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Numerical methods for computing an averaged matrix field. Application to the asymptotic analysis of a parabolic problem with stiff transport terms.

Introduction

In many applications, partial differential equations with multiple scales can occur : transport in strongly magnetized plasmas with or without collisions, heat transfer inside the plasma fusion, heat and mass transport in the chemical framework. Each of these problems makes appear multiple scales in time or space. From the numerical point of view, the study of these problems is highly constraint by the size of the small scale. Indeed, the numerical resolution must be thin enough for catching the effects caused by the small scales. But, in this case, the classical methods have a prohibitive numerical cost and are not adapted for solving this type of problems. In this work we provide a way to study numerically the behavior of a diffusion equation with a stiff convection term. We focus on the following parabolic model # B t u ε ´div y pDpyq∇ y u ε q `1 ε bpyq ¨∇y u ε " 0, pt, yq P R `ˆR m u ε p0, yq " u in pyq,

y P R m , (1.1) 
where b : R m Ñ R m and D : R m Ñ M m pRq are given fields of vectors and symmetric positive definite matrices, and ε ą 0 is a small parameter close to zero. The fast transport, which is related to the operator b ¨∇y , introduce a fast time scale. Actually, this problem can be interpreted as a two-scale problem in time, after a convenient Lagrangian change of variable along the fast motion. Multiple-scale problems have been extensively studied by many authors and there exists a lot of approaches for their numerical study. The strongly anisotropic diffusion problems have been analyzed by using asymptotic preserving schemes [START_REF] Degond | An asymptotic preserving scheme for strongly anisotropic elliptic problems[END_REF], the kinetic equations [START_REF] Crouseilles | Méhats Asymptotic preserving schemes for highly oscillatory kinetic equations[END_REF], the multiple-scale parabolic problems [START_REF] Crouseilles | Vilmart Asymptotic preserving numerical scheme for multiscale parabolic problem[END_REF], the Schrödinger and Klein-Gourdon equations [START_REF] Chartier | Méhats Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations[END_REF] have been adressed by appealing to uniform accurate schemes. Multiple-scale methods for advection-diffusion equations are proposed in [START_REF] Abdulle | Multiple scales methods for advection-diffusion problems[END_REF]. The strategy we choose in this paper will be not to solve numerically the problem (1.1), but rather an homogenized limit problem not constraint by the small parameter ε, and for which standard numerical solvers can be used. Indeed, the theoretical study of multiple scales problems by homogenization techniques has been done in many frameworks such as transport with disparate advection fields [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF][START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF][START_REF] Dalibard | Homogenization of linear transport equations in a stationary ergodic setting[END_REF], transport of charged particles under high magnetic fields [?, [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF][START_REF] Bostan | Transport of charged particles under fast oscillating magnetic fields[END_REF][START_REF] Bostan | Strongly anisotropic diffusion problems; asymptotic analysis[END_REF][START_REF] Frénod | Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field[END_REF][START_REF] Frénod | The finite Larmor radius approximation[END_REF], elliptic and parabolic models [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Guetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] or asymptotic analysis of strongly anisotropic diffusion problems [START_REF] Bostan | Strongly anisotropic diffusion problems; asymptotic analysis[END_REF]. In the recent paper [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF], the asymptotic analysis of the problem (1.1) has been performed through an ergodic theory result. It has been shown that the behavior of the family pu ε q εą0 , when ε goes to zero, can be described, in the L 2 sense, with a convergence rate, in terms of the composition product between a profile solution of the homogenized problem and the fast oscillating flow associated to b{ε. Moreover, it is shown that the homogenized problem is still a parabolic problem, whose effective diffusion matrix field is given by an ergodic average of the initial diffusion matrix field D, along a group of linear operators. Actually the infinitesimal generator associated to this group is a transport operator which acts on matrix fields. The main goal of this article is to provide a semi-Lagrangian scheme for solving the group, and thus compute the effective diffusion matrix field. The interest of this numerical computation is not restricted to the problem (1.1). Indeed, the average of a matrix field is found in various situations and makes it possible to describe, for example, the effective system associated with a strongly anisotropic diffusion equation, cf. [START_REF] Bostan | Strongly anisotropic diffusion problems; asymptotic analysis[END_REF]. We illustrate this approach by observing the error between a reference solution of (1.1) and the solution of the effective diffusion problem for some particular examples. This paper is organized as follow. In Section 2 we introduce the notations which will be used through this study and we recall the main asymptotic results established in [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF]. A scheme based on a semi-Lagrangian method is provided in Section 3 for the computation of the effective diffusion field. Some numerical tests are done as well. In Section 4, we study the error between the solution of the effective problem, with respect to the solution of the stiff problem (1.1). We use a numerical scheme based on splitting methods for providing a reference solution for (1.1). The numerical results confirm the expected theoretical convergence rates.

Asymptotic analysis, theoretical results

In this section we introduce some notations and results which will be useful along the paper.

The main points are the definition of the effective diffusion matrix field (2.4), (2.1) and the asymptotic result (2.6). We only indicate the main lines of the arguments leading to these results. For the proof details we refer to [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF]. Consider Y : R ˆRm Ñ R m the characteristic flow of the vector field b dY ds " bpY ps; yqq, ps, yq P R ˆRm , Y p0; yq " y, y P R m .

This flow is well defined under the standard smoothness and boundedness assumptions

# b P W 1,8 loc pR m q, DC ą 0 such that |bpyq| ď Cp1 `|y|q, y P R m .
Under the above hypotheses the flow Y is global and smooth, Y P W 1,8 loc pRˆR m q. We assume that the vector field b is divergence free div y b " 0, y P R m which guarantees that the transformation y P R m Ñ Y ps; yq P R m is measure preserving for any s P R. The asymptotic analysis of (1.1) comes immediately when the operators b ¨∇y and div y pD∇ y q are commuting, i.e. rb ¨∇y , div y pD∇ y qs " 0. The idea is to perform the change of coordinates z " Y p´t{ε; yq, and therefore to replace the family pu ε q εą0 by the new family pv ε q εą0 given by

u ε pt, yq " v ε pt, zq " v ε pt, Y p´t{ε; yqq, pt, yq P R `ˆR m .
The point is that, under the above commutation property, the new unknowns pv ε q εą0 satisfy

" B t v ε ´div z pD∇ z v ε q " 0, pt, zq P R `ˆR m v ε p0, zq " u in pzq, z P R m .
Thus, v ε does not depend on ε and therefore u ε is the composition between the profile v " v ε and the flow associated to the vector field b{ε. The matrix fields D which ensure the commutation property are characterized in the following proposition, see [START_REF] Bostan | Strongly anisotropic diffusion problems; asymptotic analysis[END_REF][START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF] for more details.

Proposition 2.1 Consider a divergence free vector field c P W 1,8 loc pR m q with at most linear growth at infinity and A P L 1 loc pR m , M m pRqq a matrix field.

1. The commutator between the advection operator c ¨∇y and the diffusion operator div y pA∇ y q is still a diffusion operator, and we have " c ¨∇y , div y pA∇ y q ‰ " div y prc, As∇ y q in D 1 pR m q where the associated diffusion field is defined by the bracket between the vector field c and the matrix field A rc, As :" pc ¨∇y qA ´By cA ´A t B y c in D 1 pR m q.

2. The following assertions are equivalent (a) We have rc, As " 0 in D 1 pR m q (b) For any s P R, we have GpsqA " A, where the family of linear operators pGpsqq s , acting on matrix fields, is defined by pGpsqAqpyq :" BY ´1ps; yqApY ps; yqq t BY ´1ps; yq, ps, yq P R ˆRm .

(2.1) Motivated by the case in which the operators commute, we perform the asymptotic analysis not for the family pu ε q εą0 but rather for the new family of functions pv ε q εą0 given by v ε pt, zq " u ε pt, Y pt{ε; zqq, pt, zq P R `ˆR m , ε ą 0.

We expect that the family pv ε q εą0 converges when ε goes to zero. Actually, when the operators b ¨∇y and div y pD∇ y q are not commuting, the asymptotic behavior of the family pu ε q εą0 , when ε goes to zero, can be described asymptotically in the same way as before, that is as a composition product between a profile v and the flow associated to b{ε. This profile v is the solution of a diffusion equation with a new diffusion matrix field xDy, which appears as the orthogonal projection of D over the linear space of matrix fields which are left invariant by the family pGpsqq s in (2.1), with respect to some scalar product, to be precised. The definition of xDy is given by (2.4). Performing the change of variable z " Y p´t{ε; yq in (1.1), for any ε ą 0, t P R `, y P R m , and appealing to the chain rule (see [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF] for more details) lead to a two time scales diffusion problem

" B t v ε ´div z ppGpt{εqDq∇ z v ε q " 0, pt, zq P R `ˆR m v ε p0, zq " u ε p0, zq " u in pzq, z P R m , ε ą 0 (2.2)
where pGpsqq sPR is defined by (2.1). A two-scale approach, based on Hilbert's method, formally leads to the following effective problem

" B t v ´div z pxDy ∇ z vq " 0, pt, zq P R `ˆR m vp0, zq " u in pzq, z P R m , (2.3) 
where the effective diffusion field xDy is given by the long time average

xDy " lim SÑ`8 1 S ż S 0 GpsqD ds. (2.4) Remark 2.1
The computation of such average matrix field does not depend on the initial condition u in . Thus, a pre-computation of the average matrix field is possible by knowing only D and b.

The existence of the matrix field xDy is provided by the von Neumann ergodic theorem, see [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF][START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF]. Indeed, the family of linear operators pGpsqq sPR defined by (2.1) is a C 0 -group of unitary operators in a suitable Hilbert space H Q , see (3.12). The existence of such Hilbert space is not always ensured, thus the average matrix field (2.4) is not always defined in this sense, see Section 3.4 or [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF] for more details. The average matrix field (2.4) can be interpreted as a projection on the kernel of the infinitesimal generator L associated to pGpsqq sPR . We have a description for the restriction of L to the compactly supported smooth matrix fields as a transport operator

LpAq " rb, As " pb ¨∇y qA ´By bA ´A t B y b, A P C 1 c pR m q.

(2.5)

This expression of L will be useful for the computation of the group pGpsqq s , see Section 3. Now, we can describe the behavior of the family pu ε q εą0 when ε goes to zero. It is shown in [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF] that, for any initial condition u in P L 2 pR m q, the family pv ε q εą0 solutions of the equation (2.2) converges strongly in L 8 loc pR `; L 2 pR m qq, to the unique solution v P L 8 pR `; L 2 pR m qq of (2.3). Actually, if we consider T ą 0, there is a constant C T ą 0 such that, for any ε ą 0, we have sup tPr0,T s }v ε pt, ¨q ´vpt, ¨q} L 2 pR m q ď C T ε and sup tPr0,T s }u ε pt, ¨q ´vpt, Y p´t{ε; ¨qq} L 2 pR m q ď C T ε.

(2.6)

Computation of the average matrix field

In this section, we provide a numerical method for the computation of the average matrix field (2.4). If D : R m Ñ M m pRq is a matrix field, the computation of the average matrix field xDy defined by (2.4) will be provided in two steps. First, we compute numerically the matrix field GpsqD " pGpsqDqpyq by using the infinitesimal generator L given by (2.5). Secondly, the computation of the long time average will be done by a quadrature method. The method is presented in Section 3.1 and the numerical scheme associated is performed in Section 3.2. In Section 3.3, the accuracy of the method is tested for several vector fields b. The cases where the flow associated to the vector field b is known provide, thanks to the formula (2.1), reference curves for the one parameter group pGpsqq sPR . Finally, it seemed interesting to give an example of vector field b for which the associated average matrix field is not well defined, we propose such example in Section 3.4.

Computation of the matrix field GpsqD

Consider S ą 0 and D P C 1 c pR m , M m pRqq a compactly supported smooth matrix field. The matrix field pGpsqDqpyq where s P r0, Ss, y P R m is related to the infinitesimal generator L of the group pGpsqq sPR through the following evolution problem

$ ' & ' % d ds
pGpsqDqpyq " L pGpsqDq pyq, ps, yq P r0, Ss ˆRm

Gp0qDpyq " Dpyq, y P R m .
Moreover, the operator L is a transport operator and its explicit expression is given in terms of b and its partial derivatives with respect to y, see (2.5). Thus, we need to solve the following partial differential equation on the matrix field Aps, yq :" pGpsqDqpyq, ps, yq P r0, Ss ˆRm

$ ' & ' % d ds
Aps, yq " pb ¨∇y qAps, yq ´By bpyq Aps, yq ´Aps, yq t B y bpyq, ps, yq P r0, Ss ˆRm Ap0, yq " Dpyq, y P R m .

(3.1) For the resolution of this equation, we appeal to a semi-Lagrangian scheme, see [START_REF] Durran | Numerical Methods for Fluid Dynamics, with Applications to Geophysics[END_REF]. Such schemes have several advantages : they are unconditionally stable, with arbitrary order of accuracy and are known to provide less numerical diffusion that the Eulerian schemes, as upwind schemes. To avoid a too prohibitive numerical cost, we are not allowed to choose a small resolution. It is the reason why, we choose a high order of accuracy (four in practice) for the computation of the diffusion matrix field GpsqD for s P r0, Ss. As the long time computation of GpsqD is required, we need that the scheme be not too diffusive. All these remarks have guided us to provide a numerical scheme based on the semi-Lagrangian framework for the resolution of (3.1). We rewrite the equation (3.1) by using the Lagrangian change of coordinates y " Y p´s; zq for ps, zq P r0, Ss ˆRm . By setting Bps, zq :" Aps, Y p´s; zqq, we have

$ ' & ' % d ds
Bps, zq " ´By bpY p´s; zqq Bps, zq ´Bps, zq t B y bpY p´s; zqq, ps, zq P r0, Ss ˆRm Bp0, zq " Dpzq, y P R m .

(3.2) We solve the ordinary differential equation (3.2) by a Runge-Kutta scheme of order four. The unknown change Aps 0 , yq " Bps 0 , Y ps 0 ; yqq, for s 0 P r0, Ss, y P R m , is performed by a semi-Lagrangian scheme. The flow Y ps 0 ; yq is computed by a Runge-Kutta solver, and the reconstruction of Bps 0 , Y ps 0 ; yqq, from the values of Bps 0 , ¨q on the grid points, is achieved by Lagrangian interpolation. This last step can be interpreted as the resolution of the following transport equation

$ ' & ' % d ds
Cps, yq " pb ¨∇y qCps, yq, ps, yq P r0, Ss ˆRm Cp0, yq " Bps 0 , yq, y P R m .

(

Indeed, if we use the method of characteristics method on (3.3), we obtain Cps 0 , yq " Bps 0 , Y ps 0 ; yqq " Aps 0 , yq. The construction of the scheme is detailed in Section 3.2.

Numerical scheme for the computation of xDy

For simplicity, the scheme is presented in the two dimensional setting m " 2, but it extends easily to any dimension m ě 3. Several examples are given for m " 4 in Section 3.3. The spatial domain will be a square C " r´R, Rs ˆr´R, Rs, for R ą 0. Consider S ą 0, N s P N ‹ and I s " t0, . . . , N s u. We introduce a regular discretization ps k q kPIs of the interval r0, Ss with a step ∆s " S{N s , thus s k " k∆s for any k P I s . Moreover, we defined s k`1{2 " pk `1{2q∆s for any k P t0, . . . , N s ´1u. Consider N P N ‹ and I " t0, . . . , N u. Assume that py ij q pi,jqPI 2 is a regular cartesian discretization of the square C, with i, j P I. The step of the spatial discretization is ∆y " 2R{N , and y ij " p´R `i∆y, ´R `j∆yq for any pi, jq P I 2 .

Resolution of the system (3.2)

For the approximation of Bps k , y ij q, for k P I s and pi, jq P I 2 , we introduce the matrices B k ij P M 2 pRq. We solve numerically the system (3.2) at any point y ij , i, j P I, with a Runge-Kutta 4 solver. We define the application F y ij : R ˆM2 pRq Ñ M 2 pRq, ps, M q Þ Ñ ´By bpY p´s; y ij qq M ´M t B y bpY p´s; y ij qq. The scheme writes

B 0 ij " ˆD11 py ij q D 12 py ij q D 21 py ij q D 22 py ij q Ḃk`1 ij " B k ij `∆s 6 pk 1,ij `2k 2,ij `2k 3,ij `k4,ij q (3.4)
where

k 1,ij " F y ij ps k , B k ij q k 2,ij " F y ij ˆsk`1{2 , B k ij `∆s 2 k 1,ij k3,ij " F y ij ˆsk`1{2 , B k ij `∆s 2 k 2,ij k4,ij " F y ij ´sk`1 , B k ij `∆s k 3,ij ¯.
At each step of the scheme, the computation of the flow Y ps; ¨q associated to the vector field bp¨q needs to be evaluated at times s " ´sk , s " ´sk`1{2 and s " ´sk`1 .

Semi-Lagrangian step

We introduce the matrices A k ij P M 2 pRq for the approximation of the matrices Aps k , y ij q for k P I s and pi, jq P I 2 . We know that Aps k , y ij q " Bps k , Y ps k ; y ij qq, we first compute the flow Y ps; ¨q at time s " s k , at any point y ij , pi, jq P I 2 by a Runge-Kutta 4 solver. The approximations B k ij of Bps k , y ij q are used for the reconstruction of Bps k , Y ps k ; y ij qq by a Lagrangian interpolation. More exactly, cubic Lagrangian interpolation is performed by

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' › Stencil for the interpolation ' Evaluation points › Point Y ps k , y ij q Figure 1: Stencil S
using the values of 16 points surrounding Y ps k ; y ij q. We name S the associated stencil, see Figure 1 : More precisely, the interpolation of the function Bps k , ¨q at the point Y ps k ; y ij q will be done by a polynomial function P py 1 , y 2 q " ÿ 0ďα, βď3

a αβ y α 1 y β 2 .
The computation of the coefficients a αβ , for 0 ď α, β ď 3, is based on the 16 values of B k ij , such that y ij P S, by solving the linear system associated to the equations

ÿ 0ďα, βď3 a αβ py ij q α 1 py ij q β 2 " B k ij , y ij P S.
This Lagrangian interpolation provides a fourth order space approximation for regular data.

Computation of xDy

The computation of xDy is performed by a numerical integration of s Þ Ñ GpsqD on r0, Ss.

Actually, a four points Newton-Cotes quadrature method is used, which is five order accurate in time, for more details on these methods see [START_REF] Dahlquist | Numerical Methods in Scientific Computing[END_REF]. Consider Dij , for i, j P I, an element of M 2 pRq which approximates xDy py ij q. The quadrature method, with the values

A k ij computed in Section 3.2, writes Dij " 1 S Ns{4´1 ÿ k"0 4∆s 4 ÿ l"0 ω l A 4k`l ij
where the coefficients of quadrature are given by ω 0 " ω 4 " 7 90

, ω 1 " ω 3 " 16 45 and ω 2 " 2 15 .

Numerical computations and examples

In this section, we test the previous numerical method, for computing the average matrix field. Let xDy pyq be the average matrix field associated to Dpyq and D be the numerical approximation given by the numerical scheme. The error analysis between these two quantities is localized to a domain S Ă C which is left invariant by the flow associated to the vector field b, i.e Y ps; Sq " S for any s P R. For any matrix A P M 2 pRq, |A| " ? A : A, we introduce the relative error based on the discrete

L 2 norm Error L 2 " g f f e ř pi, jqPS | xDy py ij q ´D ij | 2 ř pi, jqPS | xDy py ij q| 2 . (3.5)

Ellipsoidal flow

We consider the Hamiltonian vector field bpy 1 , y 2 q " pB y 2 Hpyq, ´By 1 Hpyqq, for y " py 1 , y 2 q P R 2 , with Hpyq "

1 2 y 2 1 `1 2 y 2 2 `1 2 y 1 y 2 , y " py 1 , y 2 q P R 2 .
The function H is a coercive prime integral associated to b. We denote by Y the flow associated to the vector field b. The characteristic curves are ellipses of the plane, the flow Y ps; yq " Epsq y is 4π{ ? 3-periodic, and we have

Epsq "

¨cos ´?3 

`y2

2 `y1 y 2 ), the explicit expression of xDy reduces to xDy " ˆ2 3 pD 11 `D22 q `1 3 pD 21 `D12 q ´1 3 pD 11 `D22 q `1 3 pD 12 ´2D 21 q ´1 3 pD 11 `D22 q `1 3 pD 21 ´2D 12 q 2 3 pD 11 `D22 q `1 3 pD 21 `D12 q ˙. (3.6)

We consider the two following matrix fields

D 1 " ˆ3 1 2 1 ˙and D 2 pyq " ˆ3 `cospκpy 2 1 ´y2
2 qq cospy 2 1 ´2y 2 q sinp2y 1 ´y2 q 3 `sinpκpy 2 1 ´y2 qq ˙with κ " 25. The explicit expression of xD 2 y can be determined by the above formula and the average of D 1 is given by

xD 1 y " ˆ11{3 ´7{3 ´4{3 11{3 ˙.
We check that the global space-time error committed for the computation of xDy is Op∆s 4 q Òp∆y 4 q. We choose C " r´1; 1s 2 and ∆s " ∆y. The Figure 2 shows the relative errors (3.5) committed when using the method presented in Section 3.2. The graphic on the left emphasizes a Op∆y 4 q error. In this example only the time error appears due to the resolution of the ordinary differential equation (3.2) by the Runge-Kutta 4 scheme (3.4). Indeed, the matrix field D 1 is constant and the Jacobian matrix associated to b is also constant. The solution of (3.2) does not depend on the variable y. In this case, the interpolation step presented in Section 3.2 is exact. The graphic on the right presents the relative error in non constant, but regular, case. The interpolation error is order Op∆y 4 q and the global time-space error is Op∆s 4 q `Op∆y 4 q.

Non explicit central flow

We consider the Hamiltonian vector field bpy 1 , y 2 q " pB y 2 Hpyq, ´By 1 Hpyqq, defined for y " py 1 , y 2 q P R 2 , with H a homogeneous function of degree two, i.e Hpλy 1 , λy 2 q " λ 2 Hpy 1 , y 2 q for any λ P R and py 1 , y 2 q P R 2 Hpy 1 , y 2 q " 1 2

y 2 1 `1 2 y 2 2 `y1 y 2 py 2 1 ´y2 2 q y 2 1 `y2 2
, py 1 , y 2 q P R 2 {tp0, 0qu, and Hp0, 0q " 0. (3.7)

The function H is C 2 on R 2 {tp0, 0qu and is a coercive prime integral of b. We denote by Y the flow associated to the vector field b. The characteristic curves are closed and the flow Y ps; ¨q is periodic. A representation of these curves are given by the Figure 3. In polar coordinates, the function H defined by Hpr cospθq, r sinpθqq " Hpr, θq, for pr, θq P R `ˆr0, 2πr, writes Hpr, θq " r 2 ˆ1 2 `gpθq ˙with gpθq " 1 4 sinp4θq. The period T plq associated with each closed integral curve H " l, l ě 0 because min R 2 H " 0, is constant T plq " T . Indeed, we can compute T , see [START_REF] Gasull | The period Function for Hamiltonian Systems with Homogeneous Nonlinearities[END_REF], by the following formula T "

ż 2π 0 dθ 1 `2gpθq " ż 2π 0 dθ 1 `1 2 sinp4θq " 4π ? 3 . 
The average matrix field associated to a matrix field D is given, thanks to (2.1), by In this case, we do not have an explicit expression for the flow Y , and thus for the matrix field GpsqD. If the matrix field D is constant, we can obtain some informations on the average matrix field. The Hamiltonian (3.7) is homogeneous of degree two, we deduce that bpλyq " λbpyq, for any λ P R and y P R 2 . Thus, we have Y ps; λyq " λY ps; yq, for any λ P R and ps, yq P R ˆR2 .

By differentiation of the equality (3.8) with respect to y, we obtain BY ps, λyq " BY ps, yq, for any λ ‰ 0, y P R 2 .

If Dpλyq " Dpyq, for any λ ‰ 0 and y P R 2 , then, the formula (2.1) yields : xDy pλyq " xDy pyq for any λ ‰ 0 and y P R 2 . Thus, we expect that the average with respect to b of a constant matrix field is constant along the straight lines passing through the origin of the plane, with a discontinuity at y " p0, 0q. Indeed, the Hamiltonian H is not C 2 at the origin, thus the average matrix field xDy is not continuous at the point y " p0, 0q. We test the method of Section 3.2 for the matrix field D " I 2 . We choose C " r´1; 1s ˆr´1; 1s as a numerical domain. The Figure 4 represents the coefficients of the matrix field xI 2 y localized to an invariant domain with respect to the flow of b. Each of these coefficients is constant along the straight lines passing to the origin with a discontinuity at y " p0, 0q. In Figure 5, we observe the order of accuracy of the method with ∆s " ∆y. The reference solution is obtained by the average computation method and a spatial resolution N " 512. The default of regularity at the origin causes a degradation of the order of convergence. If we compute the error outside a small ball around the origin we find the expected accuracy Op∆s 4 `∆y 4 q. Two dimensional Fokker-Planck equation

In this example, we approximate the effective diffusion matrix field associated to a model which describe the evolution of a density of charged particles under the action of high magnetic field by taking into account the collision effects. We assume that the magnetic field B ε is uniform, defined by B ε " p0, 0, B{εq, B ą 0, and that the electric field is given by Ept, xq " pE 1 pt, xq, E 2 pt, xq, 0q with t ě 0 and x " px 1 , x 2 q P R 2 . We choose the asymptotic regime with finite Larmor radius that is the typical length in the perpendicular directions (with respect to the magnetic lines) is of the same order as the Larmor radius and the typical length in the parallel direction is much larger. The presence density of a population of charged particles f ε satisfies the two dimensional Fokker-Planck equation

B t f ε `1 ε pv 1 B x 1 `v2 B x 2 qf ε `q m E ¨∇v f ε `qB mε pv 2 B v 1 ´v1 B v 2 qf ε " νdiv v tΘ∇ v f ε `vf ε u. (3.9)
Here m is the particle mass, q is the particle charge, ν is the collision frequency and Θ is the temperature. The transport operator associated to the stiff part of the equation (3.9) is bpx, vq ¨∇x,v "

v 1 B x 1 `v2 B x 2 `ωc pv 2 B v 1 ´v1 B v 2 q, with ω c " qB m , px, vq P R 4 .
The flow of b is denoted

px, vq " px 1 , x 2 , v 1 , v 2 q P R 2 ˆR2 Þ Ñ Y ps; x, vq " pXps; x, vq, V ps; x, vqq P R 2 ˆR2 ,
and can be determined explicitly

Xps; x, vq " x `Kv ω c ´Rp´ω c sq ω c K v, V ps; x, vq " Rp´ω c sqv
where Rpθq is the two dimensional rotation R 2 of angle θ P R. We want to compute numerically the effective diffusion matrix field associated to the diffusion operator div v p∇ v ¨q " div x,v pD∇ x,v ¨q of the equation (3.9), where the diffusion field D is defined by

D " 2 ÿ i"1 e v i b e v i " ˆ02ˆ2 0 2ˆ2 0 2ˆ2 I 2 ˙. (3.10)
For more details on the asymptotic model related to the equation (3.9) see [START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF]. The Jacobian matrix associated to the flow writes The method performed in Section 3.2 applies in this situation as well, where the long time average is actually replaced by one period average. However, it is interesting to understand, on this periodic example, the behavior of the numerical error when we compute the long time average. This could be useful when the flow associated to b is periodic whereas the period is not available. In the sequel, we consider that ω c " 1. In order to provide a theoretical study of the error, we introduce some notations. We introduce the set

B x,v Y ps; x,
H Q " ! A : R 4 Ñ M 4 pRq measurable : Q 1{2 AQ 1{2 P L 2 pR 4 q ) (3.12)
where Q :" xDy ´1, xDy is a positive definite matrix field such that xDy P KerL. The set H Q is a Hilbert space for the natural scalar product

pA, Bq H Q :" ż R 4 pQ 1{2 AQ 1{2 q : pQ 1{2 BQ 1{2 q dy " ż R 4 
QA : BQ dy, @A, B P H Q , the associated norm is denoted }A} H Q . It is shown in [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF] that the group of linear operators pGpsqq sPR is a C 0 -group of unitary operators on H Q . The infinitesimal generator L associated to pGpsqq sPR is skew-adjoint in H Q and its kernel coincides with tA P H Q Ă L 1 loc pR m q : rb, As " 0 P D 1 pR m qu, see [START_REF] Bostan | Strongly anisotropic diffusion problems; asymptotic analysis[END_REF][START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF].

Remark 3.1 Thanks to the Proposition 2.1, the kernel of L can be interpreted as the set of matrix fields A which ensure the commutation property between the operators b ¨∇y and div y pA∇ y q.

Moreover, we have the following decomposition H Q " KerL K ' RangeL. Actually, the uniform boundedness of the flow periods implies the closure of the range of L, see [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics[END_REF]. Thus, for any matrix field A P H Q , there exists C P H Q such that A " xAy `LpCq.

(

Replacing C by C ´xCy, we can also assume that xCy " 0. Recall that Gpsq xAy " xAy, for any s P R, and therefore, by the unitarity of the group pGpsqq s in H Q , we have

› › › › 1 S ż S 0 GpsqA ds ´xAy › › › › H Q " › › › › 1 S ż S 0 GpsqpLpCqq ds › › › › H Q " › › › › 1 S ż S 0 d ds GpsqC ds › › › › H Q " › › › › GpSqC ´C S › › › › H Q ď 2}C} H Q S .
Thus, at least in the periodic case, the committed theoretical H Q error on xAy is O `1 S ˘. For the numerical simulations, we have to localize the error to a ball B r " tpx 1 , x 2 , v 1 , v 2 q P R 4 :

x 2 1 `x2 2 `v2 1 
`v2 2 ď r 2 u of radius r ą 0. We introduce the notation }A} H Q ,r :" }1 Br A} H Q for any matrix field A P L 8 pR m , M m pRqq. Thus, we study numerically the error between the quantities S Þ Ñ 1 S ş S 0 GpsqA ds and xAy for A " 1 Br D. In this case, the multiplicative constant in front of the term 1{S can be specified if we can compute the matrix field C and Q. We have 

Q " xDy ´1 " ˆI2 Rp´π{2q ´Rp´π{2q 2I 2 ˙(3.
Time S H Q,r error S Þ Ñ } 1 S ş S 0 GpsqD ds´xDy} H Q ,r }xDy} H Q ,r H Q,r error S Þ Ñ 2 S
C " ˆ02ˆ2 I 2 I 2 0 2ˆ2 ˙ (3.15) 
such that D " xDy `LpCq and xCy " 0. The Figure 6 shows the relative numerical L 2 and H Q,r errors committed for the computation of (3.11) by a long time average of the matrix field (3.10). The time resolution is chosen equal to N s " 10 3 with S " 500. The semi-Lagrangian part of the scheme is realized by a linear interpolation. The volume of B r is denoted mespB r q.

In this case, the expressions (3.11), (3.14) and (3.15) lead to

}C} H Q ,r " d ż Br QC : CQ dxdv " d ż Br 4 dxdv " 2 a mespB r q and } xDy } H Q ,r " d ż Br Q xDy : xDy Q dxdv " d ż Br 4 dxdv " 2 a mespB r q. Thus › › › 1 S ş S 0 GpsqD ds ´xDy › › › H Q ,r } xDy } H Q ,r ď 2 S
, for any S ą 0.

We retrieved the expected error for the relative H Q,r error, cf. Figure 6.

Almost periodic flow

We consider the vector field bpyq " py 2 , ´ω2 1 y 1 , y 4 , ´ω2 2 y 3 q, defined for y " py 1 , y 2 , y 3 , y 4 q P R 4 , with ω 1 , ω 2 P R incommensurable, i.e ω 1 {ω 2 R Q. The function ψpyq "

ω 2 1 y 2 1 `y2 2 `ω2 2 y 2 3
`y2 4 , with y P R 4 , is a coercive prime integral associated to b. We denote Y ps; yq the flow associated to the vector field b. We consider a constant matrix field D P M 4 pRq. The flow Y is explicit Y ps; yq " Rp´s; ω 1 , ω 2 qy, ps, yq P R ˆR4 , with Rps; ω 1 , ω 2 q " ¨cospsω 1 q ´1 ω 1 sinpsω 1 q 0 0 ω 1 sinpsω 1 q cospsω 1 q 0 0 0 0 cospsω 2 q ´1 ω 2 sinpsω 2 q 0 0 ω 2 sinpsω 2 q cospsω 2 q ‹ ‹ ' .

The incommensurability condition ensures that the flow Y ps; ¨q is not periodic with respect to s, but almost periodic. For more details on almost periodic functions see [START_REF] Corduneanu | Almost Periodic Oscillations and Waves[END_REF]. We have .

For this flow Y , the ergodic mean can not be reduced to an average over one period as in the periodic case. We need to compute a long time average. We study the error committed with respect to this long time average, when we use the method in Section 3.2, for the matrix field D defined by

D " ¨2 ´1 0 ´2 ´1 1 2 0 0 2 3 1 1 0 ´1 1 ‹ ‹ ' .
In the figure 7, we observe that the error is O `1 S ˘as in the periodic case. Indeed, the matrix field D is constant and the computation of a matrix C which satisfies the equality (3.13) can be provided by solving the linear system LpCq " D ´xDy.

Shear flow

In this example, we provide a two dimensional vector field such that the associated average matrix field does not exist. Actually, sufficient conditions for the existence of an average matrix field are given in [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF]. These conditions are based on the existence of a basis pb i q 1ďiď2 of vector fields in involution with the vector field bpyq, i.e when the operators bpyq ¨∇y and b i pyq ¨∇y are commuting, for any 1 ď i ď 2. We define the vector field bpyq " py 2 , ´y1 q for y " py 1 , y 2 q P R 2 . In this case, the flow Y associated to b is given by Y ps; yq " Rp´sq y, for any s P R and y P R 2 . Moreover, we consider a smooth even function f : R Ñ R `such that f p0q " 1, f pxq " 0 for any x P r1; `8r and strictly decreasing on r0, 1s. Finally, we introduce the radial function T pyq " f p|y|q for y P R 2 . We denote by Z the flow associated to the vector field T b. We have Zps; yq " Rp´sT pyqq y for any s P R and y P R 2 . The flow Z is a rotating shear flow, indeed the rotating period associated at each characteristic is different. If y is a point of the characteristic Zps; yq, for s P R, the associated period is T pyq. The function T is constant along the flows Y and Z. We claim that the average matrix field associated to D " I 2 , with respect to the vector field T b is not well defined, in the sense (2.4) 4 Asymptotic behavior of the solutions of a parabolic problem with stiff transport terms

In this section, we study numerically the asymptotic behavior of the family pu ε q εą0 , solutions of (1.1), when ε goes to 0, in the two dimensional setting m " 2. The behavior of u ε can be described, when ε goes to 0, as a composition product of a profile v, which does not depend of ε, with the flow associated to the vector field ´b{ε. Moreover, the profile v solves the effective diffusion problem (2.3) with the diffusion matrix field xDy (2.4). Thanks to the method in Section 3 for the computation of the effective diffusion field, we solve the system (2.3), and we study the error between a reference solution u ε pt, ¨q and vpt, Y p´t{ε; ¨qq. The anisotropic diffusion equation, with T ą 0 and y P R 2 , " B t v ´div y pxDy ∇ y vq " 0, pt, yq P r0, T s ˆR2 vp0, yq " u in pyq, y P R 2 is solved by an implicit method in time and finite difference method in space, see [START_REF] Van Es | Finite-Difference Schemes for Anisotropic Diffusion[END_REF]. As in Section 3.2, we introduce a time discretization pt k q of r0, T s, with k P I t " t0, . . . , N t u and ∆t " T {N t . We consider also a spatial discretization py ij q, with a step ∆y, for the square C " r´R, Rs ˆr´R, Rs, with R ą 0, and we add the points y i`1{2,j and y i,j`1{2 for any i, j P I " t0, . . . , N ´1u, for the flux computation. We introduce the notation W " ´xDy ∇ y v. The operator div y pWq at the point y ij is approximated by

pdiv y pWqq ij « W 1 i`1{2,j ´W1 i´1{2,j ∆y `W2 i,j`1{2 ´W2 i,j´1{2 ∆y (4.1) 
where W 1 i`1{2,j " ´pxDy 11 q i`1{2,j We are led to the semi-discrete scheme in space, where we denote by v ij ptq the approximations of the unknowns vpt, y ij q for any pi, jq P I 2 B t v ij ptq `W1 i`1{2,j ptq ´W1 i´1{2,j ptq ∆y `W2 i,j`1{2 ptq ´W2 i,j´1{2 ptq ∆y " 0.

Bv

« v i`1{2,j`1 ´vi`1{2,j´1 2∆y 
" v i`1,j`1 `vi,j`1 ´vi`1,j´1 ´vi,j´1 4∆y 
Bv By 1 ˇˇi ,j`1{2 « v i`1,j`1{2 ´vi´1,j`1{2 2∆y " v i`1,j`1 `vi`1,j ´vi´1,
The time resolution is done by an implicit Crank-Nicolson scheme, see [START_REF] Durran | Numerical Methods for Fluid Dynamics, with Applications to Geophysics[END_REF] for more details. If we introduce the vector V k of discrete variables v k ij which approximate vpt k , y ij q for k P I t and pi, jq P I 2 , the Crank-Nicolson scheme writes

V k`1 " ˆI ´∆t 2 W ˙´1 ˆI `∆t 2 W ˙V k
where W is the discretization matrix associated to the operator (4.1) and obtained by combining (4.2), (4.3) and (4.4). The order of this scheme is two in time and space for smooth data. A reference solution for the stiff convection diffusion problem (1.1) # B t u ε ´div y pDpyq∇ y u ε q `1 ε bpyq ¨∇y u ε " 0, pt, yq P r0, T s ˆR2 u ε p0, yq " u in pyq, y P R 2 , is provided by a splitting scheme. We introduce the following notations D " ´div y pDpyq∇ y p¨qq and T " bpyq ¨∇y .

The solution u ε of the system (1.1) can be written in semigroup form : u ε pt, ¨q " e ´tpD`1 ε T q u in for any t P r0, T s. We approach this solution at the time t k , for k P N t , with a Strang splitting, see [START_REF] Holden | Splitting Methods for Partial Differential Equations with Rough Solutions[END_REF] u ε pt k , ¨q " " e This method provides a second order accuracy approximation in time if the data of the problem are smooth. The semigroup associated to D is computed by solving the associated diffusion equation by the finite difference scheme presented above. A numerical approximation of the group associated to the transport operator 1 ε T is performed by a semi-Lagrangian scheme, which consists in the computation of the flow Y pt{ε, ¨q and the interpolation step, see Section 3.2. A splitting method associated to a semi-Lagrangian scheme for the transport, leads us to solve separately the group associated to the stiff operator and to choose an adapted time discretization p tk ε q kPI ε t of the interval " 0, ∆t ε ‰ with I ε t " t0, . . . , N ε t u , for solving the flow Y p∆t{ε; ¨q even when ε is small. In practice, we choose N ε t " 200

X ∆t ε \ .

Examples

We study numerically the error committed when we approach the solution u ε of the system (1.1) by the quantity vpt, Y p´t{ε; ¨qq, where v is solution of (2.3). The average diffusion field is computed by the method presented in Section 3. For any k P I t and pi, jq P C, we denote by v k ij the numerical approximation of vpt k , y ij q. As in Section 3.3, the spatial error is localized to a set S Ă C invariant by the flow of b. The L 8 pr0, T s, L 2 q error is computed in the following way }v} L 8 pr0,T s, L 2 q " max kPIt d ÿ pi,jqPS 2

∆y 2 |v k ij | 2 .
For the numerical tests, we assumed that : C " r´2, 2s ˆr´2, 2s, T " 0.01 and u in pyq " 10 exp ˆ´y 2 1 `py 2 ´0.5q 2 0.02 ˙, y P R 2 .

The solutions of the problems (1.1) and (2.3) are computed with a spatial resolution N " 512 and time resolution N t " 100N . We assume that the vector field b is the ellipsoidal vector field defined in Section 3.3, and we pick a diffusion field

D " ˆ3 1 1 1 
˙.

the associated system (2.3), then providing the approximation vpt, Y p´t{ε; ¨qq at the order one, with respect to ε, of the solution u ε of the stiff system (1.1).

D

  ij pY ps; yqqhpsq ds, pi, jq P t1, 2u 2 . Finally, if D 11 , D 21 , D 12 , D 22 are constant along the flow Y ps; ¨q (i.e D 11 , D 21 , D 12 , D 22 only depend on the quantity y 2 1
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 2 Figure 2: Left : L 2 error for the approximation of xD 1 y. Right : L 2 error for the approximation of xD 2 y.
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 435 Figure 4: Coefficients of the average matrix field xI 2 y, from left to right and top to bottom, we have xI 2 y 11 , xI 2 y 12 , xI 2 y 21 and xI 2 y 22 .
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 6 Figure 6: Long time evolution of the relative error

  Ep´sq DpY ps; yqq t Ep´sq ds " ˆxDy 11 xDy 12 xDy 21 xDy 22

												2 s ¯`1 ? 3 sin ´?3 2 s ¯2 ? 3 sin ´?3 2 s ? 3 sin ´?3 2 s ¯cos ´?3 2 s ¯´1 ? 3 sin ´?3 2 2 s ¯' .
	Thanks to (2.1), we have		
	xDy "	? 4π 3	ż 4π{ ? 0	3	GpsqD ds "	4π ? 3	0 ż 4π{	? 3	ẇhere
			xDy 11 "	1 2	A	D 11 r1 `cosp	? 3 ¨qs E	´1 ? 3	A	pD 11 `D21 `D12 q sinp	? 3	¨qE
				`1 6	A pD 11 `2pD 21 `D12 q `4D 22 qr1 ´cosp	3 ¨qs ? E
			xDy 21 "	1 2	A	D 21 r1 `cosp ?	3 ¨qs E	`1 ? 3	A	pD 11 ´D22 q sinp	?	3	¨qE
						´1 6	A	p2D 11 `D21 `4D 12 `2D 22 qr1 ´cosp ?	3 ¨qs E
			xDy 12 "	1 2	A	D 12 r1 `cosp ?	3 ¨qs E	`1 ? 3	A	pD 11 ´D22 q sinp	?	3	¨qE
						´1 6	A	p2D 11 `4D 21 `D12 `2D 22 qr1 ´cosp ?	3 ¨qs E
			xDy 22 "	1 2	A	D 22 r1 `cosp	? 3 ¨qs E	`1 ? 3	A	pD 21 `D12 `D22 q sinp	? 3	¨qE
				`1 6	A p4D 11 `2pD 21 `D12 q `D22 qr1 ´cosp	3 ¨qs ? E
	and for any function h, we denote xD ij hp¨qy "

  vq " ˜I2

					ωc I 2 ´Rp´ωcsq	Rp´π{2q	where
				0 2ˆ2	Rp´ω c sq
	0 mˆn is the zero matrix with m rows and n columns. The flow Y is 2π ωc -periodic, and
	a direct computation shows that
	xDy px, vq " lim SÑ`8	1 S	ż S 0	pGpsqDqpx, vq ds
	" ˙tB " ω c 2π ż 2π{ωc 0 B y Y p´s; Y ps; x, vqq ˆ02ˆ2 0 2ˆ2 0 2ˆ2 I 2 1 ω 2 c ˆ2I 2 ˙. ´ωc Rp´π{2q ω c Rp´π{2q ω 2 c I 2	(3.11)

y Y p´s; Y ps; x, vqq ds

  Rps; ω 1 , ω 2 qDpY ps; ¨qq t Rps; ω 1 , ω 2 q ds

	xDy " lim SÑ`8	1 S	ż S 0	BY p´s; Y ps; ¨qqDpY ps; ¨qq t BY p´s; Y ps; ¨qq ds
	" lim SÑ`8	1 S	ż S 0		
	"	¨1 2 D 11 `1 2ω 2 1 1 2 D 21 ´1 2 D 12 D 22 0 0	1 2 D 12 ´1 2 D 21 ω 2 1 2 D 11 `1 2 D 22 0 0	0 0 2 D 33 `1 2ω 2 1 1 2 D 43 ´1 2 D 34 2 D 44	0 0 2 D 33 `1 2 D 44 2 ω 2 1 2 D 34 ´1 2 D 43	‹ ‹ ‹ ‹ '

  , on Bp0, 1q{tp0, 0qu where Bp0, 1q is the unit open ball of R 2 . Indeed, thanks to theGpsqI 2 " s 2 f 1 p|y|q 2 pb b bqpyq `s f 1 p|y|q

						S Þ Ñ	} 1 S	ş S 0 GpsqD ds´xDy} L 2 }xDy} L 2
				10 0					Error L 2 S Þ Ñ 4
			Error L 2	10 ´2 10 ´1				
				10 ´3				
						100	200	300	400	500
									Time S
										(3.17)
	Moreover, thanks to the equality ∇ y T pyq "	f 1 p|y|q |y|	y, we can write (3.17) in the following
	form		BZ ´1ps; yq "	sf 1 p|y|q |y|	Rpπ{2q y b Zps; yq `RpsT pyqq.	(3.18)
	Finally, we combine (3.16) and (3.18), and a straightforward computation leads to
										¨´2y 1 y 2 |y| y 2 1 ´y2 2	y 2 1 |y| ´y2 2 2y 1 y 2	'`I 2 .	(3.19)
										|y|	|y|
	We integrate (3.19) with respect to s over the interval r0, Ss with S ą 0, for any y P R 2 , and
	we obtain						
	1 S	ż S 0	pGpsqI 2 qpyq ds "	S 2 3	f 1 p|y|q 2 pb b bqpyq	`S 2	f 1 p|y|q	¨´2y 1 y 2 |y| y 2 1 ´y2 2 |y|	y 2 1 |y| ´y2 2 2y 1 y 2 |y|

S

Figure

7

: Long time evolution of the relative error expression of the group (2.1) associated to T b, for any s P R and y P R 2 , we have GpsqI 2 " BZ ´1ps; yq t BZ ´1ps; yq.

(

3.16)

A direct computation shows that, for any s P R and y P R 2 , we have BZps; yq " ´s Rpπ{2q Zps; yq b ∇ y T pyq `Rp´sT pyqq.

On the other hand, thanks to the relation BZ ´1ps; yq " BZp´s; Zps; yqq which is available for any s P R and y P R 2 , we obtain BZ ´1ps; yq " s Rpπ{2q y b ∇ y T pZps; yqq `RpsT pyqq.

'`I 2 . (3.20)

Thus xI 2 y p0, 0q " I 2 and xI 2 y pyq " I 2 for any y P Bp0, 1q c . But, for y P Bp0, 1q{tp0, 0qu, the expression (3.20) does not have a limit when S Ñ `8. The average matrix field associated to D " I 2 with respect to T b is not well defined.

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

The average diffusion field associated to D is also symmetric and positive definite, see [START_REF] Blanc | Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach[END_REF]. By the formula (3.6), we have

Figure 8 represents the time evolution of the L 2 norm t Þ Ñ }u ε pt, ¨q ´vpt, Y p´t{ε, ¨q} L 2 , and the error L 8 pr0, T s, L 2 q with respect to ε. Figure 8 confirms numerically the expected rate of convergence given by (2.6). In Figure 9, we analyze the example of the non explicit central flow, see Section 3.3, with the diffusion field D " I 2 . The coefficients of the associated average matrix field are represented in Figure 4. In this case, the expected convergence rate is not reached, this is due to the regularity default of the averaged matrix field xI 2 y at the origin. The results of the Figures 8 and9 confirm the asymptotic result (2.6) and, at least in the case where the transport vector field b and the diffusion matrix field D are smooth, the expected rate is obtained. Thus, at least for smooth data, we have proposed a numerical method which consists in computing the effective diffusion field (2.4) and the function v solution of