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I'CONVERGENCE OF NONCONVEX INTEGRALS IN
CHEEGER-SOBOLEV SPACES AND HOMOGENIZATION

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We study I'-convergence of nonconvex variational integrals of the calculus of
variations in the setting of Cheeger-Sobolev spaces. Applications to relaxation and homog-
enization are given.

1. INTRODUCTION

Let (X,d, ) be a metric measure space, where (X, d) is a length space which is complete,
separable and locally compact, and p is a positive Radon measure on X. Let p > 1 be a
real number and let m > 1 be an integer. Let 2 < X be a bounded open set and let O(f2)
be the class of open subsets of 2. In this paper we consider a family of variational integrals
By WrP(Q;R™) x O(Q) — [0, 0] defined by

Ey(u, A) L Lia, V() dp(x), (1.1)

where L; : Q@ x M — [0,00] is a family of Borel measurable integrands depending on a
parameter ¢ > 0 and not necessarily convex with respect to & € M, where M denotes the
space of real m x N matrices. The space Wj’p (Q; R™) denotes the class of p-Cheeger-Sobolev
functions from Q to R™ and V,u is the p-gradient of u (see §3.1 for more details).

We are concerned with the problem of computing the variational limit, in the sense of the

[-convergence (see Definition 2.1]), of the family {E;};~¢, as t — o0, to a variational integral
By - WP R™) x O(Q) — [0, 0] of the type

By (u, A) — L Lo (2, V() dpa () (1.2)

with Ly, @ Q x M — [0,00] which does not depend on the parameter . When L, is
independent of the variable x, the procedure of passing from (1) to (L2) is referred as
homogenization and was studied by many authors in the euclidean case, i.e., when the metric
measure space (X, d, p) is equal to RY endowed with the euclidean distance and the Lebesgue
measure, see [BD9§| and the references therein. In this paper we deal with the metric
measure and non-euclidean case. Such a attempt for dealing with integral representation
problems of the calculus of variations in the setting of metric measure spaces was initiated
in [AHMI5] for relaxation, see also [Moc0b, [HKLL14]. In fact, the interest of considering
a general measure is that its support can modeled an hyperelastic structure together with
its singularities like for example thin dimensions, corners, junctions, etc (for related works,

Key words and phrases. Relaxation, homogenization, I'-convergence, nonconvex integral, metric measure
space, Cheeger-Sobolev space.
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see [BBS97, [ABCP99, Man00, [Zhi0 T, BFO1, [Zhi0o2, BF02b, BE02al [CILP02, [AHMO3, [Fra03),
BIF03, [AHMO04, BER04, Man05l, BCP0§]). Such mechanical singular objects naturally lead
to develop calculus of variations in the setting of metric measure spaces. Indeed, for example,
a low multi-dimensional structures can be described by a finite number of smooth compact
manifolds S; of dimension k; on which a superficial measure p; = H* s; is attached. Such
a situation leads to deal with the finite union of manifolds S;, i.e., X = u,;95;, together with
the finite sum of measures p;, i.e., p = > . i;, whose mathematical framework is that of
metric measure spaces (for more examples, we refer the reader to [BBS97, [Zhi02, [CJLP02]
and |[CPSO7, Chapter 2, §10] and the references therein).

The plan of the paper is as follows. In the next section, we state the main results, see Theorem
(and Corollary 2.3]), Corollary 2.4l and Theorems and 2.21]. In fact, Corollary 2.4]is a
relaxation result that we already proved in [AHM15]. Here we obtain it by applying Theorem
which is a general ['-convergence result in the p-growth case. Theorem [2.20, which is
also a consequence of Theorem 2.2] is a homogenization theorem of Braides-Miiller type (see
[Bra&5, [Miil87]) in the setting of metric measure spaces. Note that to obtain such a metric
homogenization theorem we need to make some refinements on our general framework (see
Section 2.3 and especially Definitions 2.5, 2.7, 2.T0] 2.12] 2.14] and 2.18)) in order to establish
a subadditive theorem (see Theorem 2.I7]) of Ackoglu-Krengel type (see [AK81]). Theorem
2.21] which generalizes Theorem [2.20] aims to deal with homogenization on low dimensional
structures. In Section 3 we give the auxiliary results that we need for proving Theorem [2.2]
Then, Section 4 is devoted to the proof of Theorem Finally, Theorems 2.17] and
[2.21] are proved in Section 5.

Notation. The open and closed balls centered at x € X with radius p > 0 are denoted by:
Qp(x) = {y e X :d(z,y) < p};
Q) == {y € X :d(z,y) < p}-
For z € X and p > 0 we set
0Q(w) = Qu@)\Qp(w) = {y e X : d(w,y) = p}.

For A ¢ X, the diameter of A (resp. the distance from a point x € X to the subset A) is
defined by diam(A) := sup, 4 d(z,y) (vesp. dist(z, A) := infyeq d(x,y)).
The symbol §-stands for the mean-value integral

}deﬂ - ﬁ JB -

2. MAIN RESULTS

2.1. The I'-convergence theorem. Here and subsequently, we assume that p is doubling
on €2, i.e., there exists a constant Cy > 1 (called doubling constant) such that

1 (Qp(@)) < Can (Q3 (@) (2.)
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for all z € Q and all p > 0, and 2 supports a weak (1, p)-Poincaré inequality, i.e., there exist
Cp > 0 and o > 1 such that for every x € () and every p > 0,

1
f f —f fdp|dp < pCp (} gpdu) (2.2)
Qp() Qp(z) Qop(T)

for every f e LF(Q) and every p-weak upper gradient g € LE(€2) for f. (For the definition of
the concept of p-weak upper gradient, see Definition [3.2])

For each ¢ > 0, let L; : Q x M — [0, 0] be a Borel measurable integrand. We assume that
L; has p-growth, i.e., there exist a;, f > 0, which do not depend on ¢, such that

algl’ < Li(z,§) < B(1+ <) (2.3)

for all £ e M and p-a.e. x € (.
Denote the I'-limit inf and the I-limit sup of E; as ¢ — oo with respect to the strong
convergence of LP(Q;R™) by I'(LE)-lim, ., F; and I'(LE)-lim; o, E; which are defined by:

[(LE)- lim Ey(u; A) := inf {h_m Ey(ug, A) @ uy L u} ;
t—0 t—00

F(LZ)-tli—m Ei(u; A) := inf {th—m En(uy, A) = uy Ly u}
for all u e W, ?(€;R™) and all A€ O(Q).

Definition 2.1 ([DGFT75, [DGT5]). The family {E;};~o of variational integrals is said to be
['(LE)-convergent to the variational functional Ey, as t — o if

L(LP)-lim Ey(u, A) = Ep(u, A) = F(Lﬁ)—tli—m Ei(u, A),
—0

t—00

for any u e W;P(Q;R™) and any A € O(Q), and we then write

F(LZ)—tlLr?O Ei(u,A) = Eyx(u, A).

(For more details on the theory of I'-convergence we refer to [DM93].)

For each ¢ > 0 and each p > 0, let Hf L, : Q2 x M — [0, 0] be given by

Hy Li(x,§) = inf {} ( )Lt(y,ﬁ + Vuw(y))dp(y) - we W,},’g(Qp(I);Rm)} (2.4)
Qp x
where the space ij’é’ (Q,(z); R™) is the closure of

Lipy(Q,(2); R™) = {u € Lip(Q;R™) : u = 0 on Q\Qp(a:)}

with respect to the W P-norm, where Lip(€;R™) := [Lip(Q)]™ with Lip(Q2) denoting the
algebra of Lipschitz functions from (2 to R. The main result of the paper is the following.
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Theorem 2.2. If (2.3]) holds then:

L(L})-lim Ey(u; A) > f lim lim M Ly (2, Vu(x))dp(z); (2.5)
t—00 A p—=0¢ 0

F(Lz)-tlim Ei(u; A) = f 1in(1] tlim Hy Li(x, V,u(z))dp(z) (2.6)
—00 A p— —00

for alluw e WiP(Q;R™) and all A e O(Q).
As a direct consequence, we have
Corollary 2.3. If [23) holds and if
for p-a.e. x €€, all p> 0 and all £ € M, then
D(LL)- lim Ey(u: A) = f lim lim H2 Ly (, V() )dpa(z)
—00

A p—0t—00

for alluwe WiP(Q;R™) and all A O(Q).

2.2. Relaxation. The equality (27) is trivially satisfied when L, = L, i.e., L; does not
depend on the parameter ¢. In such a case, we have

(L)t Buus ) = int { [ 200 Dy dute) % = B, ),
—© t—oo JA

i.e., the I'(LE)-limit of {E}};~0 as t — oo is simply the LE-lower semicontinuous envelope
of the variational integral § 4 L(z,V,u)du. Thus, the problem of computing the I'-limit of
{E,}i~0 becomes a problem of relaxation. We set

Q,L(x,&) := /l)i_)l% HiL(x, §),

where H.L is given by (2.4) with L; replaced by L, and we naturally call Q,L the u-
quasiconvexification of L. Then, Corollary implies the following result.

Corollary 2.4. If [23) holds then
Blu,A) = | QuL(e. Vyu(a))du(a)
A
for alluw e WiP(Q;R™) and all A e O(Q).

We thus retrieve [AHMI15, Corollary 2.29].

2.3. Homogenization. In order to apply Theorem (and Corollary 2.3]) to homogeniza-
tion, it is necessary to make some refinements on our general setting. These refinements
are a first attempt to develop a framework for dealing with homogenization of variational
integrals of the calculus of variations in metric measure spaces.

We begin with the following five definitions (see Definition together with Definitions
2.7H2.100 and Definitions Z.I2H2.14) which set a framework to deal with homogenization of

variational integrals in Cheeger-Sobolev spaces. Let Homeo(X ) be the group of homeomor-
phisms on X and let B(X) be the class of Borel subsets of X.
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Definition 2.5. The metric measure space (X,d,u) is called a (G, {h;}i~0)-metric mea-

sure space if it is endowed with a pair (G, {h;};~0), where G and {h;};~o are subgroups of

Homeo(X ), such that:

(a) the measure u is G-invariant, i.e., gy = p for all g € G,

(b) there exists U € B(X), which is called the unit cell, such that ,u([U) €]0, oo[ and p(dU) =0
with oU = T\U;

(c) the family {h;}4~o of homeomorphisms on X is such that:

hl = idX; (28)
hs = hgohy for all s,t > 0; (2.9)
R = pu(hy(U))p for all ¢ > 0. (2.10)

Remark 2.6. Assuming that (X, d, ) is a (G, {h;}4=0)-metric measure space, it is easy to see
that

p(hst(U)) = p(hs(U)) (e (U)) (2.11)
for all s,¢ > 0. In particular, as u(U) = 0 we have u(h(U)) = 0 for all ¢ > 0, and so we see
that u(U) = 1 by using (Z.10).

Definition 2.7. When (X, d, p) is a (G, {h¢}+~0)-metric measure space, we say that (X, d, )
is meshable if for each i € N* and each k € N* there exists a finite subset G¥ of G such that
(90hi(U)) jeqr is a disjointed finite family and

hir(U) = U gohi(U). (2.12)

ger

Remark 2.8. It is easily seen that a (G, {h:}i~0)-metric measure space (X, d, ut) is meshable
if and only if for each i € N* and each k € N* there exists a finite subset G¥ of G such that
(90hk(U))gecr is a disjointed finite family of subsets of h;(U) and

card(G¥) = pu(hi(U)). (2.13)

In particular, the cardinal of G¥ does not depend on k. (Here and in what follows, N* denotes
the set of integers greater than 1.)

Remark 2.9. When X = RY is endowed with the euclidean distance dy and the Lebesgue
measure Ly, we consider G = ZY, U = [0,1[N=: Y and {h;};~0 given by h; : RY — R¥Y
defined by hy(z) = tz. In this case, for each i € N* and each k € N*, we have

GY = {(knl,kng,--- Jkny) in; €{0,---,1—1} with je {1,--- ,N}}.

Note that G¥ = kG} and so card(G¥) does not depend on k. More precisely, we have
card(GF) = iV = Ly (hi(Y)). In addition, (RY,dy, Lx) is meshable.

In what follows, F(X) denotes an arbitrary subclass of B(X).

Definition 2.10. When (X, d, 1) is a meshable (G, {h;};~¢)-metric measure space, we say
that (X, d, u) is asymptotically periodic with respect to F(X) if for each A € F(X) and for
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each k € N* there exists ta) > 0 such that for each t > t,y, there exist k; , &k € N* and
gi ,9; € G such that:

gt_Ohkk; (U) = li(A) = gtJrOhkkj (U); (2.14)

o U @) U)) ~ 1. (2.15)

t—00 Iu( ))
Remark 2.11. For (X,d,u) = (RN, dy, L) we consider G = ZY, U = Y and {h;};~0 given
by h; : RY — R defined by h;(z) = tx (see Remark 2.9). In particular, we have gohy(Y) =
kY + g for all k € N* and all g € G. Then (RY,dy, 1) is asymptotically periodic with respect
to Cub(R¥Y), where Cub(RY) is the class of open cubes C' of R,
Indeed, if C' = ]_[ Jai, b with ¢ = by —a; = -+ = by —any > 0 and if k¥ € N*, then for
every t > 2 (1) is satisfied with:
ki =[%] -1 and & = [£] +1;
9; = k(z +¢é) and g = kz where é = (1,---,1) and z = (2/,---,2) with z} = [“] for
allie{l,--- N},
where [:)3] denotes the integer part of the real number z. Moreover, for such k;, and k", it
is easily seen that (2.I5]) is verified.

Nevertheless, (RY,dy, Ly) is not asymptotically periodic with respect to Ba(RY), where
Ba(R") is the class of open balls (with respect to dy) of RY.

In light of Remark 2.11] we introduce another “weak” notion of “asymptotic periodicity”
together with another “strong” notion of “meshability”, see Definitions 2.14] and 2.12] below
which plays the role of Definitions 27 and 210 (see also Remark Z.T5]).

Definition 2.12. When (X, d, i) is a (G, {h }+~0)-metric measure space, we say that (X, d, u)
is strongly meshable if the following four assertions are satisfied:

(a) for each finite subset H of G, the family (g(U))gen is finite and disjointed;
(b) if Hy and H, are two finite subsets of G such that Ugen, 9(U) € Ugen, g(U), then Hy < Ho

and
(c) for each i € N* and each f € G there exists a finite subset G;(f) of G such that

hZU = U7
fohi(U) geéf(f>g( )

(d) for each finite subset H of G, there exist iy € N* and fy € G such that
v g(U) < frohi, (U).

geH

Remark 2.13. The metric measure space (RY,dy, Ly) where G =Z", U =Y and {h;}i=0 =
{tx}i~o is strongly meshable with

Gi(z)z{z—i-(nl,nz,... 7m\,):nje{()’... Ji— 1} with je{1,--- ,N}}

for all i € N* and all z € ZV.
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Definition 2.14. When (X, d, ) is a strongly meshable (G, {h;};~0)-metric measure space,
we say that (X, d, p) is weakly asymptotically periodic with respect to F(X) if for each A €
F(X), each k € N* and each ¢t > 0, there exist finite subsets G, and G, of G such that

the families (gohy(U)) and (gohi(U)) gecir, are disjointed and satisfy the following two

geG[ch
properties:
U gohg(U) c hy(A) < U gohg(U); (2.16)
geG[ch gerk
u( U gohi(U)\ u gohk(U))

I <G . 0 (2.17)
im = 0. :
£ 1u(he(A))

Remark 2.15. From Nguyen and Zessin [NZ79, Lemma 3.1] (see also [LM02, Lemma 2.2]) we
see that for (X,d, u) = (RN, dy, L) with G =7Z", U =Y and {h;}i~0 = {tx}i~0, Definition
214 is satisfied with F(X) = Convy,(RY), where Convy,(RY) denotes the class of bounded
Borel convex subsets of RY. In this case, for each A € Convy,(RY), each k € N* and each
t > 0, we have:

Gir= {zekZN:erchtA};

G, = {zekZN : (z+kY)mtA=®}.

Thus, (RY, dy, L) is weakly asymptotically periodic with respect to Ba(RY) and Cub(R").
In the framework of a (G, {h;}i~o)-metric measure space (see Definition 2.5]) which is either
meshable and asymptotically periodic (Definitions 2.7] and 2.10) or strongly meshable and
weakly asymptotically periodic (see Definitions and [2.14]), we can establish a subadditive
theorem, see Theorem .17 of Ackoglu-Krengel type (see |[AK8I]). Let By(X) denote the
class of Borel subsets A of X such that j(A) < o and u(0A) = 0 with 0A = A\A. We first

recall the definition of a subadditive (with respect to the disjointed union) and G-invariant
set function.

Definition 2.16. Let S : By(X) — [0, 0] be a set function.
(a) The set function S is said to be subadditive (with respect to the disjointed union) if

S(A U B) < 8(A) + S(B)

for all A, B € By(X) such that An B = .
(b) Given a subgroup G of Homeo(X), the set function S is said to be G-invariant if

S(9(4)) = S(4)
for all Ae By(X) and all g € G.

The following result, which is proved in Section 5, will be used in the proof of Theorems
and 22T below. In what follows &(X) denotes a subclass of By(X).

Theorem 2.17. Assume that (X, d, ) is a (G, {hi}i=0)-metric measure space which is either
meshable and asymptotically periodic or strongly meshable and weakly asymptotically periodic
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with respect to &(X) and S : By(X) — [0, 0] is a subadditive and G-invariant set function
with the following property:

S(A) < cu(A) (2.18)
for all A e By(X) and some ¢ > 0. Then

o S(@) S ((V)
t—00 ,U(ht(Q>) keN* ,u(hk(U))

for all Q € &(X).

Let L : X x M — [0, 0] be a Borel measurable integrand assumed to be G-invariant, i.e.,
for p-a.e. x € X and every £ € M, L(g(x),&) = L(z,§) for all g € G. For each t > 0, Let
L;: X x M — [0, 0] be given by

(Note that {L;};~0 is then (G, {h;}s=0)-periodic, i.e., L,((h; 'ogoh,)(z), &) = Ly(z,&) for all
reX,all¢eM, allt>0andall geG.)
For convenience, we introduce the following definition.

Definition 2.18. Such a {L;}-0, defined by (2.19), is called a family of (G, {h;}i=0)-periodic
integrands modelled on L.

Remark 2.19. If (X, d,p) = (RN, do, L) with G =ZN, U =Y and {h;};~0 = {tx}:~0, then
G-periodicity is Y-periodicity and (G, {h;}s~0)-periodicity corresponds to %Y-periodicity.

Let Ba(X) be the class of open balls Q of X such that u(3Q) = 0, where 0Q := Q\Q. (Then
Ba(X) < By(X).) Applying Corollary [Z3] we then have

Theorem 2.20. Assume that (X,d, ) is a (G, {hi}i=0)-metric measure space which is either
meshable and asymptotically periodic or strongly meshable and weakly asymptotically periodic
with respect to Ba(X). If ([23) holds and if {Li}i~0 is a family of (G, {hi}i=0)-periodic
integrands modelled on L then

F(Lﬂ)— lim Fy(u; A) = JA Lyom (V u(x))dp(x)

t—00

for alluw e WiP(Q;R™) and all A€ O(Q) with Lhom - M — [0, 0] given by

Lyom(€) := inf inf {fh D)L(y,ﬁ + Vyw(y))du(y) s we W,§ (hk ([U);Rm>} :
k(U

Theorem can be applied when X is a N-dimensional manifold diffeomorphic to RY. In

such a case, we have d(-,-) = dy(U71(), ¥71(), p = (P YLy, U = U(Y), G = ¥(ZV)

and {h}~0 = Homeo(X) is given by h;(z) = U(t¥~!(x)), where ¥ is the corresponding

diffeomorphism from R" to X. Moreover, Theorem can be generalized as follows.

Theorem 2.21. Assume that there exists a finite family {X;}icr of subsets of X such that
X = Uier X; and pu(X; 0 X;) = 0 for all i = j and for which every (X;,d|x,) is a complete,
separable and locally compact length space and every (X;, djx,, pyx;) is a (Gy, {hi}i=0)-metric
measure space which is either meshable and asymptotically periodic or strongly meshable and
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weakly asymptotically periodic with respect to Ba(X;), where G; and {h}~q are subgroups of
Homeo(X;). Let {L;}i~¢ be given by

Lt(xv ) = L;(SL’, ) fo € Xiv

where every {Li}~o is a family of (Gy, {hi}i=o)-periodic integrands modelled on L. If Q =
Uier§d; with every Q; < X being an open set and if ([2.3]) holds then

D) fim B A) = X5 | (V) uta)

t—0 -
el

for allu e WiP(Q;R™) and all A€ O(Q), where every L, : M — [0, 0] is given by

hom

keN*

Li  (€):= inf inf { f : )L"(y,g + Vw)dp s we W, (kg (IfJi);Rm)} (2.20)
hi (0, ’
with U; denoting the unit cell in X;.

3. AUXILIARY RESULTS

3.1. The p-Cheeger-Sobolev spaces. Let p > 1 be a real number, let (X,d, ) be a
metric measure space, where (X, d) is a length space which is complete, separable and locally
compact, and p is a positive Radon measure on X, and let 2 = X be a bounded open set. We
begin with the concept of upper gradient introduced by Heinonen and Koskela (see [HK98]).

Definition 3.1. A Borel function g : Q — [0, o0] is said to be an upper gradient for f : Q —
Rif |f(c(1)) — f(e(0))] < S(l) g(c(s))ds for all continuous rectifiable curves ¢ : [0, 1] — €.

The concept of upper gradient has been generalized by Cheeger as follows (see [Che99
Definition 2.8]).

Definition 3.2. A function g € L7(Q) is said to be a p-weak upper gradient for f € LF ()
if there exist {f,}, = LL(Q) and {g,}, = LL(f) such that for each n > 1, g, is an upper
gradient for f,, f, — fin L1(Q) and g,, — g in LF(Q).

Denote the algebra of Lipschitz functions from Q to R by Lip(£2). (Note that, by Hopf-
Rinow’s theorem (see [BH99, Proposition 3.7, p. 35]), the closure of €2 is compact, and so
every Lipschitz function from 2 to R is bounded.) From Cheeger and Keith (see [Che99
Theorem 4.38] and [Kei04) Definition 2.1.1 and Theorem 2.3.1]) we have

Theorem 3.3. If i is doubling on Q, i.e., (1)) holds, and Q supports a weak (1,p)-Poincaré

inequality, i.e., (22l holds, then there exists a countable family {(Qy,&*)}a of p-measurable

disjoint subsets Q, of Q with pu(Q\ U, Qo) = 0 and of functions £~ = (£, - 751%(05)) Q) —

RN awith £ € Lip(Q) satisfying the following properties:

(a) there exists an integer N = 1 such that N(a) € {1,---, N} for all o

(b) for every o and every f € Lip(Q2) there is a unique D} f € Lf(Qa;RN(a)) such that for
p-a.e. T € Sy,

1
lim ;Hf — falLz@p) = 0,
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where f, € Lip(Q) is given by f.(y) := f(x) + Dy f(z) - (§*(y) — £*(x)); in particular
Dy fo(y) = Dy f(x) for p-a.e. y € Qy;
(c) the operator D, : Lip(Q) — L7 (4 RY) given by

Duf =) 1x,Df,

where 1q,, denotes the characteristic function of Q,, is linear and, for each f, g € Lip(2),
one has

Du(fg) = fDug + gDuf?
(d) for every f e Lip(Q2), D, f = 0 p-a.e. on every p-measurable set where f is constant.

Remark 3.4. Theorem is true without the assumption that (X, d) is a length space.
Let Lip(©; R™) := [Lip(©2)]™ and let V,, : Lip(}; R™) — Lf(Q;M) given by
Duul
V,u:= : with u = (ug, -+, Up).
D uy,
From Theorem B3|(c) we see that for every u € Lip(Q;R™) and every f € Lip(2), one has
V.(fu) = fV,u+ D,f ®u. (3.1)

Definition 3.5. The p-Cheeger-Sobolev space Wj’p (Q;R™) is defined as the completion of
Lip(2; R™) with respect to the norm

T | oy (3.2)

Taking Proposition B.7(a) below into account, since |V, ulinqm < HuHW;,p(Q;Rm) for all
u € Lip(Q; R™) the linear map V,, from Lip(€;R™) to L?(€2; M) has a unique extension to
W P(Q; R™) which will still be denoted by V,, and will be called the u-gradient.

Remark 3.6. When ( is a bounded open subset of X = RY and p is the Lebesgue measure
on RY we retrieve the (classical) Sobolev spaces W'P(Q; R™). For more details on the
various possible extensions of the classical theory of the Sobolev spaces to the setting of
metric measure spaces, we refer to [Hei07) §10-14] (see also [Che99) [Sha00, [GTO01) [Hajo3]).

The following proposition (whose proof is given below, see also [AHM15, Proposition 2.28])
provides useful properties for dealing with calculus of variations in the metric measure setting.

Proposition 3.7. Under the hypotheses of Theorem [3.3, we have:

(a) the p-gradient is closable in W,P(Q;R™), d.e., for every u € WP(Q;R™) and every
Ae0Q), if u(x) =0 for p-a.e. x € A then V,u(x) =0 for p-a.e. € A;

(b) Q supports a p-Sobolev inequality, i.e., there exist Cs > 0 and x = 1 such that

1

(f Ivl"”du) < pCs ( j |vuv|pdu> (3.3)
Qp (@) Qp()
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for all 0 < p < po, with py > 0, and all v e Wi’é’(Qp(:c); R™), where, for each A€ O(Q),
W;:g(A; R™) s the closure of Lipy(A; R™) with respect to WyP-norm defined in (3.2
with

Lipy(4; R™) := {u € Lip(Q;R™) : u = 0 on Q\A};

(c) Q satisfies the Vitali covering theorem, i.e., for every A < Q and every family F of
closed balls in Q, if inf{p > 0 : Q,(v) € F} = 0 for all v € A then there exists a
countable disjointed subfamily G of F such that u(A\ Ugeg Q) = 0; in other words,
Ac (Ugeg Q) U N with p(N) = 0;

(d) for every u e W,P(R™) and p-a.e. x € Q there exists u, € W,P(;R™) such that:

V,u,(y) = Vyu(z) for p-a.e. y e Q; (3.4)
1 1 p —N-
i QP(I)IU(y) = uy(y)["duly) = 0; (3-5)

(e) for every x € Q, every p > 0 and every s €|0,1] there exists a Uryshon function ¢ €
Lip(Q) for the pair (N\Q,(x), QSP(I))E such that

D o (QRN) <
H /J,(,OHLM (Q,RN) p(l _ S)

for some a > 0.
If moreover (X, d) is a length space then
(f) for p-a.e. x €,

(Qsp()) —— 1(Qsp())

I @) Qe b 30
Remark 3.8. As p is a Radon measure, if ) satisfies the Vitali covering theorem, i.e., Propo-
sition B.7)(c) holds, then for every A € O(2) and every € > 0 there exists a countable family
{Q,,(z;) }ier of disjoint open balls of A with x; € A, p; €]0,¢[ and pu(0Q,,(x;)) = 0 such that
1(A\ Vier Qp,(w:)) = 0.
Proof of Proposition 3.7 Firstly, ) satisfies the Vitali covering theorem, i.e., the prop-
erty (c) holds, because p is doubling on Q (see [Fed69, Theorem 2.8.18]). Secondly, the
closability of the p-gradient in Lip(£2; R™), given by Theorem B.3|(d), can be extended from
Lip(£2; R™) to Wj’p (€; R™) by using the closability theorem of Franchi, Hajtasz and Koskela
(see [FHK99, Theorem 10]). Thus, the property (a) is satisfied. Thirdly, according to
Cheeger (see [Che99, 84, p. 450] and also [HK95| [HK00]), since u is doubling on € and
supports a weak (1, p)-Poincaré inequality, we can assert that there exist ¢ > 0 and x > 1
such that for every 0 < p < pg, with pg = 0, every v € Wi:g (€; R™) and every p-weak upper
gradient g € L7 (Q;R™) for v,

1

(f www) @w0‘|ww). (3.7)
Qp(m) Qp(x)

1Given a metric space (€, d), by a Uryshon function from Q to R for the pair (Q\V, K), where K ¢ V c Q
with K compact and V' open, we mean a continuous function ¢ : Q@ — R such that ¢(z) € [0,1] for all z € Q,
p(x) =0for all z € Q\V and p(z) =1 for all z € K.
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On the other hand, from Cheeger (see [Che99, Theorems 2.10 and 2.18]), for each w €
W/}’p(Q) there exists a unique p-weak upper gradient for w, denoted by g, € LZ(Q) and
called the minimal p-weak upper gradient for w, such that for every p-weak upper gradient
g € L2(Q) for w, g,(v) < g(x) for p-a.e. z € Q. Moreover (see [Che99, §4] and also [BB11],
§B.2, p. 363], [Bjo00] and [GHI13, Remark 2.15]), there exists a > 1 such that for every
we WiP(Q) and p-ae. € Q,

é|gw(g;)| < [Dyw(@)| < algy ().

As for v = (v;)iz1,.m € W,}’p(Q; R™) we have V,v = (D,v;)i=1,... m, it follows that

)

~oul)] < |V,0(2)] < algu(z) (3.8)

for p-a.e. x € Q, where g, := (gu,)i=1,.. m is naturally called the minimal p-weak upper
gradient for v. Combining (B.7) with (3.8) we obtain the property (b). Fourthly, from Bjérn
(see [Bjo00, Theorem 4.5 and Corollary 4.6] and also [GH13, Theorem 2.12]) we see that for
every a, every u € WP(Q;R™) and p-a.e. x € Q,

V,uz(y) = V,u(z) for p-aa. y e Q,,
where u, € W;P(Q;R™) is given by

u(y) = u(y) —u(z) — Vyu(z) - (§%(y) — £%(2))
and u is Lf-differentiable at z, i.e.,
1
lim — — Uy 20 (z)rm) = 0.
pg%p\lu(y) u (y)HLu(Qp( );R™)

Hence the property (d) is verified. Fifthly, given p > 0, s €]0, 1] and x € €, there exists a

Uryshon function ¢ € Lip(Q2) for the pair (Q\Q,(z)), Q,,(r)) such

1
Lipoo| pr (o < ,
H lpngLu () p(]. — S)

where for every y € (),
: = le(y) — ¢(2)]
Li = lim ——=—T~2
Pe(y) dy,2)—»0  d(y, z)
But, since u is doubling on € and € supports a weak (1, p)-Poincaré inequality, from Cheeger
(see [Che99, Theorem 6.1]) we have Lipp(y) = g,(y) for p-a.e. y € Q, where g, is the minimal
p-weak upper gradient for . Hence

o
D o (QRN) <
H /J«SOHLu (Q,RN) p(l _ S)

because |D,¢(y)| < a|g,(y)| for p-a.e. y € Q. Consequently the property (e) holds. Finally,
if moreover (X, d) is a length space then so is (€2,d). Thus, from Colding and Minicozzi 11
(see [CM98] and [Che99, Proposition 6.12]) we can assert that there exists 5 > 0 such that
for every x € Q, every p > 0 and every s €]0, 1],

,U(Qp(x)\QSp(x)) < 25(1 - S)BU(Qp(x))a
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which implies the property (f). B

3.2. The De Giorgi-Letta lemma. Let 2 = (£2,d) be a metric space, let O(Q2) be the
class of open subsets of Q and let B(2) be the class of Borel subsets of 2, i.e., the smallest
o-algebra containing the open (or equivalently the closed) subsets of Q2. The following result
is due to De Giorgi and Letta (see [DGLT77] and also [But89, Lemma 3.3.6 p. 105]).

Lemma 3.9. Let S : O(2) — [0,0] be an increasing set function, i.e., S(A) < S(B) for

all A, B € O(Q) such A c B, satisfying the following four conditions:

(a) S() = 0;

(b) S is superadditive, i.e., S(Au B) = S(A)+ S(B) for all A, B € O(Q) such that An B =
;

(c) S is subadditive, i.e., S(A U B) < S(A) + S(B) for all A, B € O(Q);

(d) there exists a finite Radon measure v on € such that S(A) < v(A) for all Ae O(Q).

Then, S can be uniquely extended to a finite positive Radon measure on 2 which is absolutely
continuous with respect to v.

4. PROOF OF THE I'-CONVERGENCE THEOREM

This section is devoted to the proof of Theorem which is divided into five steps.

Step 1: integral representation of the I'-limit inf and the I'-limit sup. For each
u e W,P(€;R™) we consider the set functions S, S, : O(€2) — [0, 0] given by:
S (A) = D(LE)- lim Ey(u, A);

u
t—00

SH(A) := F(LZ)—tlL—I?OEt(u, A).
Lemma 4.1. If (2.3]) holds then:
Si(4) = [ Ni(@na)

S = [ Al@)duta)

for alluw e WiP(Q;R™) and all A€ O(Q) with X, N} € L,,() given by:

S o
Ay (#) = lim ‘Sﬁ(%(?);),
M TG0

Proof of Lemma &1l Fix u e W}?(Q;R™). Using the right inequality in (23) we see that
S, (A) < J B(1+ |V,u(z)|P)dp(x) for all Ae O(RQ) (4.1)
A
(resp. S (A) < J B(1+ |V, u(z)[P)du(z) for all A e O(Q)). (4.2)
A

Thus, the condition (d) of Lemma is satisfied with v = G(1 + |V, ulP)dp (which is
absolutely continuous with respect to p). On the other hand, it is easily seen that the
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conditions (a) and (b) of Lemma .9 are satisfied. Hence, the proof is completed by proving
the condition (c) of Lemma [3.9] i.e.,

S, (AuB)<S,(A)+S,(B) for all A, Be O(Q) (4.3)
(resp. S (AU B) < S} (A)+ S} (B) for all A, Be O(Q)). (4.4)

Indeed, by Lemma[3.9], the set function S, (resp. S;) can be (uniquely) extended to a (finite)
positive Radon measure which is absolutely continuous with respect to u, and the theorem
follows by using Radon-Nikodym’s theorem and then Lebesgue’s differentiation theorem.

Remark 4.2. Lemma E.T shows that both T'(L?)-lim, ., Ey(u,-) and D(LE)-Timy e Ey(u, -)
can be uniquely extended to a finite positive Radon measure on €2 which is absolutely con-
tinuous with respect to p.

To show ([A3]) (resp. (&4])) we need the following lemma.
Lemma 4.3. IfU,V,Z,T € O(Q) are such that Z < U and T <V, then

S, (ZuT)<S,(U)+S, (V) (4.5)
(resp. SF(Z v T) <SFHU)+SHV)). (4.6)

Proof of Lemma [4.3l As the proof of (4.5) and (4.6]) are exactly the same, we will only
prove ([3). Let {u}i~0 and {v;}i=0 be two sequences in W;P(Q; R™) such that:

uy — uin L5 (Q; R™); (4.7)
vy — win L5 (Q;R™); (4.8)
tlim Li(x, V,u(x))dp(z) = S, (U) < o; (4.9)
—00 U
tlirrolo Li(z,V, v (x))dp(x) = S, (V) < 0. (4.10)
PRIV

Fix § €]0, dist(Z, 0U)[ with oU := U\U, fix any ¢ > 0 and any ¢ > 1 and consider W,”, W,
Q) given by:

7 3q

3
W= {x €eQ:? % < dist(z, Z)},

(2

where i € {1,--- ,q}. For every i € {1,--- ¢} there exists a Uryshon function ¢; € Lip(Q)
for the pair (W;", W;”). Define w; € W,?(; R™) by

w) = puy + (1 — @;)vp.
Setting W; := Q\(W,” U W.") and using Theorem [3.3(d) and (B.1) we have
V,uut in Wii

vuwi =< Dy ® (ur —v) + oV + (1 —9)Vyo, in W
V;ﬂ)t n VV;_.
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Noticing that ZUT = ((Z O T) "W, ) o (W nW;) u (T n W) with (ZuT)nW; < U,
TAW cVandW:=Tn{zelU:$<dist(z,Z) < £} we deduce that

)

J Li(z, V,w))dp < J Lt(x,Vuut)d,u+J Li(x,V u)dp (4.11)
zZuT U 1%

—i—f Li(z, V,w})du
WﬁWi

for all ¢ € {1,---,q}. Moreover, from the right inequality in (Z3]) we see that for each
Z.E{]w"' ,Q},

| n@Vaidn < Dol gan e - vl (4.12)
WanW,
—l—cJ (1+ |V, u|’ + |V, P)dp
WﬁWi

with ¢ := 2?3, Substituting (ZI2) into (LII]) and averaging these inequalities, it follows
that for every ¢ > 0 and every ¢ > 1, there exists i;, € {1,--- , ¢} such that

| eV < | L Vaedet | L 9m0de
ZuT U 1%

+- Z HDMQOZHLOO QRN) Hut - UtHiﬁ(Q;Rm)

C
+— (/,L(Q) + f |Vuut|pdu + J‘ |vuvt|pdu> .
q U 1%

On the other hand, by (£.7) and (4.8) we have:

hm Hut — UtHip (Q:R™) = O,

hm ;e =0foralg>1

UHLP QR™)

Moreover, using (4.9) and (£I0) together with the left inequality in (2.3) we see that:

MJ V() [Pdp(z) < oo

t—00 U

MJ Vo (@) [Pdp(z) < oo
v

t—00

Letting t — oo (and taking (£.9) and (£I0) into account) we deduce that for every ¢ > 1,
S, (ZuT)<lim | Ly(w, Vyw" (2))du(z) < S, (U) + 8, (V) +
t—oo JZuT

with é 1= ¢(pu(Q) +limyee §; |V (2)[Pdp() +1imyo, §, [V,v(2)[Pdp(2)), and @) follows
from (4.13]) by letting ¢ — co. W

(4.13)

CaN e
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We now prove ([43)) and [@4)). Fix A, B € O(2). Fix any € > 0 and consider C, D € O(Q)
such that C < A, D ¢ B and

Lﬁ(l T |V )P dp(x) < e

with B := AUB\C'U D. Then S; (E) < ¢ by @) and S (E) < e by @3). Let C, D € O()

be such that C = ¢, C < A, D < D and D < B. Applying Lemma B3 with U = CuD,
V=T=Eand Z=CuUD (resp. U=A, V=B, Z=C and T = D) we obtain:

S; (AU B) <8;(CuD)+e (resp. S;(CuD)<S;(A)+S;(B));
SH(AU B) <8HC uD)+e (resp. SF(C U D) <SHA) +SHB)),
and (43) and (4.4)) follows by letting ¢ — 0. B

Step 2: other formulas for the I'-limit inf and the I'-limit sup. Consider the varia-
tional integrals Ey , Ey : WiP(QR™) x O(2) — [0, 0] given by:

< <
< <

E; (u, A) := inf {h_m Ei(u, A) - Wi’é’(A;Rm) Su —u L 0};
t—0o0

B 0,4) =t { B 4) WHAR) 2 =0 B0
—00 )

Lemma 4.4. If 23] holds then:

D(L)- lim Ei(u, A) = By (u, A); (4.14)
D(L2)- T E,(u, A) = Ef (u, ) (4.15)

for allu e WiP(Q;R™) and all A O(Q).

Proof of Lemma [4.4l. As the proof of (4.14) and (4.15) are exactly the same, we will only
prove ([AI5). Fix ue WLP(Q;R™) and A € O(Q). Noticing that W, 5(4; R™) < Whe(Q; R™)
we have Ef (u; A) = T'(LE)-limy_o Ey(u, A). Thus, it remains to prove that

Ef (u; A) < F(Lﬁ)—tli—m Ei(u, A). (4.16)
—00
Let {u}i=0 = W, P(€;R™) be such that
uy — win L5 (Q;R™); (4.17)
tlim Li(x,V  u(x))dp(x) = F(Lz)—tli—m Ei(u, A) < 0. (4.18)
—00 A —0

Fix § > 0 and set As := {x € A : dist(z,0A) > 6} with 04 := A\A. Fix any ¢t > 0 and any
q =1 and consider W,”, W;" < Q given by

7

W, = {x € Q: dist(z, 45) < 2 + M};

7 3q

Wt {x eQ: 848 < dist(x,A(;)},

(2
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where i € {1,--- ,q}. (Note that W,~ < A.) For every i € {1, -+ ,q} there exists a Uryshon

function ¢; € Lip(Q2) for the pair (W,*, W."). Define w : X — R™ by

wz = iUy + (1 — (pz)u
Then w! —u € WIP(A;R™). Setting W; := Q\(W,” U W,*) < A and using Theorem B:3(d)

My ?

and (B we have

, Vs in W,
Vow; =< Dy @ (uy —u) + o;Vyu + (1 — ) Vyu in Wi
V,u in W;.

Noticing that A = W, U W; U (A n W.") we deduce that for every i € {1,--- , ¢},

7

th(x,Vuwi)d,u < f Lt(x,Vuut)d,quf Lu(, V) dp (4.19)
A A

AmVVi+
+ J Li(z, V ,w})dp.
W;

Moreover, from the right inequality in (2.3)) we see that for each i € {1,--- ¢},
J Lt(xv Vuwti)du < CHDHSOiHi‘OLO(Q;RN)Hut - UHI[),Z(Q;RM) (4’20)
W.
+c JW (1+ |V, u|” +|V,ulP)du

with ¢ := 2?°3. Substituting (£20) into (AI9) and averaging these inequalities, it follows
that for every ¢ > 0 and every ¢ > 1, there exists i, , € {1,--- , ¢} such that

i 1
J Lt<$, v“wt ’q)d,u < J Lt(.]}', Vuut)d,u + - J Lt(.]}', qu)d,u
A A qJa
q
&
2D 1Dl e = g
i=1

o () + [ Wi [ 9.
q A A

On the other hand, by (£17)) we have

tlir{é |, — uHiﬁ(Q;Rm) =0 for all ¢ > 1.

Moreover, using (4.I8) together with the left inequality in (2.3]) we see that

HJ |V ue(x) Pdp(x) < co.
t—0 A
Letting ¢t — oo (and taking (4.18) into account) we deduce that for every ¢ > 1,

Ef(u;A) < Tm | Li(z, V") du (4.21)

t—00 A

— 1
< F(Lﬁ)—tll)rg Ei(u, A) + p L Ly(x,V, u)dp +

o
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with ¢ := B(pu(A) +limee §, [Vaue(@)Pdp(z) + § , |V,u(z)[Pdp(z)), and (@I6) follows from
(E21) by letting ¢ — co. W

Step 3: using the Vitali envelope. For each u € Wj’p (Q; R™) we consider the set functions
m,, m, : O(2) — [0, 0] by:
m, (A) := lim inf {E;(v, A) ;v —u € Wi’é’(A;Rm)};
t—00
m,(A) := tlirg inf {Ey(v, A) :v—ue Wi’é’(A;Rm)}.
For each € > 0 and each A € O(£2), denote the class of countable families {Q; := Q,, (%) }ier

of disjoint open balls of A with z; € A, p; = diam(Q;) €]0,¢[ and p(0Q;) = 0 such that
W(A\ Uier Qi) = 0 by V.(A), consider m;, : O(£2) — [0, o0] given by

m‘;(A) ;= inf {Zmu(Qz) . {Qi}ie] € Va(A)} )

el
and define m? : O(Q) — [0, 0] by
m,(A) :=supm, (A) = limm, (A).

" e>0 e—0

The set function m} is called the Vitali envelope of m,, see [AHMI16, Section 3] for more
details. (Note that as  satisfies the Vitali covering theorem, see Proposition B.7|(c) and
Remark B.8, we have V.(A) = J for all Ae O(Q2) and all € > 0.)

Lemma 4.5. If (23] holds then:

[(L})-lim Ey(u, A) > m,,(A); (4.22)
F(Lﬁ)—l}i—rﬁlo Ei(u, A) = mt(A) (4.23)

for alluwe WiP(Q;R™) and all A O(Q).

Proof of Lemma (4.5l From Lemma (.4l it is easy to see that I'(L7)-lim, . Fi(u, A) >
m,(A) and T'(LF)-limy o Ey(u, A) = m,(A) and so T'(L7)-lim; o Ei(u, A) = m;(A) be-
cause in the proof of Lemma [LT]it is established that I'(L%,)-lim; o E(u, -) can be uniquely
extended to a finite positive Radon measure on (), see Remark 4.2l Hence ([d.22]) holds and,
to establish (A.23)), it remains to prove that

D(L)- T Ey(u, 4) < W5(A) (12
—0
with m’(A) < o0. Fix any ¢ > 0. Given A € O(), by definition of m:(A), there exists
{Qi}ier € V-(A) such that
D1 (Q:) < T (A) +

i€l
Fix any ¢t > 0 and define m!, : O(Q) — [0, 0] by
m, (A) := inf {Ey(v, A) ;v —ue W;:g(A; R™)}.

(4.25)

N ™M
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(Thus m,(-) = lim_q me()) Given any i € I, by definition of mf(Q;), there exists v} €
WiP(Qs; R™) such that vj —u € W;:g(@i; R™) and

Ey(v], Q) < m',(Q) + - (4.26)

Define uj : Q@ — R™ by

U = 'Ug in QZ

Then u — u € Wlp(A R™). Moreover, because of Proposition B7(a), V, us(z) = V,vi(z)
for p-a.e. x € Q;. From ([Z20) we see that

ut? Zm Ql a

el

. { u in Q\A

hence lim,_,, B, (u$, A) < ™ (A) + € by using (&25]), and consequently
lim lim E;(u$, A) < m*(A). (4.27)

e—0t—00 u

On the other hand, we have
NLE UIX”du>

1
X
Hut UHLXP QR™) (J |u§_u|Xpdlu) = (
A el
1
) X
([ )

iel

with x > 1 given by (8.3]). As €2 supports a p-Sobolev inequality, see Proposition [3.7(b), and
diam(Q;) €]0, [ for all i € I, we have

45—l o ey < 7O f V0 — VlPdy

el

with Cs > 0 given by ([B8.3]), and so

iel

| — uHi)ﬁp(Q;Rm) 21’5PCP (ZJ |V,mt|pd,u + J |V u|pd,u> (4.28)

Taking the left inequality in (2.3), ({E26) and (E25) into account, from (£28) we deduce
that

- 1
I 146 = ey < 2057 (SM(A) 4+ [ 9, )

which gives

lli%tllm |ug — uHLXp ©@rm) =0 (4.29)
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because lim. ,om;(A) = m}(A) < 0. According to (A.27) and ([4.29), by diagonalization
there exists a mapping t — ¢&;, with ¢, — 0 as t — o0, such that:

tlir{.é |w; — uH’zzp(Q;Rm) =0; (4.30)
tli—m Ey(w, A) < mi(A) (4.31)
—00

with wy := uj'. Since xp = p, wy — u in L2 (Q;R™) by ([@30), and @24) follows from [#3T)
by noticing that F(Lﬁ)— im0 By (u; A) < limy_o Ey(wy, A). B

Step 4: differentiation with respect to . First of all, using Lemma [4.I] Remark
and Lemma it easily seen that:

o) i B ) > || Tl
z)

A Q) [ Q)
r)-im B ) = [ i RS ) > [ TR TSR )

for all u € W, ?(€;R™) and all A€ O(Q). Moreover, we have

(z); (4.32)

Lemma 4.6. For p-a.e. z € (),

Q@) . T(Qu)
li ey < Im Sy (4.34)

Proof of Lemma [4.6l Fix any s > 0. Denote the class of open balls Q,(z), with z €
and p > 0, such that m}(Q,(z)) > m,(Q,(x)) + su(Q,(x)) by Gs and define N, < Q by

N, = {x €0V >03p€l0,0] Q) gs}.

Fix any ¢ > 0. Using the definition of N, we can assert that for each x € Ny there exists
{pantn <]0,e[ with p,,, — 0 as n — oo such that for every n > 1, u(0Q,, .(x)) = 0 and
Qp...(x) € G;. Consider the family F; of closed balls in € given by

Fo = {@pm(x) :x € Ngand n > 1}.

Then inf {r > 0: Q,(z) € Fo} = 0 for all z € N,. As Q satisfies the Vitali covering theorem,

there exists a disjointed countable subfamily {Q,}icr, of closed balls of Fy (with 1(0Q;) =0
and diam(Q);) €]0,¢[) such that

N, ( U Q) U <Ns\i€L} @Z> with M(Ns\iekj @z) —

i€ly

If p( Vier, @;) = 0 then (E34) will follow. Indeed, in this case we have u(N, ) =0, ie
L(A\N,) = p(€2), and given x € Q\N; there exists § > 0 such that M} (Q,(z)) < m,(Q,(x ))
sp(Q,(x)) for all p €]0, 5. Hence
0y (Qp(2) _ . M (Qp(x))
lim ——————%= < hm
=0 p(Qp(x)) 1(Qp())
and (4.34) follows by letting s — 0.

+ s for all s > 0,
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To establish that ,u( Uiel, @Z) = 0 it is sufficient to prove that for every finite subset J of Iy,

“(?é;éi) — 0. (4.35)

As Q satisfies the Vitali covering theorem and Q\ Ujc; @, is open, there exists a countable
family {B;}ic; of disjoint open balls of Q\ U Q;, with u(0B;) = 0 and diam(B;) €]0, <],

such that
(2 5@) g 8) (g 5) v (5@)) -0 (4:36)

Recalling that m; is the restriction to O(f2) of a finite positive Radon measure which is
absolutely continuous with respect to p (see Lemmas 1], Remark 1.2 and LT, from (Z.36)

we see that
= > m(By) + > (@)

el eJ

Moreover, Q; € G, for all i € J, i.e., m*(Q;) > m,(Q;) + su(Q;) for all i € J, and m} > m,,

hence
m Q)ZEﬁu +2mu )+ sp (kEJJQZ)

el eJ

As {B;}ier U {Qi}ies € Vo(Q) we have Y., m,(B;) + >, M, (Q;) = m,(2), hence m}(Q2) >
m;,(Q) + sp(Uies Qi), and (430) follows by letting ¢ — 0. W

Combining ([{.34)) with ([£33]) we obtain

. M, (Qp())
['(LP)- lim Fy(u, A zjhm P L dp(x 4.37
( u) mo t( ) APHO ,U/(Q (LU)) :U’( ) ( )

for all u e W'P(Q;R™) and all A e O(Q).
Step 5: removing by affine functions. According to ([£32) and (£3T), the proof of

Theorem will be completed if we prove that for each u € Wj’p(Q; R™) and p-a.e. z € €,
we have:

m, Q) _ —m, (@)
I =0~ B h(Q,@) (4.38)
Q1) | T (Q,)
P uQ@) A (@) (4.39)

where u, € W;P(Q;R™) is given by Proposition B.7(d) (and satisfies (3.4) and (B.3))).

Remark 4.7. In fact, we have:

—ux(Qp('x ) im p ulz)):
((Q( ()))) - tlaooH Lt( ’VM ( ))a
E 0,(2)) _tlgngth(x V,u(x)),

where Hf Ly : M — [0, 00] is given by (2.4).
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We only give the proof of (A38) because the equality (4.39) follows from two inequalities
whose the proofs use the same method as in (£38). For each t > 0 and each z € W;P(Q; R™),
let mt : O(Q2) — [0, ] be given by

m’(A) = inf {E,(w,A) 1w —z € W;,’é’(A; R™)},

z

where we recall that Ey(w, A) := {, Ly(z, V,w(x))du(z). Note that:

mz() = tli)—r?omz(>

(resp. () = T m ().

Proof of (4.38)). Fix any ¢ > 0. Fix any s €]0,1] and any p €]0,¢[. By definition of
m!, (Qs,(x)), where there is no loss of generality in assuming that p(0Qs,(z)) = 0, there
exists w : Q@ — R™ such that w —u € Wlp(Qsp( ); R™) and

L L i )diy) < m(Qup(w) + (Qup()) (4.40)

From PropositionB7|(e) there exists a Uryshon function ¢ € Lip(Q) for the pair (2\Q,(x), Q,,(z))

such that

v
HDMQOHLZO(Q;RN) < m (441)

for some v > 0 (which does not depend on p). Define v € W P(Q,(z); R™) by
vi=pu+ (1 —¢)u,
Then v — u, € Wlp(Qp( ); R™). Using Theorem B.3[(d) and (B.I]) we have
Yoy { V,u in @sp(:c)_
8 Dup® (u = uz) + oVyu + (1 = @)Vyu(z) in Qp(x)\Qy, (7).
As w—wu € Wlp(Qsp( );R™) we have v + (w — u) — u, € WIP(QP( );R™).  Noticing
that 1(0Qs,(x )) 0 and, because of Proposition ([B1)(a), V (w —u)(y) = 0 for p-a.e.
y € Qu(2)\Q,,(x) and taking (A7), the right inequality in 23] and #4I) into account we
deduce that

mzx(Qp(I)> # . o

Q@) S Q@) L " Li(y, Vv + V,u( ))dp
1

- mf@,,<x> Laly, Vi + Vulw = ) dp

1
Q@)

m;, (Qsp(x))
1(Qsp())

2 7 (@) 1 I Ap s
= ((1—s>w<@sp<x>>pp ! d“u(@;p@)))

J Li(y, V,v)dp
2\ Qe (@)

sp

N

+ €
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with

Ay = 1(Qp(2)\Qup (@) V()P + fQ o [l

Thus, noticing that pu(Q,(x)) = u(Qs,(z)) and letting ¢ — oo, we obtain

m, (@) _ m,(@Qul
@) T HQu(e)

o BQE) [ A,
e ((1—s>w<@sp<x>>ppf P d“U(@sp(x)))'

On the other hand, as i is a doubling measure we can assert that

i) (4.42)

[ V)P~ V)i =0
But
Ay 1(Qp(2)) w(z)|P
oy < *eney 1) 19
L H(Qy(r) P
G SP@))}QP sl = [Vl luty
and so
s o (i M@u() ()P
e <2 (B igrny 1) 19w (449)
Letting p — 0 in ({.42) and using (3.5]) and (4.43) we see that
m, (Q,(z)) m, (Qs,(7))

Q) N oo
e S B0, 1(0.(@)) 1) V(o)

o m(@Q) _ Q) o
= I 0,0) *”2<Lou<@s,,< N )'V“ ()"

Letting s — 1 and using (3.6]) we conclude that

i (@) _ o m (@)
Q) o (@)

and (£38) follows by letting e — 0. B

+€+2(hm

+ e

5. PROOF OF HOMOGENIZATION THEOREMS

This section is devoted to the proof of Theorems[2.20 and 2.21l We begin by proving Theorem
217

Proof of Theorem 2,17 Fix Q) € 6(X).
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Case 1: (X,d,p) is assumed to be a meshable (G, {h;}:~¢)-metric measure space
which is asymptotically periodic with respect to G(X). Fix k£ € N* and consider
tor > 0 given by Definition 2101 To each t > g there correspond k; ,k; € N* and
gi »9; € G such that (ZI4) and (ZI5) hold. Fix any t > t; o. Taking the left inclusion in
(2I4) into account, we see that

h(@) = g; 0l (U) U (h(@)\gi 0y, (U)).

As S is subadditive and G-invariant, it follows that
S (h(Q)) <8 (b () +8 (h(@)\gi 0hyy, (). (5.1)

Taking the right inclusion in (2.I4) into account, it is easily seen that

ht(@)\g;Ohkk; (U) = gtJrOhkkj (U>\g;0hkk; (U),
hence

S (ht(Q)\g{ 0P (U)) <c (u (9? Ot (U)) —p (9{ 0P (U)))
with ¢ > 0 given by (2.I8]), and so
S (h(@)\gi ol (1)) < € (1 (M (©)) = (I, ()

because p is G-invariant. From (210) and (2.I1)) it follows that

8 (1n(@)\gr ohgy- (U)) < en(h(0) [a(hy () — ally- (0))]. (5.2)

Moreover, since S is subadditive and G-invariant, taking (2.12) and (2.I3]) into account, we
can assert that

S(hyyr (V) < ), S(gohk(U0)) = p(hy (U))S (hi(V)). (5.3)
gert+
From (5.10), (52) and (5.3) we deduce that
S ((Q)) < 1(hez (V))S () + ep (i (U)) [ (U)) — (- (U) .
As p is G-invariant, from the left inclusion in (2.I4]) and (2.11]) we see that
p(h(@Q)) = p(hee(U))p(hy- (U)).

Hence

S (@) _ 1l (U)) S (i (1)) . (P (U)) .
p(h(Q)) ~ u(hy-(U)) u(he(U)) Py~ (U)) ’
Letting ¢t — oo and using (2.15)), and then passing to the infimum on k, we obtain

S (@) _ - S(w(D)
t=0 11 (he(Q)) kel pu(hi(U))

Consider now t; o > 0 given by Definition with £ = 1. Taking the right inclusion in

(2I4) (with k£ = 1) into account, we see that

g ol (U) = h(Q) (g7 oy (U)\h(@))
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As § is subadditive and G-invariant, it follows that
S(he (0) < S (h(@) + S (g1 ol (W)\u(@Q)) (5.4)
By ([21I4) (with k£ = 1) we have
9t+0hkt+ (U\(Q) = 9t+0hkt+ (U)\QJOhk; (U),
and using (ZI8) we obtain
S (g ohy: (WN\(Q)) < e(plhys (V) — nlhy
From (5.4) and (5.5) we deduce that
S(hy (U) < 8 (he(Q)) + c(pu(hyz (V) — pu(hy- (U))),
Since p is G-invariant, from the right inequality in (214 (with £ = 1), we have
1(he(Q)) < plhy: (U)).

_(1))). (5.5)

Hence

o S(0) S(hy+ (U)) _S@) (1 - u(hkt(UD) |
ket p(he(U)) — p(hy (U)o (he(Q)) 1
Letting ¢t — oo and using (Z.15]), we obtain
S _ S ((Q)
ketix p(hy(U)) s o (he(Q))
and the proof of case 1 is complete.

Case 2: (X,d, ) is assumed to be a strongly meshable (G, {h;}:~o)-metric measure
space which is weakly asymptotically periodic with respect to S(X). Fix any k € N*
and any t > 0 and set:

Qi = v goh(U);

9€Gy

Q= U goh(U),

9€Gy
where G, are G} are given by Definition ZT4. By the left inclusion in (2I6) we have
Qi © hi(Q) and so hy(Q) = Qrp Y (ht(Q)\Q;k). Hence
S(Q)) < S (Qry) + 8 ((@)\Qry)
and consequently
S(h(Q)) < S (Q;k) iz (Q;k) N S (ht(Q)\Q;k)
n(he(Q)) 1 (Qr) 1(he(Q)) 1(he(Q))
As S is subadditive and G-invariant (resp. p is G-invariant) we have
S (Qp) < card(Gp,)S(hi(U))
(resp. p (Q;k) = card(G;k),u(hk(U))).
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Moreover, h(Q) < sz . by the right inclusion in ([2.I6) which implies that h(Q)\Q;, <
Q;rk\Q;  and so

S (M(@)\Qr) < en (Q\Qu)
with ¢ > 0 given by (2.I8). It follows that

S(h(Q)) - S (he(U)) 1 (Qs) +CN(Q:k\Q;k)
ph(@Q)) e (hi(U)) p(he(Q)) 1(he(Q))
S(u(0) | (070100
= ((U)) p(he(Q))
(

because (Qt_k) < p(he(Q)) since @, = hy(Q). Letting t — o0 and using (ZI7), and then
passing to the infimum on k, we obtain

i Sn(Q) _ S (e(W))

=0 p(h(Q)) kel pu (hy(U))
We now prove that
S (h(U)) _ .. S(h(Q))
8 (D) = 2 (@)
Fix any t > 0. As i(Q) © @, = Ygear, g(U) by the right inclusion in (216) we have
QZH = ht(Q) Y (Q:ﬁ\@(@)% and so
S (QZH) <SS (m(Q)) + S (Qz_l\ht(Q))
because S is subadditive. But, as uy- g(U) =: Q7 < hy(Q) by the left inclusion in ([2.16),
we have Qf\h(Q) < Qf1\Q;;, hence '
S(Qn) _ S(@Qh) _ sm@) L (@45\@r1)
p(Qf) T r(h(Q) T n(h(Q)  p(h(Q))
by using (2.I8)). Consider the subclass (X)) of By(X) given by

(5.6)

(5.7)

Kwy:{ugm;HcGwmmam<m}

geH
and define the set function &; : K(X) —] — w0, 0] by
S1(K) == S(K) — card(H)S(U)

with K = Ugep g(U). Taking the assertion (b) of Definition into account, as S is
subadditive and G-invariant, it is easily seen that S; is decreasing, i.e., for every K € K(X)
and every K’ e K(X),

K < K’ implies §; (K) = S; (K'). (5.8)

Noticing that @/, € K(X), as p is G-invariant we can assert that

S(QL) _ S (Qd) )
p(@h)  n(@L)  wU)

(5.9)
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On the other hand, by the assertion (d) of Definition (with H = G, © G) there exist
7; € N* and f; € G such that

Q{1 < froh;, (U).
Thus, using (5.8)), from (59) we obtain

§(@u) _ Silfoh(U) SO o Si(fohi(U)  SWU)

(@)~ 1 (eoha (D) T ul(0) ~ (et p(fohy(0)) ()
But, using the assertion (c) of Definition 2.12] we see that for each f € G and each i € N*
we have foh;(U) = Ugeg,(r) 9(U). So, as S and p are G-invariant, we get
Si (fohi(U)) S (fohi(U)) S(U)
— — card(Gy(f))—
W (For®) ~ n(ror®) N TEor @)
S (h(U))  S(U)
p(hi(U))  p(U)

. S(w(U)
7w (he(D) (D)
for all f € G and all i € N*, and consequently

Si(fohi(U)) _ . . S (h(U)) S(U)
ot g (fohi(1)) ~ 1% p(he(0)  p(0) o4y
Combining (5.7) with (510) and with (5.11]), we deduce that
g SV _ S (@) | (Q\Qua)
keNt 11 (hyp(U))  p (he(Q)) 1 (he(Q))
and (5.6) follows by letting t — oo and using (2.17). W

Proof of Theorem [2.20l The proof consists of applying Corollary For this, it suffices
to verify that (2.7) is satisfied.
For each & € M, we consider the set function 8¢ : By(X) — [0, o] defined by

S5y i= int { [ 0.6+ Vaulauts) s we (AR .

As {Li}i=0 is a family of (G, {h:}=0)-periodic integrands modelled on L (see Definition 2:18),
we have

S ((Q) = inf{L(Q)uy,gwuw(m)du(> wew! <ht<@>;Rm>}

(5.10)

=

=t f [ L0ulo), €+ Vo) e Wi (@R |
Q

_ u(ht(Q))inf{fQLt(y,§+Vuw(y))du() weW1P<Q,Rm>}

for all @ € Ba(X) and all £ > 0, and so:



28 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

e S (@)
3%Hh(93mu@<<y

Tim HELy(2,€) = lim 1 (he(Qp())

for p-a.e. x € Q, all p> 0 and all £ € M. But, from the second inequality in (2.3]), it is easy
to see that S¢(A) < cu(A) < cu(A) for all A e By(X), where ¢ := 5(1 + |£[7), and moreover
the set function &% is clearly G-invariant and subadditive because, for each A, B € By(X),
,u(A/u\B\(/Ol U é)) — 0 since AU B\(A U B) € A U 0B and p(0A) = u(0B) = 0. Thus,
by Theorem 2.17 we see that

S (he(Qp()) S¢ (hi(U))
Bl @e) e () e
which means that lim, ,, H Li(z,§) = im0 HOLi(2, &) = Lnom(§) for p-ae. z € Q, all
p>0and all £ € M, i.e., (2.7) holds, and finishes the proof. B

Proof of Theorem 2.27l Under the hypotheses of Theorem 2.21] it is easy to see that, by
using Theorem 2.2 we have:

D(LE)- lim Ey(u; A) = L lim lim M4 Li(z, V,u(x))dp(z);

t—00 icl AA P00
[(L7)- lim E,(u; A) f lim lim ’HPL’(x V,u(x))dp(x)
t—o0 QA p—0t—00

iel

for all w e WHP(Q;R™) and all A € O(f2). Under these hypotheses, it is also easily seen that
Theorem 217 implies that for each i € I,

lim H: Lj(z, &) = hm HOLy(2,6) = Lo (€)

t—0o0
for p-a.e. z € QN A, all p> 0 and all £ € M with L{__ given by ([220), which gives the
result. W
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