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Loïc Le Marrec · Jean Lerbet ·
Lalaonirina R. Rakotomanana

Vibration of a Timoshenko beam supporting arbitrary large
pre-deformation

Abstract We present an induced geometrically exact theory for the three-dimensional vibration of a beam
undergoing finite transformation. The beammodel coincides with a curvilinear Cosserat body and may be seen
as an extension of the Timoshenko beam model. No particular hypothesis is used for the constitutive laws (in
the framework of hyperelasticity), the geometry at rest or boundary conditions. The method leads to a weak
formulation of the equations of vibration. The obtained internal energy is symmetric and leads to a self-adjoint
operator that casts into a geometrical and material parts. Both may be written explicitly in terms of the finite
transformation. The results are applied on the vibration of a beam supporting a finite longitudinal strain. The
nonlinear effects according to the pre-stress are explicitly detailed for this example: instability, buckling.

1 Introduction

Engineering applications of vibration, such as structural health monitoring and more widely nondestructive
testing, arewell developed anddocumented. In the high frequencydomain (i.e., for smallwavelengths compared
to the structure size) the problem is mainly associated to ultrasonic propagation. In the large frequency domain,
the vibrations are strongly affected by the effective properties of the structure and its boundary conditions [1,2].
Of course, a wide literature exists on the sensitivity of the dynamical response to geometry [3], constitutive laws
[4–8] and boundary conditions [9]. However, the theoretical investigation of the effect of a finite transformation
has not attracted so much attention.

The well-known exception is the string for which the relation between tension (pre-stress) and frequencies
is stated by Marin Mersenne in his 1637 work. An instructive bibliography can be found in the conclusion of
[10]. However, in addition to the string, the problem of finite transformation is observed in many structural
configurations. The present paper focuses on beams and then possible applications range from the pillar bearing
a heavy swiveling deck to the tension in micro-ships under a thermal dilation of its support and includes guy
ropes.

The classical Euler–Bernoulli beammodel is suitable for most engineering applications [11]. However, it is
rather limited to relatively low frequencies and thin beams. TheTimoshenko beammodel enlarges the frequency
domain of validity and allows applications for relatively thicker beams, e.g., [12–14]. The timoshenko model
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introduces transversal shear and does not neglect the rotational inertia of the section. Introducing new degrees
of freedom, it describes two types of standing waves for a given frequency [15,16]. The kinematics of a three-
dimensional beam allowing torsion and extension refer to the analysis of a curvilinear Cosserat medium [17]
and constitutes the general framework of the paper.

Theoretical (e.g., [18,19]) and numerical (e.g., [20]) approaches may be performed to tackle the effect of
pre-stress on the superimposed waves. The problem of finite displacement may be found for a large variety of
application, too: from wind turbine [21] to musical instrument [22]. In general, three difficulties are present:
the nonlinear stress–strain relation (large strain and nonlinear constitutive laws of material), the moving frame
induced by large displacement, and the load sensitivity to the transformation (leading to the distinction between
dead and followers loads). This explains why, in most of the cases, the methods are dedicated to a particular
application that permits simplifications and in some case an analytical formulation [19,23].

Indeed, such analysis requires to extend the theoretical modeling of finite transformation of a beam devel-
oped by [24] and generalized in [25]. In the static regime, Bernoulli–Euler [26] and Timoshenko-type kinematic
formulations [27] were used in the plane case in the framework of the Reissner approach [28]. The dynamical
problem for a shearing rod may be found in [29,30]. Later, in [31], a the full coordinate-free approach of
the dynamics of curvilinear systems was developed. It involves calculations on Lie groups for generating the
dynamic equations of a similar model as the one of the present paper. However, it did not make a bridge with
the usual concepts of continuum and structural mechanics especially regarding the strain analysis. Moreover,
it did not tackle any modal analysis, too.

From our knowledge, a general formulation of the vibrations superimposed on a finite transformation is
not addressed in these previous theoretical works. Nowadays, the dynamic response of a beam supporting
finite strain is essentially numerically oriented [32]. More precisely, the problem of infinitesimal vibrations
superimposed on the finite transformation is based on the determination of the continuum tangent operator.
Following, the strategy of [24], we extend the work in order to give a methodology allowing us to write the
weak and strong formulation of the vibration equation of a beam of general material around an arbitrary finite
transformation.

Some basics on the finite transformation of a three-dimensional body are presented first. Particular attention
must be paid to avoid some hypothesis on the material properties and the corresponding constitutive laws. The
second section aims to introduce the beam model in the sense of a Cosserat one-dimensional element moving
in the three-dimensional world. In that sense, the whole paper gives a special place to the directors as preferred
basis of tensorial objects. The consequences on the kinematics and dynamics are presented without additional
hypothesis. The weak formulation of the dynamical equation is then obtained by careful integration over the
cross section. This gives the opportunity to introduce the corotational derivative of strains (also known as
Jaumann derivative). In the fifth section, the general problem of superimposed small perturbation (waves) is
presented as a (Gâteaux) linearization of the additional perturbations around the finite transformation. The
general methodology to obtain weak and strong formulation of the (superimposed) wave equation is given
without further hypothesis. For inertia and internal power, the question of the self-adjoint character of the mass
and rigidity operators are posed, whereas the effects of the load (follower or dead) are studied for the external
virtual load. In the last section, an example is proposed in order to show how analytical and explicit equation
may be recovered. Even if this example is very simple (dead longitudinal pre-stress of a straight beam made
of a Kirchhoff–Saint Venant material), the three-dimensional equations (torsion, flexion, and extension) of
superimposed vibrations show a large number of effects that are briefly exposed and discussed. Confrontation
with other models as string and ropes is performed and shows the large versatility of the presented approach.

2 General considerations for finite transformations of a bounded body

We consider a bounded material body B. Its reference configuration Φ0 is defined as the configuration where
the body is at rest (stress-free) in absence of external load. Let ∂B be the surface boundary of B where traction
f is eventually prescribed (per unit initial area of the reference configuration). The body is subjected to a body
force field ρ0b, where ρ0 is the mass density in the reference configuration (see Fig. 1).

2.1 Kinematics

We denote a fixed arbitrary origin O and M a point of the body placed at OM = XIDI in the reference
configuration. After finite transformation, the point M is localized at OM = xidi . The local bases {DI} and
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Fig. 1 Reference configuration Φ0 (left) and current configuration Φ. A priori the force densities may change along the trans-
formation (followers load for example). The cross section is normal to the centerline C in the reference configuration but not
necessarily in the current configuration: d3 is not tangent to C

{di} are associated with the reference and current configuration, respectively, and may be distinct from the
Cartesian basis {eI}.

The deformation gradient is F := ∇XOM and reads in terms of components F = Fi
Idi ⊗ DI. However,

all along the paper {DI} and {di} are both orthonormal bases, and the low or high position of tensor’s indices
is not meaningful and all indices will be lowered in the following.

For finite transformation, the strain may be described by the Green–Lagrange strain tensor:

E := 1

2

(
FT F − I

)
, then E = 1

2
(Fi I Fi J − δI J ) DI ⊗ DJ. (1)

2.2 Stress

The second Piola–Kirchhoff stress tensor S is associated with the Green–Lagrange strain. From a given
configuration of the three-dimensional body, the local stress increment δS is related to the increment of local
strain δE by a relation of the form:

δS = C δE, or explicitly δSI J = CI J K LδEK L . (2)

Here stress and strain are described by purely Lagrangian tensors. C is an elasticity tensor (with a priori
dependence on E). The angular momentum balance induces left minor symmetry CI J K L = CJ I K L , whereas
the symmetry of the strain tensor induces right minor symmetry CI J K L = CI J LK [33]. Major symmetry is
ensured in the case of a hyperelastic material. If the stress-strain relation is continuous around the reference
configuration:

C = ∂S
∂E

or CI J K L = ∂SI J
∂EK L

. (3)

This relation is general and may be used even for a class of material for which C depends on the strain: C(E).
The nominal or first Piola–Kirchhoff stress tensor P = Pi Jdi ⊗ DJ is related to S by

P = FS, then Pi J = FiK SK J . (4)

Symmetry of S is imposed by the law of angular momentum and induces: PFT = FPT .
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2.3 Introduction to weak formulation

We recall some basic points of the variational formulation for the dynamics of an elastic body. The principle
of virtual power takes the following form, e.g., [34]

∫

B
ρ0b · δu dV +

∫

∂B
f · δu dA =

∫

B
ρ0

∂2u
∂t2

· δu dV +
∫

B
P : δF dV, ∀ δu ∈ W (5)

where u is the displacement of any point of the three-dimensional body and W is the space of kinematically
compatible virtual displacement, usually called the space of variation for the continuum. The various terms
in the preceding equation are the virtual power of inertia, the virtual power of external loading and internal
virtual power, respectively:

P j (Φ, δΦ) =
∫

B
ρ0

∂2u
∂t2

· δu dV, (6)

Pe(Φ, δΦ) =
∫

B
ρ0b · δu dV +

∫

∂B
f · δu dA, (7)

Pi (Φ, δΦ) =
∫

B
P : δF dV . (8)

At this stage, an important point must be clarified: all these terms are calculated in the reference configuration.
Hence, they are computed by an integration along the body in the reference configuration. This explains the
choice of the mass density ρ0 and of the capital letters for volume and area density (dV and dA, respectively).

Another formulation of the internal virtual power may be obtained according to the dual tensor S and E.
Indeed, remembering the relation P = FS, we have for the internal power density: P : δF = S : FT δF.
Observing that δE = (1/2)

(
(δF)T F + FT δF

)
and symmetry of S, we obtain (without any hypotheses on the

material behavior):
P : δF = S : δE = SI J δEI J , (9)

with δEI J = (1/2)
(
δFkI Fk J + FkI δFkJ

)
.

3 Beam model as Cosserat continuum

For a body having a large slenderness ratio, a beam approximation is used in the general context of a Cosserat
continuum.

3.1 Kinematics

We consider aCosserat beammodel [24] defined by a spatialmaterial curve C. Practically the curve corresponds
to the positions of the section mass center G. At each time t , this latter is defined by (S, t) ∈ R

2 −→
OG(S, t) = ϕ(S, t), where S is a material curvilinear coordinate of C. The section of the beam is supposed
to be plane and rigid. Each point of this curve is associated with a rigid orthonormal base of directors {di }.
These directors are time-dependent di(S, t) with di(S, 0) = Di(S). The orientation of any section S is defined
by (S, t) ∈ R

2 −→ dα(S, t), α = 1, 2 where dα belongs to the section plane. This leads to the definition of
d3 := d1 × d2 that is normal to the section.

Therefore, the position of any material point M of the beam in the deformed configuration is defined by
the mapping, e.g., [35] (with summation over 1 and 2 for repeated Greek indices and from 1 to 3 for repeated
Latin indices):

(ξ1, ξ2, S, t) ∈ R
3 × R −→ OM(ξ1, ξ2, S, t) = ϕ(S, t) + ξα dα(S, t) ∈ R

3. (10)

Note that ξ1, ξ2 are time invariant in conformity with rigid section hypotheses.
A priori the transversal shear is not neglected, and the normal vector of the section d3 is not tangent to the

material curve C. The plane (d1, d2) is a material plane whereas the vector d3 is not material fiber. Because d3
is always a unit vector, it is not convected by the transformation. Hence {di} is neither a material nor a purely
convected frame, but a specific spatial frame associated with the current configuration.

4



By construction, a rotation tensor Q(S, t) relates, at any time, each director to the reference one: di(S, t) =
Q(S, t) Di (S) then Di(S) = QT (S, t) di (S, t) or equivalently Q = di ⊗ Di. On the other hand, the reference
director of any section is related to the Cartesian basis by a rotationDi(S) = R(S)ei whereR(S) is intrinsically
defined by the curve C of the beam at rest.

Spatial and temporal derivation of the directors involve twist κ and spin vector ω, respectively. Indeed, for
spatial derivation:

∂di

∂S
= ∂Q

∂S
QTdi + Q

∂R
∂S

RTQTdi.

We introduce twist κ as the axial vector associated with the skew-symmetric tensor K:

K := ∂Q
∂S

QT + Q
∂R
∂S

RTQT, κ(S, t) := vec (K) .

The same methodology is performed for time derivation:

∂di

∂t
= ∂Q

∂t
QTdi,

and spin ω is the axial vector associated with the skew-symmetric tensor W:

W := ∂Q
∂t

QT, ω(S, t) := vec (W) .

Note that K and W are updated Lagrangian-like tensors in the sense that they are associated with directors
in the current configuration. They are parametrized by the reference arc length S. The spin and twist may be
naturally expressed in this specific basis: ω (S, t) = ωi di and κ (S, t) = κi di.

We have finally the fundamental kinematical relation:

∂di

∂S
= κ × di,

∂di

∂t
= ω × di. (11)

It is the occasion to introduce a practical remark:

∂κ

∂t
− ω × κ = ∂ω

∂S
, (12)

that is related to the Maurer–Cartan form [36].

3.2 Deformation

From the beam motion defined by the map Eq. (10), the deformation gradient F := ∇XOM is given by [35]:

F = Fi Jdi ⊗ DJ = ∂OM
∂ξα

⊗ Dα + ∂OM
∂S

⊗ D3.

Using Eqs. (10) and (11), we have for GM = ξαdα a simple derivation for the rigid section:

∂GM
∂S

= κ × GM ,

and then

F = dα ⊗ Dα +
(

∂ϕ

∂S
+ κ × GM

)
⊗ D3. (13)

Introducing the strain vector of the beam, e.g., [24]:

ε (S, t) := ∂ϕ

∂S
(S, t) − d3 (S, t) , (14)
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the deformation gradient can be write as F = Q (I + H) where Q is the rotation of the section, I is the identity
tensor, and H = (

di · (ε + κ × GM)
)
Di ⊗ D3. Up to a rotation, the deformation gradient is entirely defined

by the knowledge of H (and then by ε and κ).

On the other hand, the Green–Lagrange strain tensor is:

E = 1

2

(
FT F − I

)
= 1

2

(
HT + H + HT H

)
. (15)

Again ε and κ govern the strain even for finite transformation. Using these quantities, the Green–Lagrange
strain E = 1

2 (Fi I Fi J − δI J ) DI ⊗ DJ takes the form of an anti-plane tensor [37]:

E = (
dα · (ε + κ × GM)

)Dα ⊗ D3 + D3 ⊗ Dα

2
+ . . .

((
d3 · (ε + κ × GM)

)+ 1

2
‖ε + κ × GM‖2

)
D3 ⊗ D3

(16)

where ε + κ × GM = ∂OM
∂S − d3, then E33 = 1

2 (‖ ∂OM
∂S ‖2 − 1)

It must be pointed out that E is a Lagrangian tensor whatever the use of the components of spatial vectors
ε and κ . The interest of using parametrization of these two vectors by the reference arc length is now clarified:
The geometrical parametrization of the Green–Lagrange strain tensor is purely related to coordinates in the
reference configuration: (ξ1, ξ2, S).

3.3 Forces and moment

In addition to kinematics, beam dynamics requires the definition of associated internal forces and moments.
The resultant forceN (or internal resultant stress) acting on the section S and the momentM per unit reference
length in an arbitrary section S, are easily obtained by means of the nominal Piola–Kirchhoff stress tensor
(Eq. 4):

N :=
∫

S
P(D3) dA = Nidi, M :=

∫

S
GM × P(D3) dA = Midi (17)

where dA is the area element of the section (unchanged by the transformation according to the rigid section
hypothesis). N and M take values on the reference configuration, and their components are naturally given
relative to the current basis {di}.

4 Variational approach

We present the variational approach for finite transformation of the beam.

4.1 Admissible variation for the beam model

Since the variational approach is expanded all along the paper, a brief review on the admissible variations of
the kinematics measures have to be first defined clearly.

As previously mentioned, a configuration of the beam is specified by the position of the center line and the
orientation of the director frame

Φ(S) := (ϕ(S), Q(S)) ∈ R
3 × SO(3) (18)

where SO(3) := {
Q : R3 → R

3 linear | QT Q = I and Det Q = 1
}
is the special orthogonal group. Let δϕ be

an infinitesimal displacement of the center line superimposed on the center line ϕ and let Q̃ a skew-symmetric
tensor representing an infinitesimal rotation superimposed on an arbitrary rotation Q (here the dependence
(S, t) is implicit). Hence the perturbated configuration Φε := (

ϕε, Qε

) ∈ R
3 × SO(3) is obtained by:

ϕε = ϕ + δϕ, Qε = exp
[
Q̃
]

Q.
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By exponentiation of a skew-symmetric tensor, one obtains an orthogonal tensor. Thus, Qε is an orthogonal
tensor. Q̃ is an element of so(3) := {

Q : R3 → R
3 linear | Q + QT = 0

}
which is the Lie algebra of all

skew-symmetric tensors. Due to the isomorphism between so(3) and R
3, Q̃ can be replaced by its associated

axial vector δω such that

Q̃ v = δω × v ∀ v ∈ R
3

and denoting a superimposed infinitesimal rotation. Indeed δω is a kinematically admissible virtual variation
of the directors’ rotation.

Finally, the set of kinematically admissible variations is given by (for example, for essential boundary
condition):

WΦ := {
δΦ = (δϕ, δω) ∈ R

3 × R
3 | δϕ ≡ δω ≡ 0, S ∈ {0, L}} .

4.2 Principle of virtual power

For a beam structure the kinematics of any point is constrained by the rigid motion of the section. In particular,
the displacements u (respectively δu) present in Eq. (5) may be written in terms of ϕ and Q (respectively δϕ
and δω) [35]. By definition u = OM − OM0 where OM is the position in the current configuration, whereas
OM0 = ϕ0 +G0M0 is the position in the reference configuration. In the new configuration OM = OG+GM,
where OG = ϕ and GM = Q(G0M0). Then u = ϕ − ϕ0 + (Q − I)G0M0. Small variations with respect to
the kinematics and time differentiation of the beam structure give:

δu = δϕ + δω × GM,
∂2u
∂t2

= ∂

∂t

(
∂ϕ

∂t
+ ω × GM

)
. (19)

4.2.1 External virtual power

Consider first the external virtual power using the kinematics of rigid body of any section:

Pe(Φ, δΦ) =
∫

B
ρ0b · (δϕ + δω × GM) dV +

∫

∂B
f · (δϕ + δω × GM) dA. (20)

Using invariance of the scalar triple product under a circular shift, we obtain:

Pe(Φ, δΦ) =
∫

B
δϕ · ρ0b + δω · (GM × ρ0b) dV +

∫

∂B
δϕ · f + δω · (GM × f) dA. (21)

On the one hand, we have
∫
B dV = ∫

C
∫
S dAdS and

∫
∂B dA = ∫

C
∫
∂S dLdS, and on the other hand, δϕ

and δω are independent of the local coordinates (ξ1, ξ2) of the section, they are not affected by the integration
over S. We can write:

Pe(Φ, δΦ) =
∫

C
q · δϕ + m · δω dS, (22)

in which the external applied force q (S, t) per unit length is:

q :=
∫

S
ρ0b dA +

∫

∂S
f dL , (23)

and the external applied couple m (S, t) per unit reference length is:

m :=
∫

S
GM × ρ0b dA +

∫

∂S
GM × f dL . (24)
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4.2.2 Internal virtual power

We begin with the internal virtual power in the form given in Eq. (8). Here, the perturbation of the deformation
gradient is δF = δ

(∇XOM
) = ∇X (δOM), with δOM = δu. In other words:

δF = (δω × dα) ⊗ Dα +
( ∂

∂S
(δϕ + δω × GM)

)
⊗ D3 . (25)

In order to simplify notations, we introduce pi such that pi = P(Di) then P = pi ⊗ Di (note that pi must not
been seen as a i-component of a vector). With these tools, the density of virtual power becomes:

P : δF = pα · (δω × dα) + p3 ·
( ∂

∂S
(δϕ + δω × GM)

)

= δω · (dα × pα) + p3 ·
( ∂

∂S
(δϕ + δω × GM)

)
.

(26)

At this stage, no specific information is explicitly given on pα . However, we have to bear inmind that symmetry
of the second Piola–Kirchhoff stress tensor implies FPT − PFT = 0. This can be written explicitly as:

d1 ⊗ p1 − p1 ⊗ d1 + d2 ⊗ p2 − p2 ⊗ d2

+ . . .

(
∂ϕ

∂S
+ κ × GM

)
⊗ p3 − p3 ⊗

(
∂ϕ

∂S
+ κ × GM

)
= 0.

The operation leads to canceling a skew-symmetric tensor. In a trivial way, this is equivalent to canceling its
axial vector, and indeed

p1 × d1 + p2 × d2 + p3 ×
(

∂ϕ

∂S
+ κ × GM

)
= 0,

that gives a relation between pα and p3 imposed by the angular momentum conservation law. Introducing this
relation in the virtual internal power density Eq. (26):

P : δF = δω ·
(

p3 × (∂ϕ

∂S
+ κ × GM

))+ p3 ·
( ∂

∂S
(δϕ + δω × GM)

)
.

Expanding each term, we obtain:

P : δF = p3 ·
(

∂ δϕ

∂S
− δω × ∂ϕ

∂S

)
+ (GM × p3) · ∂ δω

∂S
. (27)

For the internal power written in terms of P : δF, it is necessary to remind that variation of strain is frame-
indifferent, e.g., [38]. Corotational variation must be prescribed. For any vector a = aidi, this variation is:

δRa := δa − δω × a = (δai ) di.

These corotational variations are well defined in Eq. (27) and closely related to Maurer–Cartan form; indeed
according to Eqs. (11) and (12):

δRε = ∂ δϕ

∂S
− δω × ∂ϕ

∂S
, δRκ = δκ − δω × κ = ∂ δω

∂S
. (28)

These corotational variations are uniform along the beam section and are not affected by integration over the
beam section. Hence, according to Eq. (17) (with P(D3) = p3), this integration makes appear the force and
torque per unit length. Then, virtual internal power becomes [24]:

Pi (Φ, δΦ) =
∫

C
N · δRε + M · δRκ dS . (29)

In other words, for beam structures, the dual quantities associated with forces and torques per unit length are
corotational deformation and curvature, respectively.
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4.2.3 Remark

Using Eq. (9) gives some new information. For example, in the case of a hyperelastic material S is related to
the Helmholtz free energy ψ(E):

S = ∂ψ

∂E
, or SI J = ∂ψ

∂EI J
. (30)

In such a case, C has a major symmetry CI J K L = CK L I J . We may observe that

δEI J = ∂EI J

∂εl
δεl + ∂EI J

∂κl
δκl

where κi and εi are components of the strain vectors in the current configuration: κ = κidi and ε = εidi.
Hence, we can easily compute the virtual power:

Pi (Φ, δΦ) =
∫

B
S : δE dV =

∫

C

∫

S
∂ψ

∂εi
δεi + ∂ψ

∂κi
δκi dAdS. (31)

Direct identification with Eq. (29) gives the components on the {di}-basis:

Ni =
∫

S
∂ψ

∂εi
dA, Mi =

∫

S
∂ψ

∂κi
dA. (32)

Because εi and κi are uniform on the section S, the integration and derivation may be switched to give:

N = ∂Ψ

∂εi
di, M = ∂Ψ

∂κi
di, (33)

where Ψ is the free energy density per unit length of the beam structure:

Ψ :=
∫

S
ψ dA.

This formulation is valid for any hyperelastic models.

4.2.4 Virtual power of inertia

According to the kinematical variables, the virtual power of inertia Eq. (6) takes the following form:

P j (Φ, δΦ) =
∫

C

∫

S
ρ0

∂

∂t

(
∂ϕ

∂t
+ ω × GM

)
· (δϕ + δω × GM) dAdS.

Of course,
∫
S GM dA = 0. Moreover, in order to simplify computation, we consider uniform cross section, and

then
∫
S ρ0dA = ρ0A. Remembering the relation and the double vector product a×(b × c) = (a·c) b−(a·b) c,

we obtain the following relation:

P j (Φ, δΦ) =
∫

C
ρ0A

∂2ϕ

∂t2
· δϕ + ∂

∂t

[∫

S
ρ0

(
GM × (ω × GM

))
dA

]
· δω dS .

Introducing I, the tensor of quadratic moment of the section, we have for any vector a
∫

S
GM × (a × GM

)
dA = I a.

For uniform mass density in the section, the virtual power of inertia becomes:

P j (Φ, δΦ) =
∫

C
ρ0A

∂2ϕ

∂t2
· δϕ + ρ0

∂

∂t
(Iω) · δω dS. (34)

If {di} denotes the principal basis of the section, the tensor of quadratic moment is diagonal I = ∑3
i=1 Iidi ⊗di,

with

I1 =
∫

S
ξ22 dA, I2 =

∫

S
ξ21 dA, I3 =

∫

S
(ξ21 + ξ22 )dA.

9



4.3 Principle of virtual power in Lagrangian form for large transformation

The principle of virtual power gives us the variational equation of a beam:

P j (Φ, δΦ) + Pi (Φ, δΦ) = Pe(Φ, δΦ). (35)

Considering a bounded beam of length 
, we have after integrating by parts:

Pi (Φ, δΦ) =
[
N · δϕ + M · δω

]

0
−
∫

C
∂N
∂S

· δϕ +
(

∂ϕ

∂S
× N + ∂M

∂S

)
· δω dS.

Using the previous results, we obtain ∀ (δϕ, δω) ∈ WΦ :

[
N · δϕ + M · δω

]

0

=
∫

C

(
∂N
∂S

+ q − ρ0A
∂2ϕ

∂t2

)
· δϕ dS

+
∫

C

(
∂M
∂S

+ ∂ϕ

∂S
× N + m − ρ0

∂

∂t
(I ω)

)
· δω dS.

This equation may help to obtain the strong formulation of the dynamic equation of the beam structure under
finite transformation. It must be emphasized that this formulation is equivalent to the case of infinitesimal
transformation. This is mainly due to the choice of adapted kinematical variable.

5 Superimposed wave

Suppose that the beam undergoes a prescribed finite motion Φ. The main objective of this section is to define
the equation satisfied by small vibrations ΔΦ superimposed on this pre-stressed configuration in the absence
of additional external excitation.

Of course, in the presence of this superimposed vibration, the principe of virtual power Eq. (35) must still
be satisfied for any (δϕ, δω) ∈ WΦ :

P j (Φ + ΔΦ, δΦ) + Pi (Φ + ΔΦ, δΦ) = Pe(Φ + ΔΦ, δΦ).

For an infinitesimal superimposed wave, the perturbation of the virtual power (for example for the virtual
power of inertia),

ΔP j (Φ, δΦ) = P j (Φ + ΔΦ, δΦ) − P j (Φ, δΦ),

can be approached by linearization:

ΔP j (Φ, δΦ) = DP j (Φ, δΦ)[ΔΦ].
The main difficulty is then to give a rigorous formulation of these second order variations. In factΔP j (Φ, δΦ)
is an increment associated with a Gâteau–Fréchet derivative:

DP j (Φ, δΦ)[ΔΦ] := lim
h→0

(
1

h

(P j (Φ + hΔΦ, δΦ) − P j (Φ, δΦ)
)) [ΔΦ].

The same is done for the internal and external virtual power. Because Eq. (35) is still satisfied, we have to
prescribe the following relation:

ΔP j (Φ, δΦ) + ΔPi (Φ, δΦ) = ΔPe(Φ, δΦ). (36)

Each of these terms are explicitly computed in the following.
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5.1 Inertia

Using the definition of the second variation, we have

ΔP j (Φ, δΦ) = lim
h→0

(
1

h

( ∫

B
ρ0

∂2 u +hΔu
∂t2

· δu dV −
∫

B
ρ0

∂2u
∂t2

· δu dV
))

=
∫

B
ρ0

∂2Δu
∂t2

· δudV .

The previous calculation done for the first variation gives directly:

ΔP j (Φ, δΦ) =
∫

C
δΦT

M ΔΦ dS

whereM(Φ) is the tangent inertial operator of the beam:

M :=
⎛
⎜⎝

ρ0A
∂2

∂t2
0

0 ρ0
∂

∂t
I

⎞
⎟⎠

5.2 External virtual power

For the external virtual power, the linearization gives:

ΔPe(Φ, δΦ) = lim
h→0

(
1

h

(
Pe(Φ + hΔΦ, δΦ) − Pe(Φ, δΦ)

))
,

=
∫

B
ρ0

(
Δb · (δϕ + δω × GM) + b · (δω × ΔGM)

)
dV

+ . . .

∫

∂B
Δf · (δϕ + δω × GM) + f · (δω × ΔGM) dA.

(37)

On the one hand, ΔGM = Δω × GM, and on the other hand, it must be reminded that the perturbation of the
force density reads

Δb = ΔRb + Δω × b

with ΔRb = (Δbi )di.

For example, for a constant dead load Δb = 0 (then ΔRb = −Δω × b), and for a constant follower load
ΔRb = 0 (then Δb = Δω × b). The same holds true for f . A priori it is possible to write the internal power
in two different but equivalent ways. Focusing first on the first term in Eq. (37):

Δb · (δϕ + δω × GM) + b · (δω × ΔGM)

=
⎧⎨
⎩

Δb · δϕ +
(

GM × Δb + (Δω × GM) × b
)

· δω,(
ΔRb + Δω × b

)
· δϕ +

(
GM × ΔRb + Δω × (b × GM)

)
· δω

where the Jacobi identity has been used. For the second term, we have:

Δf · (δϕ + δω × GM) + f · (δω × ΔGM)

=
⎧
⎨
⎩

Δf · δϕ +
(

GM × Δf + (Δω × GM) × f
)

· δω,(
ΔRf + Δω × f

)
· δϕ +

(
GM × ΔRf + Δω × (f × GM)

)
· δω.

If we use for example the first formulation, we have after integration:

ΔPe(Φ, δΦ) =
∫

S
Δq · δϕ + Δm · δω dS

11



with

Δq :=
∫

S
ρ0Δb dA +

∫

∂S
Δf dL ,

and

Δm :=
∫

S

(
GM × Δb + (Δω × GM) × b

)
dA +

∫

∂S

(
GM × Δf + (Δω × GM) × f

)
dL .

In order to illustrate the extremely different effect of dead or follower load, we analyze here two simplified
cases:

– Constant dead load Δb = 0. In such a case, the perturbation of the external power related to this force
density becomes

ΔPe(Φ, δΦ) =
∫

B
ρ0

(
(Δω × GM) × b

)
· δω dV .

However, if b is uniform on the cross section, the integration around the section induces

ΔPe(Φ, δΦ) = 0

because
∫
S ρ0GM dA = 0.

– Constant follower load ΔRb = 0. In such a case the perturbation of the external power related to this force
density becomes

ΔPe(Φ, δΦ) =
∫

B
ρ0

(
(Δω × b) · δϕ + (Δω × (b × GM)

) · δω
)
dV .

Again if the pre-stress is uniform, we obtain after integration over the cross section:

ΔPe(Φ, δΦ) =
∫

C
ρ0A (Δω × b) · δϕ dS,

that does not vanish if the angular vibration is not orthogonal to the load.

In this example, we do not introduces f for sake of the simplicity, but the same analysis can be performed
without difficulties. These two examples show how the type of load may introduce some additional external
power according to the geometrical and material properties of the load.

5.3 Internal virtual power

For the internal virtual power, the linearization leads to

ΔPi (Φ, δΦ) = lim
h→0

(
1

h

(
Pi (Φ + hΔΦ, δΦ) − Pi (Φ, δΦ)

))
.

In other words, we have to compute the tangent operator of the virtual power density, i.e., the linear variation
of (keeping the variation δ constant):

ΔPi (Φ, δΦ) = Δ

∫

B
P : δF dV .

Because the integration is performed on the beam in the reference configuration, the linearization acts only on
the term in the integral:

ΔPi (Φ, δΦ) =
∫

B
(ΔP) : δF dV .
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Bearing in mind P = FS, we have ΔP = (ΔF)S + F(ΔS) and obtain:

ΔPi (Φ, δΦ) =
∫

B
(ΔF)S : δF + (F(ΔS)

) : δF dV .

The first term, S : (ΔFT δF) (or explicitly ΔFi I SI J δFi J ), is entirely symmetric. For the second term, this is
less clear, and some manipulations are needed and presented below.

As it has been prescribed earlier, the expression of SI J may depend one the material response of the
medium, but the relation between ΔSJ I = ΔSI J and ΔEK L may be written according to the elastic tensor
computed at the pre-deformed configuration. Indeed, Eq. (2) is seen with a perturbation point of view (but
without any approximation) as:

ΔSI J = CI J K LΔEK L (38)

where C is still evaluated around the Φ-state. Because

ΔEK L = 1

2
(ΔFjK FjL + FjKΔFjL), (39)

we obtain

Fi I ΔSI J δFi J = 1

2
Fi I δFi J CI J K L

(
ΔFjK FjL + FjKΔFjL

)
.

Moreover, right minor symmetry of the elasticity tensor, CI J K L = CI J LK , may be used. Indeed,
CI J K L FjKΔFjL = CI J LK FjKΔFjL , and by interchanging the indices names, K ↔ L , we finally obtain
CI J K L FjLΔFjK . Insertion of this relation into the previous equation leads to the summation of two identical
terms, and then:

Fi I ΔSI J δFi J = Fi I δFi J CI J K L ΔFjK FjL ,

that may be written as

(FT δF) : C : (FTΔF) = δE : C(ΔE).

The tangent operator is then

ΔPi (Φ, δΦ) =
∫

B
S : (ΔFT δF) + δE : C(ΔE) dV . (40)

This is one of the main equations of the present paper. The general character of this equation must be pointed
out as it does not use any hypotheses on the mechanical response of the material.

First we observe that the equation is entirely symmetric (with respect to δ and Δ transformations) that
ensures a self-adjoint operator.

The first term may be interpreted as a geometric contribution, whereas the second one is the material
contribution. Both are quadratic in terms of F. For finite transformation material and geometrical contribution
are of the same order of magnitude. In the absence of finite pre-transformation, F = I (identity), and according
to Eq. (39) the strain is the standard small strain tensor. Moreover, S = 0: the wave motion is only governed
by the material contribution in absence of pre-stress. For a small pre-stress, we can consider that the geometric
contribution is negligible with regard to the full material one.

Integration over the beam section in Eq. (40) may not be performed easily, as section coordinates (ξ1, ξ2)
are present both in S and F, δF, ΔF. From a general point of view, the dependence on (ξ1, ξ2) is of degree
four. An other strong difficulty arises if the pre-stress configuration is time dependent (for time-dependent
external loading for example). In such a case the characteristic frequency of the large transformation must be
smaller (slow motion) than for the frequencies of vibrations.
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5.4 General methodology

In order to solve the general problem, we must notice that the superimposed state ΔΦ is related by the motion
ΔOM = Δu of any point of the beam section. Because the section is rigid this displacement is described by
the rotation Δω of the beam section and the displacement Δϕ of the center of mass: Δu = Δϕ + Δω × GM.
These two vectors are the solutions of the variational problem Eq. (36)
∫

B
S : (ΔFT δF) + δE : C(ΔE) dV +

∫

S
ρ0A

∂2Δϕ

∂t2
· δϕ + ρ0

∂

∂t
(IΔω) · δω dS =

∫

S
Δq · δϕ + Δm · δω dS.

This fundamental equation may be explicitly written in terms of unknowns Δϕ and Δω. Indeed, after some
integration by parts, we obtain a problem of the form: find Δϕ, Δω, ∀ (δϕ, δω) ∈ WΦ such that

∫

S

(
F(Δϕ,Δω;Φ) − ρ0A

∂2Δϕ

∂t2

)
· δϕ +

(
M(Δϕ,Δω;Φ) − ρ0

∂

∂t
(IΔω)

)
· δω dS = C. (41)

C is the constant obtained after integration by parts and depends on the prescribed load and boundary conditions.
F and M depend on the external incremental loads Δq and Δm, too.

Solving the problem C = 0 leads to the definition of the essential and natural boundary conditions for the
superimposed wave according to the finite transformation. In such a case the resolution of the previous weak
problem can be replaced by the resolution of the system of equations parametrized by the large transformation
Φ,

F(Δϕ, Δω; Φ) = ρ0A
∂2Δϕ

∂t2
,

M(Δϕ, Δω; Φ) = ρ0
∂

∂t
(IΔω),

which are nothing else than the (translational and rotational) equations of motion of the superimposed wave.
Of course, general resolution cannot be performed analytically, and for this reason,we focus in the following

on a simple material and then on some specific finite transformation.

6 Application for a hyperelastic material

We give a simple application of the previous general methodology. First the material is supposed to be a
Kirchhoff–Saint Venant hyperelastic material, second the geometric and material contribution of the internal
power is developed in detail.

6.1 Kirchhoff–Saint Venant hyperelastic material

In order to give an explicit formulation of the general result previously presented,we consider aKirchhoff–Saint
Venant model of isotropic material for which the elasticity tensor is uniform and defined as:

CI J K L = ∂2ψ

∂EI J ∂EK L
= λ δI J δK L + μ (δI K δJ L + δI LδJ K ) (42)

where λ and μ are Lamé’s coefficients. It is a special class of (hyper)-elastic material (Eq. (30)) for which the
material response is linear:

S = C E or SI J = CI J K L EK L .

The continuum Helmholtz free energy is quadratic with regards to the Green-Lagrange strain tensor E (Eq.
(15)):

ψ(E) := 1

2
E : C(E) = λ

2

(
Tr(E)

)2 + μ Tr(E2).

For this material, the second Piola–Kirchhoff stress becomes:

S := C(E) = ∂ψ

∂E
= λTr(E) I + 2μ E. (43)
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6.2 Material and geometric contribution

The evaluation of the material and the geometric contribution may be performed by using symbolic computa-
tion. The key point is that the finite transformation is entirely defined by one vector: ∂OM

∂S that simplifies the
symbolic computation. Hence, the evaluation of the material and the geometric contribution may be written
as:

S : (ΔFT δF) = 1

2
ΔFi I CI J K L(FjK FjL − δK L) δFi J ,

δE : C(ΔE) = Fi I δFi J CI J K L ΔFjK FjL

where the components of the elasticity tensor are given in Eq. (42). The next step is to give the matrix notation
of F and its perturbation δF from Eq. (25) (for ΔF the same is done—not reported) in the basis (di ⊗ DJ):

F =

⎛
⎜⎜⎝
1 0 d1 · ∂OM

∂S

0 1 d2 · ∂OM
∂S

0 0 d3 · ∂OM
∂S

⎞
⎟⎟⎠ , δF =

⎛
⎜⎜⎝

0 d1 · (δω × d2) d1 · ∂ δu
∂S

d2 · (δω × d1) 0 d2 · ∂ δu
∂S

d3 · (δω × d1) d3 · (δω × d2) d3 · ∂ δu
∂S

⎞
⎟⎟⎠ . (44)

We respectively obtain for the geometric contribution:

S : (ΔFT δF) =
(

λ

2
+ μ

)(∥∥∥∥
∂OM
∂S

∥∥∥∥
2

− 1

)
∂ δu
∂S

· ∂ Δu
∂S

+λ

2

(∥∥∥∥
∂OM
∂S

∥∥∥∥
2

− 1

)
(δω × dα) · (Δω × dα)

+μ
(
dα · ∂OM

∂S

) (
dα ·

(
∂ δu
∂S

× Δω + ∂ Δu
∂S

× δω

))
,

(45)

and for the material contribution:

δE : C(ΔE) = μ
(

dα ·
(

∂ Δu
∂S

− Δω × ∂OM
∂S

))(
dα ·

(
∂ δu
∂S

− δω × ∂OM
∂S

))

+(λ + 2μ)
(∂OM

∂S
· ∂ Δu

∂S

)(∂OM
∂S

· ∂ δu
∂S

)
.

(46)

The integration by parts is not trivial; for example, we have to keep in mind that:

∂ δu
∂S

= ∂ δϕ

∂S
+ ∂ δω

∂S
× GM + δω × (κ × GM)

which is due to the S dependence of the local frame di (as the curvature induced by the initial transformation
Φ).

7 Example of prestretch

We consider a case of finite longitudinal strain applied to a straight, uniform, and 
-long beam. The superim-
posed wave on this finite transformation is studied in detail.

7.1 Static prestretch

The arbitrary large pre-strain is obtained by imposing a static load N = Fe3 at the two ends of a finite beam
(Fig. 2). If F > 0 the beam undergoes a traction, and a compression if F < 0. Here we consider a dead load,
this induces that Δq and Δm vanish at the ends. The more interesting case of a follower load may introduce
some specific features that would be analyzed in a dedicated paper.

For this simple case, the axial transformation is uniform:

OM = S(1 + ε)e3 + ξαeα
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Φ

Φ + ΔΦ

Φ0

Fe3

−Fe3

d2

d3

e2O

e3

Fig. 2 Finite longitudinal pre-stress and additional vibration for an axial dead load. Left reference configuration, middle actual
configuration, right actual configuration with additional vibrations. The sketch is provided in 2D for the sake of the clarity, and
vibrations are presented with magnification

Fig. 3 F versus ε. Computation is performed for a λ + 2μ = 210GPa, A = 1 cm2. Vertical units are Newtons (N)

where ε = ε3. The beam section does not undergo finite rotation: di = Di = ei and κ = 0.
A general formulation of the force and moment acting on the beam section according to the total strain

is given in the “Appendix.” However, for the present load, direct integration can be performed. Using Eq.
(16), E33 = ε(1 + ε/2) is the only non-null component of the Green–Lagrange strain tensor. With Eq. (44),
we directly have F = diag(1, 1, 1 + ε) and then the nominal Piola-Kirchhoff stress, P = FS by using the
expression of F provided by Eq. (43). By direct integration along the beam section, we obtain N = Fe3 and
then the nonlinear relation between the axial strain and the load:

F = A(λ + 2μ)ε(1 + ε)
(
1 + ε

2

)
. (47)

This relation is presented in Fig. 3. The relation is monotonic for −1 + 1√
3

≤ ε that gives a lower bound for
the admissible strain. This bound is intrinsically related to the particular strain energy used for this example.

The problem of vibration superimposed on this pre-strain can be parametrized either by F or by ε. In
view of the global philosophy of the calculation performed in the previous section, it is easier to use ε as a
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(non-dimensional) parameter. It is still possible to change the parametrization as the function F(ε) is bijective
in the strain domain.

7.2 Problem statement

The first step is to compute Eqs. (45) and (46). Straightforward calculus gives, respectively:
∫

B
S : (ΔFT δF) dV = ε

(
1 + ε

2

)(
(λ + 2μ)

∫

C
A

∂Δϕ

∂S
· ∂δϕ

∂S
+ (I

∂Δω

∂S
) · ∂δω

∂S
dS

+ λA
∫

C
Δω · δω + Δω3δω3 dS

)

and

∫

B
δE : C(ΔE) dV =

∫

C
μ I3

∂Δω3

∂S

∂δω3

∂S
+ (λ + 2μ)(1 + ε)2

2∑
α=1

Iα
∂Δωα

∂S

∂δωα

∂S
dS

+ μA
∫

C

(∂Δϕ1

∂S
− (1 + ε)Δω2

)(∂δϕ1

∂S
− (1 + ε)δω2

)
dS

+ μA
∫

C

(∂Δϕ2

∂S
+ (1 + ε)Δω1

)(∂δϕ2

∂S
+ (1 + ε)δω1

)
dS

+ (λ + 2μ)A(1 + ε)2
∫

C
∂Δϕ3

∂S

∂δϕ3

∂S
dS.

As expected, the geometrical contribution is at least linear in terms of ε, whereas the material contribution is
nonzero even for ε = 0. The integration by parts of the two contributions gives:

∫

B
S : (ΔFT δF) dV = ε

(
1 + ε

2

)(
(λ + 2μ)

[
A

∂Δϕ

∂S
· δϕ + (I

∂Δω

∂S
) · δω

]


0
. . .

−
∫

C
(λ + 2μ)

(
A

∂2Δϕ

∂S2
· δϕ + (I

∂2Δω

∂S2
) · δω

)

−λA (Δω · δω + Δω3δω3) dS

)
,

∫

B
δE : C(ΔE) dV = −

∫

C
μA

((∂2Δϕ1

∂S2
− (1 + ε)

∂Δω2

∂S

)
δϕ1 + (∂

2Δϕ2

∂S2
+ (1 + ε)

∂Δω1

∂S

)
δϕ2

+ (1 + ε)
((∂Δϕ1

∂S
− (1 + ε)Δω2

)
δω2 − (∂Δϕ2

∂S
+ (1 + ε)Δω1

)
δω1

))

+ (λ + 2μ)(1 + ε)2
(
A

∂2Δϕ3

∂S2
δϕ3 +

2∑
α=1

Iα
∂2Δωα

∂S2
δωα

)
+ μ I3

∂2Δω3

∂S2
δω3 dS

+
[
(λ + 2μ)A(1 + ε)2

(∂Δϕ3

∂S
δϕ3 +

2∑
α=1

Iα
∂Δωα

∂S
δωα

)
+ μ I3

∂Δω3

∂S
δω3

+μA

((∂Δϕ1

∂S
− (1 + ε)Δω2

)
δϕ1 + (∂Δϕ2

∂S
+ (1 + ε)Δω1

)
δϕ2

)]


0
.

Combining geometrical and material contributions and inserting inertia, we obtain after rearrangement the
weak form of the full vibrational problem (corresponding to Eq. (41) for this practical example):

∫ 


0

(
G̃ A

∂2Δϕ1

∂S2
− Ĝ A

∂Δω2

∂S
− ρA

∂2Δϕ1

∂t2

)
δϕ1

+
(
Ẽ I2

∂2Δω2

∂S2
+ Ĝ A

∂Δϕ1

∂S
− G̃ AΔω2 − ρ I2

∂2Δω2

∂t2

)
δω2
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+
(
G̃ A

∂2Δϕ2

∂S2
+ Ĝ A

∂Δω1

∂S
− ρA

∂2Δϕ2

∂t2

)
δϕ2

+
(
Ẽ I1

∂2Δω1

∂S2
− Ĝ A

∂Δϕ2

∂S
− G̃ AΔω1 − ρ I1

∂2Δω1

∂t2

)
δω1

+
(
Ẽ A

∂2Δϕ3

∂S2
− ρA

∂2Δϕ3

∂t2

)
δϕ3 +

(
G̃ I3

∂2Δω3

∂S2
− 2D̃AΔω3 − ρ I3

∂2Δω3

∂t2

)
δω3 dS

=
[
A

(
G̃

∂Δϕ1

∂S
− ĜΔω2

)
δϕ1 + I2 Ẽ

∂Δω2

∂S
δω2

+ A

(
G̃

∂Δϕ2

∂S
+ ĜΔω1

)
δϕ2 + I1 Ẽ

∂Δω1

∂S
δω1 + AẼ

∂Δϕ3

∂S
δϕ3 + I3G̃

∂Δω3

∂S
δω3

]


0

where we have introduced the effective rigidity moduli with respect to the finite strain:

Ẽ = (λ + 2μ)
(
1 + 3ε

(
1 + ε

2

))
, G̃ = μ

(
1 + Kνε

(
1 + ε

2

))
, Ĝ = μ(1 + ε), D̃ = λε

(
1 + ε

2

)

with a bulk-shear ratio

Kν = λ + 2μ

μ
= 2(1 + ν)

1 − 2ν
,

(
Kν = 3 if ν = 1

8

)
.

Remark that Kν has a lower bound for ν = 0, but no upper bound (2 ≤ Kν).
We observe that the full problem casts into two independent bending problems (b1) and (b2), a longitudinal

(l) and a torsional one (t). Their strong formulation, essential, and natural boundary conditions are:

(b1) bending in (d1, d3)-plane G̃ A
∂2Δϕ1

∂S2
− Ĝ A

∂Δω2

∂S
= ρA

∂2Δϕ1

∂t2

Ẽ I2
∂2Δω2

∂S2
+ Ĝ A

∂Δϕ1

∂S
− G̃ AΔω2 = ρ I2

∂2Δω2

∂t2

natural

{
G̃ A ∂Δϕ1

∂S − Ĝ AΔω2 = 0 δϕ1 = 0
Ẽ I2

∂Δω2
∂S = 0 δω2 = 0

}
essential,

(b2) bending in (d2, d3)-plane G̃ A
∂2Δϕ2

∂S2
+ Ĝ A

∂Δω1

∂S
= ρA

∂2Δϕ2

∂t2

Ẽ I1
∂2Δω1

∂S2
− Ĝ A

∂Δϕ2

∂S
− G̃ AΔω1 = ρ I1

∂2Δω1

∂t2

natural

{
G̃ A ∂Δϕ2

∂S + Ĝ AΔω1 = 0 δϕ2 = 0
Ẽ I1

∂Δω1
∂S = 0 δω1 = 0

}
essential,

(l) longitudinal vibration along d3 Ẽ A
∂2Δϕ3

∂S2
= ρA

∂2Δϕ3

∂t2
natural Ẽ A ∂Δϕ3

∂S = 0 δϕ3 = 0 essential,

(t) torsional vibration around d3 G̃ I3
∂2Δω3

∂S2
− 2D̃AΔω3 = ρ I3

∂2Δω3

∂t2
natural G̃ I3

∂Δω3
∂S = 0 δω3 = 0 essential,

7.3 Brief analysis

Even for this practical example, the result is very rich. We present here some particular points that must be
highlighted. We restrict ourselves to a brief analysis as each of these points may motivate a deep analysis being
beyond the general objective of this paper.
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Fig. 4 Analysis of the effective modulus factor 1 + 3ε(1 + ε/2) (black) and 1 + Kνε(1 + ε/2) (color) with respect to the finite
strain ε and for various Poisson ratios ν. Dots denotes the canceling of these factors

7.3.1 Instability

The sensitivity of the effective moduli versus the finite strain is illustrated on Fig. 4. These moduli are both
sensitive to finite strain and the Poisson’s ratio of the material.

At this step, we have to draw our attention to the fact that some effective moduli may be zero for some
critical finite longitudinal compression. This is the case for Ẽ if ε = −1 + 1/

√
3 (i.e., for ∂F

∂ε
= 0). For this

critical strain, the natural boundary conditions are no more able to fix the slope of the longitudinal vibration
( ∂Δϕ3

∂S ) and of the transverse rotation ( ∂Δω1
∂S and ∂Δω2

∂S ). In fact the longitudinal force Ẽ A ∂Δϕ3
∂S and the bending

moment (Ẽ I1
∂Δω1
∂S and Ẽ I2

∂Δω2
∂S ) at the boundaries are zero (as expected for natural boundary condition),

but the constraint on the kinematical quantities is no more effective. This may be interpreted as a particular
instability of the structure. Of course, this effect is obtained for a limit value of the strain.

More interesting, this global phenomenon is observed for G̃ for ε ≥ −1 + 1/
√
3 and ν ≥ 1/8. This

induces possible instabilities, attainable even for moderate compression, for torsional wave and transverse
displacement ( ∂Δϕ1

∂S and ∂Δϕ2
∂S ) with zero angle Δω1 and Δω2 at the ends. Again, all these instabilities are

concomitant in the sense that they arise at the same compression value.
In fact for such zero moduli, the whole problem must be rewritten. In particular, the definition of the

boundary conditions must be readdressed in order to clearly consider various loadings (dead load or slipping
load for example). Even if these phenomena appear for particularly large compression, these observations look
to open new perspectives on possible instabilities at the ends of the compressed elongated structures.

7.3.2 Shear force and gliding angle

For the bending problem, the first natural boundary conditions are related to the absence of the transverse
force. However, because G̃ 
= Ĝ for ε 
= 0, we observe that these boundary conditions induce a non-vanishing
gliding angle (γ1 = ∂Δϕ2

∂S + Δω1 and γ2 = ∂Δϕ1
∂S − Δω2) at the ends for a nonzero pre-stress.

7.3.3 Buckling

For the bending problem, buckling is related to critical finite compressive strain for which the stiffness operator
admits some non-trivial static solutions. Let us consider (b1) for example and impose harmonic displacement
Δϕ1(S) = Φ1 exp(ikS) and angle Δω2(S) = Ω2 exp(ikS), then the stiffness matrix becomes:

K =
(−k2G̃ A −ikĜ A

ikĜ A −k2 Ẽ I2 − G̃ A

)
,
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Fig. 5 Non-dimensional buckling load proposed in this paper Fb/Fe (line) and from Timoshenko and Gere Ft/Fe (dots), where
Fe is the Euler prediction. These loads are presented with respect to ν and for thick beam (red, 
/h = 10) and thin beam
(black, 
/h = 100), for higher slenderness ratio the curves are mainly unchanged. Simulation is performed for pinned boundary
conditions (k = π/
) and h × h square cross section (κ t = 5/6)

and a non-trivial solution appears for det(K) = 0, i.e., Ak2(A(G̃2 − Ĝ2)+ k2 Ẽ G̃ I2k2)) = 0, this corresponds
to a non-trivial wavenumber k satisfying

G̃ Ẽ I2k
2 = A(Ĝ2 − G̃2).

Here k is imposed by boundary condition, and the later equation can be solved to define the critical strain
ε inducing buckling. In a second step, the buckling load Fb can be computed according to Eq. (47). This
estimation can be compared with the classical Euler buckling load Fe = −E I2k2 or with the prediction from
Timoshenko and Gere [8,39]

Ft = − E I2k2

1 + E I2
GA k

2

where E is Young’s modulus and G = κ tμ is the corrected shear modulus (κ t = 5/6 for rectangular cross
section).

Simulation is performed for Fb, Fe, and Ft , for a straight beam of length 
 and h × h cross section
with pinned boundary conditions (k = π/
). The non-dimensional ratio Fb/Fe and Ft/Fe depends on the
Poisson’s ratio and the slenderness ratio 
/h. In Fig. 5 the behavior of Fb/Fe and Ft/Fe is presented versus
ν, for thick and thin beams (
/h = 10 and 
/h = 100, respectively). The Timoshenko hypothesis predicts
mainly linear dependency to the Poisson’s ratio, whereas the model presented here gives more complex results.
The Timoshenkomodel supposes that Euler buckling load is always overestimated (Ft/Fe ≤ 1). For themodel
presented in this paper, the Euler prediction is an overestimation only for moderate Poisson’s ratio (ν � 1/3)
and an underestimation for higher Poisson’s ratio (ν � 1/3). Last the present model suggests an infinite load
for incompressible material. Our model and the Timoshenko model propose the same estimation for ν ∼ 0
and ν ∼ 1/3 whatever the 
/h. On the one hand, the rigid section hypothesis used in the present model is
consistent with ν ∼ 0 and corresponds to Timoshenko hypothesis. On the other hand, this may be seen as
a partial validation as the Timoshenko prediction is considered efficient for steel or aluminum-like material
(ν ∼ 1/3).

7.3.4 String model as an asymptotic

The stringmodel can be obtained by asymptotic analysis.We illustrate this assertion by considering the problem
(b1).
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One way is to consider that μ/(λ + 2μ) → 0 (large Poisson’s ratio), in such a case the first line of (b1)
becomes

(λ + 2μ)ε
(
1 + ε

2

)
A

∂2Δϕ1

∂S2
= ρA

∂2Δϕ1

∂t2
.

Another way is to consider a very thin beam
√
I2 � A. In such a case the second line of (b1) becomes:

Ĝ A
∂Δϕ1

∂S
− G̃ AΔω2 = 0;

inserting this relation in the first line of (b1) leads to:

G̃2 − Ĝ2

G̃
A

∂2Δϕ1

∂S2
= ρA

∂2Δϕ1

∂t2

where G̃2−Ĝ2

G̃
� ε(2λ + 2μ).

The last way is to impose a kinematical constraint: the absence of gliding angle γ2. In such a case the first
line of (b1) becomes

(G̃ − Ĝ)A
∂2Δϕ1

∂S2
= ρA

∂2Δϕ1

∂t2

where G̃ − Ĝ � (λ + μ)ε.
Considering in first approximation F = (λ + 2μ)εA, we obtain for the three hypotheses:

F̃
∂2Δϕ1

∂S2
= ρA

∂2Δϕ1

∂t2

where F̃ = F for the first hypothesis, F̃ = 2(λ+μ)
λ+2μ F = F/(1 − ν) for the second, and F̃ = F/(2(1 − ν)) for

the third.
Theseways to recover the string equation from general theory on vibration superimposed on large pre-stress

need of course some further investigations. In particular, it must be noticed that these three hypotheses are
distinct as they are related to material properties, geometrical properties, and kinematics, respectively. Hence,
it is highly possible that more than one hypothesis can be observed in a specific example (that induces finest
analysis). This suggests than there is more than one intermediate problem between the simple string model
and the vibration of a beam supporting finite elongation.

In summary, the present approach includes string and ropes models for some asymptotical case what looks
to confirm the efficiency of the proposed development (for example, this remarkable result is not present in
the Haringx’model). As the present model is valid even for non-asymptotical situation, it looks to be pertinent
to establish some intermediate problem. This work may extend other approaches dedicated to the string of
musical instruments [23,40].

8 Concluding remarks

The construction of a nonlinear beam model may be performed in two very distinct ways. The first focuses
on the dynamics of a curvilinear segment supporting mechanical significations (Cosserat-like structure in our
case) [41]. In the second way, a three-dimensional slender rod-like body is the primal object and eventual
kinematical constraints are imposed. Last, reduction to a one-dimensional element is performed by asymptotic
analysis or integration over the cross section. This latter is the methodology used all along the present paper,
and in that sense the models proposed here for (i) finite transformation and (ii) superimposed waves are both
induced geometrically exact models (using Antman’s terminology [42]). Strictly speaking, we do not analyze
the superimposed waves upon a finite transformation of a beam, but we are modeling in terms of the beam’s
vibrations the superimposed perturbations upon a three-dimensional body supporting finite transformation.

This methodology avoids some counterpart that may be induced by freezing the internal kinematics during
integration along the cross section. For example, it permits a rigorous analysis of the perturbed external virtual
power (Sect. 5.2) that may not be carried out if the perturbations were performed on a frozen beam element.
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An other advantage of the methodology is that it leads to a self-adjoint operator for internal virtual power, and
hence superimposed waves play a similar role as the virtual transformation. The decomposition of the internal
energy into geometrical and material contribution seems to be new from our knowledge.

All along the paper, the number of hypotheses is reduced to a strict minimum: (i) a slender body, (ii) the
transformation is compatible (no contact or penetration along the transformation), (iii) no viscous effect (the
strain rate is not introduced), (iv) the cross section is rigid. Hence, this work may be exploited for a body with
varying cross section, for heterogeneous and anisotropic medium, and for any constitutive relation. However, a
source of confusion must be clarified: Even if the elasticity tensor is not used during the finite transformation,
we have introduced an effective elasticity tensor C during the analysis of the superimposed vibration (Eq.
(38)). This tensor is not necessarily related to a free energy and must be seen as a tangent elasticity tensor
around the prescribed finite transformation. However, we do not consider additional plasticity induced by wave
propagation. Concerning the time dependence, the model for superimposed waves is still valid if the finite
strain of the body is related to a larger time scale than the vibration’s timescale, or if the body supports a fast
rigid motion [18,19,22]. This holds true for the external loads, that may change but at low corotational rate
(with respect to wave motion).

Even if the general solution for the weak formulation of the beam dynamics may look non explicit in
the general case (Sect. 5.4), the example proposed in the next sections shows that this model easily supports
analytical and explicit formulations for a given problem. The authors expect that this will help rigorous and
explicit analysis of interesting phenomena. An example is presented in two steps. First, for Helmholtz free
energy the force and moment acting on the cross section for any transformation are given (in the “Appendix”),
and the density of virtual power is given explicitly. Second, for a finite longitudinal load, the full vibration
equations are presented. This example highlights a large number of phenomena related to stability and buckling
and gives some glimpse on the asymptotic link between string and pre-stretched beam. More generally, as
induced geometrically exact model, the presented approach encompasses beams, rods, string, and ropes, in
term of finite transformation and superimposed vibrations.

Among the possible extension of the approach, we can introduce a less constrained kinematical hypothesis,
by allowing affine transformation of the section (i.e., reduction of size of the planar section) or warping [30].
Introduction of a visco-elastic constitutive law may be interesting, too. The explicit solution for other elastic
potentials is another objective (Mooney–Rivlin for example). A deep analysis of the boundary conditions (in
particular the effect of dead and followers boundary conditions) may have to be conducted, too [43]. In terms
of buckling, this deformable model can be confronted to Beck or other models.

Appendix: Force and moment

Here, we give the expression of force N = Nidi and moment M = Midi acting on a beam section in an
unperturbed situation.

We begin with expression Eq. (33), where we see that the free energy has to be integrated over the beam
section. Indeed, this free energy may be synthesized as follows:

ψ = λ

8

(
2Z3 + ‖Z‖2)2 + μ

2

(
Z2
1 + Z2

2 + 1

2

(
2Z3 + ‖Z‖2)2

)
.

where

Z = Zidi = ε + κ × GM = ∂OM
∂S

− d3.

By integrating this energy density over the cross section, we obtain an expression of the Timoshenko free
energy per unit length, e.g., [35]:

Ψ = μ

2
A ε21 + μ

2
A ε22 +

(
λ

2
+ μ

)
A ε23 +

(
λ

2
+ μ

)
Iακ2

α + μ

2
I3κ

2
3 + Ψ ∗ (ε, κ) (48)

in whichΨ ∗ (ε, κ) is a polynomial function of degree more than two (induced by HT H in the Green–Lagrange
strain tensor Eq. (15)), A is the area of the cross section. Ii are components of the tensor of quadratic moment I
of a (rigid) beam section, and Cosserat directors bases dα(S, t) are directed along the principal axes of inertia
of the cross section.
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Going back to Eq. (17), the components of force and moment are:

N1 =
∫

S
μZ1 + (λ + 2μ)Z1

(
Z3 + 1

2
‖Z‖2

)
dA,

N2 =
∫

S
μZ2 + (λ + 2μ)Z2

(
Z3 + 1

2
‖Z‖2

)
dA,

N3 =
∫

S
(λ + 2μ)

(
Z3 + 1

2
‖Z‖2 + Z2

3 + 1

2
‖Z‖2Z3

)
dA,

M1 =
∫

S
(λ + 2μ)ξ2

(
Z3 + 1

2
‖Z‖2 + Z2

3 + 1

2
‖Z‖2Z3

)
dA,

M2 = −
∫

S
(λ + 2μ)ξ1

(
Z3 + 1

2
‖Z‖2 + Z2

3 + 1

2
‖Z‖2Z3

)
dA,

M3 =
∫

S
(ξ1Z2 − ξ2Z1)

(
μ + (λ + 2μ)(Z3 + 1

2
‖Z‖2

)
dA. (49)

Explicit integration is performed only for the leading term and gives:

N1 = με1 + (λ + 2μ)
(
Aε1ε3 − I1κ1κ3

)+ λ + 2μ

2

∫

S
Z1‖Z‖2 dA,

N2 = με2 + (λ + 2μ)
(
Aε2ε3 − I22κ2κ3

)+ λ + 2μ

2

∫

S
Z2‖Z‖2 dA,

N3 = (λ + 2μ)

(
Aε3 + Aε23 + I1κ

2
1 + I22κ

2
2 + 1

2

∑
i

(Aε2i + Iiiκ
2
i ) + 1

2

∫

S
‖Z‖2Z3 dA

)
,

M1 = (λ + 2μ)

(
I1κ1 +

∫

S
ξ2
(1
2
‖Z‖2 + Z2

3 + 1

2
‖Z‖2Z3

)
dA

)
,

M2 = (λ + 2μ)

(
I22κ2 −

∫

S
ξ1
(1
2
‖Z‖2 + Z2

3 + 1

2
‖Z‖2Z3

)
dA

)
,

M3 = μI3κ3 + (λ + 2μ)

∫

S
(ξ1Z2 − ξ2Z1)

(
Z3 + 1

2
‖Z‖2

)
dA. (50)

The nonlinear term is always proportional to λ + 2μ.
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