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The present paper is devoted to the study of a McKean-Vlasov diffusion of the type self-stabilizing. We obtain this model by taking the hydrodynamical limit of a mean-field system of particles. It also corresponds to the probabilistic interpretation of the granular media equation.

The main question that we study is the exit-time. We take a confining potential with two wells : a < 0 and b > 0. We start with a deterministic condition x0 > 0 and we show that the first time that this diffusion leaves an interval of the form ]d; +∞[ (d verifying some assumptions) satisfies a Kramers'type law. In other words, this time is exponentially equivalent to exp 2 σ 2 H as the coefficient diffusion σ goes to 0, H being the exit cost. Incidentally, we also prove that the solution of the granular media equation is trapped (for the 2-Wasserstein distance) in a ball around δ b during a time at least exponentially equivalent to exp 2 σ 2 H .

Introduction

We are interested in a McKean-Vlasov diffusion of the following so-called "selfstabilizing" type:

X t = X 0 + σB t - t 0 ∇V (X s ) ds -α t 0 (X s -E[X s ]) ds , (1) 
V being a double-wells landscape that is called confining and α being positive.

The exact assumptions on the potential V will be given subsequently.

In this paper, we focus on the one-dimensionnal case.

We take X 0 := x 0 ∈ R. We consider an open domain D ⊂ R which contains x 0 and we introduce τ D (σ) := inf {t ≥ 0 : X t / ∈ D}, the first exit-time of X from the domain D. The subject of this article is to study the exit-time τ D (σ) as σ goes to 0.

More precisely, we aim to establish a Kramers'type law:

lim σ→0 P exp 2 σ 2 (H -δ) ≤ τ D (σ) ≤ exp 2 σ 2 (H + δ) = 1 ,
for any δ > 0. Here, H corresponds to the so-called "exit cost" (which is explained subsequently).

The natural framework to study τ D (σ) as σ goes to 0 is the one of the large deviations for stochastic processes. Freidlin and Wentzell theory solves the exitproblem for time-homogeneous diffusions. Let us briefly introduce this theory. We refer the reader to [START_REF] Freidlin | Random perturbations of dynamical systems[END_REF][START_REF] Dembo | Large deviations techniques and applications[END_REF] for a complete review. We look at the diffusion

x σ t = x 0 + σβ t - t 0 ∇U (x σ s ) ds .
U is a C ∞ -continuous function from R to R and β is a Brownian motion in R. Let a 0 be a minimizer of U and G be a domain which contains a 0 . We also consider the deterministic path Ψ t (x 0 ) := x 0 -t 0 ∇U (Ψ s (x 0 )). Then, for any T, δ > 0:

lim σ→0 P sup t∈[0;T ] ||x σ t -Ψ t (x 0 )|| > δ = 0 . (2) 
We consider the following assumptions on the domain G:

1. The unique stable equilibrium point in G of the ordinary differential equation φt = -∇U (ϕ t ) is at a 0 ∈ G and ϕ 0 ∈ G implies ϕ t ∈ G for any t ≥ 0. Moreover, lim t∞ ϕ t = a 0 .

2. All the trajectories of the deterministic system φt = -∇U (ϕ t ) starting at ϕ 0 ∈ ∂G converges to a 0 as t goes to infinity.

H

:= inf ∂D U -U (a 0 ) < ∞.
This quantity H will be denoted as "exit-cost".

Let us point out that there is an additional assumption if the coefficient diffusion is not constant.

Under these assumptions, for any δ > 0, the following Kramers'type law holds:

lim σ→0 P exp 2 σ 2 (H -δ) < τ G (σ) < exp 2 σ 2 (H + δ) = 1 .
We end the introduction by giving an essential definition which is of crucial interest in large deviations for stochastic processes.

Definition 1.1. Let G be a subset of R and let U be a potential on R. For all x ∈ R, we consider the dynamical system

ψ t (x) = x - t 0 ∇U (ψ s (x)) ds .
We say that the domain G is stable by -∇U if the orbit {ψ t (x) ; t ∈ R + } is included in G for all x ∈ G.

Assumptions and notations

We give the assumptions on the confining potential.

Assumption 2.1. The potential V satisfies the following hypotheses:

• The coefficient ∇V is locally Lipschitz, that is, for each R > 0 there exists K R > 0 such that |∇V (x) -∇V (y)| ≤ K R |x -y| , for x, y ∈ z ∈ R d : |z| < R .
• The function V is continuously differentiable.

• The potential V is convex at infinity:

lim x→±∞ V ′′ (x) = +∞.
• There exist r ∈ N and C > 0 such that |∇V (x)| ≤ C 1 + |x| 2r-1 and r ≥ 2.

• The potential V has two local minima located at a < 0 and b > 0 and has a local maximum located at 0.

• V ′′ (a) > 0, V ′′ (b) > 0 and V ′′ (0) < 0.

• V ′′ is convex. An example of such potential is x → x 4 4 + x 3 3 -x 2 2 with a = -1+ √ 5 2 < 0 and b = √ 5-1 2 > 0.
The procedure of the present paper can be applied with x 0 > 0 or x 0 < 0 (the case x 0 = 0 will be discussed in the conclusion of the paper). However, all the notations will be different if we start at the right or at the left. As a consequence, we choose a side of start.

Assumption 2.2. We assume that x 0 > 0.

Since the initial law is a Dirac measure at point x 0 ∈ R (so that any moment exists), we know that there exists a unique strong solution X to Equation (1), see [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF]Theorem 2.13]. Moreover:

sup t∈R+ E ||X t || 2p < ∞ for any p ∈ N * .
We now give the hypotheses on the domain D.

Assumption 2.3. We consider the dynamical system

ϕ t = x 0 - t 0 ∇V (ϕ s ) ds .
The orbit {ϕ t ; t ≥ 0} is included into the domain D. Moreover, ϕ ∞ = a ∈ D.

We point out that we do not assume that the domain D is stable by -∇V . We now explain why Assumption 2.3 is essential (and natural). Since the dynamical system and the diffusion are close when the noise is small (see Limit (2)), if there exists T > 0 such that ϕ T / ∈ D, one can easily prove that X T is not on the domain D with a probability which converges to 1 as σ goes to 0. As a consequence, there exists T > 0 such that P (τ D (σ) ≤ T ) -→ 1 as σ goes to 0.

The main trick to obtain the Kramers' type law is to compare X with two time-homogeneous diffusions (let us point out that we do not use coupling like it has been done in [START_REF] Tugaut | Exit problem of McKean-Vlasov diffusion in double-wells landscape To appear[END_REF] because it requires some convexity). However, to get the Kramers'type law for these two diffusions, we need the domain D to satisfy some hypothesis of stability since it is necessary in the classical Freidlin-Wentzell theory.

Assumption 2.4. From now on, we introduce the potential

W b (x) := V (x) + α 2 (x -b) 2 . ( 3 
)
The open domain D is stable by the vector field -∇W b .

Indeed, as σ goes to 0, the law of X t will be close (as t is sufficiently large) to δ b so that X t has a drift close to x → -∇V (x) -α(x -b). As a consequence, the effective potential W b appears naturally in the small-noise limit.

We consider a last hypothesis on the domain D.

Assumption 2.5. There exists ρ > 0 such that for all x ∈ D, we have

x -b ; ∇W b (x) ≥ ρ |x -b| 2 .
Hypothesis 2.5 allows us to control the moments (the ones which intervene in the drift) of L (X t ). This assumption seems strong and looks like a convexity assumption. However, it is not. Indeed, it is possible that potential W b is not convex on D but satisfies Assumption 2.5.

We finish the introduction by giving an example of domain which satisfies Assumptions 2.3-2.5. To do so, we separate in two different cases.

Example 2.6 (First case). We know that b is a local minimum of W b . Indeed, W ′ b (b) = V ′ (b) + α(b -b) = 0 and W ′′ b (b) = V ′′ (b) + α > 0.
We assume that the potential W b does not have any other critical point. (For example, if α is larger than sup R -V ′′ , we know that W b is convex.)

In this case, any interval of the form ]d; +∞[ with d < b satisfies the assumptions. Also, any interval of the form ] -∞; e[ with e > b satisfies the assumptions.

We point out that this first case can be seen as the easy one since the only condition on the interval is to contain b and to be different from R.

We also point out that [START_REF] Tugaut | Exit problem of McKean-Vlasov diffusion in double-wells landscape To appear[END_REF] does not solve this first case if W b is not convex.

As an example, we can consider V (x) :

= x 4 4 + x 3 3 -x 2 2 and α > 3+ √ 5 4 . We remark that sup R -V ′′ = 4 3 > 3 + √ 5 4
.

We now present the second case.

Example 2.7 (Second case). Let us assume that W b admits another local minimum, denoted as y 0 . Since V ′′ is convex, we know that there exists a unique local maximum that will be denoted as c. Then, we can easily prove that any interval of the form ]d; +∞[ with d ∈]c; b[ satisfies the assumptions.

As an example, we can consider V (x) :

= x 4 4 + x 3 3 -x 2 2 and α < 3+ √ 5
4 . We can remark that the intermediate case (when there are exactly two critical points) is not discussed. In fact, it can be solved like the second case.

We also point out that we do not need either

W b (y 0 ) ≤ W b (b) nor W b (y 0 ) > W b (b)
. Indeed, this does not have influence in the procedure that we present here. However, it is important to describe the limit of the law of X t . We know, thanks to [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Convergence[END_REF] that L (X t ) converge to an invariant probability measure. But, if W b (y 0 ) ≤ W b (b), we also know (see [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R d -Invariant probabilities[END_REF]) that there is no invariant probability measure near δ b in the small-noise limit. As a consequence, the state b is not stable.

Main results

From now on, we always consider intervals of the form ]d; +∞[ with d < b. If we are in the first case, we put c := -∞. We always assume d > c.

Definition 3.1. We define the exit-time τ D (σ) := inf {t > 0 : X t / ∈ D} and its associated exit-cost

H d := inf x∈∂D W b (x) -W b (b) = W b (d) -W b (b).
Theorem A: Under Hypotheses 2.1-2.5, we have the following limit for any δ > 0:

lim σ→0 P exp 2 σ 2 (H d -δ) ≤ τ D (σ) ≤ exp 2 σ 2 (H d + δ) = 1 . (4) 
We now specify if we are in the first case. Theorem B: Under Hypotheses 2.1-2.5, if W b does not admit any other critical point than b, we have the following limit for any δ > 0:

lim σ→0 P exp 2 σ 2 (H e -δ) ≤ τ ]-∞;e[ (σ) ≤ exp 2 σ 2 (H e + δ) = 1 , ( 5 
)
where e > b and

H e := W b (e) -W b (b).
The proof of Theorem B is similar to the one of Theorem A so it is left to the reader.

Incidentally, we also prove the following result which can be linked to the rate of convergence of L (X t ). Indeed, if we start from x 0 ∈]0; +∞[, we know -in the setting of the second case if moreover W b (y 0 ) ≤ W b (b) -that the law of X t will converge towards an invariant probability near δ a (in the small-noise limit). A remaining question is the rate of convergence. We here provide a partial answer by showing that this convergence does not occur before a time exp 2 σ 2 (H c -δ) , for any δ > 0, where

H c := W b (c) -W b (b)
. Proposition C: Under Hypotheses 2.1-2.5, for any κ, δ > 0, if σ is sufficiently small, we have:

sup

Tκ≤t≤exp[ 2 σ 2 (Hc-δ)] E[|X t -b| 2 ] < κ 2 , (6) 
T κ being a positive constant which does not depend on σ. And

H c := W b (c) - W b (b).
We now give an immediate corollary if we are in the first case. Corollary D: Under Hypotheses 2.1-2.5, if W b does not admit any other critical point than b, for any κ, δ > 0, if σ is sufficiently small, we have:

sup t≥Tκ E[|X t -b| 2 ] < κ 2 , (7) 
T κ being a positive constant which does not depend on σ. This readily yields the convergence of L (X t ) towards the unique invariant probability close to δ b .

Proof of Proposition C

Lemma 4.1. Under Assumptions 2.1-2.5, we have:

d dt E |X t -b| 2 ≤ -2λE |X t -b| 2 + K P (X t ≤ ξ) + σ 2 ,
λ, K being positive constants and ξ being any positive real such that ξ < x 0 and ξ < b.

The proof is similar to the one of [Tug17, Lemma 4.1].

Proof. By Itô formula, we have:

|X t -b| 2 = |x 0 -b| 2 + 2σ t 0 (X s -b) dW s -2 t 0 (X s -b) V ′ (X s )ds -2α t 0 (X s -b) (X s -E[X s ]) ds + σ 2 t . However, E {(X t -b) (X t -E [X t ])} = Var (X t ) ≥ 0.
We take the expectation then we take the derivative. We thus obtain:

d dt E |X t -b| 2 ≤ -2E [(X t -b) V ′ (X t )] + σ 2 .
However,

(X t -b) V ′ (X t ) = (X t -b) V ′ (X t )1 Xt>ξ + (X t -b) V ′ (X t )1 Xt≤ξ .
Since V ′′ is convex and since ξ > 0, for any x > ξ, we have,

(x -b)V ′ (x) ≥ λ(ξ)(x -b) 2
. Consequently, we have:

d dt E |X t -b| 2 ≤ -2λ(ξ)E |X t -b| 2 + σ 2 + 2E λ(ξ) |X t -b| 2 -(X t -b) V ′ (X t ) 1 Xt≤ξ According to Assumption 2.1, we have |V ′ (X t )| ≤ C 1 + |X t | 2r-1 so that λ(ξ) |X t -b| 2 -(X t -b) V ′ (X t ) ≤ C ′ (ξ) 1 + |X t | 2r , C ′ (ξ) being a positive constant. Cauchy-Schwarz inequality yields d dt E |X t -b| 2 ≤ -2λ(ξ)E |X t -b| 2 +σ 2 +2C ′′ (ξ) 1 + E [|X 4r t |] P (X t ≤ ξ)
The uniform boundedness of the moments (see [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF]) implies the existence of a positive constant K(ξ) such that

d dt E |X t -b| 2 ≤ -2λ(ξ)E |X t -b| 2 + σ 2 + K(ξ) P (X t ≤ ξ) ,
which achieves the proof.

Remark 4.2. For any T > 0, we have lim

σ→0 P τ ]ξ;+∞[ (σ) ≤ T ) = 0.
This is a classical result from the large deviations theory for stochastic processes, see Limit (2) and [DZ98, page 221].

Lemma 4.3. For any κ > 0, there exist some positive constants σ 0 and T κ (σ 0 ) such that for any σ < σ 0 , there exists T κ (σ) satisfying T κ (σ) ≤ T κ (σ 0 ) and

E X Tκ(σ) -b 2 ≤ κ 2 .
It is a straightforward consequence of Lemma 4.1 and Remark 4.2 so we do not give the proof.

In particular, we have

E X Tκ(σ) -b ≤ κ .
We now introduce the two diffusions X +,κ and X -,κ by

X ±,κ t = X Tκ(σ) + σ B t -B Tκ(σ) -α t Tκ(σ) X ±,κ s -(b ± κ) ds (8) 
From now on, κ is arbitrarily small. By b ± κ , we denote the positive critical point (close to b) of the potential

x → V (x) + α 2 (x -(b ± κ)) 2
. By a simple computation, we get:

b ± κ = b ± α V ′′ (b) + α κ + o(κ) .
Now, if κ is small enough, we know that the Freidlin-Wentzell theory may be applied to Diffusion X ±,κ and domain ]d; +∞[ (for any d > c). So, we deduce that τ ± ]d;+∞[ (σ) := inf t ≥ T κ (σ) : X ±,κ t ≤ d satisfies a Kramers'type law. In particular, we have

lim σ→0 P τ ± ]d;+∞[ (σ) ≤ exp 2 σ 2 H ± κ (d) -δ = 0 , for any δ > 0. Here, H ± κ (d) := V (d) -V (b ± κ ) + α 2 (d -b ± κ )
2 . However, by proceeding like in Lemma 4.1, we obtain

d dt E X ±,κ t -b ± κ 2 ≤ -2ρ(κ)E X ±,κ t -b ± κ 2 + σ 2 + K ′ P X ±,κ t / ∈ D , K ′ > 0 and lim κ→0 ρ(κ) = ρ.
Consequently, there exists T ′ κ (σ) > T κ (σ) which is uniform with respect to σ ∈]0; 1] such that:

sup t∈[T ′ κ (σ);exp[ 2 σ 2 (H ± κ (d)-δ)]] E X ±,κ t -b ± κ 2 < V ′′ (b) 2(V ′′ (b) + α) 2 κ 2 ,
if σ is small enough. In particular, with d converging to c and κ arbitrarily small, we obtain

sup t∈[T ′ κ (σ);exp[ 2 σ 2 (Hc-δ)]] E X ±,κ t -b ± κ 2 < V ′′ (b) 2(V ′′ (b) + α) 2 κ 2 , if σ is small enough. Definition 4.4. We now introduce T (κ, σ) := inf t ≥ T κ (σ) : E |X t -b| 2 > κ 2 .
We will prove that T (κ, σ) ≥ exp 2 σ 2 (H c -δ) for any δ > 0, if σ is small enough.

We can remark that for any t ∈ [T κ (σ); T (κ, σ)]: X -,κ t ≤ X t ≤ X +,κ t . This implies :

E |X t -b| 2 ≤ max E X +,κ t -b 2 ; E X -,κ t -b 2 .
However, for any t ∈ T ′ κ (σ); exp 2 σ 2 (H c -δ) , we have

E X ±,κ t -b 2 ≤ E X ±,κ t -b ± κ 2 + b ± κ -b 2 + 2 b ± κ -b E X ±,κ t -b ± κ 2 ≤ V ′′ (b) 2(V ′′ (b) + α) 2 κ 2 + α V ′′ (b) + α 2 κ 2 + 2 α V ′′ (b) + α V ′′ (b) 2(V ′′ (b) + α) κ 2 + +o(κ 2 ) ≤ V ′′ (b) + 2α 2V ′′ (b) + 2α 2 κ 2 + o(κ 2 ) .
Consequently, if κ is small enough, we have:

sup t∈[T ′ κ (σ);min{exp[ 2 σ 2 (Hc-δ)];T (κ,σ)}] E |X t -b| 2 ≤ V ′′ (b) + 2α 2V ′′ (b) + 2α 2 κ 2 + o(κ 2 ) .
In particular, if we were assuming T (κ, σ) < exp 2 σ 2 (H c -δ) , we would obtain an absurdity. As a consequence, for any t ∈ [T ′ κ (σ); exp 2 σ 2 (H c -δ) ], we have

E |X t -b| 2 ≤ κ 2 .
A remaining question is what happens as t ∈ [T κ (σ); T ′ κ (σ)]. In fact, by proceeding like in [START_REF] Tugaut | Exit problem of McKean-Vlasov diffusion in double-wells landscape To appear[END_REF], we can prove that there exists h > 0 such that sup Tκ(σ)≤t≤e 2h σ 2 E |X t -b| 2 < κ 2 . By taking σ small enough such that e 2h σ 2 > T ′ κ (σ), the proof is achieved.

Proof of Theorem A

We now prove Theorem A. First, as T κ (σ) is uniformly bounded with respect to σ ∈]0; 1], we deduce that the probability of exiting ]d; +∞[ before T κ (σ) goes to 0 as σ goes to 0.

The main idea now is to compare the exit-time of X with the ones of X ±,κ . We have sup

Tκ≤t≤exp[ 2 σ 2 (Hc-δ)] E |X t -b| 2 < κ 2 ,
for σ sufficiently small.

Consequently, for any t ∈ T κ ; exp 2 σ 2 (H c -δ) , we have X -,κ t ≤ X t ≤ X +,κ t . As a consequence, if we put τ (σ) := inf {t ≥ 0 : X t ≤ d}, we have

τ - κ (σ) ≤ τ (σ) ≤ τ + κ (σ) .
However, a Kramers'type law is satisfied by τ ± κ (σ). So, for any ξ > 0, we have

lim σ→0 P exp 2 σ 2 H - κ (d) -ξ ≤ τ (σ) ≤ exp 2 σ 2 H + κ (d) + ξ = 1 .
Consequently, by taking κ sufficiently small, we obtain that for any δ > 0, we have

lim σ→0 P exp 2 σ 2 (H(d) -δ) ≤ τ (σ) ≤ exp 2 σ 2 (H(d) + δ) = 1 .
This achieves the proof.

Conclusion

In this paper, a Kramers'type law has been obtained without any convexity assumption. The hypotheses on the domain and on the confining potential are natural and not technical. Incidentally, we have derive an inequality which shows that the first moment of the law of the McKean-Vlasov diffusion is trapped into a ball during a time which goes to infinity as the coefficient diffusion goes to 0. However, there are still some remaining questions. First, we can wonder if the ideas developed in this paper can be applied with an interacting potential F with a degree more than 2. In other words, can we apply this procedure to obtain a Kramers'type law for the diffusion:

X t = X 0 + σB t - t 0 ∇V (X s ) ds - t 0 [∇F * L (X s )] (X s ) ds , (9) 
where F is more general, typically with deg(F ) = 2n ? We think that the idea to apply the procedure is to consider the drift -∇V -∇F * ν for any ν such that W 2n (ν; δ b ) = κ, then to show that the diffusion X is trapped between two time-homogeneous diffusions.

Another question is about the general dimensional case. We consider that this question is strongly related to the previous one and can be solved similarly.

A question which is challenging is the one of the exit from the interval ]c; +∞[. Indeed, in the procedure described previously, we assume that the interval has the form ]d; +∞[ with c < d < b. However, in order to be able to find the basins of attraction of each invariant probability (we know that there are three such invariant probabilities if σ is small enough thanks to [HT10a, HT10b, HT12]), we will need to extend to c. To obtain the limit

lim σ→0 P τ ]c;+∞[ (σ) ≤ exp 2 σ 2 (H c -δ) = 0
is an easy task but the other inequality will be more difficult and we do believe that potential theory for giving the expectation of τ ]c;+∞[ (σ) will be helpful. One can also wonder what happens if the initial measure is not a Dirac measure. This is strongly linked to the question of the characterization of the basins of attractions. We think that the procedure developed in this paper can be applied under some minor modifications.

Finally, we discuss about the initial condition. If x 0 = 0, we will either go to a either go to b. Consequently, we think that this remains to the previous question.