

∞Qn−1

which implies
|ω − v| ≤ (n− 1)(TQ)−1, |ω|−1 ≤ T ≤ n|ω|−1Qn−1

and this was the statement to prove.

Proof of Theorem K. Let Q ≥ 1 be a real number to be chosen below. Recall that we are
considering H as in (∗) where H is (M, s)-ultra-differentiable with M satisfying (H1) and
(H2) and h is (m, l)-quasi-convex. To further simplify the exposition, implicit constants
will now also depend on l and m.

Consider any solution (θ(t), I(t)) of H with I(0) ∈ D1/2. We can apply Lemma 35 to
ω := ∇h(I(0)) and find a T -periodic vector ω ∈ Rn \ {0} such that

|ω − v|<· (TQ)−1, 1 ·<T <·Qn−1.

We set
µ=· (TQ)−1
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so that I(0) is µ-close to be T -periodic. Then we set

ρ=· sµ=· s(TQ)−1

and using the fact that T <·Qn−1, (119) and (121) are satisfied provided that

Q2nε ·<s2, Qs ·> 1. (133)

Assuming (133), Proposition 33 and Proposition 34 apply, and we obtain the stability
estimates

|I(t)− I(0)| ≤ ρ<· sQ−1,

for
|t| ·<s exp

(
κ2
(
C−1(aQs)

)−1
)
, a ·=1.

To conclude, to fulfill (133) we may choose

Q ·= (s2ε−1)
1
2n

to finally reach
|I(t)− I(0)| ≤ ρ<· s(s−2ε)

1
2n ,

for

|t| ·<s exp
(
κ2

(
C−1

(
a′s(s2ε−1)

1
2n

))−1
)
, a′ ·=1

which was the statement to prove.

4.6 Diffusion in the quasi-convex case: proof of Theorem L

The goal of this section is to give a proof of Theorem L, which is the construction of
an unstable orbit assuming that we are working in a non-quasi analytic class of ultra-
differentiable functions (which are characterized by the condition (H3), see § 1.6).

The construction, which is due to Marco-Sauzin, is explained in details in [MS02] in
the case where M = Mα with α > 1; we are aiming at showing that it still works in
any non-quasi-analytic class of ultra-differentiable functions, and it requires only a minor
modification (in the same way as Theorem B required a minor modification of [Bes00]).

The interest is that when the sequence M is matching, the instability result is very
close to the stability result given by Theorem K, and thus this shows that the latter result
is quite accurate.

From now on, we write A := T × R the infinite annulus. Given a potential function
U : T → R, we consider the following family of maps ψq : A → A defined by

ψq(θ, I) =
(
θ + qI, I − q−1U ′(θ + qI)

)
, (θ, I) ∈ A, (134)

for q ∈ N∗. If we require U ′(0) = −1, for example if we choose

U(θ) = −(2π)−1 sin(2πθ), U ′(θ) = − cos(2πθ),
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then it is easy to see that ψq(0, 0) = (0, q−1) and by induction

ψk
q (0, 0) = (0, kq−1) (135)

for any k ∈ Z. After q iterations, the point (0, 0) drifts from the circle I = 0 to the circle
I = 1 and it is bi-asymptotic to infinity, in the sense that the sequence

(
ψk
q (0, 0)

)
k∈Z

is
not contained in any semi-infinite annulus of A. Clearly these maps are exact-symplectic,
but obviously they have no invariant circles and so they cannot be “close to integrable”.
However, we will use the fact that they can be written as a composition of time-one maps,

ψq = Φq−1U ◦
(
Φ

1
2
I2 ◦ · · · ◦ Φ 1

2
I2
)
= Φq−1U ◦

(
Φ

1
2
I2
)q
, (136)

to embed ψq in the qth-iterate of a near-integrable map of An, for n ≥ 2. To do so, we will
use the following “coupling lemma”, in which the product of functions acting on separate
variables is denoted by ⊗, i.e.

f ⊗ g(x, x′) = f(x)g(x′) x ∈ Am, x′ ∈ Am′

.

Lemma 36 (Marco-Sauzin). Let m,m′ ≥ 1, F : Am → Am and G : Am′ → Am′

two
maps, and f : Am → R and g : Am′ → R two Hamiltonian functions generating complete
vector fields. Suppose there is a point a ∈ Am′

which is q-periodic for G and such that the
following “synchronisation” conditions hold:

g(a) = 1, dg(a) = 0, g(Gk(a)) = 0, dg(Gk(a)) = 0, (S)

for 1 ≤ k ≤ q − 1. Then the mapping

Ψ = Φf⊗g ◦ (F ×G) : Am+m′ −→ Am+m′

is well-defined and for all x ∈ Am,

Ψq(x, a) = (Φf ◦ F q(x), a).

Therefore, if we set m = 1, F = Φ
1
2
I21 and f = q−1U in the coupling lemma, the qth-

iterate Ψq will leave the submanifold A× {a} invariant, and its restriction to this annulus
will coincide with our “unstable map” ψq. Hence, after q

2 iterations of Ψ, the I1-component
of the point ((0, 0), a) ∈ A2 will move from 0 to 1.

The difficult part is then to find what kind of dynamics we can put on the second factor
to apply this coupling lemma. Following [MS02], we introduce a new sequence of “large”
parameters Aj ∈ N∗ for j ∈ N and in the second factor we consider a family of suitably
rescaled penduli on A given by

Pj(θ2, I2) =
1

2
I22 + A−2

j V (θ2),

where V (θ) = − cos 2πθ. We eventually define

Gj = Φ
1
2
(I22+I23+···+I2n)+N−2

j V (θ2).
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In this case, the map Ψ given by the coupling lemma is a perturbation of

Φh = Φ
1
2
(I21+I22+···+I2n)

of the form Ψ = Φu ◦Ψh̃+v, with

u = f ⊗ g, v = A−2
j V.

But for the map Gj, due to the presence of the pendulum factor, it is possible to find a
periodic orbit for Gj with an irregular distribution: more precisely, a qj-periodic point aj
such that its distance to the rest of its orbit is of order N−1

j , no matter how large qj is.
Let us denote by (pj)j≥0 the ordered sequence of prime numbers and let us choose

Aj = pjA
′
j where A

′
j = 1 if n = 2 and

A′
j = pj−(n−3)pj−(n−4) · · ·pj ∈ N∗, n ≥ 3.

Our goal is to prove the following proposition.

Proposition 37. Let n ≥ 2 and s > 0. Then for all j ∈ N, there exist a sequence of
functions gj ∈ Us(A

n−1), a sequence of points aj ∈ Tn−1 and positive constants c1 and s′

depending only on s and M such that if

Bj = 2
[
c1c

2(n−1)Aj exp(2Ω(s
′pj)) + 1

]
, qj = AjBj ,

then aj is qj-periodic for Gj and (gj, Gj, aj, qj) satisfy the synchronization conditions (S):

gj(aj) = 1, dgj(aj) = 0, gj(G
k
j (aj)) = 0, dgj(G

k
j (aj)) = 0,

for 1 ≤ k ≤ qj − 1. Moreover, the estimate

q−1
j |gj|s ≤ A−2

j , (137)

holds true.

We claim that to prove Theorem L, it is enough to justify Proposition 37. Indeed, it
is rather easy to obtain a discrete version of Theorem L for maps on An, using the prime
number Theorem which ensures that

A
1

n−1

j ≤ pj ≤ 2A
1

n−1

j

for j large enough, and hence, setting εj = A−2
j

ε
− 1

2(n−1)

j ≤ pj ≤ 2ε
− 1

2(n−1)

j .

Then by an elementary suspension argument (using the existence of bump functions for
non-quasi-analytic ultra-differentiable functions) one arrives at Theorem L with a quasi-
convex integrable Hamiltonian in n + 1 degrees of freedom. This is described in details
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in [MS02] for the Gevrey case and works exactly in the same way in our context, so we
shall not give more details and concentrate on the proof of Proposition 37.

We first consider the simple pendulum

P (θ, I) =
1

2
I2 + V (θ), (θ, I) ∈ A.

With our convention, the stable equilibrium is at (0, 0) and the unstable one is at (0, 1/2).
Given any B ∈ N∗, there is a unique point bB = (0, IB) which is B-periodic for ΦP (this is
just the intersection between the vertical line {0}×R and the closed orbit for the pendulum
of period B). One can check that IB ∈ ]2, 3[ and as B goes to infinity, (0, IB) tends to the
point (0, 2) which belongs to the upper separatrix. Since Pj(θ, I) =

1
2
I2 + A−2

j V (θ), then
one can see that

ΦPj = σ−1
j ◦ ΦA−1

j P ◦ σj ,
where σj(θ, I) = (θ, AjI) is the rescaling by Aj in the action components. Therefore the
point bBj = (0, A−1

j IB) is qj-periodic for ΦPj , for qj = AjB. Let (ΦP
t )t∈R be the flow of the

pendulum, and
ΦP

t (0, IB) = (θB(t), IB(t)).

The function θB(t) is analytic. The crucial observation is the following simple property of
the pendulum

Lemma 38. Let ϑ = −1
2
+ 2

π
arctan eπ < 1

2
. For any B ∈ N∗,

θB(t) /∈ [−ϑ, ϑ],

for t ∈ [1/2, B − 1/2].

Hence no matter how large B is, most of the points of the orbit of bB ∈ A will be outside
the set {−ϑ ≤ θ ≤ ϑ}×R. The construction of a function that vanishes, as well as its first
derivative, at these points, will be easily arranged by means of a function, depending only
on the angle variables, with support in {−ϑ ≤ θ ≤ ϑ}.

As for the other points, it is convenient to introduce the function

τB : [−ϑ, ϑ] −→ ]− 1/2, 1/2[

which is the analytic inverse of θB. One can give an explicit formula for this map:

τB(θ) =

∫ θ

0

dϕ√
I2B − 4 sin2 πϕ

.

In particular, it is analytic and therefore it belongs to Us([−ϑ, ϑ]) for any sequence M :=
(Ml)l∈N and any s > 0, and one can obtain the following estimate (see Lemma 2.3 in [MS02]
for a proof).

Lemma 39. For any sequence M := (Ml)l∈N and any s > 0,

Λ = Λ(M, s) = sup
B∈N∗

|τB|s < +∞.
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Under the action of τB, the points of the orbit of bB whose projection onto T belongs
to {−ϑ ≤ θ ≤ ϑ} get equi-distributed, and we can use the following elementary lemma,
which is the only place where the regularity of the function actually come into play.

Lemma 40. For p ∈ N∗, the analytic function ηp : T → R defined by

ηp(θ) =

(
1

p

p−1∑

l=0

cos 2πlθ

)2

satisfies
ηp(0) = 1, η′p(0) = 0, ηp(k/p) = η′p(k/p) = 0,

for 1 ≤ k ≤ p− 1, and
|ηp|s ≤ c2 exp(2Ω(8πps)).

Proof. Let

ξp(θ) =
1

p

p−1∑

l=0

cos 2πlθ.

For any l ∈ N, we have
sup
θ∈T

|ξ(l)p | ≤ (2πp)l

hence

|ξp|s = c sup
l∈N

(l + 1)2sl(2πp)l

Ml
≤ c sup

l∈N

(8πps)l

Ml
= c exp(Ω(8πps))

and therefore
|ηp|s ≤ |ξp|2s ≤ c2 exp(2Ω(8πps)).

We can now conclude the proof of Proposition 37.

Proof of Proposition 37. Given s > 0, consider a bump function ϕs,ϑ ∈ Us(T) which van-
ishes identically outside ]−ϑ, ϑ[ and let c1 = |ϕs,ϑ|. We choose our function gj ∈ Us(A

n−1),
depending only on the angle variables, of the form

gj = g
(2)
j ⊗ · · · ⊗ g

(n)
j ,

where
g
(2)
j (θ2) = ηpj(τBj

(θ2))ϕs,ϑ(θ2),

and
g
(i)
j (θi) = ηpj−(n−i)

(θi), 3 ≤ i ≤ n.

Now we choose our point aj = (a
(2)
j , . . . , a

(n)
j ) ∈ An−1. We set

a
(2)
j = b

Bj

j = (0, A−1
j IBj

),
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where
Bj = 2

[
c1c

2(n−1)Aj exp(2Ω(s
′pj)) + 1

]

and
a
(i)
j = (0, p−1

j−(n−i)), 3 ≤ i ≤ n.

Using the definition of Aj, it is not hard to check that aj is qj-periodic for the map Gj.
Now let us show that the synchronization conditions (S) hold true, that is

gj(aj) = 1, dgj(aj) = 0, gj(G
k
j (aj)) = 0, dgj(G

k
j (aj)) = 0,

for 1 ≤ k ≤ qj − 1. Since ϕs,ϑ(0) = 1, then

gj(aj) = g
(2)
j (0) · · · g(n)j (0) = 1

and as ϕ′
s,ϑ(0) = 0, then

dgj(aj) = 0.

To prove the other conditions, let us write Gk
j (aj) = (θk, Ik) ∈ An−1, for 1 ≤ k ≤ qj − 1.

If θ
(2)
k does not belong to ]−ϑ, ϑ[, then g(2)j and its first derivative vanish at θ

(2)
k because

it is the case for ϕs,ϑ, so
gj(θk) = dgj(θk) = 0.

Otherwise, if −ϑ < θ
(2)
k < ϑ, one can easily check that

−Aj − 1

2
≤ k ≤ Aj − 1

2

and therefore

τBj
(θ

(2)
k ) =

k

Aj
,

while

θ
(i)
k =

k

pj−(n−i)

, 3 ≤ i ≤ n.

If A′
j divides k, that is k = k′A′

j for some k′ ∈ Z, then

τBj
(θ

(2)
k ) =

k

Aj
=
k′

pj

and therefore, by Lemma 40, ηpj vanishes with its differential at θ
(2)
k , and so does g

(2)
j .

Otherwise, A′
j does not divide k and then, for 3 ≤ i ≤ n, at least one of the functions

ηpj−(n−i)
vanishes with its differential at θ

(2)
k , and so does g

(i)
j . Hence in any case

gj(θk) = dgj(θk) = 0, 1 ≤ k ≤ qj − 1,

and the synchronization conditions (S) are satisfied.
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Now it remains to estimate the norm of the function gj. First, by definition of c1 and
using Proposition 10, one finds

|gj|s ≤ c1|ηpj ◦ τBj
|s|ηpj−(n−3)

|s · · · |ηpj |s.

Then, using Lemma 39, Proposition 16 and Lemma 40 we obtain

|ηpj ◦ τBj
|s ≤ c2 exp(2Ω(s′pj))

for some s′ which depends only on s and Λ. By Lemma 40 for 3 ≤ i ≤ n, since pj−(n−i) ≤ pj ,
we have

|ηpj−(n−i)
|s ≤ c2 exp(2Ω(s′pj))

and therefore
|gj|s ≤ c1c

2(n−1) exp(2(n− 1)Ω(s′pj))

Finally, by definition of Bj we obtain

|gj|s ≤ BjA
−1
j ,

and as qj = AjBj , we end up with

q−1
j |gj|s ≤ A−2

j .

This concludes the proof.

4.7 Stability in the steep case: proof of Theorem M

The goal of this section is to prove Theorem M; implicit constants will depend only on n,
|h|s, l, L, δ, p and the function C.

Given positive real parameters s, δ, µ, ν, consider a Hamiltonian of the form





H(θ, I) = Lv(I) + g(I) + f(θ, I),

H : Tn ×Dδ → R

|∇g|s ≤ ρ, |f |s ≤ ν,

(#)

where { . } denotes the usual Poisson bracket, Dδ ⊂ Rn is the ball of radius δ around the
origin. Observe that this is nothing but a special case of (♯), up to a change of notations,
and thus the following proposition is just a special case of Proposition 27, written in a
slightly different way using a real parameter K ≥ 1.

Proposition 41. Let H be as in (#), withM satisfying (H1) and (H2) and v a T -periodic
vector. Given K ≥ 1, assume that

ν ·<sρ, Tρ ·<s, KTρ ·< 1. (138)
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Then there exists a (M, s/2)-ultra-differentiable symplectic transformation

Ψ : Tn ×Dδ/2 → Tn ×Dδ

such that
H ◦Ψ = Lv + g + f̄ + f̂

with {f̄ , Lv} = 0 and the estimates

|Ψ− Id|s/2 ≤ 2Tν, |f̄ |s/2 ≤ 2ν, |f̂ |s/2 ≤ ν exp
(
−κ2

(
C−1(Ks)

)−1
)
. (139)

Moreover, if I is an integrable Hamiltonian such that {I, F} = 0, then {I, F̄} = 0.

Next consider Ti-periodic vectors vi for every 1 ≤ i ≤ n, and assume that they are
linearly independent. For simplicity, let us just write Li(I) = vi · I. Now consider the
following Hamiltonian:





Hj(θ, I) = Lj(I) + gj(I) + f(θ, I),

Hj : T
n ×Dδj → R

|∇gj|sj ≤ ρj , |f |sj ≤ ν

(#j)

where we set δj = 2j−1 and sj = sδj .

Proposition 42. Let 1 ≤ j ≤ n, Hj be as in (#j) with M satisfying (H1) and (H2).
Given K ≥ 1, assume that

{
ν ·<sρi, Tiρi ·<s, KTiρi ·< 1 1 ≤ i ≤ j,

|vj − vj−1|<· ρj−1, ρj ·<ρj−1, j ≥ 2.
(140)

Then there exist a (M, s/2)-ultra-differentiable symplectic transformation

Ψj : T
n ×D1/2 → Tn ×Dδj

such that
Hj ◦Ψj = Lj + g + f̃ + f+

with {f̃ , Li} = 0 for 1 ≤ i ≤ j and the estimates

|Ψj − Id|s/2<· max
1≤i≤j

{Tiν}, |f̃ |s/2<· ν, |f+|s/2<· ν exp
(
−κ2

(
C−1(Ks)

)−1
)
. (141)

Moreover, if I is an integrable Hamiltonian such that {I, f} = 0, then {I, f̃} = 0.

Proof. For j = 1, this is nothing but Proposition 41 (setting f̃ = f̄ and f+ = f̂) so we may
argue by induction. Thus we assume that the statement is true for some 1 ≤ j−1 ≤ n−1,
and we need to show that it remains true for 2 ≤ j ≤ n.
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To the Hamiltonian Hj = Lj + gj +f we can apply Proposition 41 (with Lj , gj, sj, δj, ρj
instead of Lv, g, s, δ, ρ) as (141) implies (139): since sj/2 = sj−1 and δj/2 = δj−1, we find a
(M, sj−1)-ultra-differentiable symplectic transformation Ψj : Tn ×Dδj−1

→ Tn ×Dδj such
that

Hj ◦Ψj = Lj + gj + f̄ + f̂

with {f̄ , Lj} = 0 and with the estimates

|Ψj − Id|sj−1
<·Tjν, |f̄ |sj−1

<· ν, |f̂ |sj−1
<· ν exp

(
−κ2

(
C−1(Ks)

)−1
)
.

Moreover, if I is an integrable Hamiltonian such that {f, I} = 0, then {f̄ , I} = 0.
Then observe that we can write

Hj ◦Ψj − f̂ = Lj + gj + f̄ = Lj−1 + gj−1 + f̄ , gj−1 := Lj − Lj−1 + gj ,

where
|f̄ |sj−1

<· ν
and, using (140),

|∇gj−1|sj−1
≤ |∇(Lj − Lj−1)|sj−1

+ |∇gj|sj−1
<· ρj−1 + ρj <· ρj−1.

Thus we can apply our inductive assumption (with f̄ instead of f), and there exists a
(M, s/2)-ultra-differentiable symplectic transformation

Ψj−1 : T
n ×D1/2 → Tn ×Dδj−1

such that

(H ◦Ψj − f̂) ◦Ψj−1 = Lj−1 + gj−1 +
˜̄f + f̄+ = Lj + gj +

˜̄f + f̄+

with { ˜̄f, Li} = 0 for 1 ≤ i ≤ j − 1 and the estimates

|Ψj−1 − Id|s/2<· max
1≤i≤j−1

{Tiν}, | ˜̄f |s/2<· ν, |f̄+|s/2<· ν exp
(
−κ2

(
C−1(Ks)

)−1
)
.

Moreover, if I is an integrable Hamiltonian such that {f̄ , I} = 0, then { ˜̄f, I} = 0. We may
then set

Ψj := Ψj ◦Ψj−1, f̃ := ˜̄f, f+ := f̄+ + f̂ ◦Ψj−1.

Obviously we have
|f̃ |s/2<· ν.

Using Proposition 16, we get

|Ψj − Id|s/2 ≤ |Ψj − Id|sj−1
+ |Ψj−1 − Id|s/2<· max

1≤i≤j
{Tiν}
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but also

|f+|s/2 ≤ |f̄+|s/2 + |f̂ ◦Ψj−1|s/2 ≤ |f̄+|s/2 + |f̂ |sj−1
<· ν exp

(
−κ2

(
C−1(Ks)

)−1
)
.

From the first part of the inductive assumption, we know that {f̃ , Li} = 0 for 1 ≤ i ≤ j−1,
but since {f̄ , Lj} = 0, from the second part of the inductive assumption (applied to S = Lj)
we obtain {f̃ , Lj} = 0 and hence {f̃ , Li} = 0 for 1 ≤ i ≤ j. This proves the first part
of the statement, but the second part is obvious, as {f, I} = 0 implies {f̄ , I} = 0 which
implies {f̃ , I} = 0.

Now let us come back to a Hamiltonian as in (∗). For any 1 ≤ j ≤ n, let Ij ∈ D1/2,
and as before, we still consider a Tj-periodic vector vj and a positive parameter ρj .

Proposition 43. Let 1 ≤ j ≤ n and H be as in (∗), and given K ≥ 1, assume that





|∇h(Ij)− vj | ≤ ρj , ρj ·< 1,

ε ·<ρ2i , Tiρi ·<s2, KTiρi ·< 1, 1 ≤ i ≤ j,

|ωj − ωj−1| ·<ρj−1, ρj ·<ρj−1, 2 ≤ j.

(142)

Then there exists a smooth symplectic transformation

Φj : T
n ×Dρj/2(Ij) → Tn ×Dδjρj (Ij)

such that
H ◦ Φj = h+ f ′ + f ∗

with {f ′, Li} = 0 for 1 ≤ i ≤ j and with the estimate




|ΠIΦj − IdI |C0(Tn×Dρj/2

(Ij))<· max1≤i≤j{Ti}ε,
|∂θf ∗|C0(Tn×Dρj/2

(Ij))<· εs−1 exp
(
−κ2 (C−1(Ks))

−1
)
.

(143)

Let us point out that one can obtain better (anisotropic) estimates such as those ob-
tained in Proposition 32 or Proposition 33; yet only the estimates (143) will be useful in
the sequel.

Proof. Observe that the assumptions ρj ·< 1 ensures thatDδjρj (Ij) is contained inD. With-
out loss of generality, we may assume that Ij = 0 and h(0) = 0, and we set ω := ∇h(0).
Let σj(θ, I) := (θ, ρjI): expanding h ◦ σj at order 2 around I = 0 we have

h ◦ σj(I) = ρjω · I + ρ2jhj(I), I ∈ Dδj ,

with |∇hj |s/2<· |∇h|s/2<· s−1. Now consider Hj := ρ−1
j H ◦ σj ; it can be written as

Hj(θ, I) = ω · I + ρjhj(I) + ρ−1
j f ◦ σj(θ, I) = ωj · I + gj(I) + fj
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with
gj(I) := (ω − vj) · I + ρjhj(I), fj(I) : ρ

−1
j f ◦ σj(θ, I)

satisfying the estimates
|gj|s/2 ≤ s−1ρj , |gj|s/2 ≤ ρ−1

j ε.

To this Hamiltonian we can then apply Proposition 42, with s/2 instead of 2j−1s, s−1ρj
instead of ρj and ν = ρ−1

j ε, as (142) implies (140): for s′ ·= s, we obtain a (M, s′)-ultra
differentiable symplectic transformation

Ψj : T
n ×D1/2 → Tn × Bδj

such that
Hj ◦Ψj = Lj + gj + f̃ + f+

with {f̃ , Li} = 0 for 1 ≤ i ≤ j and Ψj and f+ satisfying the estimates (141) with s−1ρj
instead of ρj and ν = ρ−1

j ε. We can eventually set

Φj := σj ◦Ψj ◦ σ−1
j , f ′ := ρj f̃ ◦ σ−1

j , f ∗ := ρjf
+ ◦ σ−1

j .

One easily check that H ◦ Φj = h + f ′ + f ∗, that {f ′, Li} = 0 for 1 ≤ i ≤ j and the
wanted estimates (143) on Φj and f

∗ follows easily from the estimates on Ψj and f
+ given

by (141).

For 1 ≤ j ≤ n, let Λj ⊆ Rn be the real subspace orthogonal to v1, . . . , vj : since these
vectors are linearly independent, Λj has dimension n− j. Let also ΠΛj

(respectively ΠΛ⊥

j
)

be the orthogonal projection onto Λj (respectively Λ⊥
j ).

Proposition 44. Let Hj := H ◦ Φj be the Hamiltonian given by Proposition 43, and let
(θ(t), I(t)) be a solution of the system associated to Hj with I(0) ∈ Dρj/4(Ij). Then for
1 ≤ j ≤ n− 1, we have the following dichotomy:

(1) either I(t) ∈ Dρj/2(I(0)) for 0 ≤ t ≤ s exp
(
κ2 (C

−1(Ks))
−1
)
,

(2) or there exists a time 0 < t+ ≤ s exp
(
κ2 (C

−1(Ks))
−1
)
for which |I(t+) − I(0)| =

ρj/2 and

|I(t)− I(0)| ≤ ρj/2, |ΠΛ⊥

j
(I(t)− I(0))|<· ε, 0 ≤ t ≤ t+.

For j = n, we have I(t) ∈ Dρn/2(I(0)) for 0 ≤ t ≤ s exp
(
−κ2 (C−1(Ks))

−1
)
.

Proof. First assume 1 ≤ j ≤ n − 1. Let t+ > 0 be the time of first exit of I(t) from

Dρj/2(I(0)). Then either t+ > s exp
(
κ2 (C

−1(Ks))
−1
)
, in which case (1) clearly holds

true, or t+ ≤ s exp
(
κ2 (C

−1(Ks))
−1
)
, in which case we will show that (2) holds true. The

93



facts that |I(t+)− I(0)| = ρj/2 and |I(t)− I(0)| ≤ ρj/2 for 0 ≤ t ≤ t+ are obvious. Then
since H ◦Φj = h+ f ′ + f ∗ with {f ′, Li} = 0 for 1 ≤ i ≤ j, we have ∂θf

′ ∈ Λj , and thus for
0 ≤ t ≤ t+,

|ΠΛ⊥

j
(I(t)− I(0))| ≤ |t||∂θf ∗|C0(Tn×Bρj

(Ij))<· t+εs−1 exp
(
−κ2

(
C−1(Ks)

)−1
)
<·µ.

For j = n, since {f ′, Lj} = 0 for 1 ≤ j ≤ n, the Hamiltonian f ′ is integrable and the

last estimate shows that t+ ≥ s exp
(
κ2 (C

−1(Ks))
−1
)
; then the conclusion follows from

µ ·<ρn.

Proposition 43 and Proposition 44, which consist respectively in the construction of
normal forms and their dynamical consequences, constitute the analytical part of the proof.
The geometrical part will be based on two propositions. The first one is Proposition 35,
which we already used in § 4.5 and is a mere consequence of Dirichlet’s box principle. The
second one is a consequence of the steepness property of h; the statement below is a special
case of the lemma on “almost plane curves” of Nekhoroshev, stated in [Nek77] and proved
in [Nek79] (our case below corresponds to “plane curves”).

Proposition 45. Let h : G → R be a smooth function which is (l, L, δ, p)-steep, and such
that supI∈G |∇2h(I)|<· 1. Let γ : [0, t∗] → Rn be a continuous curve, λ a proper affine
subspace of Rn and ̺ > 0. Assume that

(i) for all t ∈ [0, t∗], γ(t) ∈ λ;

(ii) for all t ∈ [0, t∗], |γ(0)− γ(t)| ≤ ̺ and |γ(0)− γ(t∗)| = ̺;

(iii) the ball {I ∈ Rn | |I − γ(0)| ≤ ̺} is contained in G;

(iv) ̺ ·< 1,

then there exists a time t̃ ∈ [0, t∗] such that

||ΠΛ∇h(γ(t̃))|| ·>̺p,

where Λ is the vector space associated to λ.

We can now conclude the proof of Theorem M.

Proof of Theorem M. For 1 ≤ j ≤ n, let us set

aj := (np)n−j, Qj ·= ε
− 1

2naj

and
K ·=Q1 ·= ε

− 1
2na1 .

Given any solution (θ(t), I(t)) of the Hamiltonian system associated to H with I(0) ∈ D1/2,
we claim that

|I(t)− I(0)|<·Q−1
1 , |t| ≤ s exp

(
κ2
(
C−1(Ks)

)−1
)
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provided that
ε ·< 1, Q−1

1 ·<s2. (144)

which holds true if ε is sufficiently small.
In view of the definitions of Q1, K and the fact that a1 = a, this claim clearly implies

the statement we want to prove for positive times; for negative times the argument is
entirely similar. So it remains to prove the claim, and we will do this by an algorithm that
stops after at most n steps. Let us write

τK := s exp
(
κ2
(
C−1(Ks)

)−1
)
.

For the first step, we set I1 := I(0) and we apply Proposition 35 to ω := ∇h(I1) with
Q = Q1: we find a T1-periodic vector v1 ∈ Rn \ {0} such that

|∇h(I1)− v1|<· (T1Q1)
−1, 1<·T1<·Qn−1

1 .

Let us set ρ1 =· (T1Q1)
−1. The conditions (144) imply (142) for j = 1 and hence Propo-

sition 43 can be applied: let H1 := H ◦ Φ1 be the new Hamiltonian, and let us denote by
(θ1(t), I1(t)) its solutions. Consider the solution for which Φ1((θ

1(0), I1(0))) = (θ(0), I(0)):
in view of the estimate on Φ1 given in Proposition 43, I1(0) ∈ Dρ1/4(I1) and Proposition 44
gives a dichotomy:

(1) either I1(t) ∈ Dρ1/2(I
1(0)) for 0 ≤ t ≤ τK ,

(2) or there exists a time 0 < t+1 ≤ τK for which |I1(t+1 )− I1(0)| = ρ1/2 and

|I1(t)− I1(0)| ≤ ρ1/2, |ΠΛ⊥

1
(I1(t)− I1(0))|<· ε, 0 ≤ t ≤ t+1 .

If the first alternative holds true, the claim is proved since this implies

|I(t)− I(0)| ≤ 2ρ1<·Q−1
1 , 0 ≤ t ≤ τK .

If the second alternative holds true, we will show how the algorithm moves to the second
step. Consider the curve

γ1(t) := I1(0) + ΠΛ1

(
I1(t)− I1(0)

)
.

Since ε ·<ρ1, we can ensure that

|γ1(t+1 )− γ1(0)| = |ΠΛ1

(
I1(t+1 )− I1(0)

)
| ≥ |I1(t+1 )− I1(0)| − |ΠΛ⊥

1
(I1(t+1 )− I1(0))| ≥ ρ1/4

and therefore we can find a time 0 < t∗1 < t+1 for which

{
|γ1(t)− γ1(0)| ≤ ρ1/4, 0 ≤ t ≤ t∗1,

|γ1(t∗1)− γ1(0)| = ρ1/4.
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This curve γ1, on the interval [0, t∗1], satisfies the assumption of Proposition 45 with λ :=
I1(0) + Λ1, ̺ = ρ1/4 and therefore we can find a time t̃1 ∈ [0, t∗1] such that

|ΠΛ1∇h(γ1(t̃1))| ·>ρp1.

Moreover,
|γ1(t̃1)− I1(t̃1)| = |ΠΛ⊥

1

(
I1(t̃1)− I1(0)

)
|<· ε

and since ε ·<ρp1 as one easily check, we find that

|ΠΛ1∇h(I1(t̃1))| ·>ρp1.

Then, using the estimate on Φ1 given in Proposition 43 and the fact that T1ε ·<ρp1, one
also has

|I(t̃1)− I1(t̃1)| ·<ρp1
and thus

|ΠΛ1∇h(I(t̃1))| ·>ρp1.
Now we set I2 := I(t̃1), and we apply again Proposition 35 to ω := ∇h(I2) with Q = Q2:
we find a T2-periodic vector v2 ∈ Rn \ {0} such that

|∇h(I2)− v2|<· (T2Q2)
−1, 1<·T2<·Qn−1

2 .

Let us set ρ2 =· (T2Q2)
−1. To check that v2 is linearly independent from v1, observe that

ρ2<·Q−1
2 ·<Q−np

1 ·<ρp1
and therefore, by a proper choice of implicit constants, one can ensure that

|ΠΛ1v2| ≥ |ΠΛ1∇h(I2))| − |ΠΛ1 (∇h(I2)− v2) | ≥ |ΠΛ1∇h(I2))| − |∇h(I2)− v2| > 0.

Clearly, we have ρ2 ·<ρ1 and it is straightforward to check that |v1 − v2|<· ρ1. Then
conditions (144) imply (142) for j = 2, and once again, we can apply Proposition 43 and
Proposition 44 leading to a new dichotomy: if the first alternative holds true, the claim is
proved while if the second alternative holds true, we move to the next step. If the algorithm
lasts n − 1 steps, then only possibility (1) in Proposition 44 can hold and this concludes
the proof of the claim.

A On the moderate growth condition

Recall from § 1.1 that the sequence M has moderate growth if

sup
l,j∈N

(
Ml+j

MlMj

) 1
l+j

< +∞ (MG)

Here we compare this condition to (H2), which requires the sequence
(
lnµl

l

)
l≥1

to converge

to zero as l goes to infinity; in particular, (H2) is satisfied if
(
lnµl

ln l

)
l≥2

is bounded.
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Lemma 46. If conditions (H1) and (MG) hold, positive sequences
(
lnMl

l ln l

)
l≥2

and
(
lnµl

ln l

)
l≥2

are bounded away from 0 and +∞ and, in particular, (H2) is satisfied.

Proof. As noticed in § 1.2, (H1) implies

Ml ≥ l!, µl ≥ l + 1 (∀l ∈ N),

which shows that both sequences of the statement are lower bounded.
Now, assume that (Ml) has moderate growth. In restriction to j = l, (MG) reduces to

M2l ≤ AlM2
l

for some A ∈ [1,+∞[ independant of l ∈ N. Using that M1 = 1, by induction we see that

M2k ≤ Ak2k−1

(k ∈ N). (145)

As already noticed, (H1) implies that M itself is log-convex, hence, if 2k ≤ l < 2k+1,

Ml ≤M
2k+1

−l

2k

2k
M

l−2k

2k

2k+1 ≤ (M2kM2k+1)
l

2k .

Using (145), if k ≥ 1,
Ml ≤ Alk/2+l(k+1) ≤ A5lk/2,

whence

Ml ≤
(
A

5
2 ln 2

)l ln l

(∀l ≥ 2),

and the sequence lnMl

l ln l
is bounded.

Let us now see why ρl :=
lnµl

ln l
is upper bounded. For any given l ∈ N, let k = kl ∈ N

be such that 2k−1 ≤ l < 2k. By the definition (4) of µ,

M2k+1 =M2kµ2k · · ·µ2k+1−1.

Because of (H1), the sequence (M2k) is larger than 1 and the sequence µ is increasing, so

M2k+1 ≥ (µ2k)
2k ≥ (µl)

2k = e2
kρl ln l.

Using (145), we get
ρl ln l ≤ (k + 1) lnA,

and as

(k + 1) ≤ ln l

ln 2
+ 2

we have

ρl ≤ lnA

(
1

ln 2
+

2

ln l

)
(∀l ≥ 1),

which shows that (ρl) must be bounded.
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