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Bi-Objective Scheduling of Fire Engines for 
Fighting Forest Fires: New Optimization 

Approaches

Peng Wu, Feng Chu, Senior Member, IEEE, Ada Che, Senior Member, IEEE, and MengChu Zhou, Fellow, IEEE

Abstract— It is challenging to perform emergency scheduling
for fighting forest fires subject to limited rescue resources (i.e.,
vehicles with fire engines), since extinguishing each fire point
should take into account multiple factors, such as the actual
fire spreading speed, distance from fire engine depot to fire
points, fire-fighting speed of fire engines, and the number of
dispatched vehicles. This paper investigates a bi-objective rescue
vehicle scheduling problem for multi-point forest fires, which
aims to optimally dispatch a limited number of fire engines to
extinguish fires. The objectives are to minimize the total fire-
extinguishing time and the number of dispatched fire engines.
For this problem, we first develop an integer program that is
an improved and simplified version of an existing one. After
exploring some properties of the problem, we develop an exact
dynamic programming algorithm and a fast greedy heuristic
method. Computational results for a real-life instance, and
benchmark and large-size randomly generated instances confirm
the effectiveness and efficiency of the proposed model and
algorithms. Besides, a bi-objective integer program is developed
to address the multi-depot fire engine scheduling issue.

Index Terms— Forest fires, emergency scheduling, optimiza-
tion, multi-objective, Pareto front.

I. INTRODUCTION

IN RECENT years, natural disasters and man-made
catastrophic events happen frequently, which have

caused tremendous harm to human beings. Effective and
efficient emergency management is crucial in ensuring
timely rescue and relief operations. Currently, the main

P. Wu is with the School of Economics and Management, Fuzhou
University, Fuzhou 350116, China, and also with the School of Management,
Northwestern Polytechnical University, Xi’an710072, China (e-mail:
wupeng88857@gmail.com).

F. Chu is with IBISC, Univ Évry, University of Paris-Saclay, 91025 Évry,
France, and also with the Management Engineering Research Center, Xihua
University, Chengdu 610039, China (e-mail: feng.chu@ibisc.univ-evry.fr).

A. Che is with the School of Management, Northwestern Polytechnical
University, Xi’an 710072, China (e-mail: ache@nwpu.edu.cn).

M. Zhou is with the Institute of Systems Engineering, Macau University
of Science and Technology, Macau 999078, China and also with the Helen
and John C. Hartmann Department of Electrical and Computer Engineer-
ing, New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail:
zhou@njit.edu).

studies about emergency management focus on emergency
response management [1]–[5], relief distribution [6]–[11],
and emergency logistics management [12]–[16]. To deal with
the related problems, a number of modelling approaches,
e.g., integer programming [17], [18], fuzzy optimization [19],
and dynamic programming [20], and solution techniques,
e.g., simulation [21], [22] and meta-heuristic [23], have
been proposed. Recent surveys related to various emergency
operations can refer to [24]–[26].

Many highlighted works have adequately addressed emer-
gency planning and scheduling problems under various dis-
asters and emergency events such as earthquakes, hurricane,
tsunamis, and floods. However, limited focus has been on
the forest fires. Notably, with the warming of global cli-
mate, forest fires around the world become increasingly
frequent. As reported in [27], the forest fires occur over
22 million times each year in the world and burn more
than 6.4 million hectares of forest area, accounting for
more than 0.23% of the world’s forest coverage. In China,
the forest area engulfed by forest fire each year is about
1.1 million hectares, accounting for about 0.8% to 0.9%
of the whole national forest area. Moreover, many forest
fires involve multiple fire points simultaneously. For example,
the forest fires occurred in Nanwenghe region located in
Mt. Daxing’anling on March 19, 2003 and Huzhong region
located in Mt. Daxing’anling on June 29, 2010 involve four
and seven fire points, respectively. Forest fire has been recog-
nized as one of the eight major natural disasters [27]. The basic
forest fire-fighting workflow is illustrated in Fig. 1 [28]. Once
forest fires happen, the fire information is collected and the
fire level is determined. Then, the emergency plan is launched.
Next, the fire-fighting plan is executed, which usually involves
five main groups (i.e., organization and command, emergency
communication, fire engines scheduling, logistics support and
medical service, and propaganda), followed by fighting fires
and reporting the results. Finally, the firegrounds are cleaned
and guarded and the post-disaster disposal is conducted.

In this study, we focus on the fire engine scheduling that
is finished by the fire engines scheduling group as indicated
by dashed line rectangle in Fig. 1. For each fire engine
dispatched, it is usually assigned with an identical quantity
of firemen and fire-fighting equipment [29]. The most critical
question facing the fire engine scheduling group lies in how
to dispatch fire engines to extinguish the fire points in the
most efficient manner. Therefore, it is necessary to develop
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Fig. 1. Schematic illustration of the basic workflow of the forest fire-fighting.

effective scheduling approaches to achieve the highest fire-
fighting efficiency while reducing or limiting the expenditures.

Different from the other natural disasters, once forest fires
happen, different fire points may spread at various speeds that
are usually determined by natural conditions, e.g., wind force,
terrain slope, and fuel types [30]. For example, after the
forest fires occurred in Mt. Daxing’anling, China in 2010, its
seven fire points spread at different speeds varying between
2.2 m/min and 6.98 m/min [29]. Different forest fire starting
time would affect the actual fire engine scheduling. For exam-
ple, if the starting time intervals between different fire points
are large, decision-makers can address them one by one. How-
ever, if the starting time intervals between different fire points
are short, the fire engine scheduling should consider multiple
fire points simultaneously. In addition, extinguishing each fire
point should take into account multiple other factors such as
the fire spreading speed, distance from fire engines depot to
fire points, dispatched fire engine count and their fire-fighting
speed. Consequently, due to these special characteristics, the
existing methodologies for emergency issues like earthquakes
cannot be directly applied to the emergency response schedul-
ing to tackle forest fires. Furthermore, we note that most of the
existing studies mainly focused on minimizing the emergency
response time or response costs. However, to make a well-
informed decision, decision-makers may desire to know the
service performance corresponding to different resource usage,
i.e., the trade-off between the two aspects. To simultaneously
optimize the emergency response service and resource usage
can help decision-makers make a good trade-off between
them. For example, they usually desire to minimize the total
fire-extinguishing time and expenditures for dealing with the
forest fires at the same time. Besides, a number of studies,
e.g., [13], [31], [32], have also pointed out that minimizing
emergency response costs is as important as minimizing
the emergency response time. Consequently, multi-objective
optimization is required to support the desired decision-
making for processing emergency issues.

To the best of our knowledge, no studies in the literature
have addressed the emergency planning and scheduling for
the forest fires except the recent work [29]. Tian et al. pio-
neered in a bi-objective optimization model to simultaneously
optimize the total fire-extinguishing time and the total number
of fire engines dispatched [29]. To solve the proposed model,
they developed a bi-objective hybrid meta-heuristic algorithm

to obtain a set of Pareto solutions. Instances with up to 50 fire
points and 250 fire engines were solved. However, their study
has three deficiencies. Firstly, their obtained solutions are not
guaranteed to be the best (Pareto optimal) due to the nature of
meta-heuristic algorithms. Secondly, the computational time of
their method is relatively long to provide satisfactory solutions,
especially for large-size problems, which may greatly increase
the total time to extinguish fires. Thirdly, the work [29] does
not address the multi-depot fire engine scheduling issue. To
overcome the above deficiencies, this work intends to develop
effective and efficient approaches for solving the problem
and address the multi-depot fire engine scheduling. The main
contributions of this paper are as follows:

1) We propose an improved and simplified integer program
with fewer variables and constraints. Comparison results
show that the improved model significantly outperforms
the existing one. Moreover, we extend the proposed
model to the multi-depot case.

2) We prove that the optimal fire-extinguishing time is a
strictly decreasing function of the number of dispatched
fire engines. Then, we derive the lower and upper bounds
on the number of dispatched fire engines and show that
the number of non-dominated points over the Pareto front
is their linear function.

3) Based on the derived problem properties, we develop an
exact dynamic programming algorithm and a fast greedy
heuristic method for solving the problem. Computational
results for a real-life case, benchmark and randomly
generated large-size instances confirm the effectiveness
and efficiency of the proposed algorithms. Besides, the
ε-constraint method is adapted to obtain the Pareto front
of the multi-depot fire engine scheduling problem.

The remainder of the paper proceeds as follows. In
Section II, the related literature is reviewed. The problem
description is recalled and an improved bi-objective integer
program is provided in Section III. Section IV analyzes the
properties of the problem. Based on them, an exact dynamic
programming algorithm and a greedy heuristic method are
developed in Section V. Section VI addresses the fire engine
scheduling problem with multiple depots. In Section VII,
computational experiments are conducted. Conclusions and
future research issues are discussed in Section VIII.

II. LITERATURE REVIEW

Emergency rescue and relief operations are mainly depen-
dent on surface transportation. As a consequence, well-planned
roadway networks and efficient rescue vehicle scheduling after
a natural disaster or catastrophic event takes place is critical
to ensure response efficiency and reduce costs. Over the past
decades, a number of studies concentrated on emergency
planning and scheduling for various natural disasters and
catastrophic events. For instance, Haghani and Oh [13]
presented a multi-commodity, multi-modal network model for
determining the rescue vehicle routing and scheduling when
facing natural disasters (e.g., earthquakes and hurricanes) to
minimize the cost. Two heuristics were developed to solve
it. Later, Özdamar et al. [14] presented a rescue vehicle
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routing model for optimally dispatching rescue commodities
(e.g., medical materials and personnel) in natural disasters,
e.g., earthquakes, to minimize the unsatisfied demands.
A Lagrangean relaxation heuristic was proposed to yield
near-optimal solutions. Campbell et al. [8] formulated a
rescue vehicle routing problem in aftermath of a natural
disaster (e.g., earthquake, hurricane, and tsunami) as variants
of the traveling salesman problem (TSP) and vehicle routing
problem (VRP). Effective heuristics were proposed as well.
Yuan and Wang [33] constructed a path selection model
to minimize the total rescue time in emergency logistics
management and proposed a modified Dijkstra algorithm for it.
Zhang et al. [34] developed a bio-inspired algorithm to
address the path selection in an emergency logistics network.
Moreover, Wex et al. [35] constructed a rescue unit allocation
model to process incidents caused by natural disasters, e.g.,
earthquakes, tsunamis and floods with the objective of
minimizing the total completion time. Several heuristics were
suggested to solve it.

Particularly, to effectively respond to earthquakes, Hu et al.

[36] presented an optimal earthquake emergency shelter allo-
cation model to optimize the total operating cost while meeting
all victims’ needs. A particle swarm optimization based meta-
heuristic was suggested to tackle the model. Yan et al. [37]
developed a logistical support scheduling model for damaged
roadway repair work after an earthquake to minimize the total
operating cost. Later, Yan et al. [10] established an emer-
gency scheduling model for highway emergency repairs under
demand-side perturbations to minimize the overall completion
time of repairing all highway segments. An ant colony system
based hybrid meta-heuristic algorithm was developed to derive
near-optimal solutions.

Besides, Haghani et al. [21] developed a simulation
model for optimal emergency vehicle dispatching and routing
during accidents to minimize the average response time.
Later, the work [38] presented an online dispatching and
routing model for optimally assigning emergency response
vehicles to incidents as well as determining the routes
to minimize the total emergency response time. Recently,
Park et al. [39] constructed a stochastic emergency
response location-allocation model for processing traffic
incidents on highways with the objective of minimiz-
ing the expected delay of all scenarios. A heuristic
was developed to solve it. Haghani and Qiao [31], [32]
developed salting truck routing models for dealing with snow
emergencies to minimize the number of trucks used and dead-
head time. Constructive heuristics were proposed to obtain
satisfactory solutions.

From the existing research results, it can be concluded that
the prior studies on emergency planning and scheduling mainly
focus on processing emergency issues including earthquakes,
hurricane, tsunamis, floods, snow emergencies, and accidents.
As previously mentioned, the forest fire has its own special
characteristics. The recent work [29] pioneered in the first
multi-objective model and hybrid meta-heuristic for addressing
the fire engine scheduling problem. However, the exisiting
model is very hard to solve and the existing algorithm is
time-consuming and may fail to find the Pareto front. In this

research, we improve the existing research result [29] in a
number of ways by improving the formulation, developing
new efficient exact and heuristic algorithms, and extending
the studied one-depot problem to a multi-depot case.

III. PROBLEM DESCRIPTION AND FORMULATION

The emergency scheduling problem for forest fires can be
defined over an undirected graph G = (V ′, E), where V ′ =

{0} ∪ V = {1, . . . , n} (resp. E) is the set of vertices (resp. the
set of edges). Without loss of generality, vertex 0 represents
the starting point that hosts all fire engines and vertex i ∈ V

denotes the i -th forest fire point to be extinguished.
As is widely acknowledged, once a major fire disaster

with multiple fire points happens simultaneously in a region,
to extinguish all the fire points as quickly as possible is
desired for each decision-maker. The whole rescue time for
fire point i ∈ V is composed of the travel time of fire
engines, denoted by TAi , and extinguishing time, denoted
by tEi . TAi is assumed to be calculated by the distance
between the starting point 0 and fire point i , denoted by
d0i , and the average driving speed of fire engines, denoted
by v0i . TAi = d0i/v0i in this paper. However, it is much
more complex and difficult to calculate tEi , since it depends
on multiple factors, such as the fire spread speed vsi ,
travel time of fire engines TAi , fire-fighting speed of fire
engines v f and dispatched vehicle count yi . In the paper,
we compute tEi using the following formula as proposed
by [29]:

tEi = vsi TAi/(yiv f − vsi ), ∀i ∈ V

It can be seen that the fire lasting time is influenced by
vehicle scheduling. Conversely, it would influence vehicle
scheduling, since one objective is to minimize the total fire
lasting time.

Remark 1: For any fire point i ∈ V , the value of yiv f −vsi

should be greater than 0; otherwise this fire point cannot be
extinguished. In other words, yi > vsi/v f should be ensured
in processing fires to derive a feasible scheme.

The fire spread speed for any given fire point is determined
by the following fire spread model taking into account natural
factors, e.g., wind force, terrain slope, and fuel types [29].

vs = v0λsλϕλw = v0λsλϕe0.1783vw

where vs is the fire spread speed; v0 = αT + βw + γ denotes
the initial spread speed; λs , λϕ and λw are the correction
factors of fuel types, terrain slope and wind force, respec-
tively; T and w represent the temperature and wind force,
respectively; α, β and γ are the factors related with the terrain,
respectively. According to the above formula for computing
tEi , the fire spread speeds of different fire points, denoted
by vsi , can greatly differ among each other due to different
natural conditions. For more details on the above formulas, see
[29]. Since the total number of fire engines is limited, it can
be imagined that if one fire point is assigned with more fire
engines, the available fire engines to be dispatched to the rest
becomes fewer. However, different fire points are independent
such that the spread of different fire points would not influence
each other.
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TABLE I

NOTATIONS USED TO DESCRIBE THE PROBLEM

As desired by decision-makers, to minimize the total
fire-extinguishing time is the primary goal. Meanwhile, the
dispatched fire engine count is desired to be optimized as the
second objective. This study aims to optimize the above two
objectives simultaneously via an optimal emergency schedule
such that an appropriate number of fire engines are dispatched
to different fire points.

A. Problem Formulation

With the notations presented in Table I, we first recall the
following integer program presented in [29].

P0 : f1 : min
n

∑

i=1

tEi (1)

f2 : min
n

∑

i=1

m
∑

j=1

xi j (2)

s.t. tEi = vsi TAi/(

m
∑

j=1

xi j v f − vsi ), ∀i ∈ V (3)

L B ≤

n
∑

i=1

m
∑

j=1

xi j ≤ m (4)

L i ≤

m
∑

j=1

xi j ≤ Ui , ∀i ∈ V (5)

xi j ∈ {0, 1}, j = 1, 2, . . . , m, ∀i ∈ V (6)

tEi ≥ 0, ∀i ∈ V (7)

Objective (1) is to minimize the total fire-extinguishing time.
Objective (2) is to minimize the number of dispatched rescue
vehicles. Constraint (3) defines the fire-extinguishing time of

fire point i ∈ V . Constraint (4) aims to guarantee that the
total number of fire engines sent to all fire points cannot be
greater than the number of available fire engines m and less
than L B vehicles such that all fire points can be extinguished.
Constraint (5) restricts the number of fire engines dispatched to
each fire point. Constraints (6) and (7) impose restrictions on
decision variables. It can be observed that model P0 employs
mn integer variables and 3n + 2 constraints.

B. An Improved Formulation

In this section, we improve the above formulation. Firstly,
we can directly employ integer variable yi to replace binary
variable xi j that can reduce (m − 1)n variables, since the
fire engines are supposed to be indentical [29]. Secondly, we
observe that parameter L B in P0 is redundant because it can
be implicitly ensured by the left side of (5). Thus we can
remove such bound constraint of (4). Thirdly, the right side
of (5) can also be removed since it can be ensured through
limiting the total number of fire engines as done in (4). With
these above observations, the following equivalent improved
and simplified formulation can be derived.

P : f1 : min
n

∑

i=1

tEi

f2 : min
n

∑

i=1

yi (8)

s.t. tEi = vsi TAi/(yiv f − vsi ), ∀i ∈ V (9)
n

∑

i=1

yi ≤ m (10)

L i ≤ yi , ∀i ∈ V (11)

tEi ≥ 0, yi ∈ I N+, ∀i ∈ V (12)

It can be seen that model P employs n integer variables and
2n+1 constraints. Compared with model P0, model P reduces
(m − 1)n integer variables and n + 1 constraints. Comparison
results reported later show that P is much more efficient to
solve than P0.

We note that both P0 and P involve integer variables and
are non-linear due to the non-linear constraints (3) and (9). It is
difficult to solve them by commercial optimization software
such as LINGO to be reported later. In order to solve P , its
property analysis is performed in the following section.

IV. PROPERTIES OF THE MODEL

As a schedule with fewer rescue vehicles dispatched
to extinguish fires may lead to a longer fire-extinguishing
time, the two objectives of the proposed model (i.e., fire-
extinguishing time and number of dispatched fire engines)
are conflicting. As such, there does not exist an unique
solution to simultaneously optimize the above two objectives
but a set of Pareto-optimal solutions. For simplicity, let Y

denote the feasible solution set of P . Before proceeding, we
first give the following definitions related to multi-objective
optimization [40].
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Definition 1: A schedule y∗ ∈ Y is Pareto-optimal if and
only if there exist no schedule y ∈ Y , such that f1(y) ≤ f1(y

∗)

and f2(y) ≤ f2(y
∗) where at least one inequality is strict.

Definition 2: A solution (point) ( f1(y), f2(y)), y ∈ Y , in
the objective space is non-dominated if y is Pareto-optimal.

The image of all non-dominated points is called the non-
dominated set or the Pareto f ront . To exactly solve a multi-
objective optimization problem means finding its Pareto front.

To derive the relation between the two objectives of
model P , we first define the feasible (expected) number of
dispatched fire engines as a parameter R satisfying

∑n
i=1 L i ≤

R ≤ m where m and L i is the total available fire engine count
and the minimum number of fire engines needed to fight fire
point i , respectively. Then, model P can be transformed into
PR for a given R.

PR : min
∑

i∈V

tEi

s.t.
∑

i∈V

yi ≤ R (13)

and constraints (9), (11) and (12)
PR is to minimize the total fire-extinguishing time for a

given number of rescue vehicles R. For the convenience of
analysis, let y∗

R = (y∗
1,R, y∗

2,R, . . . , y∗
n,R), t∗Ei , and T ∗

R =
∑n

i=1 t∗Ei denote an optimal number of fire engines dispatched
to fire points i = 1, 2, . . . , n, the time of extinguishing fire
point i , and the optimal objective value, respectively. For any
problem PR , we have the following results.

Proposition 1: In an optimal solution of PR , the number
of dispatched fire engines is exactly equal to R, i.e.,
∑n

i=1 y∗
i,R = R.

Proof: By contradiction. Suppose that
∑n

i=1 y∗
i,R < R. Let

△ = R−
∑n

i=1 y∗
i,R . Since R ≤ m, then △ rescue vehicles can

be additionally added to schedule y∗
R = (y∗

1,R, y∗
2,R, . . . , y∗

n,R)

without violating any constraint of PR . Thus, from the current
schedule, we can construct a new feasible schedule (y∗

1,R+△1,

y∗
2,R + △2, . . . , y∗

n,R + △n) with
∑n

i=1 △i = △,∀△i ≥ 0.
According to Eq. (9), for any i ∈ V , if △i > 0, then the value
of tEi in the new schedule must be less than that of the original
one. This means that we have found a new schedule with less
fire-extinguishing time and R rescue vehicles are dispatched
to fight fires. This contradicts the fact that y∗

R is an optimal
schedule. Consequently,

∑n
i=1 y∗

i,R = R always holds.
Proposition 2: In an optimal solution, the fire-extinguishing

time T ∗
R is a strictly decreasing function of the number of

dispatched fire engines R, i.e., for any two values R1 and R2,
if R1 < R2, then T ∗

R1
> T ∗

R2
always holds.

Proof: We firstly show that if R1 < R2, then T ∗
R1

≥ T ∗
R2

always holds. For any given two values of R, i.e., R1 and
R2, if R1 < R2, then constraint (13) of PR1 is tighter than
that of PR2 and all the other constraints of both problems
are the same. Thus, T ∗

R1
is not less than T ∗

R2
, i.e., T ∗

R1
≥ T ∗

R2
.

Then, we show T ∗
R1

= T ∗
R2

is impossible by contradiction.
Assume that T ∗

R1
= T ∗

R2
. Then, the optimal schedule of

PR1 is also an optimal one of PR2 . By Proposition 1, we
have

∑n
i=1 y∗

i,R1
= R1 = R2, which contradicts the fact that

R1 < R2. This indicates that it is impossible T ∗
R1

= T ∗
R2

.
Consequently, if R1 < R2, then T ∗

R1
> T ∗

R2
always holds.

By Propositions 1 and 2, we have the following corollary.
Corollary 1: A Pareto-optimal solution can always be

obtained by exactly solving PR for a given R.
Furthermore, as

∑n
i=1 L i ≤ R ≤ m, the lower and upper

bounds on the number of dispatched fire engines (i.e., f2) over
the Pareto front are

∑n
i=1 L i and m, respectively. We can also

have the following theorem.
Theorem 1: There exist m −

∑n
i=1 L i + 1 non-dominated

points in the Pareto front of model P and they can be obtained
by separately solving PR with R being each value in the set
� = {

∑n
i=1 L i ,

∑n
i=1 L i + 1, . . . , m}.

Proof: By Propositions 1 and 2 and the fact that the value
of f2 must be an integer.

In the following, new optimization approaches based on
the derived properties are developed for the considered
problem.

V. SOLUTION APPROACH

As indicated by Theorem 1, the key to solving P becomes
how to efficiently solve PR . Since PR is a non-linear integer
program because of constraint (9), it is difficult to be tackled
by a commercial solver such as LINGO. Therefore, it is
necessary to develop solution approaches for it. In what
follows, we design an exact dynamic programming algorithm
and a fast greedy heuristic method for solving PR . For the
former, the Pareto front is ensured at the expense of com-
putational time, while for the latter, an approximated Pareto
front is derived but the computational time can be greatly
saved.

A. Dynamic Programming Algorithm

To solve problem PR exactly, we develop in this subsection
a dynamic programming (DP) algorithm based on the proper-
ties of the problem.

From PR , we can find that for each fire point i , a minimum
number of rescue vehicles L i must be dispatched such that
it can be extinguished (see constraint (11)). Consequently,
for PR , the key problem becomes how to dispatch the remain-
ing R −

∑n
i L i vehicles such that the total fire-extinguishing

time is minimized. Before proceeding, we first define a new
variable as follows.

zi : additional number of fire engines except a minimum
value L i dispatched to fire point i , i ∈ V . Note that
yi = zi + L i .

With the new definition and Proposition 1, PR can be
rewritten as follows:

min
n

∑

i=1

vsi TAi/((zi + L i )v f − vsi )

s.t.
n

∑

i=1

(zi + L i ) = R (14)

zi ≥ 0, ∀i ∈ V (15)

Let Ti = vsi TAi /(L iv f − vsi ), which denotes the fire-
extinguishing time of fire point i with L i fire engines. Then,
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the above program is equivalent to the following one:

P ′
R : max

n
∑

i=1

(Ti − vsi TAi /((zi + L i )v f − vsi )) (16)

s.t.
n

∑

i=1

zi = R −

n
∑

i=1

L i

zi ≥ 0, ∀i ∈ V (17)

To solve P ′
R , a DP algorithm is proposed as follows.

For the convenience of analysis, let ri (zi ) = Ti − vsi TAi /
((zi + L i )v f − vsi ); and for fire point i , let Fi (z) denote the
maximum objective value among all vehicle schedules that
contain fire point set {i, i + 1, . . . , n}, given z fire engines
to be dispatched. By using the above notations, the optimal
solution of P ′

R can be computed in a recursive way
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Fn(z) = rn(z)

Fi (z) = max
0≤zi≤z

{ri (zi ) + Fi+1(z − zi )},

∀ 1 ≤ i < n

(18)

The optimal objective value of PR can be obtained by
F1(R −

∑n
i=1 L i ) in O(nm2) time in the worst case. Thus, the

optimal objective value of PR is
∑n

i=1 Ti − F1(R −
∑n

i=1 L i ).
By Theorem 1, there are m−

∑n
i=1 (at most m) single-objective

problems PR’s need to be solved, thus the whole solution of
model P with the DP algorithm requires O(nm3) time in the
worst case, which is pseudo polynomial.

B. Greedy Heuristic Algorithm

In order to more efficiently solve P , especially for large-size
problems, we also propose a greedy heuristic method for PR

whose core idea is to first ensure the minimum requirements
of fire engines for each fire point and then to assign remaining
available vehicles one by one to the fire point with the largest
reduction in the total fire-extinguishing time. Its procedure is
outlined in Algorithm 1.

Algorithm 1 A Greedy Heuristic Algorithm for PR

1: Let yi = L i ,∀i ∈ V and obtain y = (L1, L2, . . . , Ln)

2: Calculate f1(y) and let Rv be R −
∑n

i=1 L i , which denotes
the remaining fire engine count expect the minimum
requirement.

3: while (Rv > 0)

4: Let Rti = 0,∀i ∈ V

5: for i = 1; i ≤ n do

6: Let yi = yi +1 and obtain solution y′ = (y1, y2, . . . , yn)

7: Calculate f1(y
′) and let Rti = f1(y) − f1(y

′)

8: yi = yi − 1
9: end for

10: Select the fire point i= arg max Rti
11: yi = yi + 1 and Rv = Rv − 1
12: end while

13: Output the solution y = (y1, y2, . . . , yn) and the corre-
sponding objective value f1(y).

In Algorithm 1, step 1 is to assign the minimum number
of fire engines to each fire point; step 2 calculates the

corresponding fire-extinguishing time and the rest fire engine
count; steps 3-12 are to assign the remaining fire engines one
by one where steps 5-9 are to determine which fire point
to be assigned at each iteration; and step 13 outputs the
solution and its corresponding objective value. Clearly, the
most time-consuming parts of Algorithm 1 are steps 3-12.
Since 0 ≤ Rl ≤ m − n, then at most m − n additional
rescue vehicles are to be assigned. Then, for each assign-
ment (i.e., steps 5-9), we need to check at most n fire
points. Thus, Algorithm 1 requires O(nm) time in the worst
case.

As Algorithm 1 cannot guarantee the solution optimality,
an approximated Pareto front of P is found by solving all
PR’s using Algorithm 1. Similarly, since at most m prob-
lems need to be solved, the whole solution of model P

using Algorithm 1 for each PR requires O(nm2) time in
the worst case, which enjoys lower time complexity than the
DP algorithm.

VI. EXTENSION TO MULTI-DEPOT CASE

In practical situations, it might be possible that a single
fire-fighting service point cannot meet all the fire-fighting
needs, i.e., the capability of the fire-fighting service station
is not enough. This motivates us to deploy multiple service
points to collaboratively extinguish forest fires. This subsec-
tion expands model P to a multi-depot case, thus formu-
lating a multi-depot fire engine scheduling problem for the
first time.

To formulate this problem, one of the key problems is to cal-
culate the fire-extinguishing time. For the sake of convenience,
let K , mk , TAik and yik denote the set of all service points, the
number of fire engines involved in the k-th depot, the travel
time of fire engines from the k-th service point (depot) to
fire point i , and the number of fire engines dispatched to fire
point i from the k-th service point, respectively. Note that yik

is the decision variable. Similarly, TAik can be calculated as
dki/vki , where dki and vki are the distance between depot
k and fire point i and the average driving speed of fire
engines, respectively [29]. Let tRi denote the whole rescue
time for fire point i ∈ V . Then, according to [29], the
mathematic relation among vsi , v f and TRi can be described
as follows:

tRi · vsi =
∑

k∈K

(tRi − TAik ) · v f yik, ∀i ∈ V ,

where the left (resp. right) side represents the fire-fighting
(resp. fire spread) area of the i -th fire point and tRi − TAik

denotes the fire-fighting time of the fire engines from the k-th
depot. Thus, the whole rescue time for fire point i is:

tRi =

∑

k∈K v f TAik yik
∑

k∈K v f yik − vsi

, ∀i ∈ V .

Remark 2: For any fire point i ∈ V ,
∑

k∈K yik >

vsi/v f should be ensured to derive a feasible
scheme.
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Thus, the multi-depot fire engine scheduling problem can
be formulated as the following program PM .

PM : f1 : min
∑

i∈V

tRi (19)

f2 : min
∑

i∈V

∑

k∈K

yik (20)

s.t. tRi =

∑

k∈K TAikv f yik
∑

k∈K v f yik − vsi

, ∀i ∈ V (21)

n
∑

i=1

yik ≤ mk, ∀k ∈ K (22)

∑

k∈K

yik ≥ L i , ∀i ∈ V (23)

tRi ≥ 0, yik ∈ {0} ∪ I N+, ∀i ∈ V , ∀k ∈ K

(24)

where constraint (22) ensures that the dispatched fire engines
from the k-th depot should not exceed its capacity and con-
straint (23) ensures that the number of fire engines dispatched
to fire point i should exceed the given lower bound value
L i ≥ ⌈vsi/v f ⌉ based on Remark 2. As PM has its own
specialities, the proposed DP and heuristic for P cannot be
used to solve it despite our best efforts. To solve PM , the ε-
constraint method [41] is adapted to solve it. Its basic idea
is to transform the bi-objective model to a single-objective
one by optimizing a preferred objective while restricting the
other to a given bound ε. For more details on the ε-constraint
method, please refer to [40] and [41]. For PM , we select
the first objective f1 as the preferred one. Then, PM can be
transformed to PM (ε) shown as follows:

PM (ε) : min
∑

i∈V

tRi

s.t.
∑

i∈V

∑

k∈K

yik ≤ ε

and constraints (21) − (24) (25)

where ε is an upper bound of f2. It is not hard to find
that the range of ε would be [

∑n
i=1 L i ,

∑

k∈K mk]. Given a
value of ε, one non-dominated point may be found by exactly
solving PM (ε). The Pareto front can be obtained by varying
the value of ε within its range. Its procedure can be described
in Algorithm 2.

Algorithm 2 The ε-Constraint Method for PM

1: Transform PM to PM (ε)

2: Calculate the range of f2, i.e., [
∑n

i=1 L i ,
∑

k∈K mk].
3: for ε ←

∑n
i=1 L i to

∑

k∈K mk do

4: Solve PM (ε) by using LINGO and obtain the solution and
its corresponding objective vector.

5: end for

6: Remove dominated points and output the final solution set.

VII. COMPUTATIONAL EXPERIMENTS

In this section, benchmark instances in [29] and larger-
size randomly generated instances are tested to evaluate the

TABLE II

MODEL COMPARISON RESULTS FOR SOLVING INSTANCES IN [29]

TABLE III

COMPARISON RESULTS FOR A REAL-LIFE INSTANCE

performance of the proposed model and algorithms. Both
models P0 and P are solved by using commercial optimization
software LINGO (V14.0) and the proposed algorithms are
coded in C++ with Visual Studio 2010. All the computa-
tional experiments are conducted on a PC with 2.5 GHz and
2.95 GB RAM under windows 10. The computational time
(CPU time) spent by each method is limited to 10 min (600000
ms) for facilitating fast decision-making in actual emergencies.

A. Model Comparision

To evaluate the performance of the proposed model, we
test the benchmark instances in [29] by directly using
P and P0 solved by LINGO. For the sake of convenience, let
V ar and Cons denote the number of variables and constraints,
respectively. Table II presents their comparison results.

From Table II, we can see that our model P employs much
fewer variables and constraints than the existing one P0. P

can exactly solve four of the five instances, while P0 fails to
solve any of them within 10 minutes. This indicates that our
model is much more efficient than the existing one, because
the proposed model is more compact and tighter than the one
in [29].

B. Real-Life Instance

We then test the real-life instance from the emergency
scheduling of forest fires in Huzhong region located in Mt.
Daxing’anling of Heilongjiang Province, China [29]. In this
instance, seven fire points are involved and 40 rescue vehicles
are available for fighting fires. For more details, interested
readers can refer to [29]. Table III reports the comparison
results between the method proposed by Tian et al. [29]

7



TABLE IV

COMPARISON RESULTS FOR BENCHMARK INSTANCES

(called TRZ for short) and the proposed algorithms, in which
columns 3 to 5 list the found Pareto points. For each point,
the first value represents the fire-extinguishing time, while the
second one denotes the number of dispatched fire engines.

It can be seen in Table III that each method obtains a set
of Pareto solutions. To better understand different possible
decisions, take the first and last points of TRZ as an example,
the results mean that it will take 6.08 h to extinguish all fire
points with 40 fire engines for the former, while 39.6 h will
be consumed with 29 fire engines for the latter. Decision-
makers can select a preferred solution from the Pareto front.
Furthermore, from Table III we can conclude that:

1) In terms of solution quality, the number of Pareto-optimal
solutions obtained by our algorithms is more than that by
TRZ. Moreover, three new non-dominated points (i.e.,
(6.06, 40), (6.97, 38) and (15.45, 32)) are found by
our algorithms. The heuristic can also obtain the Pareto
front as the DP algorithm. This shows that the proposed
heuristic is able to obtain high-quality solutions.

2) In terms of computational time, both the DP and heuristic
algorithms are much more efficient in solving this real-
life instance than TRZ and LINGO. Moreover, it can
be observed that the heuristic performs better than the
DP algorithm in terms of computational efficiency.

3) The fire-extinguishing time decreases as the number
of dispatched fire engines increases due to the strictly
decreasing relationship between them, which matches the
conclusion made in Proposition 2.

C. Benchmark Instances

To further show the performance of the proposed methods,
we conduct numerical comparison tests on a set of benchmark
instances in [29] with a different number of fire points, i.e.,
10, 15, 20, and 50. Let RTRZ, RH, and RDP denote the
coverage rate of non-dominated points found by TRZ, the
proposed DP and heuristic algorithms to the exact Pareto front,
respectively. This indicator measures the solution quality. As
the DP algorithm can obtain all the non-dominated points over
the Pareto front, RDP is 100%. Note that both RTRZ and RH
are equal to or less than 100%, as their obtained solutions
are not guaranteed to be Pareto-optimal. For brevity, let |F |

denote the number of obtained non-dominated points in the
Pareto front. With the above notations, the comparison results
are summarized in Table IV.

It can be seen from Table IV that the values of RH and RDP

are 100% for all the instances, while that of RTRZ varies from

TABLE V

COMPARISON RESULTS FOR BENCHMARK INSTANCES

WITH DIFFERENT m VALUES

0 to 58.33%. This implies that the proposed greedy heuristic
can also obtain the Pareto front just like the DP algorithm,
while TRZ fails to achieve it. Moreover, we can see that
the value of RTRZ decreases as the problem size increases.
It is worthwhile to point out that the value of RTRZ is 0 for
the largest-size instance with n = 50 and m = 250, which
implies that TRZ fails to derive Pareto-optimal solutions for
this instance; whereas the value of RH does not decrease with
the problem size. The results show that both the proposed DP
and heuristic methods outperform TRZ in terms of solution
quality. Furthermore, it can be seen that our algorithms can
obtain the Pareto front for these instances in short time, i.e.,
the computational time spent by the proposed DP and heuristic
algorithm slightly vary from less than 1 to 6 ms and from
12 to 82 ms, respectively, while the computational time of
TRZ and LINGO varies from 525 to 51526 ms and 22000 to
over 600000 ms, respectively, which sharply increases with the
problem size. This shows that our algorithms are more efficient
than TRZ and LINGO. In addition, the heuristic method
achieves the best performance in terms of computational time.

In practical emergency scheduling, it is necessary to take
into account the impact of the quantity of available rescue
resources, i.e., the number of available fire engines to our
problem. We also test the benchmark instances under different
settings of the number of available fire engines (i.e., m). As
it is very time-consuming to solve the model with LINGO,
we only compare our algorithms with TRZ. Their comparison
results are reported in Table V.

From Table V, we can see that the proposed DP and heuristic
can obtain all non-dominated points (i.e., Pareto front), while
TRZ can at most find 75% non-dominated points in the
Pareto front. In addition, for each given n, the value of RTRZ

decreases with the value of m, while the coverage rates of
our algorithms keep the same. The results show that the
proposed algorithms are more effective than TRZ in solving
these instances. Moreover, it can be seen that for a fixed n,
the number of non-dominated points |F | increases with m,
which implies the complexity of the problem increases with m.
In terms of computational time, we can see that the proposed
algorithms consume far less time than TRZ and also, the
heuristic algorithm is the fastest one. The results again confirm
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TABLE VI

COMPUTATIONAL RESULTS FOR LARGER-SIZE RANDOM INSTANCES

the efficiency of the proposed algorithms.

D. Larger-Size Instances

To further evaluate the performance of the proposed meth-
ods for solving larger-size problems, we perform numerical
tests with more fires points varying from 100 to 1000. Note
that although these large-size instances might not happen in
real life, we conduct such experiments to further demonstrate
the performance of the proposed algorithms. For each problem
size, five instances are tested. All instances are randomly gen-
erated based on the way in [29], which is described as follows.
The distance among points in the network di j is uniformly
and randomly generated in the interval [50, 100]. The driving
speed of the rescue vehicle from vertices i and j,∀i, j ∈ V ′,
vi j is set to be 54 km/h. The fire-extinguishing speed of a
fire engine v f is set as 2.5 m/min. The fire spread speed vsi is
uniformly and randomly generated in the interval [2, 6] m/min.
As the TRZ consumes too much computational time for large-
size problems, we only compare our two algorithms in this
subsection. For the sake of convenience, let TDP and TH denote
the computational time by the proposed DP and heuristic algo-
rithms, respectively. The computational results are summarized
in Table VI. Note that each value in the table is the average
value of five instances.

From Table V, we can conclude that:
1) The value of RH is 100% for all problem sets, which

implies that the proposed heuristic obtains the Pareto
fronts of all instances.

2) The proposed algorithms obtain the Pareto fronts with up
to 1000 fire points and 5000 fire engines within 79938 ms
(less than 80 s). The results show that our algorithms are
effective and efficient in solving the large-size instances.
Also, it can be observed that TH is less than TDP over all
problem sets, and TDP rapidly increases with the problem
size, whereas TH increases in a much slower pace than
DP does. This indicates that the heuristic method is more
efficient than the DP algorithm. Besides, the results in this
table suggest that |F | has an obvious increasing trend as
the number of available fire engines (i.e., m) increases.
This can be explained in part by Theorem 1.

E. Results of Multi-Depot Fire Engine Scheduling

We also test the real-life instance by considering multiple
depots to evaluate the proposed model PM . Three cases with

TABLE VII

COMPUTATIONAL RESULTS FOR THE REAL-LIFE

INSTANCE WITH MULTIPLE DEPOTS

Fig. 2. The Pareto fronts of the real-case instance with multiple depots.

|K |=2, 3, and 4 are considered, where |K | denotes the number
of fire service points (i.e., depots). According to [29], the
distances between the newly added depots and fire points
are uniformly and randomly generated in [50, 100]. The total
number of fire engines for each case is set the same as the
work [29]. For |K |=2, 3, and 4, we set m1 = m2 = 20; m1 =

15, m2 = 13, m3 = 12; and m1 = m2 = m3 = m4 = 10,
respectively. The other related data is kept unchanged. Table
VII and Fig. 2 present the computational results.

From Table VII, we can see that the proposed algorithm
(i.e., Algorithm 2) is able to obtain the Pareto front of the
real-life instance with multiple depots within the given time.
Moreover, the computational time increases as the number
of depots increases, which is mainly because the number of
variables and constraints increases with |K |. This indicates
that the complexity of the problem increases with the number
of depots. Besides, it can be observed that the number of
non-dominated points found for each case is the same, which
means that Algorithm 2 can find a non-dominated point at
each iteration for each case. This implies that a non-dominated
solution exists for each value of f2.

From Fig. 2, we can see a clear trade-off between the
total rescue time and the number of fire engines dispatched
for each |K |. The Pareto fronts derived can provide useful
information for decision-makers to achieve a balance between
rescue time and dispatched resources. In particular, decision-
makers can select their most preferred solution from the solu-
tion set. For instance, if they prefer a solution with the least
emergency response time, then the last solution can be chosen.

VIII. CONCLUSIONS

This work has studied a bi-objective emergency scheduling
problem for forest fires to simultaneously minimize the total
fire-extinguishing time and the total dispatched fire engines.
An improved bi-objective integer program containing less vari-
ables and constraints has been proposed for the studied prob-
lem. Experimental results indicate that the improved model
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significantly outperforms the existing one [29]. Based on the
property analysis results of the problem, an exact dynamic
programming algorithm and a fast greedy heuristic method
are devised. Computational results for a real-life instance and
benchmark instances show that the proposed DP and heuristic
algorithms significantly outperform the existing method [29]
in terms of both solution quality and computational efficiency.
The Pareto fronts of all the benchmark instances are obtained.
Larger-size randomly generated instances are also tested
to evaluate the performance of the proposed algorithms.
Experimental results indicate that large-size problems with
up to to 1000 fire points and 5000 fire engines can be exactly
solved within 80s on a personal computer. This demonstrates
the effectiveness and efficiency of the proposed algorithms in
solving large-scale rescue vehicle scheduling problems to deal
with forest fires. Moreover, this study has also constructed a
multi-depot fire engine scheduling model for the multi-depot
case and the ε-constraint method is adapted to solve it. The
trade-off between the two objectives to be optimized is clearly
illustrated.

Although the proposed model is much more efficient than
the existing one, it could not address the case with heteroge-
neous fire engines. One future research direction is to construct
new and effective models for the heterogeneous fire engine
scheduling. Other future research following this work may
include extending the studied problem to more general cases.
For example, in practice, the travel time from the fire service
station to fire points can dynamically change with the roadway
conditions. Extending the proposed model to a stochastic or
time-dependent one by considering stochastic or varying travel
time would be an important direction. Besides, it can be
found that the multi-depot fire engine scheduling problem
is much more difficult to solve. New effective and efficient
approaches [42]–[51] should be designed for addressing such
optimization problems.
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