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A CONVEX APPROACH TO SUPER-RESOLUTION AND
REGULARIZATION OF LINES IN IMAGES∗

KÉVIN POLISANO† , LAURENT CONDAT‡ , MARIANNE CLAUSEL† , AND VALÉRIE

PERRIER†

Abstract. We present a new convex formulation for the problem of recovering lines in degraded
images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm
penalty and we solve this optimization problem by means of a primal–dual algorithm. This parsi-
monious model enables the reconstruction of lines from lowpass measurements, even in presence of
a large amount of noise or blur. Furthermore, a Prony method performed on rows and columns of
the restored image, provides a spectral estimation of the line parameters, with subpixel accuracy.

Key words. Super-resolution, sparse recovery, convex optimization, line detection, splitting
method, spectral estimation
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1. Introduction. Many restoration or reconstruction imaging problems are ill-
posed and must be regularized. So, they can be formulated as convex optimization
problems formed by the combination of a data fidelity term with a norm-based reg-
ularizer. Typically, given the data y = Ax] + ε, for some unknown image x] to
estimate, known observation operator A and some noise ε, one aims at solving a
problem like

(1) Find x̃ ∈ arg min
x

1

2
‖Ax− y‖2 + λR(x) ,

where λ controls the tradeoff between data fidelity and regularization andR is a convex
regularization functional. R can be chosen to promote some kind of smoothness. The
classical Tikhonov regularizer R(x) = ‖∇x‖22 generally makes the problem easy to
solve, but yields over-smoothing of the textures and edges in the recovered image x̃.
A popular and better regularizer is the total variation R(x) = ‖∇x‖1, see e.g [11];
it yields images with sharp edges, but the textures are still over-smoothed, there are
staircasing effects and the pixel values tend to be clustered in piecewise constant areas.
To overcome these drawbacks, one can penalize higher order derivatives [29] or make
use of non-local penalties [37, 18, 15]. Another approach, which is at the heart of the
recent paradigm of sparse recovery [56, 33] and compressed sensing [23, 51], is to choose
R to favor some notion of low complexity. Indeed, many phenomena, when observed
by instruments, yield data living in high dimensional spaces, but inherently governed
by a small number of degrees of freedom. One early choice was to set R as the `1 norm
of wavelet coefficients of the image. But the signals encountered in applications like
radar, array processing, communication, seismology, or remote sensing, are usually
specified by parameters in a continuous domain, from which they depend nonlinearly.
So, modern sampling theory has widened its scope to a broader class of signals,
with so-called finite rate of innovation, i.e. ruled by parsimonious models [31, 24, 5,
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57]. This encompasses reconstruction of pulses from lowpass measurements [21] and
spectral estimation, which is the reconstruction of sinusoids from point samples [48,
49], with many applications [13, 28, 55, 7, 50, 30, 40, 47, 20]. The knowledge of the kind
of elements we want to promote in the image makes it possible to estimate them from
coarse-scale measurements, even with infinite precision if there is no noise. Methods
achieving this goal are qualified as super-resolution methods, because they uncover
fine scale information, which was lost in the data, beyond the Rayleigh or Nyquist
resolution limit of the acquisition system [25, 8]. However, in this context, maximum
likelihood estimation amounts to structured low rank approximation, which forms
nonconvex and very difficult, even NP-hard in general, problems [32]. An elegant
and unifying formulation, which yields convex problems, is based on the atomic norm
[3, 19]. We place ourselves in this general framework of atomic norm minimization: the
sought-after image x] is supposed to be a sparse positive combination of the elements
of an infinite dictionary A, indexed by continuously varying parameters. Then, one
can choose R as the atomic norm ‖x‖A of the image x, which can be viewed as the
`1 norm of the coefficients, when the image is expressed in terms of the elements of
A, called atoms and and having unit norm:

(2) ‖x‖A = inf{t > 0 : x ∈ t conv(A)} ,

where conv(A) is the convex hull of the atoms. In this paper, we consider the setting,
which is new to our knowledge, where the atoms are lines. Expressed in the Fourier
domain, these atoms can be characterized with respect to their rows and columns,
and the problem can be reduced to a dictionary of 1-D complex exponential sam-
ples, indexed by their frequency and phase, and the atomic norm can be computed
via semidefinite programming [58]. This formulation enables us to derive a convex
optimization problem under constraints, solved by mean of a splitting primal–dual
algorithm [17]. Then, performing a Prony-like method [42] onto the solution of the
algorithm allows us to extract the parameters of the lines. This approach provides
a very high accuracy for the line estimation, where the Hough [59, 27, 34] and the
Radon [41, 22, 35] transforms fail, due to their discrete nature. Our motivation stems
from the frequent presence in biomedical images, e.g. in microscopy, of elongated
structures like filaments, neurons, veins, which are deteriorated when reconstructed
with classical penalties. For instance the super-resolution detection of lines, can be
applied on an diffracted image of tubulins, which are curved structures, blurred due to
the diffraction through the microscope, and behaving locally like straight lines. Thus
one could apply the method set out in this paper on patches, to beat the diffraction
and find their exact positions.

The paper is organized as follows. The model is exposed in section 2, the frame-
work of atomic norm minimization underlying the super-resolution principle is in-
troduced in section 3, the algorithms we derive are in section 4. Then a Prony-like
method is developed in section 5 as a way to perform spectral estimation of the line
parameters. Finally some experimental results are shown in section 6 with comparison
with the classic Hough and Radon procedure of lines detection. Part of this work has
been published in the preliminary paper [38]. In this paper, we present another algo-
rithm, a new procedure estimation of the line parameters, an extension for the whole
range of line angles with no more restriction, an application to inpainting problems
and many other numerical experiments.

2. An image model of blurred lines. Our aim is to restore a blurred image
b] containing lines, and to estimate the parameters—angle, offset, amplitude—of the



A CONVEX APPROACH TO SUPER-RESOLUTION AND REGULARIZATION OF LINES IN IMAGES3

(a)

α (de gre e s)

x
′

Rα(x ′ )

 

 

−80 −60 −40 −20 0 20 40 60 80

−40

−30

−20

−10

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

(b)

Fig. 1. (a) The image b] of three blurred lines with κ = 1 and (b) the Radon transform of b].

lines, given degraded data y. In this section, we formulate what we precisely mean
by an image containing lines. In short, b] is a sum of perfect lines which have been
blurred and then sampled. Both processes are detailed in the following.

2.1. The Ideal Continuous Model and the Objectives. We place ourselves
in the quotient space P = R/(WZ)×R, corresponding to the 2-D plane with horizontal
W−periodicity, for some integer W ≥ 1. To simplify the notations, we suppose that
W is odd and we set M = (W − 1)/2.

A line of infinite length, with angle θ ∈ (−π/2, π/2] with respect to verticality,
amplitude α > 0, and offset η ∈ R from the origin on x–axis, is defined as the
distribution

(3) (t1, t2) ∈ P 7→ αδ
(
cos θ(t1 − η) + sin θ t2

)
,

where δ is the Dirac distribution. We define the distribution x], which is a sum of K
different such perfect lines, for some integer K ≥ 1, as

(4) x] : (t1, t2) ∈ P 7→
K∑
k=1

αkδ
(
cos θk(t1 − ηk) + sin θk t2

)
.

At this time, we suppose that the lines are rather vertical; that is, for every k =
1, . . . ,K, θk ∈ (−π/4, π/4]. We will treat the general case in subsection 4.3. As
illustrated in Figure 2, we adopt the following representation: the horizontal (resp.
vertical) axis corresponds to t2 (resp. t1) fixed. Since the ideal model x] is made
up of Diracs, the horizontal Fourier transform x̂] = F1x

], is composed of a sum of
exponentials. Our goal will be to reconstruct x̂] by a super-resolution method, from
its observations through a known degradation operator A and some noise, which is
an ill-posed problem. Then, spectral estimation of these exponentials will allow us to
recover the line parameters. Let us first characterize the blur operator A.

2.2. A Blur Model for an Exact Sampling Process. The image observed
b] of size W × H is obtained by the convolution of the distribution x] with a blur
function φ, followed by a sampling with unit step denoted by the operator ∆:

(5) b][n1, n2] = (x] ∗ φ)(n1, n2), ∀n1 = 0, . . . ,W − 1, n2 = 0, . . . ,H − 1 ,
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Fig. 2. (a) Parameters (θ, η) characterizing the position of a line in the 2-D plane, (b) the
matrix convention we use to display the image obtained by applying the sampling operator with unit
step ∆ onto the blurred line x] ∗φ, and (c) the resulting discrete image b][n1, n2] = (x] ∗φ)(n1, n2).

We also consider that the point spread function φ is separable; that is the function
x] ∗ φ can be obtained by a first horizontal convolution with ϕ1 and then a second
vertical convolution with ϕ2. Formally, x] ∗ φ = (x] ∗ φ1) ∗ φ2 with φ1(t1, t2) =
ϕ1(t1)δ(t2) and φ2(t1, t2) = δ(t1)ϕ2(t2).

In order to avoid any approximation when passing from the continuous to the
discrete formulation, we assume that φ has the following properties:

• the function ϕ1 ∈ L1(0,W ) is W–periodic, bounded, such that
∫W
0
ϕ1 = 1,

and bandlimited; that is, its Fourier coefficients 1
W

∫W
0
ϕ1(t1)e−j2πmt1/W dt1

are zero for every m ∈ Z with |m| ≥ (W + 1)/2 = M + 1. The discrete filter
g[n] = ϕ1(n), with these assumptions on ϕ1, has discrete Fourier coefficients
which correspond to Fourier coefficients of ϕ1.

• ϕ2 ∈ L1(R), with
∫
R ϕ2 = 1. In addition, the discrete filter

(
h[n] = (ϕ2 ∗

sinc)(n)
)
n∈Z, where sinc(t2) = sin(πt2)/(πt2), has compact support of length

2S+1, for some S ∈ N, i.e. h[n] = 0 if |n| ≥ S+1. Note that this assumption
is not restrictive, and that if ϕ2 is bandlimited, we simply have h[n] = ϕ2(n).

So, after the first horizontal convolution, using the fact that δ(at) = δ(t)/|a| for any
a 6= 0, we obtain the function

(6) Ψ = x] ∗ φ1 : (t1, t2) 7→
K∑
k=1

αk
cos θk

ϕ1

(
t1 + tan θk t2 + ηk

)
.

We can show that, after the second vertical convolution, we get the function

(7) x] ∗ φ : (t1, t2) ∈ P 7→
K∑
k=1

αkψk
(
cos(θk)(t1 − ηk) + sin(θk)t2

)
,

where

(8) ψk =

(
1

cos(θk)
ϕ1

( ·
cos(θk)

))
∗
(

1

sin(θk)
ϕ2

( ·
sin(θk)

))
,

if θk 6= 0 and ψk = ϕ1 else.
We can notice that (7) can also be interpreted as follows: every line has undergone

a 1-D convolution with ψk in the direction transverse to it. We can also notice that
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if ϕ1 and ϕ2 are Gaussian and have same variance κ2, it follows from (8) that ψk has
variance κ2

(
cos(θ)2 + sin(θ)2

)
= κ2 as well.

Proposition 1 (Nyquist-Whittaker-Shannon). The function ϕ1, which is peri-
odic and bandlimited, is determined by W degrees of freedom only. That is, with the
coefficients g[n] = ϕ1(n), n = 0, . . . ,W − 1, the function ϕ1 is a linear combination

of shifted Dirichlet kernels DM (t) =
∑M
m=−M e jmt:

(9) ϕ1(t) =
1

W

W−1∑
n=0

g[n]DM

(
2π(t− n)

W

)
, ∀t1 ∈ R .

Proof. Given in Appendix A.

Since the Dirichlet kernel is a normalized function, a change of variable leads to
1
W

∫W
0
DM

(
2π(t−n)
W

)
dt = 1 and then

(10)

∫ W

0

ϕ1(t) dt =

M∑
n=−M

g[n] ,

that is, the filter g has to be normalized as well.

We can easily compute that 1
W 2

∫W
0
DM

(
2π(t−n)
W

)
DM

(
2π(t−m)

W

)
dt = δm,n, which

proves that

(11)

∫ W

0

ϕ1(t)2 dt =

M∑
n=−M

g[n]2 =

M∑
n=−M

ϕ1(n)2 ,

and by Parseval

(12)

∫
R
|ϕ̂1(ξ)|2 dξ =

∑
m∈Z
|cm(ϕ1)|2 =

M∑
m=−M

|ĝ[m]|2 =
1

W

∫ W

0

|ϕ1(t)|2 dt .

Now, for every k = 1, . . . ,K, the assumption θk ∈ (−π/4, π/4] yields | tan(θk)| ≤
1. So, the function Ψ = x] ∗ φ1 given in (6), as a function of t2 at fixed t1, is
bandlimited: for every t1 ∈ [0,W [, the Fourier transform F2Ψ : ω2 7→

∫
R(x] ∗

φ1)(t1, t2)e−jω2t2 dt2, which is a distribution (sum of K Dirac combs), is zero for
every |ω2| ≥ π. Indeed, we have

(13) [F2Ψ](ω2) =

K∑
k=1

αk
cos θk

ϕ̂1

(
ω2

tan θk

)
exp

(
j2π(t1 + ηk)ω2

)
,

and by considering θ? the maximum of | tan θk| achieved on (−π/4, π/4], we obtain

(14) 1 6

∣∣∣∣ 1

tan θ?

∣∣∣∣ 6 ∣∣∣∣ 1

tan θk

∣∣∣∣ ⇒ |ω2| 6
∣∣∣ ω2

tan θ?

∣∣∣ 6 ∣∣∣∣ ω2

tan θk

∣∣∣∣ .
Consequently, since ϕ1 is bandlimited; that is, ϕ̂1(ω) = 0 for |ω| > π, we also have
[F2Ψ](ω2) = 0 for |ω2| > π. Then, F2Ψ = F2Ψ · Π[−π,π] ⇔ Ψ = Ψ ∗ sinc, and
furthermore Ψ∗ϕ2 = Ψ∗ (ϕ2 ∗ sinc). In the Fourier domain, the function h = ϕ2 ∗ sinc

is bandlimited, so [F2Ψ]ĥ = [F2Ψ]ĥper where ĥper corresponds to the periodization of



6 K. POLISANO, L. CONDAT, M. CLAUSEL AND V. PERRIER

the spectral ĥ, which amounts to saying that Ψ∗h = Ψ∗(
∑
n h[n]δ(·−n)). Hence, it is

equivalent to perform the vertical convolution of x]∗φ1 with ϕ2, with ϕ2∗sinc, or with
the Dirac comb γ : t2 7→

∑S
n=−S h[n]δ(t2 − n), where h[n] = (ϕ2 ∗ sinc)(n). We have

made the assumption that the filter (h[n])n has a compact support, but notice that
the function h = ϕ2 ∗ sinc does not have a compact support, since it is bandlimited,
which means that the continuous function h has to vanish at the integer points t = n
for |n| > S. Given such a compact filter (h[n])Sn=−S , the unique bandlimited function
h satisfying these conditions is obtained by the Shannon interpolation formula:

(15) h(t) =

S∑
n=−S

h[n] sinc(t− n) .

By unicity, we necessarily have ϕ2 ∗ sinc = h, and we can notice that there is always
exists a bandlimited solution ϕ2 of this equation, which is simply ϕ2 = h; that is why
we argued that the compact support assumption is not restrictive. Of course, if we
are looking for ϕ2 in a wider class function, there does not exist a general method to
reconstruct ϕ2 from the samples of the low-resolution signal ϕ2 ∗ sinc. It is typically
what the super-resolution enables in the specific case where ϕ2 is suppose to be a
spike train.

So, let us define u] by sampling x] ∗ φ1 with unit step

(16) u][n1, n2] = (x] ∗φ1)(n1, n2), ∀n1 = 0, . . . ,W −1, n2 = −S, . . . ,H−1 +S ,

With the above assumptions, we can express b] from u] using a discrete vertical
convolution with the filter h:

(17) b][n1, n2] =

S∑
p=−S

u][n1, n2−p]h[p], ∀n1 = 0, . . . ,W −1, n2 = 0, . . . ,H−1 .

Altogether, we completely and exactly characterized the sampling process, which in-
volves a continuous blur, using the discrete and finite filters (g[n])W−1n=0 and (h[n])Sn=−S .
We insist on the fact that no discrete approximation is made during this sampling
process, due to the assumptions. An example of three blurred lines is depicted in
Figure 1, with the normalized filter h approximating a Gaussian function of vari-

ance κ; that is, t 7→ 1√
2πσ2

e−
t2

2σ2 , on the compact set [−S, S] with S = d4κe − 1 ;

and the normalized filter g = [0M−S ,h,0M−S ] whose DFT is an interpolation of ĥ,

which approach the continous Fourier transform Ĝ : ν 7→ e−2π
2σ2ν2

. So, note that
‖ĝ‖∞ = ‖h‖∞ = 1.

2.3. Toward an Inverse Problem in Fourier Domain. Let us further char-
acterize the image b] in Fourier domain. We consider the image û] obtained by
applying the 1-D Discrete Fourier Transform (DFT) on every row of u]:

(18) û][m,n2] =
1

W

W−1∑
n1=0

u][n1, n2]e−j
2πm
W n1 , ∀m = −M, . . . ,M, n2 ∈ Z .

which coincide with the exact Fourier coefficients of the function t 7→ (x] ∗ φ1)(t, n2).

Hence, from (6) and computation of û][m,n2] = 1
W

∫W
0

(x] ∗ φ1)(t, n2)e−j
2πm
W t dt, we

obtain

(19) û][m,n2] = ĝ[m]x̂][m,n2], ∀m = −M, . . . ,M, n2 ∈ Z ,
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(20) x̂][m,n2] =

K∑
k=1

αk
cos θk

e j2π(tan θk n2+ηk)
m
W .

Applying a 1-D DFT on the first component of b][n1, n2] = u][n1, :] ∗h, leads to
the elements b̂][m,n2] = û][m, :]∗h. Since the image u] is real, then x̂] is Hermitian,
so we can only deal with the right part x̂][0 : M, : ] and notice that the column

corresponding to m = 0 is real and equal to
∑K
k=1

αk
cos θk

. We consider in the following

the image x̂][m,n2] of size (M + 1) × HS , with HS = H + 2S, due to the addition
of S pixels beyond the borders for the convolution by the filter h. More precisely,
x̂] ∈ X , where X = {x̂ ∈MM+1,HS (C) : Im(x̂[0, :]) = 0}, endowed with the following
inner product, and ·∗ is complex conjugation:

(21) 〈x̂1, x̂2〉 =

HS−1∑
n2=0

x̂1[0, n2]x̂2[0, n2]∗ + 2Re

(
M∑
m=1

HS−1∑
n2=0

x̂1[m,n2]x̂2[m,n2]∗

)
.

Let A denote the operator which multiplies each row vector x̂][m, :] by the corre-
sponding Fourier coefficient ĝ[m] and convolves it with the filter h. Thus, we have
Ax̂] = b̂]. The image b] of the blurred lines is affected by some noise ε, so that
we observe the degraded image y = b] + ε, with ε ∼ N (0, ζ2) and ζ is the noise
level. Our notations are explained in more details in Figure 3, illustrating the relation
between all continuous and discrete variables. The problem is revert to an inverse
problem we need to solve. In absence of noise, one can find a theoritical solution of
this ill-posed problem, by solving on each column m the following reduced problems:
ĝ[m]Ȟx̂[m, :] = b̂][m, :] where Ȟ is the convolution matrix (54) corresponding to the
vertical convolution by filter h. In order to treat the noisy case, we will need to derive
an optimization problem of this inverse problem, under constraints which will exploit
the sparse structure of the signal we are looking for, namely a combination of lines. In
both cases, the super-resolution consists to recover the high frequencies lost because
of the blur operator, so it can be viewed as a spectral extrapolation. Our goal is to
recover the parameters (θk, ηk, αk) of these lines from the degraded image y, first by
solving the optimization problem we derive by a primal–dual algorithm in the Fourier
domain; that is, to go back on the bottom line of the diagram of Figure 3 from ŷ to x̂],
and then by performing a Prony-like method to estimate the parameters involving in
x̂]. These two steps are summarized in Figure 4. Note that this work also covers the
case where a mask is applied, in which we have no observation; that is, can encompass
inpainting problems. In the next section, we present the framework of atomic norm
from which will be derived the optimization problem.

3. Super-Resolution Detection of Lines.

3.1. Atomic Norm and Semidefinite Characterizations. Consider a com-
plex signal z ∈ CN represented as a K–sparse mixture of atoms from the set

(22) A =
{
a(ω) ∈ CN : ω ∈ Ω

}
,

that is,

(23) z =

K∑
k=1

cka(ωk), ck ∈ C, ωk ∈ Ω .
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We consider atoms a(ω) ∈ CN that are continuously indexed in the dictionary A
by the parameter ω in a compact set Ω. The atomic norm, first introduced in [14], is
defined as

(24) ‖z‖A = inf
c′k,ω

′
k

{∑
k

|c′k| : z =
∑
k

c′ka(ω′k)

}
,
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= α1 + α2 + α3

= α1 + α2 + α3

Fig. 5. Illustration with a signal made of a weighted combination of three lines atoms (in gray)
a(θk, ηk). In the Fourier domain, we have the same kind of combination but with 2-D exponentials
atoms â(θk, ηk). In both cases the sum of the weights α1 +α2 +α3, where αi are the amplitudes of
the lines, corresponds to the atomic norm on the appropriate dictionary.

enforcing sparsity with respect to a general atomic set A. Chandrasekaran et al.
[14] argue that the atomic norm is the best convex heuristic for underdetermined,
structured linear inverse problems, and it generalizes the norm for sparse recovery
and the nuclear norm for low-rank matrix completion.

In our problem, the atoms are lines, so one can considered the dictionary A2D

indexed by the angle and the offset; that is, composed by the line atoms a(θk, ηk) =
δ
(
cos(θk)(t1− ηk) + sin(θk)t2). Or alternatively in the Fourier domain, the dictionary

Â2D, composed by the 2-D exponentials atoms â(θk, ηk) = 1
cos θk

e j2π(tan(θk)n2−ηk)m/W

as illustrated in Figure 5. The problem is that the atomic norm computation in
these 2-D dictionaries does not correspond to any known procedure to our knowledge.
However, in the case of 1-D complex exponentials, there is a way to compute the
atomic norm via semidefinite programming. So, the trick is to reformulate the problem
using the simplified 1-D case. From now on, we consider the dictionary

(25) A =

{
a(f, φ) ∈ C|I|, f ∈ [0, 1], φ ∈ [0, 2π)

}
,

in which the atoms are the vectors of components [a(f, φ)]i = e j(2πfi+φ), i ∈ I, and
simply [a(f)]i = e j2πfi, i ∈ I, if φ = 0. The atomic norm writes:

(26) ‖z‖A = inf
c′k>0

f ′k∈[0,1]
φ′k∈[0,2π)

{∑
k

c′k : z =
∑
k

c′ka(f ′k, φ
′
k)

}
.

Theorem 2 (Caratheodory). A vector z = (z∗N−1, . . . , z
∗
1 , z0, z1, . . . , zN−1) of

length 2N + 1, with z0 ∈ R, is a positive combination of K 6 N + 1 atoms a(fk) if
and only if TN (z+) < 0 and is of rank K, where z+ = (z0, . . . , zN−1) is of length N
and TN : CN →MN (C) is the Toeplitz operator

(27) TN : z+ = (z0, . . . , zN−1) 7→


z0 z∗1 · · · z∗N−1
z1 z0 · · · z∗N−2
...

...
. . .

...
zN−1 zN−2 · · · z0

 ,
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and < 0 denotes positive semidefiniteness. Moreover, this decomposition is unique, if
K 6 N .

Proof. See references [9, 10, 54] and thesis of the first author.

We also have the above result improved from [52, Proposition II.1]:

Proposition 3. The atomic norm ‖z‖A can be characterized by the following
semidefinite program SDP(z):

(28) ‖z‖A = min
q∈CN

{
q0 : T′N (z, q) =

(
TN (q) z
z∗ q0

)
< 0

}
.

with T′N : C2N →MN+1(C).

Proof. Given in Appendix B.

Notice that the matrix T′N (z, q) is Hermitian; that is, its eigenvalues (λi)06i6N
are positive reals, since the matrix is positive semidefinite. Consequently, we get
q0 = 1

N+1Trace(T′N (z, q)) = 1
N+1

∑N
i=0 λi, which is real and positive.

We also define, for the upcoming convex optimization problem, the following set of
complex matrices Q = {q ∈MM+1,HS (C) : Im(q[:, 0]) = 0}, endowed with the inner
product defined in (21).

3.2. Properties of the Model x̂] with respect to the Atomic Norm .
From (20), the rows ln2

(resp. columns tm) of the matrix x̂], with I = {0, . . . ,HS−1}
(resp. I = {−M, . . . ,M}), can be viewed as a sum of atoms

l]n2
= x̂][:, n2] =

K∑
k=1

cka(fn2,k) ,(29a) (
resp. t]m = x̂][m, :] =

K∑
k=1

cka(fm,k, φm,k)T

)
,(29b)

with

ck =
αk

cos θk
, fn2,k =

tan θk n2 + ηk
W

,(30)

φm,k =
2πηkm

W
, fm,k =

tan θkm

W
.

We define for later use, the frequency νk = ηk/W and the coefficients dm,k = cke jφm,k ,
em,k = e jφm,k . The vectors l]n2

of size W = 2M + 1 are positive combinations of K
atoms a(fn2,k), with K 6M since we can reasonably assume that the number of lines
K is smaller than half the number of pixels M . Thus, Theorem 2 ensures that the
decomposition (29a) is unique, hence

(31) ‖l]n2
‖A =

K∑
k=1

ck = x̂][0, n2], ∀n2 = 0, . . . ,HS − 1 ,

whereas, since the dm,k are complex in (29b), Theorem 2 no longer holds, we simply
have from Proposition 3:

(32) ‖t]m‖A = SDP(t]m) 6
K∑
k=1

ck, ∀m = −M, . . . ,M .
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Let’s take a closer look at one line; that is, K = 1, characterized by parameters
(θ, η, α). We recall by (20) that x̂] can be written as:

(33) x̂][m,n2] = c0e j2π((f1−f0)n2+f0)m, c0 =
α

cos θ
, f0 =

η

W
, f1 =

tan θ + η

W
.

Let z = (z0, . . . , z|I|−1) be a complex vector, whose elements zi are rearrange in a
Toeplitz matrix PK(z) of size (|I| −K)× (K + 1) and rank K as follows

(34) PK(z) =

 zK · · · z0
...

. . .
...

z|I|−1 · · · z|I|−K−1

 .

We get the following characterization of one line in Fourier:

Proposition 4. An image x̂ is of the form x̂[m,n] = c0e j2π((f1−f0)n+f0)m) if and
only if rows ln and columns tm of x̂ satisfy TM (ln) < 0 and of rank one, P1(tm) is
of rank one, and x̂[0, n] = x̂[0, 0] for all m and n.

Proof. See Appendix C.

Besides, with D = diag(c1, . . . , cK) and Vn =
[
a(fn2,1) · · · a(fn2,K)

]
, remark

that

(35) TM (ln2) =

K∑
k=1

ckTM (a(fn2,k)) =

K∑
k=1

cka(fn2,k)a(fn2,k)∗ = Vn2DV∗n2
,

hence, the nuclear norm of TM (ln2) is

(36) ‖TM (ln2
)‖∗ = Tr(|D|) =

K∑
k=1

ck = ‖l]n2
‖A .

The first equality is explained by the SVD decomposition of a matrix X = UΣV.
The nuclear norm is defined by ‖X‖∗ = Tr(

√
XTX) = Tr(

√
VΣUTUΣVT). U and

V are orthogonal; that is, UTU = 1 and VTV = 1, so ‖X‖∗ = Tr(
√

VΣ2VT), and

then by circularity of the trace we obtain ‖X‖∗ = Tr(
√

VTVΣ2) = Tr(|Σ|), that’s
the point.
The nuclear norm of a matrix corresponds to the sum of the absolute value of its sin-
gular values decomposition, and it is the best convex approximation of the rank of this
matrix [44, 43]. Consequently, in the following, we consider a convex relaxation of the
line characterization given in Proposition 4, in which the rank constraint on TM (ln2

) is
replaced by an atomic norm constraint on ‖l]n2

‖A. Since the minimum value to achieve

is c] =
∑K
k=1 ck, and that the atomic norm lie on the first column x̂[0, n2] = x̂[0, 0], we

impose the constraint x̂[0, n2] = x̂[0, 0] 6 c]. Moreover,
{
z ∈ CN : ‖z‖A 6 1

}
is the

smallest convex set containing
{
z ∈ CN : P1(z) of rank 1 and |z0| = 1

}
. Indeed, let

z = (z0, . . . , zN−1) be a complex vector such that P1(z) of rank 1, it implies that zi =
z0e j2πf0i = |z0|e j(2πf0i+φ0) (see subsection 2.1), hence z = |z0|a(f0, φ0) and if |z0| = 1
we have z = a(f0, φ0) and then

{
z ∈ CN : P1(z) of rank 1 and |z0| = 1

}
= A. Be-

sides, ‖z‖A is a Minkowski functional associated to the close convex set Conv(A),
and we have that the unit ball

{
z ∈ CN : ‖z‖A 6 1

}
= Conv(A), which is the small-

est convex set containing A =
{
z ∈ CN : P1(z) of rank 1 and |z0| = 1

}
. So one can

replace the rank constraint on P1(tm) by an atomic norm constraint on ‖tm‖A.
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4. Minimization Problem with Atomic Norm Regularization. Given ŷ =
b̂] + ε̂ and the filters g and h, we are looking for an image x̂ ∈ X which minimizes
‖Ax̂ − ŷ‖, for the norm derived from the inner product (21), and satisfies proper-

ties (31) and (32). We fixed a constant c greater than the oracle c] =
∑K
k=1 ck.

Consequently, the following optimization problem provides an estimator of (20):

(37) x̃ ∈ arg min
x̂,q∈X×Q

1

2
‖Ax̂− ŷ‖2 ,

s.t



∀n2 = 0, ...,HS − 1, ∀m = 0, ...,M ,

x̂[0, n2] = x̂[0, 0] 6 c ,(38a)

q[m, 0] 6 c ,(38b)

T′HS (x̂[m, :],q[m, :]) < 0 ,(38c)

TM+1(x̂[:, n2]) < 0 ,(38d)

Note that this optimization problem could be rewritten in a Lagrangian form, but it
would involve a parameter λ to tune, what is not any better than tuning parameter c
which has the merit of having a physical meaning. We keep this constraint formulation
and write it in a more suitable way as follows. Let denote H = X × Q the Hilbert

space in which the variable of optimization X = (x̂,q) lies. Let us define L
(1)
m (X) =

T′HS (x̂[m, :],q[m, :]) and L
(2)
n2 (X) = TM+1(x̂[:, n2]), ιC be the indicator function of a

convex set C defined by

(39) ιC : x 7→

{
0 if x ∈ C
+∞ if x /∈ C

,

B ⊂ H the set corresponding to the boundary constraints (38)–(38), and C the cone
of positive semidefinite matrices. Then, the optimization problem ?? 37–38 can be
rewritten as follows:
(40)

X̃ = arg min
X=(x̂,q)∈H

{
1

2
‖Ax̂− ŷ‖2 + ιB(X) +

M∑
m=0

ιC(L
(1)
m (X)) +

HS−1∑
n2=0

ιC(L
(2)
n2

(X))

}
.

4.1. First Algorithm Design. The optimization problem (40) can be viewed in
the framework above, involving Lipschitzian, proximable and linear composite terms
[17]:

(41) X̃ = arg min
X∈H

{
F (X) +G(X) +

N−1∑
i=0

Hi(Li(X))

}
,

with F (X) = 1
2‖Ax̂− ŷ‖2, X = (x̂,q), ∇F a β–Lipschitz gradient (with β = ‖A‖2 =

1, see below), G = ιB, which is proximable, and N = M + 1 + HS linear com-

posite terms where Hi = ιC and Li ∈ {L(1)
i ,L

(2)
i }. We define Hx =

∑N−1
i=0 Hixi

and L(1)(X) = (L
(1)
0 (X), . . . ,L

(1)
m (X)), L(2)(X) = (L

(2)
0 (X), . . . ,L

(1)
HS−1(X)) and L =

(L(1),L(2)). We get

(42) ‖L‖2 = ‖L(1)‖2 + ‖L(2)‖2 = ‖T′HS‖
2 + ‖TM+1‖2 = (HS − 1) + (M + 1) .

Let τ > 0 and σ > 0 such that

(43)
1

τ
− σ‖L‖2 > β

2
.
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Then the primal–dual Algorithm 1 converges to a solution (X̃, ξ̃0, ..., ξ̃N−1) of the
problem (41) [17, Theorem 5.1].

Algorithm 1 Primal–dual splitting algorithm for (41)

Input: ŷ 1D FFT of the blurred and noisy data image y
Output: x̃ solution of the optimization problem ?? 37–38

1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: Xn+1 = proxτG(Xn − τ∇F (Xn)− τ

∑N−1
i=0 L∗i ξi,n),

4: for i = 0 to N − 1 do
5: ξi,n+1 = proxσH∗i (ξi,n + σLi(2Xn+1 −Xn)),
6: end for
7: end for

We detail below the terms in step 3 and 5.
For X = (x̂,q), the gradient of F is

(44) ∇F (X) = (A∗(Ax̂− ŷ),0)T.

with Ax̂ = (x̂Ĝ) ∗ h, where Ĝ = diag(ĝM+1, . . . , ĝW ), and then A∗z = (zĜ) ∗ h̄′

where h′ is the flipped vector from h. Let compute the norm of this operator. First
remark that if we denote by x̂k the k-th column of x̂, then we have by the Parseval
equality ‖x̂k ∗h‖22 = ‖x̂kĥ‖22 6 ‖ĥ‖2∞‖x̂k‖22. With the norm derived from (21) we get

‖Ax̂‖2 = |ĝM+1|2‖x̂0 ∗ h‖22 + 2|ĝM+1|2‖x̂1 ∗ h‖22 + · · ·+ 2|ĝW |2‖x̂M ∗ h‖22 ,(45)

6 ‖ĝ‖2∞‖ĥ‖2∞(‖x̂0‖22 + 2‖x̂1‖22 + · · ·+ 2‖x̂M‖22) ,

6 ‖ĝ‖2∞‖ĥ‖2∞‖x̂‖2 ,

which proves that ‖A‖ = ‖ĝ‖∞‖ĥ‖∞ = 1. Consequently,

(46) ‖∇F (X)−∇F (X′)‖ 6 ‖A∗A(x̂− x̂′)‖ 6 ‖A∗A‖‖x̂− x̂′‖ 6 ‖A‖2‖X−X′‖ .

Set x0 = 1
HS

∑HS−1
n2=0 x̂[0, n2], we get ∀m,n2:

(47) proxτG(x̂,q) =


x̂[0, n2] = x0 if x0 6 c

x̂[0, n2] = c otherwise

q[m, 0] = c if q[m, 0] > c

.

Let be M (1) ∈ MHS+1(C) and M (2) ∈ MM+1(C). We give the expression of the
vectors resulting from these adjoints T

′∗
HS+1M

(1) = (x̂1,q1) ∈ C2HS , T∗M+1M
(2) =

x̂2 ∈ CM+1 with the appropriated inner product on rows and columns herited from
the inner product (21).

(48) x̂1[k] =
1

2
(M

(1)
k,HS+1 +M

(1)
HS+1,k

∗
) ,

(49) q1 = T∗HS+1M
(1), x̂2 = T∗M+1M

(2) ,
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where T∗N the adjoint of TN , applied to M (`), ` ∈ {1, 2}, is

(T∗NM
(`))[k] =


1

2
Re

{
N∑
i=1

M
(`)
ii

}
if k=1 ,

1

2

N−k∑
i=1

(M
(`)
i,k+i−1 +M

(`)
k+i−1,i

∗
) if k¿1 .

Let PC be the projection operator onto C, by Moreau identity:

(50) proxσH∗i (v) = v − σproxHi
σ

( v
σ

)
= v − σPC

( v
σ

)
.

For more details on convex analysis, monotone operator theory and proximal
splitting methods see [6, 2, 16, 36].

4.2. Second Algorithm Design. Notice that in the Algorithm 1, τ must be
smaller than 2/β, which is a limitation in terms of convergence speed. To overcome
this issue, we subsequently developed a second algorithm, similar to Algorithm 1,
but with the data fidelity term ‖Ax̂ − ŷ‖ activated through its proximity operator,
instead of its gradient. We consider the optimization problem as a relaxed version of
the Chambolle–Pock algorithm [12]:

(51) X? = arg min
X∈H

{G(X) + H(L(X))} ,

with G = 1
2‖A · −ŷ‖2 which is proximable, Hx =

∑N
i=0Hixi with Hi = ιC and

Li ∈ {L(1)
i ,L

(2)
i } for i < N , HN = ιB and LN = Id. So now, ‖L‖ = HS +M + 1.

Since we have

p = proxτG(x̂)⇔ x̂− p = ∇(τG)(p) ,(52)

⇔ x̂− p = τA∗(Ap− ŷ) ,

⇔ x̂ + τA∗ŷ = (I + τA∗A)p ,

then the proximal operator has the following expression:

(53) proxτG(x̂) = (I + τA∗A)−1(x̂ + τA∗ŷ) .

Let explicit the operator A from a matricial point of view. The vertical convolution
with the filter h = [h−S , . . . , h0, . . . , hS ] and the column multiplication by the Fourier
coefficient [ĝM+1, . . . , ĝW ] are respectively equivalent to a right and left matrix multi-
plication with the matrices Ĝ of size (M +1)× (M +1) and Ȟ of size H×HS defined
by:

(54) Ȟ =


h−S · · · hS 0 0 · · · 0

0 h−S · · · hS 0 · · · 0
... · · ·

. . .
. . .

. . . · · ·
...

0 · · · 0 h−S · · · hS 0
0 · · · 0 0 h−S · · · hS

 ,

that is, Ax̂ = Ȟx̂Ĝ. We prove in a similar way that A∗ŷ = ȞTŷĜ and then:

(55) (I + τA∗A)x̂ = x̂ + Px̂Q, P = τȞTȞ, Q = ĜĜ .
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The square matrix P and Q are of size p = HS and q = M + 1. We have to solve
(I + τA∗A)x̂ = z; that is, x̂ + Px̂Q = z. This kind of system can be solved by the
mean of the Kronecker Product as:

(56) x̂ + Px̂Q = z ⇐⇒ (Ipq,pq + Q⊗PT)Vec(x̂) = Vec(z).

where Vec(x̂) denotes the vectorization of the matrix x̂ formed by stacking the
columns of x̂ into a single column vector, and Ipq,pq + Q ⊗ PT is a matrix of size
pq × pq which can be inverted, given access to Vec(x̂) and then to x̂. Finally, the
operator proxτG is no more than a big matrix-vector product.

Another option consists in working on the columns x̂m of x̂, since the operator
A act on them.

(57) (I + τA∗A)x̂ = z ⇐⇒ (I + |ĝ[m]|2P)x̂m = zm, ∀m = 0, . . . ,M .

This time, the operator proxτG suppose to perform M + 1 matrix-vector products of
size p× p, which appears to be more efficient in practice.

Let τ > 0 and σ > 0 such that τσ‖L‖ = 1, then the primal-dual Algorithm 2,
with F = 0 and weight ρ = 2, which is a relaxed version of the Chambolle–Pock
algorithm, converges to a solution (X̃, ξ̃0, ..., ξ̃N−1) of the problem (41) [17, Theorem
5.1].

Algorithm 2 Primal–dual splitting algorithm for (51)

Input: ŷ 1D FFT of the blurred and noisy data image y
Output: x̃ solution of the optimization problem ?? 37–38)

1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: X̃n+1 = proxτG(Xn − τ

∑N−1
i=0 L∗i ξi,n),

4: Xn+1 = 2X̃n+1 −Xn

5: for i = 0 to N − 1 do
6: ξ̃i,n+1 = proxσH∗i (ξi,n + σLi(2Xn+1 −Xn)),

7: ξi,n+1 = 2ξ̃i,n+1 − ξi,n
8: end for
9: end for

4.3. Extended Problem Formulation. We now consider a data image b]

containing lines with no angle restriction, which extends our previous work [38]. We

can decompose this image into the sum of two images b] = b]1+b]2, with b]1 (resp. b]2)

containing vertical (resp. horizontal) lines. We can also define x̂]1 of size (M+1)×HS

and x̂]2 of size WS × (P + 1) with WS = W + 2S and P = (H − 1)/2 such as

Ax̂]1 = b̂]1 and Ãx̂]2 = b̂]2, where g2 = [0P−S ,h,0P−S ] and Ã denotes the operator

which multiplies each row vector x̂]2[:, n2] by the corresponding Fourier coefficient

ĝ2[n2] and convolves it with the filter h; that is, Ãx̂2 = (Ĝ2x̂2) ∗ h with Ĝ2 =
diag(ĝ2[P + 1], . . . , ĝ2[H]). We finally define the Hermitian symmetry operator S1

(resp. S2) which from each row v = [v0, v1, . . . , vM ] (resp. column v = [v0, v1, . . . , vP ])
associates the symmetric extension [vM , . . . , v0, . . . , vM ] (resp. [vP , . . . , v0, . . . , vP ]).
Let X1 = (x̂1,q1) and X2 = (x̂2,q2) be the optimization variables. Then, the data
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fidelity term is now:

(58) F (X1,X2) =
1

2
‖F−11 S1Ax̂1 + F−12 S2Ãx̂2 − y‖2F=

1

2
‖A1x̂1 + A2x̂2 − y‖2F ,

with A1 = F−11 S1A and A2 = F−12 S2Ã. Let compute the differential:

F (X1 + h1,X2 + h2)

=
1

2
〈A1x̂1 + A2x̂2 + A1h1 + A2h2 − y,A1x̂1 + A2x̂2 + A1h1 + A2h2 − y〉 ,

= F (X1,X2) +
1

2
〈A1h1,A1x̂1 + A2x̂2 − y〉+

1

2
〈A1h1,A2h2〉+

1

2
〈A1h1,A1h1〉

+
1

2
〈A2h2,A1x̂1 + A2x̂2 − y〉+

1

2
〈A2h2,A1h1〉+

1

2
〈A2h2,A2h2〉 ,

and

(59) |〈A1h1,A2h2〉| 6 ‖A1‖‖A2‖‖h1‖‖h2‖,

and with the inner product on the product space we have ‖(h1,h2)‖2 = ‖h1‖2+‖h2‖2
and then

(60)
‖h1‖‖h2‖
‖(h1,h2)‖

=
‖h1‖‖h2‖√
‖h1‖2 + ‖h2‖2

6
‖h1‖‖h2‖
‖h1‖

= ‖h2‖ −→ 0 ,

so it follows that |〈A1h1,A2h2〉| = o (‖(h1,h2)‖), and we deduce that

(61) ∇F (X1,X2) =
1

2

(
A1
∗(A1x̂1 + A2x̂2 − y)

A2
∗(A1x̂1 + A2x̂2 − y)

)
.

The adjoints are Ã∗z = (Ĝ2z) ∗ h̄′, (F−11 )∗ = 1
W F1 and (F−12 )∗ = 1

HF2, and
S∗1(v−M , . . . , v0, . . . , vP ) = (v0, . . . , vM ) and S∗2(v−P , . . . , v0, . . . , vP ) = (v0, . . . , vP ).

Let determine the Lipschitz coefficient of the gradient ∇F :

(62) ‖∇F (X1,X2)−∇F (X′1,X
′
2)‖2 =

1

4
‖A1

∗(A1(x̂1 − x̂′1) + A2(x̂2 − x̂′2))‖2

+
1

4
‖A2

∗(A1(x̂1 − x̂′1) + A2(x̂2 − x̂′2))‖2 .

We are looking for a majoration of each term. We treat the first one C1, the second
C2 is obtained in the same manner.

C1 6 (‖A1
∗A1‖‖x̂1 − x̂′1‖+ ‖A1

∗A2‖‖x̂2 − x̂′2‖)2 ,(63)

6 ‖A1
∗A1‖2‖x̂1 − x̂′1‖2 + ‖A1

∗A2‖2‖x̂2 − x̂′2‖2 ,
+ 2‖A1

∗A1‖‖A1
∗A2‖‖x̂1 − x̂′1‖‖x̂2 − x̂′2‖ ,

6 (‖A1
∗A1‖2 + ‖A1

∗A1‖‖A1
∗A2‖)‖x̂1 − x̂′1‖2 ,

+ (‖A1
∗A2‖2 + ‖A1

∗A1‖‖A1
∗A2‖)‖x̂2 − x̂′2‖2 .

We have ‖A‖ = ‖A∗‖ = 1, ‖Six̂1‖F = ‖x̂i‖, for i ∈ {1, 2}; that is, ‖Si‖ = 1, and
‖F−1i v‖22 = 1

N2 ‖v‖2; that is, ‖F−1i ‖ = 1
N . Hence, ‖A1‖ 6 1

W , ‖A1
∗‖ 6 1, ‖A2‖ 6 1

H
and ‖A2‖ 6 1. Consequently, we get

(64) C1 6

(
1

W 2
+

1

WH

)
‖x̂1 − x̂′1‖2 +

(
1

H2
+

1

WH

)
‖x̂2 − x̂′2‖2 ,
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and exactly the same majoration for C2. Thus, we have
(65)

‖∇F (X1,X2)−∇F (X′1,X
′
2)‖2 6 β2(‖X1−X′1‖2 + ‖X2−X′2‖2), β =

1

min(W,H)
.

The image x̂]1 keep the same constraints as in the Algorithm 1, which act similarly

on the image x̂]2 in a rotated way; that is, we define L
(3)
m (X2) = TP+1(x̂2[m, :]) and

L
(4)
n2 (X2) = T′WS

(fliplr(x̂2[:, n2]),fliplr(q2[:, n2])). The boundary constraints on x̂1 are
given in (38) and (38), so the boundary constraints on x̂2 are x̂2[m, 0] = x̂2[0, 0] 6 c2
and q2[P, :] 6 c2. We still denote by B1 and B2 both these constraints. Likewise, the
inner product on the space where x̂2 belongs is:

(66) 〈z1, z2〉 =

WS−1∑
m=0

z1[m, 0]z2[m, 0]∗ + 2Re

(
P∑

n2=1

WS−1∑
m=0

z1[m,n2]z2[m,n2]∗

)
.

and so the adjoint of the operators remain the same, except for the operator TN

which is slightly different (the first component is not divided by two anymore):

(T∗NM
(`))[k] =


Re

{
N∑
i=1

M
(`)
ii

}
if k = 1,

1

2

N−k∑
i=1

(M
(`)
i,k+i−1 +M

(`)
k+i−1,i

∗
) if k > 1.

As previously, we define L(3)(X2) = (L
(3)
0 (X2), . . . ,L

(3)
WS−1(X2)), also L(4)(X2) =

(L
(4)
0 (X2), . . . ,L

(4)
P (X2)) and L = (L(1),L(2),L(3),L(4)). Again, an easy computation

leads to

‖L‖2 = ‖L(1)‖2 + ‖L(2)‖2 + ‖L(3)‖2 + ‖L(4)‖2(67)

= (HS − 1) + (M + 1) + (P + 1) + (WS − 1) .(68)

Finally, we have

(69) (X̃1, X̃2) = arg min
(X1,X2)∈H

{
1

2
‖A1x̂1 + A2x̂2 − y‖2F

+ ιB1
(X1) +

M∑
m=0

ιC(L
(1)
m (X1)) +

HS−1∑
n2=0

ιC(L
(2)
n2

(X1))

+ ιB2
(X2) +

WS−1∑
m=0

ιC(L
(3)
m (X2)) +

P∑
n2=0

ιC(L
(4)
n2

(X2))

}
.

4.4. Inpainting problems. We now consider the case in which a binary mask
M is applied on the data image, as in Figure 4. More precisely, the result M · x
is an element-wise multiplication of the matrix x with the binary matrix M, whose
zero coefficients are the indices of the pixels unavailable to observation. It is clear
that with the Frobenius inner product we have M∗ = M. The data fidelity term
becomes F (X) = 1

2‖MF
−1
1 S1Ax̂ − y‖2F , whose gradient is computed as previously,

with β = 1/W (since ‖F−11 ‖ = 1/W and ‖M‖ = 1). The constraints remain the same
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as in (38), and the method is also easily transposable to the extended version.

At this stage, we completed the first step; that is, we are able to restore the image
x̂] from the degraded image y. From now, we can for instance reduce the blur by
taking other filters gr and hr with a smaller spread, and visualize the resulting image
br passing the solution x̂ through this new blur operator Ar; that is, b̂r = Arx̂.

Note that for a too small variance σ, the gaussian G : t 7→ 1√
2πσ2

e−
t2

2σ2 is tight,

so its Fourier transform Ĝ : ν 7→ e−2π
2σ2ν2

is spread out. On one hand, the filter
g = [0M−S ,h,0M−S ] interpolates the few samples h of the Gaussian G in the Fourier
domain, but on the other hand the resulting vector ĝ of size 2M + 1 = W does not
contain a sufficiently large part of Ĝ due to its slight decrease. Consequently, the
bandlimited nature of ϕ1 cut off an effective part of the high frequencies of the signal,
and thus introduce some oscillations which appear as artifacts on the blurred image.

In the next section, we present the method that underlies the second step of this
work, namely the estimation of the line parameters, which is related to the spectral
estimation field.

5. Recovering Line Parameters by a Prony-Like Method. Finally, the
goal is to estimate the parameters (θk, αk, ηk), which characterize the K lines, from
the solution of the minimization problem x̂, symmetrized to m = −M, . . . ,−1 before-
hand. This requires the use of a classical spectral estimation method [48, 49]. The
recovering procedure hereafter, based on [42], is an extended method of the famous
Prony method [39]. There exists plenty other methods like MUSIC [46] and root–
MUSIC [1], ESPRIT [45] or matrix pencil method [26].

Let sketch this Prony–like method [42], which is based on an annihilating property
[4]. Let z = (z0, . . . , z|I|−1) be a complex vector, whose components are:

(70) zi =

K∑
k=1

dk
(
e j2πfk

)i
, ∀i = 0, . . . , |I| − 1 ,

with dk ∈ C, fk ∈ [−1/2, 1/2) and ζk = e j2πfk . We introduce the annihilating

polynomial H(ζ) =
∏K
l=1(ζ − ζl) =

∑K
l=0 hlζ

K−l with h0 = 1, and Prony [39] noticed
that for all r = K, . . . , |I| − 1

(71)

K∑
l=0

hlzr−l =

K∑
l=0

hl

(
K∑
k=1

dkζ
r−l
k

)
=

K∑
k=1

dkζ
r−K
k

(
K∑
l=0

hlζ
K−l
k

)
︸ ︷︷ ︸

H(ζk)=0

= 0 .

We rearrange the elements zi in a Toeplitz matrix PK(z) of size (|I| −K)× (K + 1)
and rank K as follows

(72) PK(z) =

 zK · · · z0
...

. . .
...

z|I|−1 · · · z|I|−K−1

 ,

and (71) can be written with h = (h0, . . . , hK) as:

(73) (z ∗ h)(r) = 0, ∀r = K, . . . , |I| − 1⇐⇒ PKh = 0 .



A CONVEX APPROACH TO SUPER-RESOLUTION AND REGULARIZATION OF LINES IN IMAGES19

Consequently, the method consists in finding a right singular vector of the matrix
PK associated to the singular value zero, which leads to vector h = (h0, . . . , hK) and

then to the polynomial H(ζ) =
∑K
l=0 hlζ

K−l, whose roots are the searched complex
ζk = e j2πfk and then fk = arg(ζk)/(2π). The complex amplitudes can be retrieved
as well by written (70) matricially z = Ud where d = (d1, . . . , dK) and the following
matrix U of size |I| ×K

(74) U =
(
a(f1) · · · a(fK)

)
=


1 · · · 1

e−j2πf1 · · · e−j2πfK

e−j2πf1×2 · · · e−j2πfK×2

...
...

...
e−j2πf1(|I|−1) · · · e−j2πfK(|I|−1)

 .

Finally, we recover the amplitudes by a least square approximation

(75) d = (UHU)−1UHz .

Applied on the columns of x̂], the procedure becomes the following:
– From m = 1, . . . ,M ,

1. Compute f̃m,k = arg(ζm,k)/(2π), where (ζm,k)k are roots of the polynomial∑K
k=0 hm,kζ

k with hm = [hm,0, . . . , hm,K ]T being the right singular vector of
PK(x̃[m, :]) with I = {0, . . . ,HS − 1}. It corresponds to the singular value
zero (the smallest value in practice).

2. Form the matrix Ũm = [a(f̃m,1) · · ·a(f̃m,K)], and compute the complex am-

plitudes d̃m = [d̃m,1, . . . , d̃m,K ]T by solving the least-squares linear system

ŨH
mŨmd̃m = ŨH

mx̃[m, :].
3. Compute θ̃m,k = arctan(Wf̃m,k/m) from (30).

4. Compute α̃m,k = |d̃m,k| cos θ̃m,k.

5. Compute ẽm,k = d̃m,k/|d̃m,k|.
– For k = 1, . . . ,K

6. Sort the f̃m,k with respect to k, and apply this permutation on the other

array. Compute the mean of all estimated angles θ̃k = 1
M

∑M
m=1 θ̃m,k and

amplitudes α̃k = 1
M

∑M
m=1 α̃m,k.

7. Compute the frequency ν̃k as previously from PK(ẽk) with ẽk = (ẽm,k)m and
I = {−M, . . . ,M}, and then the horizontal offset η̃k = Wν̃k/(2π).

The point 6. and 7. are possible to the extent that the sorting frequencies f̃m,k are
always related to the same angles θ1 6 · · · ≤ θk ≤ · · · ≤ θK for all m, which allows us
to compute the mean according to m. It would not be possible to do the same with
f̃n2,k = (tan(θ̃k)n2 − η̃k)/W because the affine relation does not preserve the order,

for instance one can find n and n′ such that f̃n,k1 ≤ f̃n,k2 and f̃n′,k1 ≥ f̃n′,k2 .
Thus, the trick is to perform the Prony method on the vectors ẽk again, with this

aim to preserve the order. Indeed, if we would chosen instead of step 6. to perform the
Prony method on the rows, in order to extract the frequencies f̃n2,k = (tan(θ̃k)n2 −
η̃k)/W , then on one hand they are not uniquely determined since they belong to an
interval of length greater than one f̃n2,k ∈ [−(HS + M)/W, (HS + M)/W ], and on

the other hand we would lose the correspondence between the f̃n2,k and the previous

estimated angles θ̃k, what compromises the estimation of the ηk. The procedure is
summarized in Figure 6.
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Fig. 6. Procedure of extraction

In the preliminary version of this work [38], we propose this simplistic method
which is not sufficiently robust to noise remaining in the output solution of the algo-
rithm, whose stopping criteria is met when this one is sufficiently close to the exact
solution. In the noiseless case, the Prony method is able to recover the frequencies with
an infinite precision if the number of samples |I| is greater than 2K. But in our case
the estimate f̃m,k is affected by some uncertainty εm,k; that is, f̃m,k = fm,k + εm,k,
due to the instability of roots finding in presence of noise, and then the error of
θ̃m,k = arctan(Wf̃m,k/m) = arctan(Wfm,k/m + Wεm,k/m) ≈ θm,k + Wεm,k/m, is
amplified by a factor W/m and gives a bad result, in particularly for a small m.

Consequently, the mean θ̃k = 1
M

∑M
m=1 θ̃m,k does not lead to a robust estimation of

the angles θ̃k. We improve the robustness by applying a linear regression to the data
{fm,k}16m6M since f̃m,k = tan θk

W m+ εm,k, in order to estimate the slope tan θk. The
errors εm,k committed by evaluating the frequencies fm,k are not of the same order of
magnitude according to m. Indeed, for a small m, the frequencies fm,k = tan θk

W m, are
close to each other, and the Prony method fails to accurately determine the frequen-
cies when the minimal separation is too small, especially when K and the amount of
residual noise are not too. Consequently, it is preferable to start the linear regression
from greater values of m, in order to space the frequencies on the unit disk. Make sure
that for high values of m the two extremal frequencies, say fm,1 ≤ 0 and fm,K ≥ 0,
are not both close respectively to −π and π, what would violate the separation criteria
as well. The angle parameters θ̃k are now better estimated.

We keep the same procedure of estimation for the offsets η̃k, because it has the
advantage to conserve the correspondance with the estimated angles θ̃k. Notice that
we could compare the results by applying the Prony method on the middle line (n2 =

0) of the image, since l0[m] =
∑K
k=1 cke

j2πηkm/W and that the argument of these
exponentials are uniquely determined, giving a better estimation of the offsets η̃k
provided that the latter are well separated, but losing the correspondance with the
angles θ̃k.
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Finally, as far as concern the amplitudes ck, taking the modulus of d̃m,k’s gives
also bad results, since they are computed from the estimate x̃ whose amplitudes have
been cut down, due to the choice of a parameter c < c? for removing noise. It is more
appropriated, given the estimated 2D atoms 1

cos θ̃k
â(θ̃k, η̃k), to evaluate the amplitudes

α̃k by performing a least square method with respect to the noisy data ŷ:

(76) (α̃1, . . . , α̃K) = arg min
α1,...,αK

∥∥∥∥∥
K∑
k=1

αk Îk − ŷ

∥∥∥∥∥
2

, Îk = A · 1

cos θ̃k
â(θ̃k, η̃k) .

The new procedure is the following:
– From m = 1, . . . ,M ,

Compute f̃m,k = arg(ζm,k)/(2π), where (ζm,k)k are roots of the polynomial∑K
k=0 hm,kζ

k with hm = [hm,0, . . . , hm,K ]T being the right singular vector of PK(x̃[m, :
]) with I = {0, . . . ,HS − 1}. It corresponds to the singular value zero (the smallest
value in practice).
– For k = 1, . . . ,K

Perform a linear regression on {f̃m,k}m to estimate tan θ̃k and then θ̃k.
– From m = 1, . . . ,M ,

1. Form the matrix Ũm = [a(tan θ̃1m/W ) · · ·a(tan θ̃Km/W )], and compute
the complex amplitudes d̃m = [d̃m,1, . . . , d̃m,K ]T by solving the least-squares

linear system ŨH
mŨmd̃m = ŨH

mx̃[m, :].
2. Compute ẽm,k = d̃m,k/|d̃m,k|.

– For k = 1, . . . ,K
Compute the frequency ν̃k as previously from PK(ẽk) with ẽk = (ẽm,k)m and

I = {−M, . . . ,M}, and then the horizontal offset η̃k = Wν̃k/(2π).
– Find the amplitudes by debiasing as explained in (76)

6. Experimental results. The reconstruction procedure described in Section
3, was implemented in Matlab code, available on the webpage of the first author. We
consider an image of size W = H = 65, containing 3 lines of parameters: (θ1, η1, α1) =
(−π/5, 0, 255), (θ2, η2, α2) = (π/16,−15, 255) and (θ3, η3, α3) = (π/6, 10, 255). The
first experiment consists in the reconstruction of the lines from x̃ in absence of noise,
(1) by applying the operator A on this solution, possibly with others kernels g and
h, and then taking the 1D inverse Fourier transform ; and (2) by applying the Prony
method to recover parameters of the lines, in the aim to display these one as vectorial
lines. We run the algorithm for 106 iterations. Results of relative errors for the
solution x̃ and the estimated parameters are given Fig. 7 (a) and Table 1, where
∆θi/θi = |θi − θ̃i|/|θi|, ∆αi/αi = |αi − α̃i|/|αi| and ∆ηi = |ηi − η̃i|. Although the
algorithm is quite slow to achieve high accuracy, we insist on the fact that convergence
to the exact solution x̂] is guaranteed, when the lines are not too close to each other.
The purpose of the second experiment is to highlight the robustness of the method
in presence of a strong noise level. With c = 700 and only 2.103 iterations, we are
able to completely remove noise and to estimate the line parameters with an error of
10−2. For both first experiments, we do not depict the estimated images, because it is
strictly identical to the one in Figure 1. Finally, the last experiment for 105 iterations,
illustrates the efficiency of the method even in presence of a large blur, yielding an
error of 10−4. We emphasize that our algorithm has an accuracy which could not be
achieved by detecting peaks of the Hough or Radon transform (see Figure 1). These
methods are relevant for giving a coarse estimation of line parameters. They are
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Fig. 7. (a) Decrease of the relative errors
‖x̂−x̂]‖
‖x̂]‖ and

‖Ax̂−ŷ‖
‖ŷ‖ for the first experiment, (b)

Lines affected by a strong noise level (ζ = 200) for the second experiment, (c) Lines degraded by a
strong blur (κ = 8) for the third experiment. In red, the recovered lines by the Prony Method.

Table 1
Errors on line parameters recovered by the proposed method.

Experiment 1 Experiment 2 Experiment 3

∆θ/θ (10−7, 3.10−6, 7.10−7) (10−2, 6.10−2, 9.10−2) (6.10−7, 9.10−5, 8.10−6)

∆α/α (10−7, 10−7, 10−7) (10−2, 9.10−2, 2.10−1) (4.10−5, 2.10−5, 2.10−5)

∆η (4.10−6, 7.10−6, 7.10−6) (5.10−2, 4.10−2, 3.10−2) (5.10−5, 10−4, 3.10−4)

Table 2
Angles, offsets and amplitudes of the seven lines.

θk −0.75 −0.5 −0.25 10−3 0.3 0.55 0.75
ηk 15 25 2 7 −20 −5 −10
αk 60 80 255 100 180 120 240

robust to strong noise, but completely fail with a strong blur, which prevents peaks
detection (see Appendix D).

One way to get rid off the periodicity is to work with an image four times bigger,
but it is computationally prohibitive. As well, considering a Poisson noise would
be more realistic, but it would involve to activate the data fidelity term through its
proximal operator in H ◦ L, which would slow down the algorithm further.

6.1. Close lines. For a reasonable amount of noise (ζ = 20), the algorithm
succeed in separating two close lines (θ1, η1, α1) = (−0.73,−1, 255) and (θ2, η2, α2) =
(−0.75, 1, 255) as illustrated in Figure 8. The estimation of the parameters gives
(θ̃1, η̃1, α̃1) = (−0.725,−0.7, 237) and (θ̃2, η̃2, α̃2) = (−0.753,−0.6, 251).

6.2. More lines and different amplitudes. A more complicated example is
depicted in Figure 9 (a), containing seven lines whose parameters are enumerated in
Table 2, and affected by some noise with variance ζ = 20.

We run the algorithm with c = 0.8c?, τ = 1, σ = (τ(M + HS + 1))−1, and after
only 2.103 iterations, we are able to denoise the image as illustrated in Figure 9 (b),
and to estimate, thanks to the new Prony procedure, the line parameters as illustrated
in Figure 9 (c), with an error of 10−2 as given in Table 3.
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(a) (b)

(c) (d)

Fig. 8. (a) Image y of seven lines affected by noise (ζ = 20), (b) Result x̃ of the denoising step
from the optimization, (c) Extraction of the line parameters from the Prony step, (d) Theoritical
solution x̂] to compare with.

Table 3
Errors on line parameters recovered by the proposed method.

∆θ 1.10−2 2.10−2 1.10−3 2.10−3 5.10−3 5.10−3 1.10−3

∆η 5.10−1 7.10−2 4.10−2 1.10−1 1.10−2 2.10−2 1.10−2

∆α/α 4.10−2 5.10−2 5.10−3 4.10−2 6.10−3 1.10−2 4.10−3

7. Conclusion. We provided a new formulation for the problem of recovering
lines in degraded images using the framework of atomic norm minimization. A primal–
dual splitting algorithm has been used to solve the convex optimization problem. We
applied it successfully to the deblurring of images, recovering lines parameters by
the Prony method, and we showed the robustness of the method for strong blur and
strong noise level. We insist on the novelty of our approach, which is to estimate
lines with parameters (angle, offset, amplitude) living in a continuum, with perfect
reconstruction in absence of noise, without being limited by the discrete nature of the
image, nor its finite size. This work can be viewed as a proof of concept for super-
resolution line detection, and invite us to revisit the Hough transform in a continuous
way. Many theoretical questions remain open, e.g study the separation conditions
under which perfect reconstruction can be guaranteed. We should also investigate the
possibility to relax the periodicity assumption, and from a practical point of view,
parallel computing would be welcome to speed up the proposed algorithm, and to
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(a) (b)

(c) (d)

Fig. 9. (a) Image y of seven lines affected by noise (ζ = 20), (b) Result x̃ of the denoising step
from the optimization, (c) Extraction of the line parameters from the Prony step, (d) Theoritical
solution x̂] to compare with.

pretend to an industrial use.

Appendix A. Proof of Proposition 1 .

Theorem 5 (Nyquist Whittaker-Shannon). Let f be T -periodic function and
cm(f) = 0 for |m| > M + 1, then f can be reconstructed from the regular sampling
{f(ka), k = 0, 1, ..., 2M}, with a = T

2M+1 the sampling rate, in this way:

(77) f(x) =
1

2M + 1

2M∑
k=0

f(ka)DM

(
2π

T
(x− ka)

)
,

where DM is the Dirichlet Kernel:

(78) DM (x) =

M∑
m=−M

e jmx =
sin
(
(M + 1

2 )x
)

sin x
2

.

Proof. The function f is T–periodic and has a finite number of Fourier coefficients,
hence its Fourier serie is written:

(79) f(x) =

M∑
m=−M

cm(f)e j2πmT x .
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For p ∈ {−M, ...,M}, let us compute the following sum:

2M∑
k=0

f(ka)e−j2π
p
T ka =

2M∑
k=0

[
M∑

m=−M
cm(f)e j2πmT ka

]
e−j2π

p
T ka ,(80)

=

M∑
m=−M

cm(f)

[
2M∑
k=0

exp

(
j2π

k

2M + 1
(m− p)

)]
,

= (2M + 1)cp(f) .

The discrete Fourier transform of the samples corresponds to the Fourier coefficient
of f . More precisely, if we define g[k] = f(ka) and the discrete Fourier transform

(81) ĝ[k] =
1

2M + 1

2M∑
i=0

g[i]e−j2π
ik

2M+1 .

then

(82) (g[0], g[1], . . . , g[2M ])
DFT←→ (ĝ[0], ĝ[1], . . . , ĝ[2M ]) = (c−M (f), . . . , cM (f)) .

Finally, we prove the reconstruction formula:

f(x) =

M∑
m=−M

[
1

2M + 1

2M∑
k=0

f(ka) exp
(
−j2π

m

T
ka
)]

exp
(

j2π
m

T
x
)
,(83)

=
1

2M + 1

2M∑
k=0

f(ka)

[
M∑

m=−M
exp

(
j
2π

T
(x− ka)

)]
,

=
1

2M + 1

2M∑
k=0

f(ka)DM

(
2π

T
(x− ka)

)
,

which concludes the proof.

In the present case, ϕ1 is W–periodic and cm(ϕ1) = 0 for |m| >M +1 with 2M +1 =
W , so a = 1 and applying the Nyquist theorem:

(84) ϕ1(t) =

W−1∑
n=0

ϕ1(n)
sinπ(x− n)

W sin
(
π(x−n)
W

) .
Consequently we give this explicit formula g[n] = ϕ1(n) and ĝ[n] = cn−M for n =
0, 1, ..., 2M . In order to deal with gaussian samples of ϕ1 centered at the origin, we
prefer this equivalent formula:

(85) ϕ1(t) =

M∑
n=−M

ϕ1(n)
sinπ(x− n)

W sin
(
π(x−n)
W

) ,
since a vector of samples shifted of M ∈ Z has the DFT:

(86) (g[n−M ])n=0,...,2M
DFT←→ (e−j2π

Mm
2M+1 ĝ[m])m=0,...,2M ,
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so in the second line of (83) by remplacing cm(f) by e+j2π Mm
2M+1 cm(f) which is equiv-

alent to translate of +M in the Dirichlet Kernel:

(87) ϕ1(t) =

2M∑
n=0

ϕ1(n−M)
sinπ(x− n+M)

W sin
(
π(x−n+M)

W

) ,
we recover the result by the change of variable n← n−M .

Appendix B. Proof of Proposition 3.
Denote the right-hand side of (28) by SDP(z).

• Suppose z =
∑K
k=1 cka(fk, φk) with ck > 0.

Defining q =
∑K
k=1 cka(fk), then q0 =

∑K
k=1 ck. The atoms a(fk) has for components

[a(fk)]i = e j2πfki for i = 0, . . . , N − 1, hence

TN (a(fk)) =


1 e−j2πfk · · · e−j2πfk(N−1)

e j2πfk 1 · · · e−j2πfk(N−2)

...
...

. . .
...

e j2πfk(N−1) e j2πfk(N−2) · · · 1

 ,

=


1

e j2πfk

...
e j2πfk(N−1)

(1 e−j2πfk · · · e−j2πfk(N−1)
)
,

= a(fk)a(fk)∗ .

We deduce that

TN (q) =

K∑
k=1

ckT(a(fk)) ,

=

K∑
k=1

cka(fk)a(fk)∗ ,

=

K∑
k=1

cka(fk, φk)a(fk, φk)∗ .

Therefore, the matrix(
TN (q) z
z∗ q0

)
=

K∑
k=1

(
a(fk, φk)

1

)(
a(fk, φk)

1

)∗
,

is positive semidefinite. Given q0 =
∑K
k=1 ck, we get SDP(z) 6

∑K
k=1 ck.

Since this holds for any decomposition of z, we conclude that SDP(z) 6 ‖z‖A.

• Conversely, let q ∈ CN a vector such that q0 > 0 and

(
TN (q) z
z∗ q0

)
< 0. In

particular we have TN (q) < 0. We denote by r the rank of TN (q). Theorem 2 insures
that TN (q) < 0 and of rank r 6 N if and only if there exists dk > 0 and distincts fk,
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such that

q =

r∑
k=1

dka(fk) ,

Let us denote matrices D = diag(d1, . . . , dr) and

V =
(
a(f1) · · · a(fr)

)
=


1 1 · · · 1

e j2πf1 e j2πf2 · · · e j2πfr

e j2πf12 e j2πf22 · · · e j2πfr2

...
...

...
...

e j2πf1(N−1) e j2πf2(N−1) · · · e j2πfr(N−1)

 .

By linearity of the operator TN :

TN (q) =

r∑
k=1

dkTN (a(fk)) ,

=

r∑
k=1

dka(fk)a(fk)∗ ,

= VDV∗ .

Since TN (a(fk)) contains only ones on the diagonal, we have

1

N
Tr(TN (q)) =

r∑
k=1

dk > 0 .

Besides, 1
NTr(TN (q)) = q0, therefore q0 > 0.

Let be M a general block matrix M =

(
A B
BT C

)
, the Schur complement gives

[ C � 0⇒M < 0 ] =⇒ [ A−BC−1BT < 0 ] .

We apply this lemma to M =

(
TN (q) z
z∗ q0

)
, with A = TN (q), B = z and

C = q0. The left term is verified by hypothesis, hence

TN (q)− q−10 zz∗ < 0 ⇐⇒ VDV∗ − q−10 zz∗ < 0 .

We define the square matrix Vr by extracting the r first rows of V, which is a
Vandermonde matrix, whose determinant is det(Vr) =

∏
16k<l6r(fl − fk). Since we

assumed fk 6= fl, Vr is invertible, and rank(V) = r. Let define v : Cr → CN and
v∗ : CN → Cr the endomorphisms corresponding to matrices V and V∗. We have
rank(v∗) = rank(v) = r. By the rank-nullity theorem:

rank(v∗) + dim(Ker v∗) = dim(CN ) =⇒ dim(Ker v∗) = N − r .



28 K. POLISANO, L. CONDAT, M. CLAUSEL AND V. PERRIER

Thus, there exists a vector p ∈ CN such that V∗p = 0⇔ p∗V = 0. Consequently,

p∗(VDV∗ − q−10 zz∗)p > 0⇔ (p∗V)D(V∗p)− q−10 p∗zz∗p > 0 ,

⇔ q−10 ‖p∗z‖22 6 0 ,

⇔ ‖p∗z‖22 = 0 ,

⇔ p∗z = 0 ,

⇔ p ⊥ z .

Since p ∈ Ker v∗, then z ∈ (Ker v∗)⊥ = Im v, so it exists a vector w ∈ Cr such that
z = Vw =

∑r
k=1 wka(fk), hence

VDV∗ − q−10 Vww∗V∗ < 0 .

Besides, Im v∗ ⊂ Cr and dim(Im v∗) = rank(v∗) = r = dim(Cr), thus Im v∗ = Cr
and v∗ is surjective. Consequently, it exists a vector u ∈ CN such that V∗u =
sign(w) = (w1/|w1|, . . . , wr/|wr|)T, and

u∗(VDV∗ − q−10 Vww∗V∗)u > 0⇔ (u∗V)D(V∗u)− q−10 (u∗V)ww∗(V∗u) > 0 ,

⇔ sign(w)∗Dsign(w)− q−10 sign(w)∗ww∗sign(w) > 0 ,

⇔
r∑

k=1

dk

∣∣∣∣ wk|wk|
∣∣∣∣2 − q−10

(
r∑

k=1

w̄k
|wk|

wk

)2

> 0 ,

⇔ q20 >

(
r∑

k=1

|wk|

)2

,

⇔ q0 >
r∑

k=1

|wk| > ‖z‖A .

Taking the infimum leads to SDP(z) > ‖z‖A.

Finally, let us show that the infimum of the linear form ` : q 7→ q0 is achieved on

A =

{
q ∈ CN :

(
TN (q) z
z∗ q0

)
< 0

}
.

Let notice that ` defines a norm on A, since q ∈ A implies TN (q) < 0 and then

q0 =
1

N
Tr(TN (q)) =

N−1∑
i=0

λi > 0 ,

with λi the eigenvalues of TN (q) which are positives.
A is non empty, since q = (‖z‖2, 0, . . . , 0)T ∈ A. Indeed for a vector z = (z0, . . . , zN−1) ∈
CN fixed, v = (v0, . . . , vN ) ∈ CN+1 and v′ = (v0, . . . , vN−1) ∈ CN we have for this q
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:

v∗
(

TN (q) z
z∗ q0

)
v = ‖z‖2‖v‖22 + 2 Re

(
vN

N−1∑
i=0

ziv̄i

)
,

> ‖z‖2‖v‖22 − 2|vN ||〈z,v′〉| ,
> ‖z‖2‖v‖22 − 2|vN |‖z‖2‖v′‖2 ,
> ‖z‖2(‖v′‖22 − 2|vN |‖v′‖2 + |vN |2) ,

> ‖z‖2(‖v′‖2 − |vN |)2 ,
> 0 .

Then q = (‖z‖2, 0, . . . , 0)T ∈ A and q0 = ‖z‖2, hence ‖z‖A 6 ‖z‖2.
Since norms are equivalent in finite dimension, the infimum has to be reached on the
ball B = B(0, ‖z‖) ⊂ A with r > 0 and the norm `. Thus B is bounded.
Considering a sequence

{
q(p)

}
p∈N which belongs to B. Let suppose it converges to q∗.

By linearity in finite dimension of the application T : q 7→
(

TN (q) z
z∗ q0

)
, we have

that T is continuous, then T (q(p)) −−−−−→
p→+∞

T (q∗). Since the sequence
{
T (q(p))

}
p∈N

lying on the cone of positive matrix, which is closed, we deduce that the limit T (q∗)
is still positive. Therefore q∗ ∈ B and so B is closed.
Consequently, B is a compact, and the linear form ` achieves its minimum on B.

Appendix C. Proof of Proposition 4.
The proof of the direct implication is straightforward. Let consider the converse.
By Theorem 2, since ∀n,TM (ln) < 0 and of rank one, then it exists cn > 0 and

fn ∈ [0, 1] such that

ln[m] = cn exp(j2πfnm) .

Since we assume x̂[0, n] = x̂[0, 0] = c0, then we actually have

ln[m] = c0 exp(j2πfnm) .

Let m be fixed. The Prony matrix P1(tm) of size 2× (N − 1)

P1(tm) =

 tm[1] tm[0]
...

...
tm[N − 1] tm[N − 2]

 ,

is of rank one, consequently there exists λm ∈ C such that

tm[n+ 1] = λmtm[n], ∀ 0 6 n 6 N − 1 .

Thus,

tm[n] = λnmtm[0], ∀ 0 6 n 6 N − 1 .

Notice that P1(tm), being of rank one is equivalent to

tm[n] = dm exp(j2πfmn) ,
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Fig. 10. (a) The binary version of b], (b) the corresponding Hough transform with the estimaed
peaks, (c) the estimated lines
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Fig. 11. (a) The thresholded version of b], (b) the corresponding Hough transform with the
estimaed peaks, (c) the estimated lines

with dm ∈ C, where dm = tm[0] and λm = exp(j2πfm).
Due to the expression of ln[m] previously obtained by Theorem 2, we get further:

λm =
tm[1]

tm[0]
=
`1[m]

`0[m]
= exp(j2π(f1 − f0)m) .

Therefore we have

tm[n] = λnmtm[0] ,

= exp(j2π(f1 − f0)m)nc0 exp(j2πf0m) ,

= c0 exp[j2π((f1 − f0)n+ f0)m] .

Appendix D. Comparison with the Hough and Radon transforms.
The Hough transform tackles the problem of detecting straight lines, converting

this problem into peak detection in a parameter space. The transformation is done
on a binary image, generally obtained after processing the original image by an edge
detector. In our case, dealing with blurred image, this pre-processing is not relevant
since the lines have some width. Thus, in order to convert the image to a binary one,
we apply a certain threshold. We suggest these two possibilities:
• By calling the matlab routine im2bw: This will apply a threshold on luminance

of the image. We obtain the image Figure 10a, on which we perform the Hough
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Fig. 12. The Radon transform of the image y for experiment 1, 2 and 3. The theoretical
parameters of lines are in green.
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Fig. 13. Variation of the accuracy with respect to the angle step of the Radon transform.

transform, the resulting image is displayed in Figure 10b. The peaks detection (in
green), and so the lines estimation (Figure 10c), altogether fail, due to some artifacts,
which have been considered in [53], in which the authors propose a method to remove
these artifacts. Nevertheless, as you can seen in Figure 10b, the peaks are in any case
spread out because of the binary line’s width, which provides a very coarse estimation
of the parameters.
• By applying manually a threshold on the pixel values: This will keep the pixel

greater than the threshold at stake. For instance, for a threshold of 230, we obtain the
image Figure 11a. The peak detection is now working, and the lines estimations seems
to be correct. This method provides an estimation with a mean error of 10−2 for θk,
and 10−1 for ηk, which is not significantly improved by decreasing the discretization
steps of the process. Remark that this method cannot be applied if the lines have
different amplitude values, because of the threshold. For the same reason, it is not
relevant for image with a large amount of blur or noise.

Therefore, we used instead the Radon transform, which appears to be more
adapted for our topic.

The Radon transform is a famous mathematical tool used in tomography. The
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Hough transform is actually related to the Radon transform, as a kind of discretiza-
tion of the latter. The Radon transform can be done directly on grayscale images,
and the peaks seem to be less spread than the peaks from the Hough transform, as we
can see on Figure 12a. This approach has the advantage of achieving the same mean
error of 10−1 for ηk, and a better rate of 10−3 for θk. Notice that even by decreasing
the discretization steps of the process, we rapidly reach a plateau, as illustrated by
Figure 13. Besides, the Radon transform is robust to noise, the peaks remain well
detected, as you can observe in Figure 12b (b). However, this method fails for a large
blur, such as presented in the third experiment, the peeks are not clearly recognizable
anymore, as you observe in Figure 12c.

To sum up, the Radon transform is more suitable than the Hough transform
for detecting lines in a degraded image. But, in both cases, they come up against
a discrete limit as soon as we are looking for a greater accuracy. In contrary, our
super-resolution method enables to achieve an infinite precision for line’s parameters.
Actually, our method is for the Hough transform, what the super-resolution is for the
Fourier transform in 1D. Indeed, a spikes-train is a sum of exponentials in the Fourier
domain; that is, the detection of spikes position is equivalent to detect the local
minimum of the Fourier transform which are the frequencies of the corresponding
exponentials. This latter technique applied on a degraded signal (blur and noise)
provides a coarse approximation of the frequencies, where the super-resolution succeed
in retrieving the true value under some conditions. Similarly, the Hough transform
requires to detect the local maximum of the accumulator matrix, which provides a
coarse approximation of the lines position, where our method overcomes this issue.

REFERENCES

[1] A. Barabell, Improving the resolution performance of eigenstructure-based direction-finding
algorithms, in Acoustics, Speech, and Signal Processing, IEEE International Conference
on ICASSP’83., vol. 8, IEEE, 1983, pp. 336–339.

[2] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in
Hilbert spaces, Springer Science &amp; Business Media, 2011.

[3] B. N. Bhaskar, G. Tang, and B. Recht, Atomic norm denoising with applications to line
spectral estimation, 61 (2013), pp. 5987–5999.

[4] T. Blu, The generalized annihilation property: A tool for solving finite rate of innovation
problems, in SAMPTA’09, 2009, pp. Special–Session.

[5] T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, Sparse sampling of
signal innovations, IEEE Signal Processing Magazine, 25 (2008), pp. 31–40.

[6] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004.
[7] Y. Bresler and A. Macovski, Exact maximum likelihood parameter estimation of superim-

posed exponential signals in noise, IEEE Transactions on Acoustics, Speech, and Signal
Processing, 34 (1986), pp. 1081–1089.

[8] E. J. Candès and C. Fernandez-Granda, Towards a mathematical theory of super-resolution,
Communications on Pure and Applied Mathematics, 67 (2014), pp. 906–956.
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