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We are interested in a nonlinear partial differential equation: the granular media one. Thanks to some of our previous results [Tug14a, Tug14b], we know that under easily checked assumptions, there is a unique steady state. We point out that we consider a case in which the confining potential is not globally convex. According to recent articles [Tug13a, Tug13b], we know that there is weak convergence towards this steady state. However, we do not know anything about the rate of convergence. In this paper, we make a first step to this direction by proving a deterministic Kramers'type law concerning the first time that the solution of the granular media equation leaves a local well. In other words, we show that the solution of the granular media equation is trapped around a local minimum during a time exponentially equivalent to exp 2 σ 2 H , H being the so-called exit-cost.

Introduction

In this paper, we are interested in the following so-called granular media equation:

∂ ∂t µ σ t (x) = ∂ ∂x σ 2 2 ∂ ∂x µ σ t (x) + µ σ t (x) V ′ (x) + F ′ * µ σ t (x) , (1) 
where the confining potential V is nonconvex (double-wells) and the interacting potential F is convex. The exact assumptions will be given subsequently.

This partial differential equation has a natural interpretation in terms of stochastic processes. Indeed, let us consider the following so-called McKean-Vlasov diffusion:

X σ t = X 0 + σB t - t 0 (W σ s ) ′ (X σ s ) ds W σ s = V + F * L (X σ s )
.

(2)

Here, * denotes the convolution. Since the law of the process intervenes in the drift, this equation is nonlinear -in the sense of McKean. By µ σ t , we denote the law at time t of the process X σ . It is well-known that the family of probability measures {µ σ t ; t ≥ 0} satisfies the granular media equation starting from L (X 0 ). We will use the recent results about the exit-problem of the McKean-Vlasov diffusion (see [START_REF] Tugaut | Exit problem of McKean-Vlasov diffusion in double-wells landscape[END_REF]Tug17b]) in order to prove a deterministic Kramers'type law for any σ sufficiently small:

exp 2 σ 2 (H 0 -δ) < T κ (σ) < exp 2 σ 2 (H 0 + δ) ,
H 0 being the associated exit-cost (which will be described later), δ being an arbitrarily small constant and

T κ (σ) := inf t ≥ 0 : E (X σ t -b) 2 > κ 2 = inf t ≥ 0 : R (x -b) 2 µ σ t (dx) > κ 2 ,
where b is a minimizer of V corresponding to a local and non global minimum.

We now give the assumptions on V and F .

Assumption 1.1. The potentials V and F satisfy the following hypotheses:

• The coefficients V ′ and F ′ are locally Lipschitz, that is, for each R > 0 there exists K R > 0 such that

|V ′ (x) -V ′ (y)| + |F ′ (x) -F ′ (y)| ≤ K R |x -y| , for x, y ∈ {z ∈ R : |z| < R}.
• The function V is continuously differentiable.

• The potential V is convex at infinity:

lim |x|→+∞ V ′′ (x) = +∞.
• The potential V has two wells (a < 0 and b > 0) and a local maximum located in 0.

• The function V ′′ is convex.

• F (x) := α 2 x 2 with α > 0. An example of such potential is V (x) := x 4 4 + x 3 3 -x 2 2 . In this case a = -1+ √ 5 2 < 0 < -1+ √ 5 2 = b.
If the initial law is a Dirac measure, we know that there exists a unique strong solution X σ to Equation (2), see [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF]Theorem 2.13]. Moreover:

sup t∈R+ E |X σ t | 2p < ∞ for any p ∈ N * .
From now on, we consider the potential W b := V + F * δ b . Indeed, by classical large deviations result, for any T > 0, in the small-noise limit, the diffusion (X σ t ) 0≤t≤T starting at X 0 = b is close to the diffusion (Y σ t ) 0≤t≤T defined like so:

Y σ t = b + σW t - t 0 W ′ b (Y σ s ) ds .
An important tool to understand the long-time behaviour of µ σ t is the set of invariant probabilities. This set has been precisely described in [START_REF] Herrmann | Non-uniqueness of stationary measures for selfstabilizing processes[END_REF][START_REF] Herrmann | Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit[END_REF][START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF]. From these works, we know that there exists an invariant probability near -in the small-noise limit -the distribution δ b if and only if b is the unique global minimizer of W b .

Assumption 1.2. There exists y

= b suh that W b (y) < W b (b).
Immediately, from Assumption 1.2, we deduce that W b has another minimizer than b, that is here denoted as a ′ and a unique local maximizer (since V ′′ is convex) denoted as c. From now on, we consider the following exit-cost:

H 0 := W b (c) -W b (b) . (3) 
The long-time behaviour of µ σ t has been solved in the convex case (see [BRV98, BCCP98, BGG13, CGM08]) and in the non-convex case (see [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Convergence[END_REF]).

An important and remaining question is the one of the rate of convergence. In [START_REF] Bolley | Guillin Uniform convergence to equilibrium for granular media[END_REF], a rate of convergence has been obtained if V is convex but not uniformly strictly convex. Here, with double-wells potential, we can not use this result. It is an easy exercise to show that µ σ stays a long time (that does depend on σ) close to δ b in the small-noise limit. The result of the paper is a characterization of this time.

According to [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF], with Assumption 1.1 and Assumption 1.2, there exists -if the noise σ is sufficiently small -a unique steady state for Equation (1). Consequently, if µ 0 = δ x0 where x 0 ∈]0; +∞[, we know that µ σ t converges weakly towards the unique invariant probability.

The aim of the current work is to study what happens if x 0 := b. For doing so, we use the recent results about the exit-time of the associated McKean-Vlasov diffusion in [START_REF] Tugaut | Exit problem of McKean-Vlasov diffusion in double-wells landscape[END_REF]Tug17b].

From now on, we consider the deterministic time

T κ (σ) := inf t ≥ 0 : R (x -b) 2 µ σ t (dx) ≥ κ 2
for any κ > 0. In the following, κ is arbitrarily small. In particular, we assume that

κ 2 ≤ 1 2 (c -b) 2 .
We now give the result of the article.

Theorem 1.3. For any κ ∈ 0; 1 2 (db) 2 , for any δ > 0, there exists σ(κ, δ) such that for all 0 < σ < σ(κ, δ):

exp 2 σ 2 (H 0 -δ) < T κ (σ) < exp 2 σ 2 (H 0 + δ) . ( 4 
)
2 Proof of Theorem 1.3

The lower-bound has already been proved in [Tug17b, Proposition C]. Indeed, in [Tug17b], the constant T κ does correspond to the first time t such that

E (X t -b) 2 < κ 2 , which here is 0 since X 0 = b.
Consequently, we have sup

0≤t≤exp[ 2 σ 2 (H0-δ)] E (X t -b) 2 < κ 2 , if σ is sufficiently small. We deduce T κ (σ) > exp 2 σ 2 (H 0 -δ) if σ is small enough.
We now prove the upper-bound by proceeding by a reducto ad absurdum. Set δ > 0. We assume that there exists a sequence (σ n ) n which goes to 0 as n goes to infinity such that, for any n ∈ N, we have:

exp 2 σ 2 n (H 0 + δ) ≤ T κ (σ n ) , (5) 
We now introduce the two diffusions X +,κ and X -,κ by

X ±,κ t = b + σ n B t - t 0 ∇V X ±,κ s ds -α t 0 X ±,κ s -(b ± κ) ds (6) 
From now on, κ is arbitrarily small. By b ± κ , we denote the positive critical point (close to b) of the potential

x → V (x) + α 2 (x -(b ± κ)) 2
. By a simple computation, we get:

b ± κ = b ± α V ′′ (b) + α κ + o(κ) .
Now, if κ is small enough, we know that the Freidlin-Wentzell theory may be applied to Diffusion X ±,κ and domain ]c; +∞[. So, we deduce that

τ ± ]c;+∞[ (σ n ) := inf t ≥ 0 : X ±,κ t ≤ c
satisfies a Kramers'type law. In particular, we have

lim σ→0 P exp 2 σ 2 n H ± κ (c) -δ ≤ τ ± ]c;+∞[ (σ n ) ≤ exp 2 σ 2 n H ± κ (c) + δ = 0 ,
for any δ > 0. Here,

H ± κ (c) := V (c) -V (b ± κ ) + α 2 (c -b ± κ) 2 .
The main idea now is to compare the exit-time of X with the ones of X ±,κ . We have sup

0≤t≤exp 2 σ 2 n (H0-δ) E |X t -b| 2 < κ 2 .
Consequently, for any t ∈ 0; exp 2

σ 2 n (H 0 -δ) , we have X -,κ t ≤ X t ≤ X +,κ t .
As a consequence, if we put τ (σ n ) := inf {t ≥ 0 : X t ≤ c}, we have

τ - κ (σ n ) ≤ τ (σ n ) ≤ τ + κ (σ n ) .
However, a Kramers'type law is satisfied by τ ± κ (σ n ). So, for any ξ > 0, we have

lim σ→0 P exp 2 σ 2 n H - κ (c) -ξ ≤ τ (σ n ) ≤ exp 2 σ 2 n H + κ (c) + ξ = 1 .
Consequently, by taking κ sufficiently small, we obtain that for any δ > 0, we have

lim σ→0 P exp 2 σ 2 n (H 0 -δ) ≤ τ (σ n ) ≤ exp 2 σ 2 n (H 0 + δ) = 1 . (7) 
By T c (σ n ), we denote the first time that X σn returns to ]c; +∞[. By proceeding similarly, we have the following inequality:

lim n→∞ P T c (σ n ) ≤ exp 2 σ 2 n (H 0 + δ 2 ) = 0 . (8) 
Indeed, the exit-cost for going from the left to the right is W b (c) -W b (a ′ ) > W b (c) -W b (b). We recall that a ′ is the global minimizer of W b . Inequalities (7) and (8) imply the following limit:

lim n→∞ P   X σn exp 2 σ 2 n (H0+ δ 2 ) ≥ c   = 0 .
In particular:

lim n→∞ E    X σn exp 2 σ 2 n (H0+ δ 2 ) -b 2    ≥ (c -b) 2 ≥ 2κ 2 > κ 2 .
Last limit means that T κ (σ n ) < exp 2 σ 2 n (H 0 + δ 2 ) if n is large enough, which is absurd according to (5).

We deduce that Hypothesis (5) was wrong. Consequently, we obtain the upper-bound: exp 2 σ 2 (H 0 + δ) > T κ (σ) , if σ is small enough. This achieves the proof.