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A convex approach to super-resolution

and regularization of lines in images∗

Kévin Polisano† Laurent Condat‡ Marianne Clausel†

Valérie Perrier†

Abstract

We present a new convex formulation for the problem of recovering lines
in degraded images. Following the recent paradigm of super-resolution, we
formulate a dedicated atomic norm penalty and we solve this optimization
problem by means of a primal-dual algorithm. This parsimonious model en-
ables the reconstruction of lines from lowpass measurements, even in presence
of a large amount of noise or blur. Furthermore, a Prony method performed
on rows and columns of the restored image, provides a spectral estimation of
the line parameters, with subpixel accuracy.

Keywords. Super-resolution, sparse recovery, convex optimization, line detection,
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1 Introduction

Many restoration or reconstruction imaging problems are ill-posed and must be
regularized. So, they can be formulated as convex optimization problems formed
by the combination of a data fidelity term with a norm-based regularizer. Typically,
given the data y = Ax] + ε, for some unknown image x] to estimate, some known
observation operator A and some noise ε, one aims at solving a problem like

Find x̃ ∈ arg min
x

1

2
‖Ax− y‖2 + λR(x) ,

where λ controls the tradeoff between data fidelity and regularization and R is a con-
vex regularization functional. R can be chosen to promote some kind of smoothness.
The classical Tikhonov regularizer R(x) = ‖∇x‖22 generally makes the problem easy

∗Part of this work has appeared in preliminary form in the conference proceedings of the 24th
European Signal Processing Conference (EUSIPCO), 2016 [41].
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to solve, but yields over-smoothing of the textures and edges in the recovered im-
age x̃. A popular and better regularizer is the total variation R(x) = ‖∇x‖1,
see e.g [11, 20]; it yields images with sharp edges, but the textures are still over-
smoothed, there are staircasing effects and the pixel values tend to be clustered in
piecewise constant areas. To overcome these drawbacks, one can penalize higher
order derivatives [32, 6] or make use of non-local penalties [39, 18, 15]. Another
approach, which is at the heart of the recent paradigm of sparse recovery [49, 27]
and compressed sensing [25, 53], is to choose R to favor some notion of low com-
plexity. Indeed, many phenomena, when observed by instruments, yield data living
in high dimensional spaces, but inherently governed by a small number of degrees
of freedom. One early choice was to set R as the `1 norm of wavelet coefficients of
the image. But the signals encountered in applications like radar, array processing,
communication, seismology, or remote sensing, are usually specified by parameters
in a continuous domain, from which they depend nonlinearly. So, modern sampling
theory has widened its scope to a broader class of signals, with so-called finite rate
of innovation, i.e. ruled by parcimonious models [34, 26, 4, 57]. This encompasses
reconstruction of pulses from lowpass measurements [23] and spectral estimation,
which is the reconstruction of sinusoids from point samples [50, 51], with many
applications [13, 31, 56, 7, 52, 33, 43, 48, 21]. The knowledge of the kind of ele-
ments we want to promote in the image makes it possible to estimate them from
coarse-scale measurements, even with infinite precision if there is no noise. Methods
achieving this goal are qualified as super-resolution methods, because they uncover
fine scale information, which was lost in the data, beyond the Rayleigh or Nyquist
resolution limit of the acquisition system [28, 8]. However, in this context, maxi-
mum likelihood estimation amounts to structured low rank approximation, which
forms nonconvex and very difficult, even NP-hard in general, problems [35, 22]. An
elegant and unifying formulation, which yields convex problems, is based on the
atomic norm [2, 19]. We place ourselves in this general framework of atomic norm
minimization: the sought-after image x] is supposed to be a sparse positive combi-
nation of the elements of an infinite dictionary A, indexed by continuously varying
parameters. Then, one can choose R as the atomic norm ‖x‖A of the image x,
which can be viewed as the `1 norm of the coefficients, when the image is expressed
in terms of the unit-norm elements of A, called atoms:

‖x‖A = inf {t > 0 : x ∈ t conv(A)} , (1)

where conv(A) is the convex hull of the atoms. In this paper, we consider the
setting, which is new to our knowledge, where the atoms are lines. Expressed in
the Fourier domain, these atoms can be characterized with respect to their rows
and columns, and the problem can be reduced to a dictionary of 1-D complex
exponential samples, indexed by their frequency and phase, and the atomic norm
can be computed via semidefinite programming [58]. This formulation enables us
to derive a convex optimization problem under constraints, solved by mean of a
splitting primal-dual algorithm [17]. Then, performing a Prony-like method [45]
onto the solution of the algorithm allows us to extract the parameters of the lines.
This approach provides a very high accuracy for the line estimation, where the
Hough [29, 30, 36] and the Radon [44, 24, 37] transforms fail, due to their discrete
nature. Our motivation stems from the frequent presence in biomedical images,
e.g. in microscopy, of elongated structures like filaments, neurons, veins, which are
deteriorated when reconstructed with classical penalties.
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Figure 1: (a) The image b] of three blurred lines with κ = 1 and (b) the Radon
transform of b].

The paper is organized as follows. The model is exposed in section 2, the
framework of atomic norm minimization underlying the super-resolution principle
is introduced in section 3, the algorithms we derive are in section 4. Then a Prony-
like method is developed in section 5 as a way to perform spectral estimation of
the line parameters. Finally some experimental results are shown in section 6, and
appendices give a comparison with the classic Hough and Radon procedure of lines
detection. Part of this work has been published in the preliminary paper [41]. In
this paper, we present the mathematical developments that did not appear in the
previous one, but also another algorithm, a new procedure estimation of the line
parameters, an extension for the whole range of line angles with no more restriction,
an application to inpainting problems and many other numerical experiments.

2 An image model of blurred lines

Our aim is to restore a blurred image b] containing lines, and to estimate the
parameters—angle, offset, amplitude—of the lines, given degraded data y. In this
section, we formulate what we precisely mean by an image containing lines. In
short, b] is a sum of perfect lines which have been blurred and then sampled. Both
processes are detailed in the following.

2.1 The Ideal Continuous Model and the Objectives

We place ourselves in the quotient space P = R/(WZ) × R, corresponding to the
2-D plane with horizontal W–periodicity, for some integer W ≥ 1. To simplify the
notations, we suppose that W is odd and we set M = (W − 1)/2.

A line of infinite length, with angle θ ∈ (−π/2, π/2] with respect to verticality,
amplitude α > 0, and offset η ∈ R from the origin on x–axis, is defined as the
distribution

(t1, t2) ∈ P 7→ αδ
(
cos θ(t1 − η) + sin θ t2

)
,

where δ is the Dirac distribution. We define the distribution x], which is a sum of
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Figure 2: (a) Parameters (θ, η) characterizing the position of a line in the 2-D
plane, (b) the matrix convention we use to display the image obtained by applying
the sampling operator with unit step ∆ onto the blurred line x] ∗ φ, and (c) the
resulting discrete image b][n1, n2] = (x] ∗ φ)(n1, n2).

K different such perfect lines, for some integer K ≥ 1, as

x] : (t1, t2) ∈ P 7→
K∑
k=1

αkδ
(
cos θk(t1 − ηk) + sin θk t2

)
. (2)

Remark. Figure 2a illustrates the line parameters and Figure 2b the convention
we use for representing images. At this time, we suppose that the lines are rather
vertical; that is, for every k = 1, . . . ,K, θk ∈ (−π/4, π/4]. We will treat the general
case in subsection 4.3.

Since the ideal model x] is made up of Dirac distributions, the horizontal Fourier
transform x̂] = F1x

] is composed of a sum of exponentials. Our goal will be
to reconstruct x̂] by a super-resolution method, from its observations through a
known degradation operator A and some noise, which is an ill-posed problem. Then,
spectral estimation of these exponentials will allow us to recover the line parameters.
Let us first characterize the blur operator A.

2.2 A Blur Model for an Exact Sampling Process

The observed image b] of size W × H in Figure 2c is obtained by convolution of
the distribution x] with a blur function φ, followed by a sampling with unit step
denoted by the operator ∆:

b][n1, n2] = (x] ∗ φ)(n1, n2), ∀n1 = 0, . . . ,W − 1, n2 = 0, . . . ,H − 1 . (3)

We also consider that the Point Spread Function (PSF) φ is separable; that is
the function x] ∗ φ can be obtained by a first horizontal convolution with ϕ1 and
then a second vertical convolution with ϕ2. Formally, x] ∗ φ = (x] ∗ φ1) ∗ φ2
with φ1(t1, t2) = ϕ1(t1)δ(t2) and φ2(t1, t2) = δ(t1)ϕ2(t2), where ϕ1 and ϕ2 are L1

functions.
So, after the first horizontal convolution, using the fact that δ(at) = δ(t)/|a| for

any a 6= 0, we obtain the function:

Ψ = x] ∗ φ1 : (t1, t2) 7→
K∑
k=1

αk
cos θk

ϕ1

(
t1 + tan θk t2 − ηk

)
. (4)
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We can show that, after the second vertical convolution, we get the function

x] ∗ φ : (t1, t2) ∈ P 7→
K∑
k=1

αkψk
(
cos θk(t1 − ηk) + sin θk t2

)
, (5)

where

ψk =

(
1

cos θk
ϕ1

( ·
cos θk

))
∗
(

1

sin θk
ϕ2

( ·
sin θk

))
, (6)

if θk 6= 0 and ψk = ϕ1 else.

Remark. We can notice that (5) can also be interpreted as follows: every line
has undergone a 1-D convolution with ψk in the direction transverse to it. We can
also notice that if ϕ1 and ϕ2 are Gaussian functions and have same variance κ2, it
follows from (6) that ψk has variance κ2

(
cos2 θ + sin2 θ

)
= κ2 as well.

Assumptions. In order to avoid any approximation when passing from the con-
tinuous to the discrete formulation, we assume that ϕ1 and ϕ2 have the following
properties:

(i) ϕ1 ∈ L1(0,W ) is W–periodic, bounded, such that 1
W

∫W
0
ϕ1 = 1, and ban-

dlimited; that is, its Fourier coefficients

cm(ϕ1) =
1

W

∫ W

0

ϕ1(t1)e−j2πmt1/W dt1 ,

are zero for every m ∈ Z with |m| ≥ (W + 1)/2 = M + 1. Then, the discrete
filter (

g[n] = ϕ1(n)
)
n∈Z , (7)

has for discrete Fourier coefficients:

ĝ[m] =
1

W

W−1∑
n=0

g[n]e−j
2πmn
W = cm(ϕ1) .

(ii) ϕ2 ∈ L1(R) is such that
∫
R ϕ2 = 1, and denoting sinc(t2) = sin(πt2)/(πt2),

the discrete filter (
h[n] = (ϕ2 ∗ sinc)(n)

)
n∈Z (8)

has compact support of length 2S + 1, for some S ∈ N; i.e.,

h[n] = 0, if |n| ≥ S + 1 .

Let us deduce from these assumptions some other properties satisfied by ϕ1 and ϕ2,
and their associated discrete filters g and h. First, we have

1

W

∫ W

0

ϕ1(t) dt =
1

W

M∑
n=−M

g[n] = 1 ,

that is, the filter g is normalized as well. Moreover∫ W

0

ϕ1(t)2 dt =

M∑
n=−M

g[n]2 =

M∑
n=−M

ϕ1(n)2 ,
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and by Parseval relation:

∑
m∈Z
|cm(ϕ1)|2 =

M∑
m=−M

|ĝ[m]|2 =
1

W

∫ W

0

ϕ1(t)2 dt .

Now, we describe the sampling process leading from continuous to discrete formu-
lation, based on the following proposition:

Proposition 1. It is equivalent to perform the vertical convolution of Ψ = x] ∗ φ1
with ϕ2, with ϕ2 ∗sinc, or with the Dirac comb γ : t2 7→

∑S
n=−S h[n]δ(t2−n), where

h[n] = (ϕ2 ∗ sinc)(n).

Proof. For every k = 1, . . . ,K, the assumption θk ∈ (−π/4, π/4] yields | tan θk| ≤
1. So, the function Ψ = x] ∗ φ1 given in (4), as a function of t2 at fixed t1, is
bandlimited: for every t1 ∈ [0,W ), the Fourier transform F2Ψ : ω2 7→

∫
R(x] ∗

φ1)(t1, t2)e−j2πω2t2 dt2, which is a distribution (sum of K Dirac combs), is zero for
every |ω2| ≥ 1/2. Indeed, we have:

[F2Ψ](ω2) =

K∑
k=1

αk
sin θk

ϕ̂1

(
ω2

tan θk

)
exp

(
j2πω2

t1 − ηk
tan θk

)
.

Since | tan θk| ≤ 1, we have |ω2/ tan θk| ≥ |ω2|. The support of ϕ̂1 is included in
[−1/2, 1/2] (cm(ϕ1) = 0 for |m| ≥M + 1 and M/W < 1/2), as well as the support
of F2Ψ which is necessarily included in the support of ϕ̂1. Then, we have the
equivalence F2Ψ = F2Ψ · 1[−1/2,1/2] ⇔ Ψ = Ψ ∗ sinc, and furthermore Ψ ∗ ϕ2 =
Ψ ∗ (ϕ2 ∗ sinc). In the Fourier domain, the function h = ϕ2 ∗ sinc is bandlimited, so

[F2Ψ]ĥ = [F2Ψ]ĥper where ĥper corresponds to the periodization of the spectrum of

ĥ with period 1, which amounts to saying that Ψ ∗ h = Ψ ∗ (
∑
n h[n]δ(· − n)).

Remark. Assumption (ii) implies that the filter (h[n])n should have compact sup-
port, but we can notice that the function h = ϕ2∗sinc does not have compact support,
since it is bandlimited. This means that the continuous function h has to vanish
at integer points t = n for |n| > S. Given such a compact filter (h[n])Sn=−S, the
unique bandlimited function h satisfying these conditions is obtained by the Shannon
interpolation formula:

h(t) =

S∑
n=−S

h[n] sinc(t− n) .

By unicity, we necessarily have ϕ2 ∗ sinc = h, and we can notice that there always
exists a bandlimited solution ϕ2 of this equation, which is simply ϕ2 = h. In practice,
we can always approximate a PSF by a bandlimited function h, with 2S+ 1 samples
h[n] of this PSF; that is why we argued that the compact support assumption is not
restrictive.

Now, to obtain the discrete image b] of (3), let us first define u] by sampling
x] ∗ φ1 with unit step:

u][n1, n2] = (x]∗φ1)(n1, n2), ∀n1 = 0, . . . ,W−1, n2 = −S, . . . ,H−1+S . (9)
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With the above assumptions and Proposition 1, we can express b] from u] using a
discrete vertical convolution with the filter h:

b][n1, n2] =

S∑
p=−S

u][n1, n2 − p]h[p], ∀n1 = 0, . . . ,W − 1, n2 = 0, . . . ,H − 1 .

(10)
Altogether, we completely and exactly characterized the sampling process, which
involves a continuous blur φ, using the two discrete and finite filters (g[n])W−1n=0 and
(h[n])Sn=−S . We insist on the fact that no discrete approximation is made during this
sampling process, due to the assumptions (i) and (ii). An example of three blurred
lines is depicted in Figure 1, with the normalized filter h approximating a Gaussian
function of standard deviation κ; that is, ϕ2 : t 7→ (2πκ2)−1/2 exp(−t2/(2κ2)),
on the compact set [−S, S] with S = d4κe − 1 ; and the normalized filter g =

[0M−S ,h,0M−S ] whose Discrete Fourier Transform (DFT) is an interpolation of ĥ,
which approaches the continuous Fourier transform ϕ̂2 : ν 7→ exp(−2π2κ2ν2). So,

‖ĝ‖∞ = ‖ĥ‖∞ = 1.

2.3 Toward an Inverse Problem in Fourier Domain

Let us further characterize the image b] in Fourier domain. Figure 3 explains our
notations in more details and illustrates the relation between all continuous and
discrete variables.

First, we consider the image û] obtained by applying the 1-D DFT on every row
of u] (9):

û][m,n2] =
1

W

W−1∑
n1=0

u][n1, n2]e−j
2πm
W n1 , (11)

∀m = −M, . . . ,M, n2 = −S, . . . ,H − 1 + S ,

which are the exact Fourier coefficients of the function t 7→ (x] ∗φ1)(t, n2) following

assumption (ii). Hence, from (4) and û][m,n2] = 1
W

∫W
0

(x] ∗ φ1)(t, n2)e−j
2πm
W t dt,

we obtain:

û][m,n2] = ĝ[m]x̂][m,n2], ∀m = −M, . . . ,M, n2 = −S, . . . ,H − 1 + S , (12)

with

x̂][m,n2] =

K∑
k=1

αk
cos θk

e j2π(tan θk n2−ηk)mW . (13)

Remark. The image x̂] is the sampled version of the continuous function x̂] =
F1x

], which is the horizontal Fourier transform of x] (2).

Now we apply a 1-D DFT on the first component of the discrete image b] (10),
leading to the elements

b̂][m,n2] =
(
û][m, :] ∗ h

)
[n2], ∀m = −M, . . . ,M, n2 = 0, . . . ,H − 1 . (14)

Since the image u] and the filter g are real, then x̂] is Hermitian, so we can only
deal with the right part x̂][0 : M, : ] and notice that the column corresponding to

m = 0 is real and equal to
∑K
k=1

αk
cos θk

. We consider in the following the Fourier

7



image x̂][m,n2] of size (M + 1)×HS , with HS = H + 2S, due to the addition of S
pixels beyond the borders for the convolution by the filter h. More precisely,

x̂] ∈ X = {x̂ ∈MM+1,HS (C) : Im(x̂[0, :]) = 0} , (15)

endowed with the following inner product, where ·∗ denotes the complex conjuga-
tion:

〈x̂1, x̂2〉X =

HS−1∑
n2=0

x̂1[0, n2]x̂2[0, n2] + 2Re

(
M∑
m=1

HS−1∑
n2=0

x̂1[m,n2]x̂2[m,n2]∗

)
. (16)

We also define the Hilbert space Y, which is equivalent to (15) for S = 0:

Y = {ŷ ∈MM+1,H(C) : Im(ŷ[0, :]) = 0} , (17)

endowed with the inner product (16) for S = 0; that is:

〈ŷ1, ŷ2〉Y =

H−1∑
n2=0

ŷ1[0, n2]ŷ2[0, n2] + 2Re

(
M∑
m=1

H−1∑
n2=0

ŷ1[m,n2]ŷ2[m,n2]∗

)
. (18)

Thereafter, we will have to deal with rows and columns of x̂ ∈ X , which respectively
belong to the Hilbert space denoted by Xl and Xt, endowed with the following inner
products:

〈l1, l2〉Xl
= l1[0]l2[0] + 2Re

(
M∑
m=1

l1[m]l2[m]∗

)
, (19)

〈t1, t2〉Xt = 2Re

(
HS∑
n2=1

t1[n2]t2[n2]∗

)
. (20)

Let A : X → Y be the operator which multiplies each row vector x̂[m, :] of x̂ ∈ X by
the corresponding Fourier coefficient ĝ[m] for m = 0, . . . ,M and convolves it with
the filter h = [h−S , . . . , h0, . . . , hS ]. From a matricial point of view, it corresponds

to a right and left matrix multiplication with the matrices Ĝ of size (M+1)×(M+1)
and Ȟ of size H ×HS defined by:

Ĝ = diag(ĝ0, . . . , ĝM ), Ȟ =


h−S · · · hS 0 0 · · · 0

0 h−S · · · hS 0 · · · 0
... · · ·

. . .
. . .

. . . · · ·
...

0 · · · 0 h−S · · · hS 0
0 · · · 0 0 h−S · · · hS

 , (21)

that is,
Ax̂ = Ȟx̂Ĝ . (22)

Following (12) and (14), the inverse problem writes

Ax̂] = b̂] . (23)

Finally, the image b] of the blurred lines is corrupted by noise, so that we observe
the degraded image

y = b] + ε, ε ∼ N (0, ζ2) , (24)

8
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Figure 3: Relation between variables.

with ζ the noise level. The problem reverts to an inverse problem we need to solve.
In absence of noise, one can find a theoretical solution of this ill-posed problem, by
solving on each column m the following reduced problems: ĝ[m]Ȟx̂[m, :] = b̂][m, :]
where Ȟ is the convolution matrix (21) corresponding to the vertical convolution
by filter h.

In order to address the noisy case, we will need to derive an optimization problem
of this inverse problem, under constraints exploiting the sparse structure of the
signal we are looking for, namely a combination of lines. The super-resolution
consists to recover the high frequencies (lost because of the blur operator) from
the degraded image y, so it can be viewed as a spectral extrapolation process, and
then to recover the parameters (θk, ηk, αk) of these lines. This procedure can be
decomposed as:

1. First solve the optimization problem

Minimize ‖ŷ −Ax̂‖Y , under the constraint that x is made of lines ; (25)

that is, to go to the bottom line of the diagram in Figure 3 from ŷ to x̂].

2. Second perform a Prony-like method onto x̂] in order to estimate the K
parameters (θk, ηk, αk).

These two steps are summarized in Figure 4. Note that this work also covers the
case where a mask is applied; that is, it can encompass inpainting problems. In the
next section, we present the framework of atomic norm from which the optimization
problem will be derived.

3 Super-Resolution Detection of Lines

3.1 Atomic Norm and Semidefinite Characterizations

Consider a complex signal z ∈ CN represented as a K-sparse mixture of atoms from
the set

A =
{
a(ω) ∈ CN : ω ∈ Ω

}
,

9
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Figure 4: The two steps of the procedure : a convex optimization for the recon-
struction of lines (in orange) and a Prony-like method for the estimation of their
parameters (in purple).
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= α1 + α2 + α3

= α1 + α2 + α3

Figure 5: Illustration with a signal made of a weighted combination of three lines
atoms (in gray) a(θk, ηk). In the Fourier domain, we have the same kind of com-
bination but with 2-D exponentials atoms â(θk, ηk). In both cases the sum of the
weights α1 + α2 + α3, where αi are the amplitudes of the lines, corresponds to the
atomic norm on the appropriate dictionary.

that is,

z =

K∑
k=1

cka(ωk), ck ∈ C, ωk ∈ Ω .

We consider atoms a(ω) ∈ CN that are continuously indexed in the dictionary
A by the parameter ω in a compact set Ω. The atomic norm, first introduced in
[14], is defined as

‖z‖A = inf {t > 0 : z ∈ t conv(A)} ,
where conv(A) denotes the convex hull of a general atomic set A, enforcing sparsity.
Chandrasekaran et al. [14] argue that the atomic norm is the best convex heuristic
for underdetermined, structured linear inverse problems, which generalizes the `1
norm for sparse recovery and the nuclear norm for low-rank matrix completion.

In our problem (2) the atoms are lines, so one can considered the dictionary
A2D indexed by the angle and the offset; that is, composed by the line atoms

a(θk, ηk) = δ
(
cos θk(t1 − ηk) + sin θk t2) .

Or alternatively in the Fourier domain, the dictionary Â2D, composed by the 2-D
exponentials atoms

â(θk, ηk) =
1

cos θk
e j2π(tan θk n2−ηk)m/W ,

as illustrated in Figure 5. The problem is that there is no closed-form expression
for the atomic norm in these 2-D dictionaries, to our knowledge. However, in the
case of 1-D complex exponentials, there is a way to compute the atomic norm via
semidefinite programming. So, we reformulate the problem using the simplified 1-D
case. From now on, we consider the dictionaries

A =

{
a(f, φ) ∈ C|I|, f ∈ [0, 1], φ ∈ [0, 2π)

}
, (26)

A0 =

{
a(f) ∈ C|I|, f ∈ [0, 1]

}
, (27)

11



in which the atoms are the vectors of components [a(f, φ)]i = e j(2πfi+φ), i ∈ I, and
[a(f)]i = [a(f, 0)]i = e j2πfi, i ∈ I. The atomic norm writes:

‖z‖A = inf
c′k>0

f ′k∈[0,1[
φ′k∈[0,2π)

{∑
k

c′k : z =
∑
k

c′ka(f ′k, φ
′
k)

}
. (28)

Theorem 1 (Caratheodory). A vector z = (z∗N−1, . . . , z
∗
1 , z0, z1, . . . , zN−1) of length

2N − 1, with z0 ∈ R, is a positive combination of K 6 N atoms a(fk) if and only
if TN (z+) < 0 and is of rank K, where z+ = (z0, . . . , zN−1) is of length N and
TN : CN → CN × CN is the Toeplitz operator

TN : z+ = (z0, . . . , zN−1) 7→


z0 z∗1 · · · z∗N−1
z1 z0 · · · z∗N−2
...

...
. . .

...
zN−1 zN−2 · · · z0

 , (29)

and < 0 denotes positive semidefiniteness. Moreover, this decomposition is unique,
if K < N .

Proof. See references [9, 10, 55, 40].

We also derived the above characterization, which gets rid of a useless variable.

Proposition 2. The atomic norm ‖z‖A can be characterized by the following
semidefinite program:

‖z‖A = min
q∈CN ,q0>0

{
q0 : T′N (z, q) =

(
TN (q) z
z∗ q0

)
< 0

}
. (30)

where q0 is the first component of vector q = (q0, . . . , qN−1) ∈ R+ × CN−1 and
z∗ = zT.

Proof. This result is an improvement of [54, Proposition II.1] and the proof is given
in Appendix A.

Since the matrix T′N (z, q) in (30) is Hermitian and positive semidefinite, its

eigenvalues (λi)06i6N are positive reals. So, q0 = 1
N+1Trace(T′N (z, q)) = 1

N+1

∑N
i=0 λi

is real and positive. We also define, for the upcoming convex optimization problem,
the following set of complex matrices

Q =
{
q ∈ CM+1 × CHS : Im(q[:, 0]) = 0

}
, (31)

endowed with the following inner product:

〈q1,q2〉Q =

M∑
m=0

q1[m, 0]q2[m, 0] + 2Re

(
HS−1∑
n2=1

M∑
m=0

q1[m,n2]q2[m,n2]∗

)
. (32)

Remark. The columns of q ∈ Q belong to the Hilbert space Qt which is R×CHS−1
endowed with the inner product:

〈q1, q2〉Qt = q1[0]q2[0] + 2Re

(
HS−1∑
n2=1

q1[n2]q2[n2]∗

)
. (33)

12



3.2 Properties of the Model x̂] with respect to the Atomic
Norm

In Fourier domain, the discrete image x̂] given by (13) can be viewed as a sum of
atoms: first considering the rows ln2

of the matrix x̂], with I = {0, . . . ,HS − 1}:

l]n2
= x̂][:, n2] =

K∑
k=1

cka(fn2,k) , (34)

second considering the columns tm, with I = {−M, . . . ,M}:

t]m = x̂][m, :] =

K∑
k=1

cka(fm,k, φm,k)T , (35)

where

ck =
αk

cos θk
, fn2,k =

tan θk n2 − ηk
W

, (36)

φm,k = −2πηkm

W
, fm,k =

tan θkm

W
.

We define for later use, the frequency νk = ηk/W and the coefficients dm,k =
cke jφm,k , em,k = e jφm,k . The vectors l]n2

of size W = 2M + 1 are positive combina-
tions of K atoms a(fn2,k), with K 6 M since we can reasonably assume that the
number of lines K is smaller than half the number of pixels M . Thus, Theorem 1
ensures that the decomposition (34) is unique, hence, following (28):

‖l]n2
‖A =

K∑
k=1

ck = x̂][0, n2], ∀n2 = 0, . . . ,HS − 1 . (37)

By contrast, since the coefficients dm,k are complex, Theorem 1 no longer holds and
we simply have from Proposition 2:

‖t]m‖A 6
K∑
k=1

ck, ∀m = −M, . . . ,M . (38)

Let us take a closer look at the case of one line; that is, K = 1, characterized
by parameters (θ, η, α). We recall by (13) that x̂] can be written as:

x̂][m,n2] = c1e j2π((f1−f0)n2+f0)m, c1 =
α

cos θ
, f0 = − η

W
, f1 =

tan θ − η
W

.

Let z = (z0, . . . , z|I|−1) be a complex vector, whose elements zi are rearranged in a
Toeplitz matrix PK(z) of size (|I| −K)× (K + 1) and rank K as follows:

PK(z) =

 zK · · · z0
...

. . .
...

z|I|−1 · · · z|I|−K−1

 .

We get the following characterization of one line in Fourier domain:

13



Proposition 3. An image x̂ is of the form x̂[m,n] = c1e j2π((f1−f0)n+f0)m) if and
only if the rows ln and columns tm of x̂ satisfy TM (ln) is positive semidefinite and
of rank one, P1(tm) is of rank one, and x̂[0, n] = x̂[0, 0] for all m and n.

Proof. See Appendix B.

Besides, with D = diag(c1, . . . , cK) and Vn2
=
[
a(fn2,1) · · · a(fn2,K)

]
, we

can remark that

TM (l]n2
) =

K∑
k=1

ckTM (a(fn2,k)) =

K∑
k=1

cka(fn2,k)a(fn2,k)∗ = Vn2DV∗n2
,

where ·∗ denotes the hermitian conjugate. Hence the nuclear norm of TM (l]n2
) is

‖TM (l]n2
)‖∗ =

K∑
k=1

ck = ‖l]n2
‖A .

The first equality is explained by the singular value decomposition (SVD) of a
matrix X = UΣV, since the nuclear norm of a matrix corresponds to the sum of
its singular values. It is often used as a convex approximation of the rank of this
matrix [47, 46]. Consequently, in the following, we consider a convex relaxation of
the line characterization given in Proposition 3, in which the rank constraint on
TM (l]n2

) is replaced by an atomic norm constraint on ‖l]n2
‖A. Since the minimum

value to achieve is c] =
∑K
k=1 ck, and since the atomic norm lies on the first column

x̂[0, n2] = x̂[0, 0], we impose the constraint x̂[0, n2] = x̂[0, 0] 6 c]. We do the same
for the columns.

Remark. We did not establish a similar characterization for K ≥ 2 lines, but the
philosophy remains: the aim is to minimize atomic norms of rows and columns
simultaneously, so that the solution will be composed of sparse sums of exponentials
in both directions. This leads to the following optimization problem presented in the
next section.

4 Minimization Problem with the Atomic Norm
Regularization

Given the operator A defined in (22) by means of the filters (7)-(8) and ŷ the Fourier
version of the degraded image observed (24), we are looking for an image x̂ ∈ X
which minimizes ‖Ax̂ − ŷ‖Y , for the norm derived from the inner product (18),
and whose rows and columns satisfy properties (37) and (38). We fix a constant
c. Consequently, the following optimization problem provides an estimator of x̂]

defined in (13):

x̃ ∈ arg min
(x̂,q)∈X×Q

1

2
‖Ax̂− ŷ‖2Y , (39)

s.t



x̂[0, n2] = x̂[0, 0] 6 c , (40a)

q[m, 0] 6 c , (40b)

TM+1(x̂[:, n2]) < 0 , (40c)

T′HS (x̂[m, :],q[m, :]) < 0 , (40d)

∀n2 = 0, ...,HS − 1, ∀m = 1, ...,M ,
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where the Hilbert spaces (X , 〈·, ·〉X ), (Y, 〈·, ·〉Y) and (Q, 〈·, ·〉Q) are respectively
defined in (15)-(16), (17)-(18) and (31)-(32); and the operators TM+1 : Xl → TM+1

and T′HS : Xt×Qt → THS+1 are defined respectively on rows and columns of x̂ ∈ X
and q ∈ Q, endowed respectively with the inner products (19) and (20)-(33), to
Hermitian-Toeplitz matrices of dimension M + 1 and HS + 1 respectively, whose
spaces are denoted by TM+1 and THS+1 endowed with the classical inner product
on complex matrices:

〈M,N〉M =
∑
i,j

M∗
ijNij , (41)

and corresponding Frobenius norm

‖M‖F =

∑
i,j

|Mij |2
1/2

. (42)

The expressions of the operators TN and T′N are given respectively in (29) and
(30).

Remark. This optimization problem could be rewritten in a regularized form in-
volving a parameter λ to tune, what is not any better than the tuning parameter c,
which has the advantage of having a physical meaning, related to the line intensities.

We keep this constrained formulation and write it in a more suitable way as
follows. Let H = X × Q be the Hilbert space in which the variable optimization
X = (x̂,q) lies, endowed with the following inner product:

〈 (x̂1,q1), (x̂2,q2) 〉H = 〈x̂1, x̂2〉X + 〈q1,q2〉Q . (43)

Let us define L
(1)
m : H → THS+1 and L

(2)
n2 : H → TM+1 by

L(1)
m (X) = T′HS (x̂[m, :],q[m, :]) , (44)

L(2)
n2

(X) = TM+1(x̂[:, n2]) . (45)

If ιC is the indicator function of a convex set C defined by

ιC : x 7→

{
0 if x ∈ C
+∞ if x /∈ C

,

where C will be either B ⊂ H the set corresponding to the boundary constraints

B =

{
(x̂,q) ∈ H : x̂[0, n2] = x̂[0, 0] 6 c, q[m, 0] 6 c

}
, (46)

or the cone of positive semidefinite matrices C. Then, the optimization problem
(39) under constraints (40) can be rewritten as follows:

X̃ = arg min
X=(x̂,q)∈H

{
1

2
‖Ax̂− ŷ‖2Y + ιB(X) +

M∑
m=1

ιC(L
(1)
m (X)) +

HS−1∑
n2=0

ιC(L
(2)
n2

(X))

}
.

(47)
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4.1 First Algorithm Design

The optimization problem (47) can be cast as a minimization problem, involving
smooth, proximable and linear composite terms [17]:

X̃ = arg min
X∈H

{
F (X) +G(X) +

Q−1∑
i=0

Hi(Li(X))

}
, (48)

with F (X) = 1
2‖Ax̂− ŷ‖2Y , X = (x̂,q), G = ιB, which is proximable, Q = M +HS

linear composite terms where Hi = ιC , Li = L
(2)
i when 0 ≤ i ≤ HS − 1 and

Li = L
(1)
i−HS+1 when HS ≤ i ≤ HS+M−1. We define Hx =

∑Q−1
i=0 Hixi, L(1)(X) =

(L
(1)
1 (X), . . . ,L

(1)
M (X)) and L(2)(X) = (L

(2)
0 (X), . . . ,L

(2)
HS−1(X)). L = (L(1),L(2)) is

the linear operator such that the composite terms rewrite H ◦ L. We define onto
the range of L(1), L(2) and L, which are cartesian product spaces, an inner product
as the sum of the inner products defined on these spaces (similarly to (43)), and
corresponding norms denoted by ‖·‖(1), ‖·‖(2) and ‖·‖(1,2). We define the operator
norms

‖A‖ = sup
x̂∈X

‖Ax̂‖Y
‖x̂‖X

, (49)

‖Li‖ = sup
X∈H

‖Li(X)‖F
‖X‖H

, (50)

∥∥∥L(j)
∥∥∥ = sup

X∈H

∥∥L(j)(X)
∥∥
(j)

‖X‖H
, j ∈ {1, 2} , (51)

‖L‖ = sup
X∈H

‖L(X)‖(1,2)
‖X‖H

, (52)

We now establish some properties of the functions, adjoint operators and norms
previously defined.

Lemma 1. The norm (49) of the operator A defined in (22) is given by

‖A‖ = ‖ĝ‖∞‖ĥ‖∞ . (53)

Proof. By definition Ax̂ = (x̂Ĝ) ∗h, where Ĝ = diag(ĝM+1, . . . , ĝW ). Let compute
the norm of this operator. If we denote by x̂k the k-th column of x̂, then by
considering in Fourier the norm operator f 7→ f ∗ h we have the inequality

‖x̂k ∗ h‖2 6 ‖ĥ‖∞‖x̂k‖2 .

Thus, with the norm derived from (16) we get

‖Ax̂‖2Y = |ĝM+1|2‖x̂0 ∗ h‖22 + 2|ĝM+2|2‖x̂1 ∗ h‖22 + · · ·+ 2|ĝW |2‖x̂M ∗ h‖22 , (54)

6 ‖ĝ‖2∞‖ĥ‖2∞(‖x̂0‖22 + 2‖x̂1‖22 + · · ·+ 2‖x̂M‖22) ,

6 ‖ĝ‖2∞‖ĥ‖2∞‖x̂‖2X .

Since filter h is low-pass, then the equality is achieved for an image x̂ whose all
columns are null except one which is constant (non zero), of index m0 where ĝm0

corresponds to the maximum ‖ĝ‖∞, which proves the result (53).
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Lemma 2. The adjoint operator of the operator A is denoted by A∗ and defined
such that 〈Ax̂ , ẑ〉X = 〈x̂ , A∗ẑ〉Y . Its matricial expression is given by

A∗ẑ = Ȟ∗ẑĜ∗ , (55)

or alternatively by A∗ẑ = (ẑĜ∗) ∗ h̄′ where h′ is the flipped vector from h.

Proof. From the definition (22) we have Ax̂ = Ȟx̂Ĝ, which is a matrix product.
Then, for a matrix M we keep the usual property 〈Mx̂1 , x̂2〉X = 〈x̂1 , M∗x̂2〉X
noticing that

〈x̂1 , x̂2〉X = 〈x̂1 , x̂2〉M + 〈x̂1 , x̂2〉∗M − 〈x̂1[:, 0] , x̂2[:, 0]〉CHS ,

and then the proof is straighforward.

Then, we have the following proposition:

Proposition 4. For X = (x̂,q), the gradient of F (X) = 1
2‖Ax̂− ŷ‖2Y is

∇F (X) = (A∗(Ax̂− ŷ),0)T ,

which is Lipschitz-continuous with Lipschitz constant β = ‖ĝ‖2∞‖ĥ‖2∞.

Proof. Let F1 and F2 be the applications:

F1 : x̂ ∈ X 7→ 1

2
‖Ax̂− ŷ‖Y2 ∈ R ,

F2 : X = (x̂,q) ∈ H 7→ x̂ ∈ X .

Then, F : H 7→ R writes F = F1 ◦ F2 and its differential at X0 is:

(dF )X0(X) = (dF1)F2(X0) ◦ (dF2)X0(X) .

First, we have

F1(x̂ + h) =
1

2
‖A(x̂ + h)− ŷ‖2Y ,

=
1

2
‖Ax̂− ŷ‖2Y +

1

2
〈Ax̂− ŷ,Ah〉Y +

1

2
〈Ah,Ax̂− ŷ〉Y +

1

2
‖Ah‖2Y ,

= F1(x̂) + 〈Ax̂− ŷ,Ah〉Y + o(‖h‖X ) ,

= F1(x̂) + 〈A∗(Ax̂− ŷ),h〉X + o(‖h‖X ) ,

that is
(dF1)x̂(h) = 〈A∗(Ax̂− ŷ),h〉X .

Moreover, F2 is linear so (dF2)X0
(X) = F2(X), hence

(dF )X0
(X) = 〈A∗(Ax̂0 − ŷ), x̂〉X =

〈(
A∗(Ax̂0 − ŷ)

0

)
,X

〉
H
,

that is

∇F (X0) =

(
A∗(Ax̂0 − ŷ)

0

)
.

Consequently,

‖∇F (X)−∇F (X′)‖H 6 ‖A∗A(x̂− x̂′)‖X 6 ‖A∗A‖‖x̂− x̂′‖X .

We get β = ‖A∗A‖ = ‖A‖2 and Lemma 1 concludes the proof.
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We now give in the next proposition the adjoints of these operators:

TM+1 : (Xl , 〈· , ·〉Xl
)→ (TM+1 , 〈· , ·〉M) , (56)

T′HS : (Xt ×Qt , 〈· , ·〉Xt
+ 〈· , ·〉Qt

)→ (THS+1 , 〈· , ·〉M) , (57)

where the inner products are defined in (19), (20), (33) and (41).

Proposition 5. For M(1) ∈ THS+1 and M(2) ∈ TM+1 the adjoint operators of (56)
and (57) applied to M(1) and M(2) give the following vectors:

z2 = T∗M+1M
(2) ∈ R× CM ,

(z1, q1) = T
′∗
HSM(1) ∈ CHS × (R× CHS−1) ,

whose components are:

z2[k] =

M−k∑
l=0

M
(2)
l+k,l, ∀k = 0, . . . ,M ,

z1[k] = M
(1)
HS+1,k, q1[k] =

HS−1−k∑
l=0

M
(1)
l+k,l + δkM

(1)
HS ,HS

, ∀k = 0, . . . ,HS − 1 .

Proof. See in Appendix C.

Now we will explicit a bound of the operator norm ‖L‖.

Proposition 6. The norm of the operator L = (L(1),L(2)), where

L(1)(X) = (L
(1)
1 (X), . . . ,L

(1)
M (X)) ,

L(2)(X) = (L
(2)
0 (X), . . . ,L

(2)
HS−1(X)) ,

and with L
(1)
m and L

(2)
n2 defined in (44)-(45), is given by

‖L‖2 ≤ ‖L(1)‖2 + ‖L(2)‖2 = ‖T′HS‖
2 + ‖TM+1‖2 = (HS + 1) + (M + 1) .

Proof. See in Appendix D.

To solve the problem (47), we first propose Algorithm 1, which uses the primal-
dual method introduced in [41]. Following [17, Theorem 5.1], we know that the
method converges to a solution (X̃, ξ̃0, ..., ξ̃Q−1) of the problem (48), provided the
parameters τ > 0 and σ > 0 in Algorithm 1 are such that

1

τ
− σ‖L‖2 > β

2
. (58)

We then choose 0 < τ < 2, σ = (HS +M + 2)−2(1/τ − β/1.9) and ρn ≡ ρ = 1.

We detail below the other terms in lines 3 and 6 of Algorithm 1, involving
proximal and adjoint operators computation. For more details on convex analysis,
monotone operator theory and proximal splitting methods see [5, 1, 16, 38].

Set x0 = 1
HS

∑HS−1
n2=0 x̂[0, n2], G = ιB with B defined in (46), we get ∀m,n2:

proxτG(x̂,q) =


x̂[0, n2] = x0 if x0 6 c

x̂[0, n2] = c otherwise

q[m, 0] = c if q[m, 0] > c

.
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Algorithm 1 Primal-dual splitting algorithm for (48)

Input: ŷ 1-D FFT of the blurred and noisy data image y
Output: x̃ solution of the optimization problem (39) under constraints (40)

1: Initialize primal and dual variables to zero X0 = 0, ξi,0 = 0, ∀i ∈ J1, QK
2: for n = 1 to Number of iterations do
3: Xn+1 = proxτG(Xn − τ∇F (Xn)− τ

∑Q−1
i=0 L∗i ξi,n),

4: Xn+1 = ρnX̃n+1 − (1− ρn)Xn,
5: for i = 0 to Q− 1 do
6: ξi,n+1 = proxσH∗i (ξi,n + σLi(2Xn+1 −Xn)),

7: ξi,n+1 = ρnξ̃i,n+1 + (1− ρn)ξi,n,
8: end for
9: end for

Let PC be the projection operator onto the cone of positive matrix C, by Moreau
identity [1]:

proxσH∗i (M) = M− σproxHi
σ

(
1

σ
M

)
= M− PC (M) .

Finally, we need to compute on line 3 the adjoint operators L∗i where the Li are
defined in (44)-(45). The dual variables (ξi,n)i in Algorithm 1 refer to Hermitian-

Toeplitz matrices M
(1)
m ∈ THS+1 or M

(2)
n2 ∈ TM+1. By definition, the adjoint opera-

tor are the images (z
(1)
m ,q

(1)
m ) = L

(1)∗
m M

(1)
m and (z

(2)
n2 ,q

(2)
n2 ) = L

(2)∗
n2 M

(2)
n2 . According

to the definitions (44)-(45), for a primal variable X = (x̂,q) the operators L
(1)
m and

L
(1)
n2 respectively act on the m-th columns of the images (x̂,q) and on the n2-th row

of the image x̂ only, so we can easily see concerning the adjoints that q
(2)
n2 = 0 and

z
(2)
n2 (resp. z

(1)
m ,q

(1)
m ) is null except at the corresponding row n2 (resp. column m)

where

z(2)n2
[:, n2] = T∗M+1M

(2)
n2

, (59)

(z(1)m [m, :],q(1)
m [m, :]) = T

′∗
HSM(1)

m , (60)

with the expression of the adjoint operators T∗M+1 and T
′∗
HS

given in Proposition 5.
Thus, the operations onto Xn = (x̂n,qn) before applying proxτG on line 3, consists
in a gradient descent step Xn − τ∇F (Xn), following by an update of all its rows

and columns caused by the terms −τ
∑Q−1
i=0 L∗i ξi,n, whose expressions are provided

by (59) and (60).

4.2 Second Algorithm Design

Notice that in Algorithm 1, τ must be smaller than 2/β, which is a limitation in
terms of convergence speed. To overcome this issue, we subsequently developed a
second algorithm, similar to Algorithm 1, but with the data fidelity term ‖Ax̂−ŷ‖Y
activated through its proximity operator, instead of its gradient. We consider the
optimization problem as a over-relaxed version of the Chambolle–Pock algorithm
[12]:

X? = arg min
X∈H

{G(X) + H(L(X))} , (61)
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with now G = 1
2‖A · −ŷ‖2Y which is proximable, Hx =

∑Q
i=0Hixi with Hi = ιC for

i < Q, where Li = L
(2)
i when 0 ≤ i ≤ HS − 1, Li = L

(1)
i−HS+1 when HS ≤ i ≤ Q− 1,

and HQ = ιB with LQ = Id. So now, ‖L‖2 ≤ HS +M + 3.

Let τ > 0 and σ > 0 such that τσ‖L‖2 = 1, then the primal-dual Algorithm 2,
with F = 0 and weights ρn ≡ ρ = 1.9, which is an over-relaxed version of the
Chambolle–Pock algorithm, converges to a solution (X̃, ξ̃0, ..., ξ̃Q−1) of the problem
(48) [17, Theorem 5.1].

Algorithm 2 Primal-dual splitting algorithm for (61)

Input: ŷ 1-D FFT of the blurred and noisy data image y
Output: x̃ solution of the optimization problem (39) under constraints (40)

1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: X̃n+1 = proxτG(Xn − τ

∑Q−1
i=0 L∗i ξi,n),

4: Xn+1 = ρnX̃n+1 − (1− ρn)Xn

5: for i = 0 to Q− 1 do
6: ξ̃i,n+1 = proxσH∗i (ξi,n + σLi(2Xn+1 −Xn)),

7: ξi,n+1 = ρnξ̃i,n+1 + (1− ρn)ξi,n
8: end for
9: end for

The Algorithm 2 requires to compute proxτG. Since we have

p = proxτG(x̂)⇔ x̂− p = ∇(τG)(p) , (62)

⇔ x̂− p = τA∗(Ap− ŷ) ,

⇔ x̂ + τA∗ŷ = (I + τA∗A)p ,

then the proximal operator has the following expression:

proxτG(x̂) = (I + τA∗A)−1(x̂ + τA∗ŷ) ,

for which we propose below two ways of computing the inverse.
We proved in Lemma 2 that A∗ŷ = Ȟ∗ŷĜ∗ and then

(I + τA∗A)x̂ = x̂ + Px̂Q, P = τȞ∗Ȟ, Q = ĜĜ∗ .

The square matrices P and Q are of size p = HS and q = M + 1. We have to solve
(I + τA∗A)x̂ = z; that is, x̂ + Px̂Q = z. This kind of system can be solved by the
mean of the Kronecker Product as:

x̂ + Px̂Q = z ⇐⇒ (Ipq,pq + Q⊗PT)Vec(x̂) = Vec(z).

where Vec(x̂) denotes the vectorization of the matrix x̂ formed by stacking the
columns of x̂ into a single column vector, and Ipq,pq + Q⊗PT is a matrix of size
pq × pq which can be inverted, giving access to Vec(x̂) and then to x̂. Finally, the
operator proxτG is nothing more than a large matrix-vector product.

Another option consists in working on the columns x̂m of x̂, since the operator
A acts on them.

(I + τA∗A)x̂ = z ⇐⇒ (I + |ĝm|2P)x̂m = zm, ∀m = 0, . . . ,M .

This time, the operator proxτG involves performing M + 1 matrix-vector products
of size p× p, which appears to be more efficient in practice.
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4.3 Extended Problem Formulation

We now consider a data image b] containing lines with no angle restriction, which
extends the previous case by relaxing the assumption made in subsection 2.1. We
can decompose this image into the sum of two images b] = b]1 + b]2, with b]1
(resp. b]2) containing vertical (resp. horizontal) lines. We can also define x̂]1 of size

(M + 1)×HS and x̂]2 of size WS × (P + 1) with WS = W + 2S and P = (H − 1)/2

such as Ax̂]1 = b̂]1 and Ãx̂]2 = b̂]2, where g2 = [0P−S ,h,0P−S ] and Ã denotes the

operator which multiplies each row vector x̂]2[:, n2] by the corresponding Fourier

coefficient ĝ2[n2] and convolves it with the filter h; that is, Ãx̂2 = (Ĝ2x̂2) ∗ h
with Ĝ2 = diag(ĝ2[P + 1], . . . , ĝ2[H]). We finally define the Hermitian symmetry
operator S1 (resp. S2) which from each row v = [v0, v1, . . . , vM ] (resp. column
v = [v0, v1, . . . , vP ]) associates the symmetric extension [v∗M , . . . , v0, . . . , vM ] (resp.
[v∗P , . . . , v0, . . . , vP ]). Let X1 = (x̂1,q1) and X2 = (x̂2,q2) be the optimization
variables, lying of spaces H1 = X1 × Q1 and H2 = X2 × Q2. Let H = H1 × H2,
X = X1 ×X2 and Q = Q1 ×Q2. Then, the data fidelity term is now:

F (X1,X2) =
1

2
‖F−11 S1Ax̂1 + F−12 S2Ãx̂2 − y‖2F=

1

2
‖A1x̂1 + A2x̂2 − y‖2F ,

with A1 = F−11 S1A, A2 = F−12 S2Ã, where F1 (resp. F2) is the Fourier transform
with respect to the rows (resp. columns) and ‖·‖F is the Frobenius norm.

Proposition 7. The gradient of F is

∇F (X1,X2) =
1

2

(
A1
∗(A1x̂1 + A2x̂2 − y)

A2
∗(A1x̂1 + A2x̂2 − y)

)
, (63)

which is Lipschitz-continuous of Lipschitz constant β = 1
min(W,H) .

Proof. Let us compute the differential function of F :

F (X1 + h1,X2 + h2)

=
1

2
〈A1x̂1 + A2x̂2 + A1h1 + A2h2 − y,A1x̂1 + A2x̂2 + A1h1 + A2h2 − y〉M ,

= F (X1,X2) +
1

2
〈A1h1,A1x̂1 + A2x̂2 − y〉M +

1

2
〈A1h1,A2h2〉M +

1

2
〈A1h1,A1h1〉M

+
1

2
〈A2h2,A1x̂1 + A2x̂2 − y〉M +

1

2
〈A2h2,A1h1〉M +

1

2
〈A2h2,A2h2〉M ,

and
|〈A1h1,A2h2〉M| 6 ‖A1‖‖A2‖‖h1‖H1

‖h2‖H2
= o (‖(h1,h2)‖H) ,

and we deduce that

∇F (X1,X2) =
1

2

(
A1
∗(A1x̂1 + A2x̂2 − y)

A2
∗(A1x̂1 + A2x̂2 − y)

)
.

The adjoints are Ã∗z = (Ĝ∗2z) ∗ h̄′, (F−11 )∗ = 1
W F1 and (F−12 )∗ = 1

HF2, and
S∗1(v−M , . . . , v0, . . . , vM ) = (v0, . . . , vM ) and S∗2(v−P , . . . , v0, . . . , vP ) = (v0, . . . , vP ).

Let us determine the Lipschitz constant of the gradient ∇F :

‖∇F (X1,X2)−∇F (X′1,X
′
2)‖2X =

1

4
‖A1

∗(A1(x̂1 − x̂′1) + A2(x̂2 − x̂′2))‖2X1

+
1

4
‖A2

∗(A1(x̂1 − x̂′1) + A2(x̂2 − x̂′2))‖2X2
.
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We are looking for a majoration of each term. We treat the first one C1, the second
C2 is obtained in the same manner. Using the inequality (a+ b)2 ≤ 2a2 + 2b2:

C1 6
1

4
(‖A1

∗A1‖‖x̂1 − x̂′1‖X1 + ‖A1
∗A2‖‖x̂2 − x̂′2‖X2)2 ,

6
1

2
‖A1

∗A1‖2‖x̂1 − x̂′1‖2X1
+

1

2
‖A1

∗A2‖2‖x̂2 − x̂′2‖2X2
.

We have ‖A‖ = ‖A∗‖ = 1, ‖Six̂1‖F = ‖x̂i‖X , for i ∈ {1, 2}; that is, ‖Si‖ = 1,
and ‖F−1i v‖22 = 1

N2 ‖v‖22; that is, ‖F−1i ‖ = 1
N . Hence, ‖A1‖ 6 1

W , ‖A1
∗‖ 6 1,

‖A2‖ 6 1
H and ‖A2‖ 6 1. Consequently, we get

C1 6
1

2W 2
‖x̂1 − x̂′1‖2X1

+
1

2H2
‖x̂2 − x̂′2‖2X2

,

and exactly the same majoration for C2. Thus, we have

‖∇F (X1,X2)−∇F (X′1,X
′
2)‖2X 6 β2(‖X1 −X′1‖2H1

+ ‖X2 −X′2‖2H2
) ,

with

β =
1

min(W,H)
.

The image x̂]1 keeps the same kind of constraints as in the Algorithm 1, which

act similarly on the image x̂]2 in a rotated way; that is, we define

L(3)
m (X2) = TP+1(x̂2[m, :]) , (64)

L(4)
n2

(X2) = T′WS
(fliplr(x̂2[:, n2]),fliplr(q2[:, n2])) , (65)

where fliplr performs a flip from left to right on each row of the matrix.
The boundary constraints on x̂1 and x̂2 are respectively given by:

B1 =

{
(x̂1,q1) ∈ H1 : x̂1[0, n2] = x̂1[0, 0] 6 c1, q1[m, 0] 6 c1

}
, (66)

B2 =

{
(x̂2,q2) ∈ H2 : x̂2[m, 0] = x̂2[0, 0] 6 c2, q2[P, n2] 6 c2

}
. (67)

Likewise, the inner product on spaces X2 and Q2 are:

〈z1, z2〉X2 =

WS−1∑
m=0

z1[m, 0]z2[m, 0] + 2Re

(
P∑

n2=1

WS−1∑
m=0

z1[m,n2]z2[m,n2]∗

)
, (68)

〈z1, z2〉Q2 = 2Re

(
P∑

n2=0

WS−1∑
m=0

z1[m,n2]z2[m,n2]∗

)
. (69)

and so the adjoint of the operators remain the same.

As previously, we define L(3)(X2) = (L
(3)
0 (X2), . . . ,L

(3)
WS−1(X2)), also L(4)(X2) =

(L
(4)
0 (X2), . . . ,L

(4)
P (X2)) and L = (L(1),L(2),L(3),L(4)). Again, an easy computa-

tion leads to

‖L‖2 ≤ ‖L(1)‖2 + ‖L(2)‖2 + ‖L(3)‖2 + ‖L(4)‖2 ,
≤ (HS − 1) + (M + 1) + (P + 1) + (WS − 1) .
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Finally, we have

(X̃1, X̃2) = arg min
(X1,X2)∈H

{
1

2
‖A1x̂1 + A2x̂2 − y‖2F

+ ιB1
(X1) +

M∑
m=0

ιC(L
(1)
m (X1)) +

HS−1∑
n2=0

ιC(L
(2)
n2

(X1))

+ ιB2
(X2) +

WS−1∑
m=0

ιC(L
(3)
m (X2)) +

P∑
n2=0

ιC(L
(4)
n2

(X2))

}
. (70)

4.4 Inpainting problems

We now consider the case in which a binary mask M is applied on the data image,
as in Figure 4. More precisely, the result M · x is an element-wise multiplication of
the matrix x with the binary matrix M, whose zero coefficients are the indices of
the pixels unavailable to observation. We have M∗ = M. The data fidelity term
becomes F (X) = 1

2‖MF
−1
1 S1Ax̂− y‖2F, whose gradient can be expressed as previ-

ously, with β = 1/W (since ‖F−11 ‖ = 1/W and ‖M‖ = 1). The constraints remain
the same as in (40), and the method is also easily transposable to the extended
setting of subsection 4.3.

At this stage, we completed the first step; that is, we are able to restore the
image x̂] from the degraded image y. From now, we can for instance reduce the
blur by taking other filters gr and hr with a smaller spread, and visualize the
resulting image br passing the solution x̂ through this new blur operator Ar; that
is, b̂r = Arx̂.

5 Recovering Line Parameters by a Prony Method

In this section, we present the method that underlies the second step of this work
(see Figure 4), namely the estimation of the line parameters, which is related to the
spectral estimation field. We now focus on estimating the parameters (θk, αk, ηk),
which characterize the K lines, from the solution of the minimization problem x̂,
symmetrized to m = −M, . . . ,−1 beforehand. This requires the use of a classical
spectral estimation method [50, 51]. The recovering procedure hereafter, based on
[45], is an extended method of the famous Prony method [42].

Let us sketch this Prony-like method [45], which is based on an annihilating
property [3]. Let z = (z0, . . . , z|I|−1) be a complex vector, whose components are:

zi =

K∑
k=1

dk
(
e j2πfk

)i
, ∀i = 0, . . . , |I| − 1 , (71)

with dk ∈ C, fk ∈ [−1/2, 1/2). Let ζk = e j2πfk , we introduce the annihilating

polynomial H(ζ) =
∏K
l=1(ζ − ζl) =

∑K
l=0 hlζ

K−l with h0 = 1. Then, we can notice
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that for all r = K, . . . , |I| − 1:

K∑
l=0

hlzr−l =

K∑
l=0

hl

(
K∑
k=1

dkζ
r−l
k

)
=

K∑
k=1

dkζ
r−K
k

(
K∑
l=0

hlζ
K−l
k

)
︸ ︷︷ ︸

H(ζk)=0

= 0 . (72)

Rearranging the elements zi in a Toeplitz matrix PK(z) of size (|I| −K)× (K + 1)
and rank K as follows:

PK(z) =

 zK · · · z0
...

. . .
...

z|I|−1 · · · z|I|−K−1

 ,

(72) can be written with h = (h0, . . . , hK) as:

(z ∗ h)(r) = 0, ∀r = K, . . . , |I| − 1⇐⇒ PKh = 0 .

Consequently, the method consists in finding a right singular vector of the matrix
PK associated to the singular value zero, which leads to vector h = (h0, . . . , hK)

and then to the polynomial H(ζ) =
∑K
l=0 hlζ

K−l, whose roots are the searched
complex ζk = e j2πfk and then fk = arg(ζk)/(2π). The complex amplitudes can be
retrieved as well by written (71) matricially z = Ud where d = (d1, . . . , dK) and
the following matrix U of size |I| ×K:

U =
(
a(f1) · · · a(fK)

)
=


1 · · · 1

e−j2πf1 · · · e−j2πfK

e−j2πf1×2 · · · e−j2πfK×2

...
...

...
e−j2πf1(|I|−1) · · · e−j2πfK(|I|−1)

 .

Finally, we recover the amplitudes by a least square approximation:

d = (U∗U)−1U∗z .

Applied on the columns of x̂], the procedure becomes the following:

Extraction of line parameters (Procedure 1)
– From m = 1, . . . ,M ,

1. Compute f̃m,k = arg(ζm,k)/(2π), where (ζm,k)k are roots of the polynomial∑K
k=0 hm,kζ

k with hm = [hm,0, . . . , hm,K ]T being the right singular vector of
PK(x̃[m, :]) with I = {0, . . . ,HS − 1}. It corresponds to the singular value
zero (the smallest value in practice).

2. Form the matrix Ũm = [a(f̃m,1) · · ·a(f̃m,K)], and compute the complex am-

plitudes d̃m = [d̃m,1, . . . , d̃m,K ]T by solving the least-squares linear system

Ũ∗mŨmd̃m = Ũ∗mx̃[m, :].

3. Compute θ̃m,k = arctan(Wf̃m,k/m) from (36).

4. Compute α̃m,k = |d̃m,k| cos θ̃m,k.
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Figure 6: Parameter extraction procedure

5. Compute ẽm,k = d̃m,k/|d̃m,k|.

– For k = 1, . . . ,K

6. Sort the f̃m,k with respect to k, and apply this permutation on the other

array. Compute the mean of all estimated angles θ̃k = 1
M

∑M
m=1 θ̃m,k and

amplitudes α̃k = 1
M

∑M
m=1 α̃m,k.

7. Compute the frequency ν̃k as previously from PK(ẽk) with ẽk = (ẽm,k)m and
I = {−M, . . . ,M}, and then the horizontal offset η̃k = Wν̃k/(2π).

Remark. The point 6. and 7. are possible to the extent that the sorting frequencies
f̃m,k are always related to the same angles θ1 6 · · · ≤ θk ≤ · · · ≤ θK for all m,
which allows us to compute the mean according to m. It would not be possible to
do the same with f̃n2,k = (tan(θ̃k)n2 − η̃k)/W because the affine relation does not

preserve the order, for instance one can find n and n′ such that f̃n,k1 ≤ f̃n,k2 and

f̃n′,k1 ≥ f̃n′,k2 .

Thus, the trick is to perform the Prony method on the vectors ẽk again, with this aim
to preserve the order. Indeed, if we would chosen instead of step 6. to perform the
Prony method on the rows, in order to extract the frequencies f̃n2,k = (tan(θ̃k)n2−
η̃k)/W , then on one hand they are not uniquely determined since they belong to an
interval of length greater than one f̃n2,k ∈ [−(HS +M)/W, (HS +M)/W ], and on

the other hand we would lose the correspondence between the f̃n2,k and the previous

estimated angles θ̃k, what compromises the estimation of the ηk. The procedure is
summarized in Figure 6.

In the preliminary version of this work [41], we propose this simplistic method
which is not sufficiently robust to noise remaining in the output solution of the
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algorithm, whose stopping criteria is met when this one is sufficiently close to the
exact solution. In the noiseless case, the Prony method is able to recover the
frequencies with an infinite precision if the number of samples |I| is greater than
2K. But in our case the estimate f̃m,k is affected by some uncertainty εm,k; that

is, f̃m,k = fm,k + εm,k, due to the instability of roots finding in presence of noise,

and then the error of θ̃m,k = arctan(Wf̃m,k/m) = arctan(Wfm,k/m+Wεm,k/m) ≈
θm,k+Wεm,k/m, is amplified by a factor W/m and gives a bad result, in particularly

for a small m. Consequently, the mean θ̃k = 1
M

∑M
m=1 θ̃m,k does not lead to a robust

estimation of the angles θ̃k.
We improve the robustness of the method by applying a linear regression to the

data {fm,k}16m6M since

f̃m,k =
tan θk
W

m+ εm,k ,

in order to estimate the slope tan θk. The errors εm,k committed by evaluating the
frequencies fm,k are not of the same order of magnitude according to m. Indeed, for
a small m, the frequencies fm,k = tan θk

W m, are close to each other, and the Prony
method fails to accurately determine the frequencies when the minimal separation
is too small, especially when K and the amount of residual noise are not too.
Consequently, it is preferable to start the linear regression from greater values of
m, in order to space the frequencies on the unit disk.

Remark. Make sure that for high values of m the two extremal frequencies, say
fm,1 ≤ 0 and fm,K ≥ 0, are not both close respectively to −π and π, what would
violate the separation criteria as well.

The angle parameters θ̃k are now better estimated. We keep the same proce-
dure of estimation for the offsets η̃k, because it has the advantage to conserve the
correspondance with the estimated angles θ̃k.

Remark. Notice that we could compare the results by applying the Prony method
on the middle line (n2 = 0) of the image, since l0[m] =

∑K
k=1 ckej2πηkm/W and

that the argument of these exponentials are uniquely determined, giving a better
estimation of the offsets η̃k provided that the latter are well separated, but losing the
correspondance with the angles θ̃k. To reconnect with the angles, one can test all
the possible combinations and keep the one which minimizes the data fidelity term;
else one can also find the peaks on the Radon transform at column θ = θ̃k.

Finally, as far as the amplitudes ck are concerned, taking the modulus of d̃m,k’s
also gives bad results, since they are computed from the estimate x̃ whose ampli-
tudes have been cut down, due to the choice of a parameter c < c? for removing
noise. It is more appropriate, given the estimated 2-D atoms 1

cos θ̃k
â(θ̃k, η̃k), to

evaluate the amplitudes α̃k by performing a least square method with respect to
the noisy data ŷ:

(α̃1, . . . , α̃K) = arg min
α1,...,αK

∥∥∥∥∥
K∑
k=1

αk Îk − ŷ

∥∥∥∥∥
2

, Îk = A · 1

cos θ̃k
â(θ̃k, η̃k) . (73)

The new procedure is the following:
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Extraction of line parameters (Procedure 2)
– From m = 1, . . . ,M ,

Compute f̃m,k = arg(ζm,k)/(2π), where (ζm,k)k are roots of the polynomial∑K
k=0 hm,kζ

k with hm = [hm,0, . . . , hm,K ]T being the right singular vector of the
matrix PK(x̃[m, :]) with I = {0, . . . ,HS − 1}. It corresponds to the singular value
zero (the smallest value in practice).
– For k = 1, . . . ,K

Perform a linear regression on {f̃m,k}m to estimate tan θ̃k and then θ̃k.
– From m = 1, . . . ,M ,

1. Form the matrix Ũm = [a(tan θ̃1m/W ) · · ·a(tan θ̃Km/W )], and compute the
complex amplitudes d̃m = [d̃m,1, . . . , d̃m,K ]T by solving the least-squares linear

system Ũ∗mŨmd̃m = Ũ∗mx̃[m, :].

2. Compute ẽm,k = d̃m,k/|d̃m,k|.

– For k = 1, . . . ,K
Compute the frequency ν̃k as previously from PK(ẽk) with ẽk = (ẽm,k)m and

I = {−M, . . . ,M}, and then the horizontal offset η̃k = Wν̃k/(2π).
– Find the amplitudes by debiasing as explained in (73).

6 Experimental results

The reconstruction procedure was implemented in Matlab™ code, available on
the webpage of the first author. We consider an image of size W = H = 65,
containing three lines of parameters: (θ1, η1, α1) = (−π/5, 0, 255), (θ2, η2, α2) =
(π/16,−15, 255) and (θ3, η3, α3) = (π/6, 10, 255). The first experiment consists
in the reconstruction of the lines from x̃ in absence of noise, (1) by applying the
operator A on this solution, possibly with others kernels g and h, and then taking
the 1-D inverse Fourier transform ; and (2) by applying the Prony method to recover
the parameters of the lines, in the aim to display them as vectorial lines. We run
the algorithm for 106 iterations. Results of relative errors for the solution x̃ and the
estimated parameters are given Figure 7 and Table 1, where ∆θi/θi = |θi− θ̃i|/|θi|,
∆αi/αi = |αi− α̃i|/|αi| and ∆ηi = |ηi− η̃i|. Although the algorithm is quite slow to
achieve high accuracy, convergence is guaranteed and we observe empirically perfect
reconstruction of x] when the lines are not too close to each other.

The purpose of the second experiment is to highlight the robustness of the
method in presence of a strong noise level (Figure 8a). With c = 700 and only
2.103 iterations, we are able to completely remove the noise and to estimate the line
parameters with an error of 10−2. Finally, the last experiment for 105 iterations,
illustrates the efficiency of the method even in presence of a large blur (Figure 8b),
yielding an error of 10−4. For both experiments, the estimated images corresponding
to step (1) and (2) appear identical, and are displayed in Figure 8c and Figure 8d.

Remark. One way to get rid off the periodicity is to work with an image four times
bigger, but it is computationally prohibitive.

We emphasize that our algorithm has an accuracy which could not be achieved
by detecting peaks of the Hough or Radon transform. These methods are relevant
for giving a coarse estimation of line parameters. They are robust to strong noise,
but completely fail with a strong blur, which prevents peak detection (see Figure 9).
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]‖X
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‖ŷ‖Y for the first experi-

ment.

(a) (b) (c) (d)

Figure 8: (a) Lines corrupted by a strong noise level (ζ = 200) for the second
experiment, (b) Lines degraded by a strong blur (κ = 8) for the third experiment,
(c) denoised image and (d) reconstruction of exact lines.

Table 1: Errors on line parameters recovered by the proposed method.

Experiment 1 Experiment 2 Experiment 3

∆θ/θ (10−7, 3.10−6, 7.10−7) (10−2, 6.10−2, 9.10−2) (6.10−7, 9.10−5, 8.10−6)

∆α/α (10−7, 10−7, 10−7) (10−2, 9.10−2, 2.10−1) (4.10−5, 2.10−5, 2.10−5)

∆η (4.10−6, 7.10−6, 7.10−6) (5.10−2, 4.10−2, 3.10−2) (5.10−5, 10−4, 3.10−4)

Notice that even by decreasing the discretization steps of the process, we rapidly
reach a plateau, as illustrated by Figure 10. This method is limited in accuracy
by the pixel grid. In contrary, our super-resolution method enables to achieve an
infinite precision for the line parameters.

6.1 Close lines

For a reasonable amount of noise (ζ = 20), the algorithm succeed in separating
two close lines (θ1, η1, α1) = (−0.73,−1, 255) and (θ2, η2, α2) = (−0.75, 1, 255) as
illustrated in Figure 11. The estimation of the parameters gives (θ̃1, η̃1, α̃1) =
(−0.725,−0.7, 237) and (θ̃2, η̃2, α̃2) = (−0.753,−0.6, 251).
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Figure 9: The Radon transform of the image y for experiment 1, 2 and 3. The
theoretical parameters of the lines are in green.
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Figure 10: Variation of the accuracy with respect to the angle step of the Radon
transform.

(a) (b) (c) (d)

Figure 11: (a) Image y of seven lines corrupted by noise (ζ = 20), (b) Result x̃
of the denoising step from the optimization, (c) Theoritical solution x̂] to compare
with, (d) Extraction of the line parameters from the Prony step.
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(a) (b) (c) (d)

Figure 12: (a) Image y of seven lines corrupted by noise (ζ = 20), (b) Result x̃
of the denoising step from the optimization, (c) Theoritical solution x̂] to compare
with, (d) Extraction of the line parameters from the Prony step.

Table 2: Angles, offsets and amplitudes of the seven lines.
θk −0.75 −0.5 −0.25 10−3 0.3 0.55 0.75
ηk 15 25 2 7 −20 −5 −10
αk 60 80 255 100 180 120 240

6.2 More lines and different amplitudes

A more complicated example is depicted in Figure 12 (a), containing seven lines
whose parameters are enumerated in Table 2, corrupted by some noise with variance
ζ = 20. We run the algorithm with c = 0.8c?, τ = 1, σ = (τ(M + HS + 2))−1,
and after only 2.103 iterations, we are able to denoise the image as illustrated
in Figure 12 (b), and to estimate, thanks to the new Prony procedure, the line
parameters as illustrated in Figure 12 (c), with an error of 10−2 as given in Table 3.

7 Conclusion

We provided a new formulation for the problem of recovering lines in degraded
images using the framework of atomic norm minimization. A primal-dual splitting
algorithm has been used to solve the convex optimization problem. We applied it
successfully to several image recovery problems, recovering lines parameters by the
Prony method, and we showed the robustness of the method for strong blur and
strong noise level. We insist on the novelty of our approach, which is to estimate
lines with parameters (angle, offset, amplitude) living in a continuum, with perfect
reconstruction in absence of noise, without being limited by the discrete nature
of the image, nor its finite size. This work can be viewed as a proof of concept
for super-resolution line detection, and invite us to revisit the Hough transform
in a continuous way. Many theoretical questions remain open, like the study of

Table 3: Errors on line parameters recovered by the proposed method.
∆θ 1.10−2 2.10−2 1.10−3 2.10−3 5.10−3 5.10−3 1.10−3

∆η 5.10−1 7.10−2 4.10−2 1.10−1 1.10−2 2.10−2 1.10−2

∆α/α 4.10−2 5.10−2 5.10−3 4.10−2 6.10−3 1.10−2 4.10−3
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the separation conditions under which perfect reconstruction can be guaranteed.
We should also investigate the possibility to relax the periodicity assumption, and
from a practical point of view, parallel computing would be welcome to speed up
the proposed algorithm, and to pretend to an industrial use. In future work, the
super-resolution detection of lines can be applied on an diffracted image of tubulins,
which are curved structures, blurred due to the diffraction through the microscope,
and behaving locally like straight lines. Thus one could apply the method set out
in this paper on patches, to beat the diffraction and find their exact positions.
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A Proof of Proposition 2

Let us denote

SDP(z) = inf
q∈CN ,q0≥0

{
q0 : T′N (z, q) =

(
TN (q) z
z∗ q0

)
< 0

}
. (74)

We want to prove that SDP(z) = ‖z‖A and that the minimum in (74) is achieved.

• Suppose z =
∑K
k=1 cka(fk, φk) with ck > 0.

Defining q =
∑K
k=1 cka(fk) with q = (q0, q1, . . . , qN−1), then q0 =

∑K
k=1 ck. For

i = 0, . . . , N − 1, the atoms a(fk) have for components [a(fk)]i = e j2πfki, hence

TN (a(fk)) =


1 e−j2πfk · · · e−j2πfk(N−1)

e j2πfk 1 · · · e−j2πfk(N−2)

...
...

. . .
...

e j2πfk(N−1) e j2πfk(N−2) · · · 1

 ,

=


1

e j2πfk

...
e j2πfk(N−1)

(1 e−j2πfk · · · e−j2πfk(N−1)
)
,

= a(fk)a(fk)∗ .

We deduce that

TN (q) =

K∑
k=1

ckT(a(fk)) ,

=

K∑
k=1

cka(fk)a(fk)∗ ,

=

K∑
k=1

cka(fk, φk)a(fk, φk)∗ .

Therefore, the matrix(
TN (q) z
z∗ q0

)
=

K∑
k=1

ck

(
a(fk, φk)

1

)(
a(fk, φk)

1

)∗
,

is positive semidefinite. Given q0 =
∑K
k=1 ck, we get SDP(z) 6

∑K
k=1 ck.

Since this holds for any decomposition of z, we conclude that SDP(z) 6 ‖z‖A.

• Conversely, let q ∈ CN be a vector such that q0 > 0 and

(
TN (q) z
z∗ q0

)
< 0.

In particular we have TN (q) < 0. We denote by r the rank of TN (q). Theorem 1
ensures that TN (q) < 0 and of rank r 6 N if and only if there exists dk > 0 and
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distinct fk, such that

q =

r∑
k=1

dka(fk) , (75)

q0 =

r∑
k=1

dk . (76)

Let us set D = diag(d1, . . . , dr) and

V =
(
a(f1) · · · a(fr)

)
=


1 1 · · · 1

e j2πf1 e j2πf2 · · · e j2πfr

e j2πf12 e j2πf22 · · · e j2πfr2

...
...

...
...

e j2πf1(N−1) e j2πf2(N−1) · · · e j2πfr(N−1)

 .

By linearity of the operator TN :

TN (q) =

r∑
k=1

dkTN (a(fk)) ,

=

r∑
k=1

dka(fk)a(fk)∗ ,

= VDV∗ .

Since TN (a(fk)) contains only ones on the diagonal, we have

1

N
Tr(TN (q)) =

r∑
k=1

dk > 0 .

Besides, 1
NTr(TN (q)) = q0, therefore q0 > 0.

Let be M a general block matrix M =

(
A B
B∗ C

)
, the Schur complement gives

[ C � 0⇒M < 0 ] =⇒ [ A−BC−1B∗ < 0 ] .

We apply this lemma to M =

(
TN (q) z
z∗ q0

)
, with A = TN (q), B = z and

C = q0. The left term is satisfied by hypothesis, hence

TN (q)− q−10 zz∗ < 0 ⇐⇒ VDV∗ − q−10 zz∗ < 0 .

We define the square matrix Vr by extracting the r first rows and columns of
V, which is a Vandermonde matrix, whose determinant is

det(Vr) =
∏

16k<l6r

(a(fl)− a(fk)) .

Since we assumed fk 6= fl, ∀k 6= l, Vr is invertible, and rank(V) = r. Let us define
v : Cr → CN and v∗ : CN → Cr the endomorphisms corresponding to matrices V
and V∗. We have rank(v∗) = rank(v) = r. By the rank-nullity theorem:

dim(ker v∗) = N − r .
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Thus, there exists a vector p ∈ CN such that p 6= 0 and V∗p = 0 ⇔ p∗V = 0.
Consequently,

p∗(VDV∗ − q−10 zz∗)p > 0⇔ (p∗V)D(V∗p)− q−10 p∗zz∗p > 0 ,

⇔ q−10 ‖p∗z‖22 6 0 ,

⇔ ‖p∗z‖22 = 0 ,

⇔ p∗z = 0 ,

⇔ p ⊥ z .

Since p ∈ ker v∗, then z ∈ (ker v∗)⊥ = Im v, so there exists a vector w ∈ Cr such
that z = Vw =

∑r
k=1 wka(fk), hence

VDV∗ − q−10 Vww∗V∗ < 0 .

Besides, Im v∗ ⊂ Cr and dim(Im v∗) = rank(v∗) = r = dim(Cr), thus Im v∗ =
Cr and v∗ is surjective. Consequently, there exists a vector u ∈ CN such that
V∗u = sgn(w) = (w1/|w1|, . . . , wr/|wr|)T, and

u∗(VDV∗ − q−10 Vww∗V∗)u > 0⇔ (u∗V)D(V∗u)− q−10 (u∗V)ww∗(V∗u) > 0 ,

⇔ sgn(w)∗Dsgn(w)− 1

q0
sgn(w)∗ww∗sgn(w) > 0,

⇔
r∑

k=1

dk

∣∣∣∣ wk|wk|
∣∣∣∣2 − q−10

(
r∑

k=1

w∗k
|wk|

wk

)2

> 0 ,

⇔ q20 >

(
r∑

k=1

|wk|

)2

, (since q0 =

r∑
k=1

dk) ,

⇔ q0 >
r∑

k=1

|wk| > ‖z‖A ,

by definition of the atomic norm (28). Taking the infimum leads to SDP(z) > ‖z‖A.

• Finally, let us show that the infimum of the linear form ` : q 7→ q0 is achieved
on the set

A(z) =

{
q ∈ R+ × CN−1 : T′N (z, q) =

(
TN (q) z
z∗ q0

)
< 0

}
;

that is,
SDP(z) = inf

q∈A(z)
`(q) = min

q∈A(z)
`(q) . (77)

(i) Let us notice that since q ∈ A(z) implies TN (q) < 0 then

`(q) = q0 =
1

N
Tr(TN (q)) =

N−1∑
i=0

λi > 0 ,

with λi the eigenvalues of TN (q) which are positive reals.
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(ii) First we show that A(z) is nonempty, since q = (‖z‖2, 0, . . . , 0)T ∈ A(z).
Indeed for a fixed vector z = (z0, . . . , zN−1) ∈ CN , v = (v0, . . . , vN ) ∈ CN+1 and
v′ = (v0, . . . , vN−1) ∈ CN we have for this q :

v∗
(

TN (q) z
z∗ q0

)
v = ‖z‖2‖v‖22 + 2 Re

(
vN

N−1∑
i=0

ziv
∗
i

)
,

> ‖z‖2‖v‖22 − 2|vN ||〈z,v′〉| ,
> ‖z‖2‖v‖22 − 2|vN |‖z‖2‖v′‖2 ,
> ‖z‖2(‖v′‖22 − 2|vN |‖v′‖2 + |vN |2) ,

> ‖z‖2(‖v′‖2 − |vN |)2 ,
> 0 .

Then q = (‖z‖2, 0, . . . , 0)T ∈ A(z) and q0 = ‖z‖2, which means that A(z) is non-
empty and the set {`(q) : q ∈ A(z)} ⊂ R+ is non-empty so admits a lower bound
lesser than ‖z‖2, hence

0 ≤ SDP(z) = inf
q∈A(z)

`(q) 6 ‖z‖2 .

(iii) From (ii), we have

SDP(z) = inf
q∈A(z)

`(q) = inf
B(z)

`(q) ,

where
B(z) = {q ∈ A(z), q0 ≤ ‖z‖2} ⊂ A(z) .

Now, from (75) and (76) we can show that B(z) is bounded since:

∀q ∈ A(z), ‖q‖2 ≤
r∑

k=1

dk ‖a(fk)‖2 ≤
√
N

r∑
k=1

dk =
√
Nq0 ,

hence
∀q ∈ B(z), ‖q‖2 ≤

√
Nq0 ≤

√
N‖z‖2 .

Consequently,
B(z) ⊂ B‖·‖2(0, ‖z‖2) .

(iv) Moreover, A(z) = T′N (z, ·)−1(C) is a closed set since the cone of positive matrix
C is closed and the application T′N (z, ·) is linear so continuous in finite dimension.
Thus,

B(z) = A(z) ∩
{
q ∈ R+ × CN−1 : q0 ≤ ‖z‖2

}
is a closed set as intersection of two closed sets.

(v) From (iii) and (iv), we conclude that B(z) is a compact set and that the appli-
cation `, which is linear and then continuous, achieved its minimum on B(z) so on
A(z), which proves the result (77).
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B Proof of Proposition 3

The proof of the direct implication is straightforward. Let us consider the converse
one.

By Theorem 1, since ∀n,TM (ln) < 0 and is of rank one, then there exists γn > 0
and fn ∈ [0, 1[ such that

ln[m] = γn exp(j2πfnm) .

Since we assume ∀n, x̂[0, n] = x̂[0, 0] = c1, then ln[0] = l0[0] = c1, we have

ln[m] = c1 exp(j2πfnm) . (78)

Let m be fixed. The Prony matrix P1(tm) of size 2× (N − 1)

P1(tm) =

 tm[1] tm[0]
...

...
tm[N − 1] tm[N − 2]

 ,

is of rank one, consequently there exists λm ∈ C such that

tm[n+ 1] = λmtm[n], ∀ 0 6 n 6 N − 2 .

Thus,
tm[n] = λnmtm[0], ∀ 0 6 n 6 N − 1 .

From (78) tm[0] = l0[m] = c1 exp(j2πf0m), tm[1] = l1[m] = c1 exp(j2πf1m) and
then

λm =
tm[1]

tm[0]
=
`1[m]

`0[m]
= exp(j2π(f1 − f0)m) .

Therefore we have

tm[n] = λnmtm[0] ,

= exp(j2π(f1 − f0)m)nc1 exp(j2πf0m) ,

= c1 exp[j2π((f1 − f0)n+ f0)m] .

C Proof of Proposition 5

For z = (z0, . . . , zN−1) ∈ R × CN−1 and M ∈ TN ⊂ MN (C) a Hermitian-Toeplitz
matrix of dimension N . We have:

〈TN (z) , M〉M =
∑

06i,j6N−1

[TN (z)]∗ijMij ,

=
∑

06i6j6N−1

zj−iMij +
∑

06j<i6N−1

z∗i−jMij ,

(∗)
=

N−1∑
k=0

N−1−k∑
l=0

zkMl,l+k +

N−1∑
k=1

N−1−k∑
l=0

z∗kMl+k,l ,

(∗∗)
= z0

(
N−1∑
l=0

Ml,l

)
+ 2Re

{
N−1∑
k=1

z∗k

(
N−1−k∑
l=0

Ml+k,l

)}
,
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with (∗) a change of variable k ← j − i and (∗∗) using that Ml,l+k = M∗
l+k,l.

Then, by writing

T′N (z, q) =


0

TN (q)
...
0

0 · · · 0 q0

+


z0

0
...

zN−1
z∗0 · · · z∗N−1 0


we obtain as well for M ∈ TN+1:

〈T′N (z, q) , M〉M = 2Re

{
N−1∑
k=0

z∗kMN+1,k

}

+ q0

(
N∑
l=0

Ml,l

)
+ 2Re

{
N−1∑
k=1

q∗k

(
N−1−k∑
l=0

Ml+k,l

)}
.

Consequently, the adjoint of the operator

TM+1 : (Xl , 〈· , ·〉Xl
)→ (TM+1 , 〈· , ·〉M) ,

with the inner product 〈· , ·〉Xl
defined in (19), and applied to a matrix M(2) ∈ TM+1,

is given by the vector
z2 = T∗M+1M

(2) ∈ R× CM ,

whose components are:

z2[k] =

M−k∑
l=0

M
(2)
l+k,l, ∀k = 0, . . . ,M .

As well, the adjoint of the operator

T′HS : (Xt ×Qt , 〈· , ·〉Xt
+ 〈· , ·〉Qt

)→ (THS+1 , 〈· , ·〉M) ,

with the inner products 〈· , ·〉Xt
and 〈· , ·〉Qt

defined in (20)-(33), and applied to

M(2) ∈ THS+1, is given by the following pair of vectors

(z1, q1) = T
′∗
HSM(1) ∈ CHS × (R× CHS−1) ,

whose components are:

z1[k] = M
(1)
HS+1,k, q1[k] =

HS−1−k∑
l=0

M
(1)
l+k,l + δkM

(1)
HS ,HS

, ∀k = 0, . . . ,HS − 1 .

D Proof of Proposition 6

First, let us compute the operator norm ‖TM+1‖2 = sup
z∈Xl

‖TM+1(z)‖2F
‖z‖2Xl

.

37



By definition, we have ‖z‖2Xl = z20 + 2 |z1|2 + · · ·+ 2 |zM |2. Moreover, we get:

‖TM+1(z)‖2F = (M+1)z20+2M |z1|2+2(M−1) |z2|2+· · ·+2 |zM |2 ≤ (M+1) ‖z‖2Xl ,

with equality when z = (1, 0, . . . , 0), hence

‖TM+1‖2 = M + 1 . (79)

Let us now decompose the operator T′HS as follows:

T′HS (z, q) =


0

THS (q)
...
0

0 · · · 0 q0


︸ ︷︷ ︸

T2(q)

.
+


z0

0
...

zHS−1
z∗0 · · · z∗HS−1 0


︸ ︷︷ ︸

T1(z)

We directly have ‖T1(z)‖2F = ‖z‖2Xt , that is ‖T1‖ = 1. Besides, we have

‖T2(q)‖2F = (HS + 1)q20 + 2(HS − 1) |q1|2 + · · ·+ 2 |qHS−1|
2 ≤ (HS + 1) ‖q‖2Qt ,

with equality when q = (1, 0, . . . , 0), hence ‖T2‖2 = HS + 1.

Now, we compute∥∥T′HS (z, q)
∥∥2
F

‖(z, q)‖2Xt×Qt
=
‖T1(z)‖2F + ‖T2(q)‖2F
‖z‖2Xt + ‖q‖2Qt

,

≤
‖T1‖2 ‖z‖2Xt + ‖T2‖2 ‖q‖2Qt

‖z‖2Xt + ‖q‖2Qt
,

≤ α ‖T1‖2 + (1− α) ‖T2‖2 ,

≤ max(‖T1‖2 , ‖T2‖2) = ‖T2‖2 ,

with α =
‖q‖2Qt

‖z‖2Xt+‖q‖
2
Qt

and is achieved when z = 0 and q = (1, 0, . . . , 0), hence

∥∥T′HS∥∥2 = HS + 1 .

We are now able to derive the operator norms (51):

∥∥∥L(1)(X)
∥∥∥2
(1)

=

M∑
m=1

∥∥∥L(1)
m (X)

∥∥∥2
F
,

≤
∥∥T′HS∥∥2 M∑

m=1

(
‖x̂[m, :]‖2Xt + ‖q[m, :]‖2Qt

)
,

≤
∥∥T′HS∥∥2 ‖X‖2H ,

with equality when x̂ = 0, q[0, :] = 0 and q[m, :] = (1, 0, . . . , 0) for all m ∈ J1,MK.
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As well, we have

∥∥∥L(2)(X)
∥∥∥2
(2)

=

HS−1∑
n2=0

∥∥∥L(2)
n2

(X)
∥∥∥2
F
,

≤ ‖TM+1‖2
HS−1∑
n2=0

‖x̂[:, n2]‖2Xl ,

≤ ‖TM+1‖2 ‖X‖2H ,

with equality when q = 0 and x̂[:, n2] = (1, 0, . . . , 0) for all n2 ∈ J0, HS − 1K.

We conclude that ∥∥∥L(1)
∥∥∥2
(1)

=
∥∥T′HS∥∥2 = HS + 1 ,∥∥∥L(2)

∥∥∥2
(2)

= ‖TM+1‖2 = M + 1 .

Finally,

‖L(X)‖2(1,2) =
∥∥∥L(1)(X)

∥∥∥2
(1)

+
∥∥∥L(2)(X)

∥∥∥2
(2)

,

≤
(∥∥∥L(1)

∥∥∥2
(1)

+
∥∥∥L(2)

∥∥∥2
(2)

)
‖X‖2H .
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ten von positiven harmonischen Funktionen, Rendiconti del Circolo Matem-
atico di Palermo (1884-1940), 32 (1911), pp. 193–217.
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fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à
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