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Γ-CONVERGENCE OF NONCONVEX INTEGRALS IN
CHEEGER-SOBOLEV SPACES AND HOMOGENIZATION

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We study Γ-convergence of nonconvex variational integrals of the calculus of
variations in the setting of Cheeger-Sobolev spaces. Applications to relaxation and homog-
enization are given.

1. Introduction

Let pX, d, µq be a metric measure space, where pX, dq is a length space which is complete,
separable and locally compact, and µ is a positive Radon measure on X . Let p ą 1 be a
real number and let m ě 1 be an integer. Let Ω Ă X be a bounded open set and let OpΩq
be the class of open subsets of Ω. In this paper we consider a family of variational integrals
Et : W 1,p

µ pΩ;Rmq ˆ OpΩq Ñ r0,8s defined by

Etpu,Aq :“

ż

A

Ltpx,∇µupxqqdµpxq, (1.1)

where Lt : Ω ˆ M Ñ r0,8s is a family of Borel measurable integrands depending on a
parameter t ą 0 and not necessarily convex with respect to ξ P M, where M denotes the
space of real mˆN matrices. The space W 1,p

µ pΩ;Rmq denotes the class of p-Cheeger-Sobolev
functions from Ω to R

m and ∇µu is the µ-gradient of u (see §3.1 for more details).
We are concerned with the problem of computing the variational limit, in the sense of the
Γ-convergence (see Definition 2.1), of the family tEtutą0, as t Ñ 8, to a variational integral
E8 : W 1,p

µ pΩ;Rmq ˆ OpΩq Ñ r0,8s of the type

E8pu,Aq “

ż

A

L8px,∇µupxqqdµpxq (1.2)

with L8 : Ω ˆ M Ñ r0,8s which does not depend on the parameter t. When L8 is
independent of the variable x, the procedure of passing from (1.1) to (1.2) is referred as
homogenization and was studied by many authors in the euclidean case, i.e., when the metric
measure space pX, d, µq is equal to R

N endowed with the euclidean distance and the Lebesgue
measure, see [BD98] and the references therein. In this paper we deal with the metric
measure and non-euclidean case. Such a attempt for dealing with integral representation
problems of the calculus of variations in the setting of metric measure spaces was initiated
in [AHM15] for relaxation, see also [Moc05, HKLL14]. In fact, the interest of considering
a general measure is that its support can modeled an hyperelastic structure together with
its singularities like for example thin dimensions, corners, junctions, etc (for related works,
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see [BBS97, ABCP99, Man00, Zhi01, BF01, Zhi02, BF02b, BF02a, CJLP02, AHM03, Fra03,
BF03, AHM04, BFR04, Man05, BCP08]). Such mechanical singular objects naturally lead
to develop calculus of variations in the setting of metric measure spaces. Indeed, for example,
a low multi-dimensional structures can be described by a finite number of smooth compact
manifolds Si of dimension ki on which a superficial measure µi “ Hki |Si

is attached. Such
a situation leads to deal with the finite union of manifolds Si, i.e., X “ YiSi, together with
the finite sum of measures µi, i.e., µ “

ř
i µi, whose mathematical framework is that of

metric measure spaces (for more examples, we refer the reader to [BBS97, Zhi02, CJLP02]
and [CPS07, Chapter 2, §10] and the references therein).

The plan of the paper is as follows. In the next section, we state the main results, see Theorem
2.2 (and Corollary 2.3), Corollary 2.4 and Theorems 2.20 and 2.21. In fact, Corollary 2.4 is a
relaxation result that we already proved in [AHM15]. Here we obtain it by applying Theorem
2.2 which is a general Γ-convergence result in the p-growth case. Theorem 2.20, which is
also a consequence of Theorem 2.2, is a homogenization theorem of Braides-Müller type (see
[Bra85, Mül87]) in the setting of metric measure spaces. Note that to obtain such a metric
homogenization theorem we need to make some refinements on our general framework (see
Section 2.3 and especially Definitions 2.5, 2.7, 2.10, 2.12, 2.14 and 2.18) in order to establish
a subadditive theorem (see Theorem 2.17) of Ackoglu-Krengel type (see [AK81]). Theorem
2.21, which generalizes Theorem 2.20, aims to deal with homogenization on low dimensional
structures. In Section 3 we give the auxiliary results that we need for proving Theorem 2.2.
Then, Section 4 is devoted to the proof of Theorem 2.2. Finally, Theorems 2.17, 2.20 and
2.21 are proved in Section 5.

Notation. The open and closed balls centered at x P X with radius ρ ą 0 are denoted by:

Qρpxq :“
!
y P X : dpx, yq ă ρ

)
;

Qρpxq :“
!
y P X : dpx, yq ď ρ

)
.

For x P X and ρ ą 0 we set

BQρpxq :“ QρpxqzQρpxq “
!
y P X : dpx, yq “ ρ

)
.

For A Ă X , the diameter of A (resp. the distance from a point x P X to the subset A) is
defined by diampAq :“ supx,yPA dpx, yq (resp. distpx,Aq :“ infyPA dpx, yq).
The symbol ´

ş
stands for the mean-value integral

´

ż

B

fdµ “
1

µpBq

ż

B

fdµ.

2. Main results

2.1. The Γ-convergence theorem. Here and subsequently, we assume that µ is doubling
on Ω, i.e., there exists a constant Cd ě 1 (called doubling constant) such that

µ pQρpxqq ď Cdµ
´
Q ρ

2

pxq
¯

(2.1)
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for all x P Ω and all ρ ą 0, and Ω supports a weak p1, pq-Poincaré inequality, i.e., there exist
CP ą 0 and σ ě 1 such that for every x P Ω and every ρ ą 0,

´

ż

Qρpxq

ˇ̌
ˇ̌
ˇf ´ ´

ż

Qρpxq

fdµ

ˇ̌
ˇ̌
ˇ dµ ď ρCP

˜
´

ż

Qσρpxq

gpdµ

¸ 1

p

(2.2)

for every f P Lp
µpΩq and every p-weak upper gradient g P Lp

µpΩq for f . (For the definition of
the concept of p-weak upper gradient, see Definition 3.2.)
For each t ą 0, let Lt : Ω ˆ M Ñ r0,8s be a Borel measurable integrand. We assume that
Lt has p-growth, i.e., there exist α, β ą 0, which do not depend on t, such that

α |ξ|p ď Ltpx, ξq ď β p1 ` |ξ|pq (2.3)

for all ξ P M and µ-a.e. x P Ω.
Denote the Γ-limit inf and the Γ-limit sup of Et as t Ñ 8 with respect to the strong
convergence of Lp

µpΩ;Rmq by ΓpLp
µq-limtÑ8 Et and ΓpLp

µq-limtÑ8 Et which are defined by:

ΓpLp
µq- lim

tÑ8
Etpu;Aq :“ inf

"
lim
tÑ8

Etput, Aq : ut

L
p
µ

Ñ u

*
;

ΓpLp
µq- lim

tÑ8
Etpu;Aq :“ inf

"
lim
tÑ8

Enput, Aq : ut

L
p
µ

Ñ u

*

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq.

Definition 2.1 ([DGF75, DG75]). The family tEtutą0 of variational integrals is said to be
ΓpLp

µq-convergent to the variational functional E8 as t Ñ 8 if

ΓpLp
µq- lim

tÑ8
Etpu,Aq ě E8pu,Aq ě ΓpLp

µq- lim
tÑ8

Etpu,Aq,

for any u P W 1,p
µ pΩ;Rmq and any A P OpΩq, and we then write

ΓpLp
µq- lim

tÑ8
Etpu,Aq “ E8pu,Aq.

(For more details on the theory of Γ-convergence we refer to [DM93].)

For each t ą 0 and each ρ ą 0, let Hρ
µLt : Ω ˆ M Ñ r0,8s be given by

Hρ
µLtpx, ξq :“ inf

#
´

ż

Qρpxq

Ltpy, ξ ` ∇µwpyqqdµpyq : w P W
1,p
µ,0pQρpxq;Rmq

+
(2.4)

where the space W
1,p
µ,0 pQρpxq;Rmq is the closure of

Lip0pQρpxq;Rmq :“
!
u P LippΩ;Rmq : u “ 0 on ΩzQρpxq

)

with respect to the W 1,p
µ -norm, where LippΩ;Rmq :“ rLippΩqsm with LippΩq denoting the

algebra of Lipschitz functions from Ω to R. The main result of the paper is the following.
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Theorem 2.2. If (2.3) holds then:

ΓpLp
µq- lim

tÑ8
Etpu;Aq ě

ż

A

lim
ρÑ0

lim
tÑ8

Hρ
µLtpx,∇µupxqqdµpxq; (2.5)

ΓpLp
µq- lim

tÑ8
Etpu;Aq “

ż

A

lim
ρÑ0

lim
tÑ8

Hρ
µLtpx,∇µupxqqdµpxq (2.6)

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq.

As a direct consequence, we have

Corollary 2.3. If (2.3) holds and if

lim
tÑ8

Hρ
µLtpx, ξq “ lim

tÑ8
Hρ

µLtpx, ξq (2.7)

for µ-a.e. x P Ω, all ρ ą 0 and all ξ P M, then

ΓpLp
µq- lim

tÑ8
Etpu;Aq “

ż

A

lim
ρÑ0

lim
tÑ8

Hρ
µLtpx,∇µupxqqdµpxq

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq.

2.2. Relaxation. The equality (2.7) is trivially satisfied when Lt ” L, i.e., Lt does not
depend on the parameter t. In such a case, we have

ΓpLp
µq- lim

tÑ8
Etpu;Aq “ inf

"
lim
tÑ8

ż

A

Lpx,∇µutpxqqdµpxq : ut

L
p
µ

Ñ u

*
“: Epu,Aq,

i.e., the ΓpLp
µq-limit of tEtutą0 as t Ñ 8 is simply the Lp

µ-lower semicontinuous envelope

of the variational integral
ş
A
Lpx,∇µuqdµ. Thus, the problem of computing the Γ-limit of

tEtutą0 becomes a problem of relaxation. We set

QµLpx, ξq :“ lim
ρÑ0

Hρ
µLpx, ξq,

where Hρ
µL is given by (2.4) with Lt replaced by L, and we naturally call QµL the µ-

quasiconvexification of L. Then, Corollary 2.3 implies the following result.

Corollary 2.4. If (2.3) holds then

Epu,Aq “

ż

A

QµLpx,∇µupxqqdµpxq

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq.

We thus retrieve [AHM15, Corollary 2.29].

2.3. Homogenization. In order to apply Theorem 2.2 (and Corollary 2.3) to homogeniza-
tion, it is necessary to make some refinements on our general setting. These refinements
are a first attempt to develop a framework for dealing with homogenization of variational
integrals of the calculus of variations in metric measure spaces.

We begin with the following five definitions (see Definition 2.5 together with Definitions
2.7-2.10 and Definitions 2.12-2.14) which set a framework to deal with homogenization of
variational integrals in Cheeger-Sobolev spaces. Let HomeopXq be the group of homeomor-
phisms on X and let BpXq be the class of Borel subsets of X .
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Definition 2.5. The metric measure space pX, d, µq is called a pG, thtutą0q-metric mea-
sure space if it is endowed with a pair pG, thtutą0q, where G and thtutą0 are subgroups of
HomeopXq, such that:

(a) the measure µ is G-invariant, i.e., g7µ “ µ for all g P G;

(b) there exists U P BpXq, which is called the unit cell, such that µ
`
Ů
˘

Ps0,8r and µpBUq “ 0

with BU “ UzŮ;
(c) the family thtutą0 of homeomorphisms on X is such that:

h1 “ idX ; (2.8)

hst “ hsoht for all s, t ą 0; (2.9)

h
7
tµ “ µphtpUqqµ for all t ą 0. (2.10)

Remark 2.6. Assuming that pX, d, µq is a pG, thtutą0q-metric measure space, it is easy to see
that

µphstpUqq “ µphspUqqµphtpUqq (2.11)

for all s, t ą 0. In particular, as µpUq “ 0 we have µphtpUqq “ 0 for all t ą 0, and so we see
that µpUq “ 1 by using (2.10).

Definition 2.7. When pX, d, µq is a pG, thtutą0q-metric measure space, we say that pX, d, µq
is meshable if for each i P N

˚ and each k P N
˚ there exists a finite subset Gk

i of G such that
pgohkpUqqgPGk

i
is a disjointed finite family and

hikpUq “ Y
gPGk

i

gohkpUq. (2.12)

Remark 2.8. It is easily seen that a pG, thtutą0q-metric measure space pX, d, µq is meshable
if and only if for each i P N

˚ and each k P N
˚ there exists a finite subset Gk

i of G such that
pgohkpUqqgPGk

i
is a disjointed finite family of subsets of hikpUq and

cardpGk
i q “ µphipUqq. (2.13)

In particular, the cardinal of Gk
i does not depend on k. (Here and in what follows, N˚ denotes

the set of integers greater than 1.)

Remark 2.9. When X “ R
N is endowed with the euclidean distance d2 and the Lebesgue

measure LN , we consider G ” Z
N , U “ r0, 1rN“: Y and thtutą0 given by ht : RN Ñ R

N

defined by htpxq “ tx. In this case, for each i P N
˚ and each k P N

˚, we have

Gk
i “

!
pkn1, kn2, ¨ ¨ ¨ , knNq : nj P t0, ¨ ¨ ¨ , i ´ 1u with j P t1, ¨ ¨ ¨ , Nu

)
.

Note that Gk
i “ kG1

i and so cardpGk
i q does not depend on k. More precisely, we have

cardpGk
i q “ iN “ LNphipY qq. In addition, pRN , d2,LNq is meshable.

In what follows, FpXq denotes an arbitrary subclass of BpXq.

Definition 2.10. When pX, d, µq is a meshable pG, thtutą0q-metric measure space, we say
that pX, d, µq is asymptotically periodic with respect to FpXq if for each A P FpXq and for
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each k P N
˚ there exists tA,k ą 0 such that for each t ě tA,k, there exist k´

t , k
`
t P N

˚ and
g´
t , g

`
t P G such that:

g´
t ohkk´

t
pUq Ă htpAq Ă g`

t ohkk`

t
pUq; (2.14)

lim
tÑ8

µ
`
hk`

t
pUq

˘

µ
`
hk´

t
pUq

˘ “ 1. (2.15)

Remark 2.11. For pX, d, µq ” pRN , d2,LNq we consider G ” Z
N , U “ Y and thtutą0 given

by ht : RN Ñ R
N defined by htpxq “ tx (see Remark 2.9). In particular, we have gohkpY q “

kY ` g for all k P N
˚ and all g P G. Then pRN , d2, µq is asymptotically periodic with respect

to CubpRNq, where CubpRNq is the class of open cubes C of RN .

Indeed, if C “
śN

i“1sai, bir with c “ b1 ´ a1 “ ¨ ¨ ¨ “ bN ´ aN ą 0 and if k P N
˚, then for

every t ě 2k
c

, (2.14) is satisfied with:

k´
t “

“
tc
k

‰
´ 1 and k`

t “
“
tc
k

‰
` 1;

g´
t “ kpzt ` êq and g`

t “ kzt where ê “ p1, ¨ ¨ ¨ , 1q and z “ pz1t , ¨ ¨ ¨ , zNt q with zit “
“
tai
k

‰
for

all i P t1, ¨ ¨ ¨ , Nu,

where
“
x
‰

denotes the integer part of the real number x. Moreover, for such k´
t and k`

t , it
is easily seen that (2.15) is verified.
Nevertheless, pRN , d2,LNq is not asymptotically periodic with respect to BapRN q, where
BapRNq is the class of open balls (with respect to d2) of RN .

In light of Remark 2.11 we introduce another “weak” notion of “asymptotic periodicity”
together with another “strong” notion of “meshability”, see Definitions 2.14 and 2.12 below
which plays the role of Definitions 2.7 and 2.10 (see also Remark 2.15).

Definition 2.12. When pX, d, µq is a pG, thtutą0q-metric measure space, we say that pX, d, µq
is strongly meshable if the following four assertions are satisfied:

(a) for each finite subset H of G, the family pgpUqqgPH is finite and disjointed;
(b) if H1 and H2 are two finite subsets of G such that YgPH1

gpUq Ă YgPH2
gpUq, then H1 Ă H2

and

Y
gPH2

gpUq “

ˆ
Y

gPH1

gpUq

˙
Y

ˆ
Y

gPH2zH1

gpUq

˙
;

(c) for each i P N
˚ and each f P G there exists a finite subset Gipfq of G such that

f ohipUq “ Y
gPGipfq

gpUq;

(d) for each finite subset H of G, there exist iH P N
˚ and fH P G such that

Y
gPH

gpUq Ă fH ohiH pUq.

Remark 2.13. The metric measure space pRN , d2,LNq where G ” Z
N , U “ Y and thtutą0 ”

ttxutą0 is strongly meshable with

Gipzq “
!
z ` pn1, n2, ¨ ¨ ¨ , nNq : nj P t0, ¨ ¨ ¨ , i ´ 1u with j P t1, ¨ ¨ ¨ , Nu

)

for all i P N
˚ and all z P Z

N .
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Definition 2.14. When pX, d, µq is a strongly meshable pG, thtutą0q-metric measure space,
we say that pX, d, µq is weakly asymptotically periodic with respect to FpXq if for each A P
FpXq, each k P N

˚ and each t ą 0, there exist finite subsets G´
t,k and G`

t,k of G such that
the families pgohkpUqqgPG´

t,k
and pgohkpUqqgPG`

t,k
are disjointed and satisfy the following two

properties:

Y
gPG´

t,k

gohkpUq Ă htpAq Ă Y
gPG`

t,k

gohkpUq; (2.16)

lim
tÑ8

µ

ˆ
Y

gPG`

t,k

gohkpUqz Y
gPG´

t,k

gohkpUq

˙

µphtpAqq
“ 0. (2.17)

Remark 2.15. From Nguyen and Zessin [NZ79, Lemma 3.1] (see also [LM02, Lemma 2.2]) we
see that for pX, d, µq ” pRN , d2,LNq with G ” Z

N , U “ Y and thtutą0 ” ttxutą0, Definition
2.14 is satisfied with FpXq ” ConvbpRNq, where ConvbpRNq denotes the class of bounded
Borel convex subsets of RN . In this case, for each A P ConvbpRNq, each k P N

˚ and each
t ą 0, we have:

G´
t,k “

!
z P kZN : z ` kY Ă tA

)
;

G`
t,k “

!
z P kZN : pz ` kY q X tA “ H

)
.

Thus, pRN , d2,LNq is weakly asymptotically periodic with respect to BapRNq and CubpRNq.

In the framework of a pG, thtutą0q-metric measure space (see Definition 2.5) which is either
meshable and asymptotically periodic (Definitions 2.7 and 2.10) or strongly meshable and
weakly asymptotically periodic (see Definitions 2.12 and 2.14), we can establish a subadditive
theorem, see Theorem 2.17, of Ackoglu-Krengel type (see [AK81]). Let B0pXq denote the

class of Borel subsets A of X such that µpAq ă 8 and µpBAq “ 0 with BA “ AzÅ. We first
recall the definition of a subadditive (with respect to the disjointed union) and G-invariant
set function.

Definition 2.16. Let S : B0pXq Ñ r0,8s be a set function.

(a) The set function S is said to be subadditive (with respect to the disjointed union) if

SpA Y Bq ď SpAq ` SpBq

for all A,B P B0pXq such that A X B “ H.
(b) Given a subgroup G of HomeopXq, the set function S is said to be G-invariant if

S
`
gpAq

˘
“ SpAq

for all A P B0pXq and all g P G.

The following result, which is proved in Section 5, will be used in the proof of Theorems 2.20
and 2.21 below. In what follows SpXq denotes a subclass of B0pXq.

Theorem 2.17. Assume that pX, d, µq is a pG, thtutą0q-metric measure space which is either

meshable and asymptotically periodic or strongly meshable and weakly asymptotically periodic
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with respect to SpXq and S : B0pXq Ñ r0,8s is a subadditive and G-invariant set function

with the following property:
SpAq ď cµpAq (2.18)

for all A P B0pXq and some c ą 0. Then

lim
tÑ8

S
`
htpQq

˘

µ
`
htpQq

˘ “ inf
kPN˚

S phkpUqq

µphkpUqq

for all Q P SpXq.

Let L : X ˆ M Ñ r0,8s be a Borel measurable integrand assumed to be G-invariant, i.e.,
for µ-a.e. x P X and every ξ P M, Lpgpxq, ξq “ Lpx, ξq for all g P G. For each t ą 0, Let
Lt : X ˆ M Ñ r0,8s be given by

Ltpx, ξq “ Lphtpxq, ξq. (2.19)

(Note that tLtutą0 is then pG, thtutą0q-periodic, i.e., Ltpph´1
t ogohtqpxq, ξq “ Ltpx, ξq for all

x P X , all ξ P M, all t ą 0 and all g P G.)
For convenience, we introduce the following definition.

Definition 2.18. Such a tLtutą0, defined by (2.19), is called a family of pG, thtutą0q-periodic
integrands modelled on L.

Remark 2.19. If pX, d, µq ” pRN , d2,LNq with G ” Z
N , U “ Y and thtutą0 ” ttxutą0, then

G-periodicity is Y -periodicity and pG, thtutą0q-periodicity corresponds to 1
t
Y -periodicity.

Let BapXq be the class of open balls Q of X such that µpBQq “ 0, where BQ :“ QzQ. (Then
BapXq Ă B0pXq.) Applying Corollary 2.3 we then have

Theorem 2.20. Assume that pX, d, µq is a pG, thtutą0q-metric measure space which is either

meshable and asymptotically periodic or strongly meshable and weakly asymptotically periodic

with respect to BapXq. If (2.3) holds and if tLtutą0 is a family of pG, thtutą0q-periodic
integrands modelled on L then

ΓpLp
µq- lim

tÑ8
Etpu;Aq “

ż

A

Lhomp∇µupxqqdµpxq

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq with Lhom : M Ñ r0,8s given by

Lhompξq :“ inf
kPN˚

inf

#
´

ż

hkpŮq
Lpy, ξ ` ∇µwpyqqdµpyq : w P W

1,p
µ,0

´
hk

`
Ů
˘
;Rm

¯+
.

Theorem 2.20 can be applied when X is a N -dimensional manifold diffeomorphic to R
N . In

such a case, we have dp¨, ¨q “ d2pΨ´1p¨q,Ψ´1p¨qq, µ “ pΨ´1q7LN , U “ ΨpY q, G ” ΨpZNq
and thtutą0 Ă HomeopXq is given by htpxq “ ΨptΨ´1pxqq, where Ψ is the corresponding
diffeomorphism from R

N to X . Moreover, Theorem 2.20 can be generalized as follows.

Theorem 2.21. Assume that there exists a finite family tXiuiPI of subsets of X such that

X “ YiPI Xi and µpXi X Xjq “ 0 for all i “ j and for which every pXi, d|Xi
q is a complete,

separable and locally compact length space and every pXi, d|Xi
, µ|Xi

q is a pGi, thi
tutą0q-metric

measure space which is either meshable and asymptotically periodic or strongly meshable and
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weakly asymptotically periodic with respect to BapXiq, where Gi and thi
tutą0 are subgroups of

HomeopXiq. Let tLtutą0 be given by

Ltpx, ¨q :“ Li
tpx, ¨q if x P Xi,

where every tLi
tutą0 is a family of pGi, thi

tutą0q-periodic integrands modelled on Li. If Ω “
YiPIΩi with every Ωi Ă Xi being an open set and if (2.3) holds then

ΓpLp
µq- lim

tÑ8
Etpu;Aq “

ÿ

iPI

ż

ΩiXA

Li
homp∇µupxqqdµpxq

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq, where every Li

hom : M Ñ r0,8s is given by

Li
hompξq :“ inf

kPN˚

inf

#
´

ż

hi
kpŮiq

Lipy, ξ ` ∇µwqdµ : w P W
1,p
µ,0phi

k

`
Ůi

˘
;Rmq

+
(2.20)

with Ui denoting the unit cell in Xi.

3. Auxiliary results

3.1. The p-Cheeger-Sobolev spaces. Let p ą 1 be a real number, let pX, d, µq be a
metric measure space, where pX, dq is a length space which is complete, separable and locally
compact, and µ is a positive Radon measure on X , and let Ω Ă X be a bounded open set. We
begin with the concept of upper gradient introduced by Heinonen and Koskela (see [HK98]).

Definition 3.1. A Borel function g : Ω Ñ r0,8s is said to be an upper gradient for f : Ω Ñ

R if |fpcp1qq ´ fpcp0qq| ď
ş1
0
gpcpsqqds for all continuous rectifiable curves c : r0, 1s Ñ Ω.

The concept of upper gradient has been generalized by Cheeger as follows (see [Che99,
Definition 2.8]).

Definition 3.2. A function g P Lp
µpΩq is said to be a p-weak upper gradient for f P Lp

µpΩq
if there exist tfnun Ă Lp

µpΩq and tgnun Ă Lp
µpΩq such that for each n ě 1, gn is an upper

gradient for fn, fn Ñ f in Lp
µpΩq and gn Ñ g in Lp

µpΩq.

Denote the algebra of Lipschitz functions from Ω to R by LippΩq. (Note that, by Hopf-
Rinow’s theorem (see [BH99, Proposition 3.7, p. 35]), the closure of Ω is compact, and so
every Lipschitz function from Ω to R is bounded.) From Cheeger and Keith (see [Che99,
Theorem 4.38] and [Kei04, Definition 2.1.1 and Theorem 2.3.1]) we have

Theorem 3.3. If µ is doubling on Ω, i.e., (2.1) holds, and Ω supports a weak p1, pq-Poincaré
inequality, i.e., (2.2) holds, then there exists a countable family tpΩα, ξ

αquα of µ-measurable

disjoint subsets Ωα of Ω with µpΩz Yα Ωαq “ 0 and of functions ξα “ pξα1 , ¨ ¨ ¨ , ξαNpαqq : Ω Ñ

R
Npαq with ξαi P LippΩq satisfying the following properties:

(a) there exists an integer N ě 1 such that Npαq P t1, ¨ ¨ ¨ , Nu for all α;
(b) for every α and every f P LippΩq there is a unique Dα

µf P L8
µ pΩα;RNpαqq such that for

µ-a.e. x P Ωα,

lim
ρÑ0

1

ρ
}f ´ fx}L8

µ pQρpxqq “ 0,
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where fx P LippΩq is given by fxpyq :“ fpxq ` Dα
µfpxq ¨ pξαpyq ´ ξαpxqq; in particular

Dα
µfxpyq “ Dα

µfpxq for µ-a.e. y P Ωα;

(c) the operator Dµ : LippΩq Ñ L8
µ pΩ;RN q given by

Dµf :“
ÿ

α

1Xα
Dα

µf,

where 1Ωα
denotes the characteristic function of Ωα, is linear and, for each f, g P LippΩq,

one has

Dµpfgq “ fDµg ` gDµf ;

(d) for every f P LippΩq, Dµf “ 0 µ-a.e. on every µ-measurable set where f is constant.

Remark 3.4. Theorem 3.3 is true without the assumption that pX, dq is a length space.

Let LippΩ;Rmq :“ rLippΩqsm and let ∇µ : LippΩ;Rmq Ñ L8
µ pΩ;Mq given by

∇µu :“

¨
˝

Dµu1

...
Dµum

˛
‚ with u “ pu1, ¨ ¨ ¨ , umq.

From Theorem 3.3(c) we see that for every u P LippΩ;Rmq and every f P LippΩq, one has

∇µpfuq “ f∇µu ` Dµf b u. (3.1)

Definition 3.5. The p-Cheeger-Sobolev space W 1,p
µ pΩ;Rmq is defined as the completion of

LippΩ;Rmq with respect to the norm

}u}
W

1,p
µ pΩ;Rmq :“ }u}Lp

µpΩ;Rmq ` }∇µu}Lp
µpΩ;Mq. (3.2)

Taking Proposition 3.7(a) below into account, since }∇µu}Lp
µpΩ;Mq ď }u}W 1,p

µ pΩ;Rmq for all

u P LippΩ;Rmq the linear map ∇µ from LippΩ;Rmq to Lp
µpΩ;Mq has a unique extension to

W 1,p
µ pΩ;Rmq which will still be denoted by ∇µ and will be called the µ-gradient.

Remark 3.6. When Ω is a bounded open subset of X “ R
N and µ is the Lebesgue measure

on R
N , we retrieve the (classical) Sobolev spaces W 1,ppΩ;Rmq. For more details on the

various possible extensions of the classical theory of the Sobolev spaces to the setting of
metric measure spaces, we refer to [Hei07, §10-14] (see also [Che99, Sha00, GT01, Haj03]).

The following proposition (whose proof is given below, see also [AHM15, Proposition 2.28])
provides useful properties for dealing with calculus of variations in the metric measure setting.

Proposition 3.7. Under the hypotheses of Theorem 3.3, we have:

(a) the µ-gradient is closable in W 1,p
µ pΩ;Rmq, i.e., for every u P W 1,p

µ pΩ;Rmq and every

A P OpΩq, if upxq “ 0 for µ-a.e. x P A then ∇µupxq “ 0 for µ-a.e. x P A;
(b) Ω supports a p-Sobolev inequality, i.e., there exist CS ą 0 and χ ě 1 such that

˜ż

Qρpxq

|v|χpdµ

¸ 1

χp

ď ρCS

˜ż

Qρpxq

|∇µv|pdµ

¸ 1

p

(3.3)
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for all 0 ă ρ ď ρ0, with ρ0 ą 0, and all v P W
1,p
µ,0pQρpxq;Rmq, where, for each A P OpΩq,

W
1,p
µ,0pA;Rmq is the closure of Lip0pA;Rmq with respect to W 1,p

µ -norm defined in (3.2)
with

Lip0pA;Rmq :“
 
u P LippΩ;Rmq : u “ 0 on ΩzA

(
;

(c) Ω satisfies the Vitali covering theorem, i.e., for every A Ă Ω and every family F of

closed balls in Ω, if inftρ ą 0 : Qρpxq P Fu “ 0 for all x P A then there exists a

countable disjointed subfamily G of F such that µpAz YQPG Qq “ 0; in other words,

A Ă
`

YQPG Q
˘

Y N with µpNq “ 0;
(d) for every u P W 1,p

µ pΩ;Rmq and µ-a.e. x P Ω there exists ux P W 1,p
µ pΩ;Rmq such that:

∇µuxpyq “ ∇µupxq for µ-a.e. y P Ω; (3.4)

lim
ρÑ0

1

ρp
´

ż

Qρpxq

|upyq ´ uxpyq|pdµpyq “ 0; (3.5)

(e) for every x P Ω, every ρ ą 0 and every s Ps0, 1r there exists a Uryshon function ϕ P
LippΩq for the pair pΩzQρpxq, Qsρpxqq1 such that

}Dµϕ}L8
µ pΩ;RN q ď

α

ρp1 ´ sq

for some α ą 0.

If moreover pX, dq is a length space then

(f) for µ-a.e. x P Ω,

lim
sÑ1´

lim
ρÑ0

µpQsρpxqq

µpQρpxqq
“ lim

sÑ1´

lim
ρÑ0

µpQsρpxqq

µpQρpxqq
“ 1. (3.6)

Remark 3.8. As µ is a Radon measure, if Ω satisfies the Vitali covering theorem, i.e., Propo-
sition 3.7(c) holds, then for every A P OpΩq and every ε ą 0 there exists a countable family
tQρipxiquiPI of disjoint open balls of A with xi P A, ρi Ps0, εr and µpBQρipxiqq “ 0 such that
µ
`
Az YiPI Qρipxiq

˘
“ 0.

Proof of Proposition 3.7. Firstly, Ω satisfies the Vitali covering theorem, i.e., the prop-
erty (c) holds, because µ is doubling on Ω (see [Fed69, Theorem 2.8.18]). Secondly, the
closability of the µ-gradient in LippΩ;Rmq, given by Theorem 3.3(d), can be extended from
LippΩ;Rmq to W 1,p

µ pΩ;Rmq by using the closability theorem of Franchi, Haj lasz and Koskela
(see [FHK99, Theorem 10]). Thus, the property (a) is satisfied. Thirdly, according to
Cheeger (see [Che99, §4, p. 450] and also [HK95, HK00]), since µ is doubling on Ω and Ω
supports a weak p1, pq-Poincaré inequality, we can assert that there exist c ą 0 and χ ą 1
such that for every 0 ă ρ ď ρ0, with ρ0 ě 0, every v P W

1,p
µ,0pΩ;Rmq and every p-weak upper

gradient g P Lp
µpΩ;Rmq for v,

˜ż

Qρpxq

|v|χpdµ

¸ 1

χp

ď ρc

˜ż

Qρpxq

|g|pdµ

¸ 1

p

. (3.7)

1Given a metric space pΩ, dq, by a Uryshon function from Ω to R for the pair pΩzV,Kq, where K Ă V Ă Ω
with K compact and V open, we mean a continuous function ϕ : Ω Ñ R such that ϕpxq P r0, 1s for all x P Ω,
ϕpxq “ 0 for all x P ΩzV and ϕpxq “ 1 for all x P K.



12 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

On the other hand, from Cheeger (see [Che99, Theorems 2.10 and 2.18]), for each w P
W 1,p

µ pΩq there exists a unique p-weak upper gradient for w, denoted by gw P Lp
µpΩq and

called the minimal p-weak upper gradient for w, such that for every p-weak upper gradient
g P Lp

µpΩq for w, gwpxq ď gpxq for µ-a.e. x P Ω. Moreover (see [Che99, §4] and also [BB11,
§B.2, p. 363], [Bjö00] and [GH13, Remark 2.15]), there exists α ě 1 such that for every
w P W 1,p

µ pΩq and µ-a.e. x P Ω,

1

α
|gwpxq| ď |Dµwpxq| ď α|gwpxq|.

As for v “ pviqi“1,¨¨¨ ,m P W 1,p
µ pΩ;Rmq we have ∇µv “ pDµviqi“1,¨¨¨ ,m, it follows that

1

α
|gvpxq| ď |∇µvpxq| ď α|gvpxq| (3.8)

for µ-a.e. x P Ω, where gv :“ pgviqi“1,¨¨¨ ,m is naturally called the minimal p-weak upper
gradient for v. Combining (3.7) with (3.8) we obtain the property (b). Fourthly, from Björn
(see [Bjö00, Theorem 4.5 and Corollary 4.6] and also [GH13, Theorem 2.12]) we see that for
every α, every u P W 1,p

µ pΩ;Rmq and µ-a.e. x P Ωα,

∇µuxpyq “ ∇µupxq for µ-a.a. y P Ωα,

where ux P W 1,p
µ pΩ;Rmq is given by

uxpyq :“ upyq ´ upxq ´ ∇µupxq ¨ pξαpyq ´ ξαpxqq

and u is Lp
µ-differentiable at x, i.e.,

lim
ρÑ0

1

ρ
}upyq ´ uxpyq}Lp

µpQρpxq;Rmq “ 0.

Hence the property (d) is verified. Fifthly, given ρ ą 0, s Ps0, 1r and x P Ω, there exists a
Uryshon function ϕ P LippΩq for the pair pΩzQρpxqq, Qsρpxqq such

}Lipϕ}L8
µ pΩq ď

1

ρp1 ´ sq
,

where for every y P Ω,

Lipϕpyq :“ lim
dpy,zqÑ0

|ϕpyq ´ ϕpzq|

dpy, zq
.

But, since µ is doubling on Ω and Ω supports a weak p1, pq-Poincaré inequality, from Cheeger
(see [Che99, Theorem 6.1]) we have Lipϕpyq “ gϕpyq for µ-a.e. y P Ω, where gϕ is the minimal
p-weak upper gradient for ϕ. Hence

}Dµϕ}L8
µ pΩ;RN q ď

α

ρp1 ´ sq

because |Dµϕpyq| ď α|gϕpyq| for µ-a.e. y P Ω. Consequently the property (e) holds. Finally,
if moreover pX, dq is a length space then so is pΩ, dq. Thus, from Colding and Minicozzi II
(see [CM98] and [Che99, Proposition 6.12]) we can assert that there exists β ą 0 such that
for every x P Ω, every ρ ą 0 and every s Ps0, 1r,

µpQρpxqzQsρpxqq ď 2βp1 ´ sqβµpQρpxqq,
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which implies the property (f). �

3.2. The De Giorgi-Letta lemma. Let Ω “ pΩ, dq be a metric space, let OpΩq be the
class of open subsets of Ω and let BpΩq be the class of Borel subsets of Ω, i.e., the smallest
σ-algebra containing the open (or equivalently the closed) subsets of Ω. The following result
is due to De Giorgi and Letta (see [DGL77] and also [But89, Lemma 3.3.6 p. 105]).

Lemma 3.9. Let S : OpΩq Ñ r0,8s be an increasing set function, i.e., SpAq ď SpBq for

all A,B P OpΩq such A Ă B, satisfying the following four conditions:

(a) SpHq “ 0;
(b) S is superadditive, i.e., SpAYBq ě SpAq `SpBq for all A,B P OpΩq such that AXB “

H;
(c) S is subadditive, i.e., SpA Y Bq ď SpAq ` SpBq for all A,B P OpΩq;
(d) there exists a finite Radon measure ν on Ω such that SpAq ď νpAq for all A P OpΩq.

Then, S can be uniquely extended to a finite positive Radon measure on Ω which is absolutely

continuous with respect to ν.

4. Proof of the Γ-convergence theorem

This section is devoted to the proof of Theorem 2.2 which is divided into five steps.

Step 1: integral representation of the Γ-limit inf and the Γ-limit sup. For each
u P W 1,p

µ pΩ;Rmq we consider the set functions S´
u ,S

`
u : OpΩq Ñ r0,8s given by:

S´
u pAq :“ ΓpLp

µq- lim
tÑ8

Etpu,Aq;

S`
u pAq :“ ΓpLp

µq- lim
tÑ8

Etpu,Aq.

Lemma 4.1. If (2.3) holds then:

S´
u pAq “

ż

A

λ´
u pxqdµpxq;

S`
u pAq “

ż

A

λ`
u pxqdµpxq

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq with λ´

u , λ
`
u P L1

µpΩq given by:

λ´
u pxq “ lim

ρÑ0

S´
u pQρpxqq

µpQρpxqq
;

λ`
u pxq “ lim

ρÑ0

S`
u pQρpxqq

µpQρpxqq
.

Proof of Lemma 4.1. Fix u P W 1,p
µ pΩ;Rmq. Using the right inequality in (2.3) we see that

S´
u pAq ď

ż

A

βp1 ` |∇µupxq|pqdµpxq for all A P OpΩq (4.1)

`
resp. S`

u pAq ď

ż

A

βp1 ` |∇µupxq|pqdµpxq for all A P OpΩq
˘
. (4.2)

Thus, the condition (d) of Lemma 3.9 is satisfied with ν “ βp1 ` |∇µu|pqdµ (which is
absolutely continuous with respect to µ). On the other hand, it is easily seen that the
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conditions (a) and (b) of Lemma 3.9 are satisfied. Hence, the proof is completed by proving
the condition (c) of Lemma 3.9, i.e.,

S´
u pA Y Bq ď S´

u pAq ` S´
u pBq for all A,B P OpΩq (4.3)`

resp. S`
u pA Y Bq ď S`

u pAq ` S`
u pBq for all A,B P OpΩq

˘
. (4.4)

Indeed, by Lemma 3.9, the set function S´
u (resp. S`

u ) can be (uniquely) extended to a (finite)
positive Radon measure which is absolutely continuous with respect to µ, and the theorem
follows by using Radon-Nikodym’s theorem and then Lebesgue’s differentiation theorem.

Remark 4.2. Lemma 4.1 shows that both ΓpLp
µq- limtÑ8 Etpu, ¨q and ΓpLp

µq- limtÑ8 Etpu, ¨q
can be uniquely extended to a finite positive Radon measure on Ω which is absolutely con-
tinuous with respect to µ.

To show (4.3) (resp. (4.4)) we need the following lemma.

Lemma 4.3. If U, V, Z, T P OpΩq are such that Z Ă U and T Ă V , then

S´
u pZ Y T q ď S´

u pUq ` S´
u pV q (4.5)`

resp. S`
u pZ Y T q ď S`

u pUq ` S`
u pV q

˘
. (4.6)

Proof of Lemma 4.3. As the proof of (4.5) and (4.6) are exactly the same, we will only
prove (4.5). Let tututą0 and tvtutą0 be two sequences in W 1,p

µ pΩ;Rmq such that:

ut Ñ u in Lp
µpΩ;Rmq; (4.7)

vt Ñ u in Lp
µpΩ;Rmq; (4.8)

lim
tÑ8

ż

U

Ltpx,∇µutpxqqdµpxq “ S´
u pUq ă 8; (4.9)

lim
tÑ8

ż

V

Ltpx,∇µvtpxqqdµpxq “ S´
u pV q ă 8. (4.10)

Fix δ Ps0, distpZ, BUqr with BU :“ UzU , fix any t ą 0 and any q ě 1 and consider W´
i ,W`

i Ă
Ω given by:

W´
i :“

!
x P Ω : distpx, Zq ď δ

3
` pi´1qδ

3q

)
;

W`
i :“

!
x P Ω : δ

3
` iδ

3q
ď distpx, Zq

)
,

where i P t1, ¨ ¨ ¨ , qu. For every i P t1, ¨ ¨ ¨ , qu there exists a Uryshon function ϕi P LippΩq
for the pair pW`

i ,W´
i q. Define wi

t P W 1,p
µ pΩ;Rmq by

wi
t :“ ϕiut ` p1 ´ ϕiqvt.

Setting Wi :“ ΩzpW´
i Y W`

i q and using Theorem 3.3(d) and (3.1) we have

∇µw
i
t “

$
&
%

∇µut in W´
i

Dµϕi b put ´ vtq ` ϕi∇µut ` p1 ´ ϕiq∇µvt in Wi

∇µvt in W`
i .
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Noticing that Z Y T “ ppZ Y T q X W´
i q Y pW X Wiq Y pT X W`

i q with pZ Y T q X W´
i Ă U ,

T X W`
i Ă V and W :“ T X tx P U : δ

3
ă distpx, Zq ă 2δ

3
u we deduce that

ż

ZYT

Ltpx,∇µw
i
tqdµ ď

ż

U

Ltpx,∇µutqdµ `

ż

V

Ltpx,∇µvtqdµ (4.11)

`

ż

WXWi

Ltpx,∇µw
i
tqdµ

for all i P t1, ¨ ¨ ¨ , qu. Moreover, from the right inequality in (2.3) we see that for each
i P t1, ¨ ¨ ¨ , qu,

ż

WXWi

Ltpx,∇µw
i
tqdµ ď c}Dµϕi}

p

L8
µ pΩ;RN q

}ut ´ vt}
p

L
p
µpΩ;Rmq

(4.12)

`c

ż

WXWi

p1 ` |∇µut|
p ` |∇µvt|

pqdµ

with c :“ 22pβ. Substituting (4.12) into (4.11) and averaging these inequalities, it follows
that for every t ą 0 and every q ě 1, there exists it,q P t1, ¨ ¨ ¨ , qu such that

ż

ZYT

Ltpx,∇µw
it,q
t qdµ ď

ż

U

Ltpx,∇µutqdµ `

ż

V

Ltpx,∇µvtqdµ

`
c

q

qÿ

i“1

}Dµϕi}
p

L8
µ pΩ;RN q

}ut ´ vt}
p

L
p
µpΩ;Rmq

`
c

q

ˆ
µpΩq `

ż

U

|∇µut|
pdµ `

ż

V

|∇µvt|
pdµ

˙
.

On the other hand, by (4.7) and (4.8) we have:

lim
tÑ8

}ut ´ vt}
p

L
p
µpΩ;Rmq

“ 0;

lim
tÑ8

}w
it,q
t ´ u}p

L
p
µpΩ;Rmq

“ 0 for all q ě 1.

Moreover, using (4.9) and (4.10) together with the left inequality in (2.3) we see that:

lim
tÑ8

ż

U

|∇µutpxq|pdµpxq ă 8;

lim
tÑ8

ż

V

|∇µvtpxq|pdµpxq ă 8.

Letting t Ñ 8 (and taking (4.9) and (4.10) into account) we deduce that for every q ě 1,

S´
u pZ Y T q ď lim

tÑ8

ż

ZYT

Ltpx,∇µw
it,q
t pxqqdµpxq ď S´

u pUq ` S´
u pV q `

ĉ

q
(4.13)

with ĉ :“ cpµpΩq` limtÑ8

ş
U

|∇µutpxq|pdµpxq` limtÑ8

ş
V

|∇µvtpxq|pdµpxqq, and (4.5) follows
from (4.13) by letting q Ñ 8. �
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We now prove (4.3) and (4.4). Fix A,B P OpΩq. Fix any ε ą 0 and consider C,D P OpΩq
such that C Ă A, D Ă B and

ż

E

βp1 ` |∇µupxq|pqdµpxq ă ε

with E :“ AYBzC Y D. Then S´
u pEq ď ε by (4.1) and S`

u pEq ď ε by (4.2). Let Ĉ, D̂ P OpΩq

be such that C Ă Ĉ, Ĉ Ă A, D Ă D̂ and D̂ Ă B. Applying Lemma 4.3 with U “ Ĉ Y D̂,
V “ T “ E and Z “ C Y D (resp. U “ A, V “ B, Z “ Ĉ and T “ D̂) we obtain:

S´
u pA Y Bq ď S´

u pĈ Y D̂q ` ε
`
resp. S´

u pĈ Y D̂q ď S´
u pAq ` S´

u pBq
˘
;

S`
u pA Y Bq ď S`

u pĈ Y D̂q ` ε
`
resp. S`

u pĈ Y D̂q ď S`
u pAq ` S`

u pBq
˘
,

and (4.3) and (4.4) follows by letting ε Ñ 0. �

Step 2: other formulas for the Γ-limit inf and the Γ-limit sup. Consider the varia-
tional integrals E´

0 , E
`
0 : W 1,p

µ pΩ;Rmq ˆ OpΩq Ñ r0,8s given by:

E´
0 pu,Aq :“ inf

"
lim
tÑ8

Etput, Aq : W 1,p
µ,0pA;Rmq Q ut ´ u

L
p
µ

Ñ 0

*
;

E`
0 pu,Aq :“ inf

"
lim
tÑ8

Etput, Aq : W 1,p
µ,0pA;Rmq Q ut ´ u

L
p
µ

Ñ 0

*
.

Lemma 4.4. If (2.3) holds then:

ΓpLp
µq- lim

tÑ8
Etpu,Aq “ E´

0 pu,Aq; (4.14)

ΓpLp
µq- lim

tÑ8
Etpu,Aq “ E`

0 pu,Aq (4.15)

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq.

Proof of Lemma 4.4. As the proof of (4.14) and (4.15) are exactly the same, we will only
prove (4.15). Fix u P W 1,p

µ pΩ;Rmq and A P OpΩq. Noticing that W 1,p
µ,0pA;Rmq Ă W 1,p

µ pΩ;Rmq

we have E`
0 pu;Aq ě ΓpLp

µq- limtÑ8 Etpu,Aq. Thus, it remains to prove that

E`
0 pu;Aq ď ΓpLp

µq- lim
tÑ8

Etpu,Aq. (4.16)

Let tututą0 Ă W 1,p
µ pΩ;Rmq be such that

ut Ñ u in Lp
µpΩ;Rmq; (4.17)

lim
tÑ8

ż

A

Ltpx,∇µutpxqqdµpxq “ ΓpLp
µq- lim

tÑ8
Etpu,Aq ă 8. (4.18)

Fix δ ą 0 and set Aδ :“ tx P A : distpx, BAq ą δu with BA :“ AzA. Fix any t ą 0 and any
q ě 1 and consider W´

i ,W`
i Ă Ω given by

W´
i :“

!
x P Ω : distpx,Aδq ď δ

3
` pi´1qδ

3q

)
;

W`
i :“

!
x P Ω : δ

3
` iδ

3q
ď distpx,Aδq

)
,
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where i P t1, ¨ ¨ ¨ , qu. (Note that W´
i Ă A.) For every i P t1, ¨ ¨ ¨ , qu there exists a Uryshon

function ϕi P LippΩq for the pair pW`
i ,W´

i q. Define wi
t : X Ñ R

m by

wi
t :“ ϕiut ` p1 ´ ϕiqu.

Then wi
t ´ u P W

1,p
µ,0 pA;Rmq. Setting Wi :“ ΩzpW´

i Y W`
i q Ă A and using Theorem 3.3(d)

and (3.1) we have

∇µw
i
t “

$
&
%

∇µut in W´
i

Dµϕi b put ´ uq ` ϕi∇µut ` p1 ´ ϕiq∇µu in Wi

∇µu in W`
i .

Noticing that A “ W´
i Y Wi Y pA X W`

i q we deduce that for every i P t1, ¨ ¨ ¨ , qu,ż

A

Ltpx,∇µw
i
tqdµ ď

ż

A

Ltpx,∇µutqdµ `

ż

AXW`

i

Ltpx,∇µuqdµ (4.19)

`

ż

Wi

Ltpx,∇µw
i
tqdµ.

Moreover, from the right inequality in (2.3) we see that for each i P t1, ¨ ¨ ¨ , qu,ż

Wi

Ltpx,∇µw
i
tqdµ ď c}Dµϕi}

p

L8
µ pΩ;RN q

}ut ´ u}p
L
p
µpΩ;Rmq

(4.20)

`c

ż

Wi

p1 ` |∇µut|
p ` |∇µu|pqdµ

with c :“ 22pβ. Substituting (4.20) into (4.19) and averaging these inequalities, it follows
that for every t ą 0 and every q ě 1, there exists it,q P t1, ¨ ¨ ¨ , qu such that

ż

A

Ltpx,∇µw
it,q
t qdµ ď

ż

A

Ltpx,∇µutqdµ `
1

q

ż

A

Ltpx,∇µuqdµ

`
c

q

qÿ

i“1

}Dµϕi}
p

L8
µ pΩ;RN q

}ut ´ u}p
L
p
µpΩ;Rmq

`
c

q

ˆ
µpAq `

ż

A

|∇µut|
pdµ `

ż

A

|∇µu|pdµ

˙
.

On the other hand, by (4.17) we have

lim
tÑ8

}w
it,q
t ´ u}p

L
p
µpΩ;Rmq

“ 0 for all q ě 1.

Moreover, using (4.18) together with the left inequality in (2.3) we see that

lim
tÑ8

ż

A

|∇µutpxq|pdµpxq ă 8.

Letting t Ñ 8 (and taking (4.18) into account) we deduce that for every q ě 1,

E`
0 pu;Aq ď lim

tÑ8

ż

A

Ltpx,∇µw
it,q
t qdµ (4.21)

ď ΓpLp
µq- lim

tÑ8
Etpu,Aq `

1

q

ż

A

Ltpx,∇µuqdµ `
ĉ

q
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with ĉ :“ βpµpAq ` limtÑ8

ş
A

|∇µutpxq|pdµpxq `
ş
A

|∇µupxq|pdµpxqq, and (4.16) follows from
(4.21) by letting q Ñ 8. �

Step 3: using the Vitali envelope. For each u P W 1,p
µ pΩ;Rmq we consider the set functions

mu,mu : OpΩq Ñ r0,8s by:

mupAq :“ lim
tÑ8

inf
 
Etpv, Aq : v ´ u P W

1,p
µ,0pA;Rmq

(
;

mupAq :“ lim
tÑ8

inf
 
Etpv, Aq : v ´ u P W

1,p
µ,0pA;Rmq

(
.

For each ε ą 0 and each A P OpΩq, denote the class of countable families tQi :“ QρipxiquiPI
of disjoint open balls of A with xi P A, ρi “ diampQiq Ps0, εr and µpBQiq “ 0 such that
µpAz YiPI Qiq “ 0 by VεpAq, consider mε

u : OpΩq Ñ r0,8s given by

mε
upAq :“ inf

#ÿ

iPI

mupQiq : tQiuiPI P VεpAq

+
,

and define m˚
u : OpΩq Ñ r0,8s by

m˚
upAq :“ sup

εą0

mε
upAq “ lim

εÑ0
mε

upAq.

The set function m˚
u is called the Vitali envelope of mu, see [AHM16, Section 3] for more

details. (Note that as Ω satisfies the Vitali covering theorem, see Proposition 3.7(c) and
Remark 3.8, we have VεpAq “ H for all A P OpΩq and all ε ą 0.)

Lemma 4.5. If (2.3) holds then:

ΓpLp
µq- lim

tÑ8
Etpu,Aq ě mupAq; (4.22)

ΓpLp
µq- lim

tÑ8
Etpu,Aq “ m˚

upAq (4.23)

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq.

Proof of Lemma 4.5. From Lemma 4.4 it is easy to see that ΓpLp
µq- limtÑ8 Etpu,Aq ě

mupAq and ΓpLp
µq- limtÑ8 Etpu,Aq ě mupAq and so ΓpLp

µq- limtÑ8 Etpu,Aq ě m˚
upAq be-

cause in the proof of Lemma 4.1 it is established that ΓpLp
µq- limtÑ8 Etpu, ¨q can be uniquely

extended to a finite positive Radon measure on Ω, see Remark 4.2. Hence (4.22) holds and,
to establish (4.23), it remains to prove that

ΓpLp
µq- lim

tÑ8
Etpu,Aq ď m˚

upAq (4.24)

with m˚
upAq ă 8. Fix any ε ą 0. Given A P OpΩq, by definition of mε

upAq, there exists
tQiuiPI P VεpAq such that ÿ

iPI

mupQiq ď mε
upAq `

ε

2
. (4.25)

Fix any t ą 0 and define mt
u : OpΩq Ñ r0,8s by

mt
upAq :“ inf

 
Etpv, Aq : v ´ u P W

1,p
µ,0pA;Rmq

(
.
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(Thus mup¨q “ limtÑ8 mt
up¨q.) Given any i P I, by definition of mt

upQiq, there exists vit P
W 1,p

µ pQi;R
mq such that vit ´ u P W

1,p
µ,0pQi;R

mq and

Etpv
i
t, Qiq ď mt

upQiq `
εµpQiq

2µpAq
. (4.26)

Define uε
t : Ω Ñ R

m by

uε
t :“

"
u in ΩzA
vit in Qi.

Then uε
t ´ u P W

1,p
µ,0pA;Rmq. Moreover, because of Proposition 3.7(a), ∇µu

ε
t pxq “ ∇µv

i
tpxq

for µ-a.e. x P Qi. From (4.26) we see that

Etpu
ε
t , Aq ď

ÿ

iPI

mt
upQiq `

ε

2
,

hence limtÑ8 Etpu
ε
t , Aq ď mε

upAq ` ε by using (4.25), and consequently

lim
εÑ0

lim
tÑ8

Etpu
ε
t , Aq ď m˚

upAq. (4.27)

On the other hand, we have

}uε
t ´ u}p

L
χp
µ pΩ;Rmq

“

ˆż

A

|uε
t ´ u|χpdµ

˙ 1

χ

“

˜ÿ

iPI

ż

Qi

|vit ´ u|χpdµ

¸ 1

χ

ď
ÿ

iPI

ˆż

Qi

|vit ´ u|χpdµ

˙ 1

χ

with χ ě 1 given by (3.3). As Ω supports a p-Sobolev inequality, see Proposition 3.7(b), and
diampQiq Ps0, εr for all i P I, we have

}uε
t ´ u}p

L
χp
µ pΩ;Rmq

ď εpC
p
S

ÿ

iPI

ż

Qi

|∇µv
i
t ´ ∇µu|pdµ

with CS ą 0 given by (3.3), and so

}uε
t ´ u}p

L
χp
µ pΩ;Rmq

ď 2pεpC
p
S

˜ÿ

iPI

ż

Qi

|∇µv
i
t|
pdµ `

ż

A

|∇µu|pdµ

¸
. (4.28)

Taking the left inequality in (2.3), (4.26) and (4.25) into account, from (4.28) we deduce
that

lim
tÑ8

}uε
t ´ u}p

L
χp
µ pΩ;Rmq

ď 2pC
p
Sε

p

ˆ
1

α
pmε

upAq ` εq `

ż

A

|∇µu|pdµ

˙

which gives

lim
εÑ0

lim
tÑ8

}uε
t ´ u}p

L
χp
µ pΩ;Rmq

“ 0 (4.29)
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because limεÑ0 mε
upAq “ m˚

upAq ă 8. According to (4.27) and (4.29), by diagonalization
there exists a mapping t ÞÑ εt, with εt Ñ 0 as t Ñ 8, such that:

lim
tÑ8

}wt ´ u}p
L
χp
µ pΩ;Rmq

“ 0; (4.30)

lim
tÑ8

Etpwt, Aq ď m˚
upAq (4.31)

with wt :“ uεt
t . Since χp ě p, wt Ñ u in Lp

µpΩ;Rmq by (4.30), and (4.24) follows from (4.31)

by noticing that ΓpLp
µq- limtÑ8 Etpu;Aq ď limtÑ8 Etpwt, Aq. �

Step 4: differentiation with respect to µ. First of all, using Lemma 4.1, Remark 4.2
and Lemma 4.5 it easily seen that:

ΓpLp
µq- lim

tÑ8
Etpu,Aq ě

ż

A

lim
ρÑ0

mupQρpxqq

µpQρpxqq
dµpxq; (4.32)

ΓpLp
µq- lim

tÑ8
Etpu,Aq “

ż

A

lim
ρÑ0

m˚
upQρpxqq

µpQρpxqq
dµpxq ě

ż

A

lim
ρÑ0

mupQρpxqq

µpQρpxqq
dµpxq (4.33)

for all u P W 1,p
µ pΩ;Rmq and all A P OpΩq. Moreover, we have

Lemma 4.6. For µ-a.e. x P Ω,

lim
ρÑ0

m˚
upQρpxqq

µpQρpxqq
ď lim

ρÑ0

mupQρpxqq

µpQρpxqq
. (4.34)

Proof of Lemma 4.6. Fix any s ą 0. Denote the class of open balls Qρpxq, with x P Ω
and ρ ą 0, such that m˚

upQρpxqq ą mupQρpxqq ` sµpQρpxqq by Gs and define Ns Ă Ω by

Ns :“
!
x P Ω : @δ ą 0 Dρ Ps0, δr Qρpxq P Gs

)
.

Fix any ε ą 0. Using the definition of Ns, we can assert that for each x P Ns there exists
tρx,nun Ăs0, εr with ρx,n Ñ 0 as n Ñ 8 such that for every n ě 1, µpBQρx,npxqq “ 0 and
Qρx,npxq P Gs. Consider the family F0 of closed balls in Ω given by

F0 :“
!
Qρx,n

pxq : x P Ns and n ě 1
)
.

Then inf
 
r ą 0 : Qrpxq P F0

(
“ 0 for all x P Ns. As Ω satisfies the Vitali covering theorem,

there exists a disjointed countable subfamily tQiuiPI0 of closed balls of F0 (with µpBQiq “ 0
and diampQiq Ps0, εr) such that

Ns Ă
´

Y
iPI0

Qi

¯
Y
´
Nsz Y

iPI0
Qi

¯
with µ

´
Nsz Y

iPI0
Qi

¯
“ 0.

If µ
`

YiPI0 Qi

˘
“ 0 then (4.34) will follow. Indeed, in this case we have µpNsq “ 0, i.e.,

µpΩzNsq “ µpΩq, and given x P ΩzNs there exists δ ą 0 such that m˚
upQρpxqq ď mupQρpxqq`

sµpQρpxqq for all ρ Ps0, δr. Hence

lim
ρÑ0

m˚
upQρpxqq

µpQρpxqq
ď lim

ρÑ0

mupQρpxqq

µpQρpxqq
` s for all s ą 0,

and (4.34) follows by letting s Ñ 0.
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To establish that µ
`

YiPI0 Qi

˘
“ 0 it is sufficient to prove that for every finite subset J of I0,

µ
´

Y
iPJ

Qi

¯
“ 0. (4.35)

As Ω satisfies the Vitali covering theorem and Ωz YiPJ Qi is open, there exists a countable
family tBiuiPI of disjoint open balls of Ωz YiPJ Qi, with µpBBiq “ 0 and diampBiq Ps0, εr,
such that

µ
´´

Ωz Y
iPJ

Qi

¯
z Y
iPI

Bi

¯
“ µ

´
Ωz

´
Y
iPI

Bi

¯
Y
´

Y
iPJ

Qi

¯¯
“ 0. (4.36)

Recalling that m˚
u is the restriction to OpΩq of a finite positive Radon measure which is

absolutely continuous with respect to µ (see Lemmas 4.1, Remark 4.2 and 4.5), from (4.36)
we see that

m˚
upΩq “

ÿ

iPI

m˚
upBiq `

ÿ

iPJ

m˚
upQiq.

Moreover, Qi P Gs for all i P J , i.e., m˚
upQiq ą mupQiq ` sµpQiq for all i P J , and m˚

u ě mu,
hence

m˚
upΩq ě

ÿ

iPI

mupBiq `
ÿ

iPJ

mupQiq ` sµ
´

Y
iPJ

Qi

¯
.

As tBiuiPI Y tQiuiPJ P VεpΩq we have
ř

iPI mupBiq `
ř

iPJ mupQiq ě mε
upΩq, hence m˚

upΩq ě
mε

upΩq ` sµpYiPJ Qiq, and (4.35) follows by letting ε Ñ 0. �

Combining (4.34) with (4.33) we obtain

ΓpLp
µq- lim

tÑ8
Etpu,Aq “

ż

A

lim
ρÑ0

mupQρpxqq

µpQρpxqq
dµpxq (4.37)

for all u P W 1,ppΩ;Rmq and all A P OpΩq.

Step 5: removing by affine functions. According to (4.32) and (4.37), the proof of
Theorem 2.2 will be completed if we prove that for each u P W 1,p

µ pΩ;Rmq and µ-a.e. x P Ω,
we have:

lim
ρÑ0

mupQρpxqq

µpQρpxqq
ě lim

ρÑ0

mux
pQρpxqq

µpQρpxqq
; (4.38)

lim
ρÑ0

mupQρpxqq

µpQρpxqq
“ lim

ρÑ0

mux
pQρpxqq

µpQρpxqq
, (4.39)

where ux P W 1,p
µ pΩ;Rmq is given by Proposition 3.7(d) (and satisfies (3.4) and (3.5)).

Remark 4.7. In fact, we have:

mux
pQρpxqq

µpQρpxqq
“ lim

tÑ8
Hρ

µLtpx,∇µupxqq;

mux
pQρpxqq

µpQρpxqq
“ lim

tÑ8
Hρ

µLtpx,∇µupxqq,

where Hρ
µLt : M Ñ r0,8s is given by (2.4).
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We only give the proof of (4.38) because the equality (4.39) follows from two inequalities
whose the proofs use the same method as in (4.38). For each t ą 0 and each z P W 1,p

µ pΩ;Rmq,
let mt

z : OpΩq Ñ r0,8s be given by

mt
zpAq :“ inf

 
Etpw,Aq : w ´ z P W

1,p
µ,0pA;Rmq

(
,

where we recall that Etpw,Aq :“
ş
A
Ltpx,∇µwpxqqdµpxq. Note that:

mzp¨q :“ lim
tÑ8

mt
zp¨q

(resp. mzp¨q :“ lim
tÑ8

mt
zp¨qq.

Proof of (4.38). Fix any ε ą 0. Fix any s Ps0, 1r and any ρ Ps0, εr. By definition of
mt

upQsρpxqq, where there is no loss of generality in assuming that µpBQsρpxqq “ 0, there

exists w : Ω Ñ R
m such that w ´ u P W

1,p
µ,0pQsρpxq;Rmq and

ż

Qsρpxq

Ltpy,∇µwpyqqdµpyq ď mt
upQsρpxqq ` εµpQsρpxqq. (4.40)

From Proposition 3.7(e) there exists a Uryshon function ϕ P LippΩq for the pair pΩzQρpxq, Qsρpxqq
such that

}Dµϕ}L8
µ pΩ;RN q ď

γ

ρp1 ´ sq
(4.41)

for some γ ą 0 (which does not depend on ρ). Define v P W 1,p
µ pQρpxq;Rmq by

v :“ ϕu ` p1 ´ ϕqux.

Then v ´ ux P W
1,p
µ,0pQρpxq;Rmq. Using Theorem 3.3(d) and (3.1) we have

∇µv “

"
∇µu in Qsρpxq
Dµϕ b pu ´ uxq ` ϕ∇µu ` p1 ´ ϕq∇µupxq in QρpxqzQsρpxq.

As w ´ u P W
1,p
µ,0pQsρpxq;Rmq we have v ` pw ´ uq ´ ux P W

1,p
µ,0pQρpxq;Rmq. Noticing

that µpBQsρpxqq “ 0 and, because of Proposition (3.7)(a), ∇µpw ´ uqpyq “ 0 for µ-a.e.

y P QρpxqzQsρpxq and taking (4.40), the right inequality in (2.3) and (4.41) into account we
deduce that

mt
ux

pQρpxqq

µpQsρpxqq
ď

1

µpQsρpxqq

ż

Qρpxq

Ltpy,∇µv ` ∇µpw ´ uqqdµ

“
1

µpQsρpxqq

ż

Qsρpxq

Ltpy,∇µu ` ∇µpw ´ uqqdµ

`
1

µpQsρpxqq

ż

QρpxqzQsρpxq

Ltpy,∇µvqdµ

ď
mt

upQsρpxqq

µpQsρpxqq
` ε

`22pβ

˜
γp

p1 ´ sqp
µpQρpxqq

µpQsρpxqq

1

ρp
´

ż

Qρpxq

|u ´ ux|pdµ `
Aρ,s

µpQsρpxqq

¸
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with

Aρ,s :“ µpQρpxqzQsρpxqq|∇µupxq|p `

ż

QρpxqzQsρpxq

|∇µu|pdµ.

Thus, noticing that µpQρpxqq ě µpQsρpxqq and letting t Ñ 8, we obtain

mux
pQρpxqq

µpQρpxqq
ď

mupQsρpxqq

µpQsρpxqq
` ε (4.42)

`22pβ

˜
γp

p1 ´ sqp
µpQρpxqq

µpQsρpxqq

1

ρp
´

ż

Qρpxq

|u ´ ux|pdµ `
Aρ,s

µpQsρpxqq

¸
.

On the other hand, as µ is a doubling measure we can assert that

lim
rÑ0

´

ż

Qrpxq

ˇ̌
|∇µupyq|p ´ |∇µupxq|p

ˇ̌
dµpyq “ 0.

But

Aρ,s

µpQsρpxqq
ď 2

ˆ
µpQρpxqq

µpQsρpxqq
´ 1

˙
|∇µupxq|p

`
µpQρpxqq

µpQsρpxqq
´

ż

Qρpxq

ˇ̌
|∇µupyq|p ´ |∇µupxq|p

ˇ̌
dµpyq

and so

lim
ρÑ0

Aρ,s

µpQsρpxqq
ď 2

ˆ
lim
ρÑ0

µpQρpxq

µpQsρpxqq
´ 1

˙
|∇µupxq|p. (4.43)

Letting ρ Ñ 0 in (4.42) and using (3.5) and (4.43) we see that

lim
ρÑ0

mux
pQρpxqq

µpQρpxqq
ď lim

ρÑ0

mupQsρpxqq

µpQsρpxqq
` ε ` 2

ˆ
lim
ρÑ0

µpQρpxq

µpQsρpxqq
´ 1

˙
|∇µupxq|p

“ lim
ρÑ0

mupQρpxqq

µpQρpxqq
` ε ` 2

ˆ
lim
ρÑ0

µpQρpxq

µpQsρpxqq
´ 1

˙
|∇µupxq|p.

Letting s Ñ 1 and using (3.6) we conclude that

lim
ρÑ0

mux
pQρpxqq

µpQρpxqq
ď lim

ρÑ0

mupQρpxqq

µpQρpxqq
` ε

and (4.38) follows by letting ε Ñ 0. �

5. Proof of homogenization theorems

This section is devoted to the proof of Theorems 2.20 and 2.21. We begin by proving Theorem
2.17.

Proof of Theorem 2.17. Fix Q P SpXq.
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Case 1: pX, d, µq is assumed to be a meshable pG, thtutą0q-metric measure space
which is asymptotically periodic with respect to SpXq. Fix k P N

˚ and consider
tQ,k ą 0 given by Definition 2.10. To each t ě tQ,k there correspond k´

t , k
`
t P N

˚ and
g´
t , g

`
t P G such that (2.14) and (2.15) hold. Fix any t ě tk,Q. Taking the left inclusion in

(2.14) into account, we see that

htpQq “ g´
t ohkk´

t
pUq Y

´
htpQqzg´

t ohkk´

t
pUq

¯
.

As S is subadditive and G-invariant, it follows that

S phtpQqq ď S
´
hkk´

t
pUq

¯
` S

´
htpQqzg´

t ohkk´

t
pUq

¯
. (5.1)

Taking the right inclusion in (2.14) into account, it is easily seen that

htpQqzg´
t ohkk´

t
pUq Ă g`

t ohkk`

t
pUqzg´

t ohkk´

t
pUq,

hence
S
´
htpQqzg´

t ohkk´

t
pUq

¯
ď c

´
µ
´
g`
t ohkk`

t
pUq

¯
´ µ

´
g´
t ohkk´

t
pUq

¯¯

with c ą 0 given by (2.18), and so

S
´
htpQqzg´

t ohkk´

t
pUq

¯
ď c

´
µ
´
hkk`

t
pUq

¯
´ µ

´
hkk´

t
pUq

¯¯

because µ is G-invariant. From (2.10) and (2.11) it follows that

S
´
htpQqzg´

t ohkk´

t
pUq

¯
ď cµphkpUqq

“
µphk`

t
pUqq ´ µphk´

t
pUqq

‰
. (5.2)

Moreover, since S is subadditive and G-invariant, taking (2.12) and (2.13) into account, we
can assert that

Sphkk`

t
pUqq ď

ÿ

gPGk

k
`

t

S pgohkpUqq “ µ
`
hk`

t
pUq

˘
S phkpUqq . (5.3)

From (5.1), (5.2) and (5.3) we deduce that

S phtpQqq ď µ
`
hk`

t
pUq

˘
S phkpUqq ` cµphkpUqq

“
µphk`

t
pUqq ´ µphk´

t
pUqq

‰
.

As µ is G-invariant, from the left inclusion in (2.14) and (2.11) we see that

µphtpQqq ě µphkpUqqµphk´

t
pUqq.

Hence
S phtpQqq

µ phtpQqq
ď

µphk`

t
pUqq

µphk´

t
pUqq

S phkpUqq

µphkpUqq
` c

˜
µphk`

t
pUqq

µphk´

t
pUqq

´ 1

¸
.

Letting t Ñ 8 and using (2.15), and then passing to the infimum on k, we obtain

lim
tÑ8

S phtpQqq

µ phtpQqq
ď inf

kPN˚

S phkpUqq

µphkpUqq
.

Consider now t1,Q ą 0 given by Definition 2.10 with k “ 1. Taking the right inclusion in
(2.14) (with k “ 1) into account, we see that

g`
t ohk`

t
pUq “ htpQq Y

´
g`
t ohk`

t
pUqzhtpQq

¯
.
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As S is subadditive and G-invariant, it follows that

Sphk`

t
pUqq ď S phtpQqq ` S

´
g`
t ohk`

t
pUqzhtpQq

¯
. (5.4)

By (2.14) (with k “ 1) we have

g`
t ohk`

t
pUqzhtpQq Ă g`

t ohk`

t
pUqzg´

t ohk´

t
pUq,

and using (2.18) we obtain

S
´
g`
t ohk`

t
pUqzhtpQq

¯
ď c

`
µphk`

t
pUqq ´ µphk´

t
pUqq

˘
. (5.5)

From (5.4) and (5.5) we deduce that

Sphk`

t
pUqq ď S phtpQqq ` c

`
µphk`

t
pUqq ´ µphk´

t
pUqq

˘
,

Since µ is G-invariant, from the right inequality in (2.14) (with k “ 1), we have

µphtpQqq ď µphk`

t
pUqq.

Hence

inf
kPN˚

S phkpUqq

µphkpUqq
ď

Sphk`

t
pUqq

µphk`

t
pUqq

ď
S phtpQqq

µ phtpQqq
` c

˜
1 ´

µphk´

t
pUqq

µphk`

t
pUqq

¸
.

Letting t Ñ 8 and using (2.15), we obtain

inf
kPN˚

S phkpUqq

µphkpUqq
ď lim

tÑ8

S phtpQqq

µ phtpQqq
,

and the proof of case 1 is complete.

Case 2: pX, d, µq is assumed to be a strongly meshable pG, thtutą0q-metric measure
space which is weakly asymptotically periodic with respect to SpXq. Fix any k P N

˚

and any t ą 0 and set:

Q´
t,k :“ Y

gPG´

t,k

gohkpUq;

Q`
t,k :“ Y

gPG`

t,k

gohkpUq,

where G´
t,k are G`

t,k are given by Definition 2.14. By the left inclusion in (2.16) we have

Q´
t,k Ă htpQq and so htpQq “ Q´

t,k Y
`
htpQqzQ´

t,k

˘
. Hence

SphtpQqq ď S
`
Q´

t,k

˘
` S

`
htpQqzQ´

t,k

˘
,

and consequently

SphtpQqq

µphtpQqq
ď

S
`
Q´

t,k

˘

µ
`
Q´

t,k

˘ µ
`
Q´

t,k

˘

µphtpQqq
`

S
`
htpQqzQ´

t,k

˘

µphtpQqq
.

As S is subadditive and G-invariant (resp. µ is G-invariant) we have

S
`
Q´

t,k

˘
ď card

`
G´

t,k

˘
SphkpUqq

`
resp. µ

`
Q´

t,k

˘
“ card

`
G´

t,k

˘
µphkpUqq

˘
.
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Moreover, htpQq Ă Q`
t,k by the right inclusion in (2.16) which implies that htpQqzQ´

t,k Ă

Q`
t,kzQ´

t,k and so

S
`
htpQqzQ´

t,k

˘
ď cµ

`
Q`

t,kzQ´
t,k

˘

with c ą 0 given by (2.18). It follows that

SphtpQqq

µphtpQqq
ď

S phkpUqq

µ phkpUqq

µ
`
Q´

t,k

˘

µphtpQqq
`

cµ
`
Q`

t,kzQ´
t,k

˘

µphtpQqq

ď
S phkpUqq

µ phkpUqq
`

cµ
`
Q`

t,kzQ´
t,k

˘

µphtpQqq

because µ
`
Q´

t,k

˘
ď µphtpQqq since Q´

t,k Ă htpQq. Letting t Ñ 8 and using (2.17), and then
passing to the infimum on k, we obtain

lim
tÑ8

SphtpQqq

µphtpQqq
ď inf

kPN˚

S phkpUqq

µ phkpUqq
.

We now prove that

inf
kPN˚

S phkpUqq

µ phkpUqq
ď lim

tÑ8

SphtpQqq

µphtpQqq
. (5.6)

Fix any t ą 0. As htpQq Ă Q`
t,1 :“ YgPG`

t,1
gpUq by the right inclusion in (2.16) we have

Q`
t,1 “ htpQq Y

`
Q`

t,1zhtpQq
˘
, and so

S
`
Q`

t,1

˘
ď S phtpQqq ` S

`
Q`

t,1zhtpQq
˘

because S is subadditive. But, as YgPG´

t,1
gpUq “: Q´

t,1 Ă htpQq by the left inclusion in (2.16),

we have Q`
t,1zhtpQq Ă Q`

t,1zQ´
t,1, hence

S
`
Q`

t,1

˘

µ
`
Q`

t,1

˘ ď
S
`
Q`

t,1

˘

µ phtpQqq
ď

S phtpQqq

µ phtpQqq
`

cµ
`
Q`

t,1zQ´
t,1

˘

µ phtpQqq
(5.7)

by using (2.18). Consider the subclass KpXq of B0pXq given by

KpXq :“

"
Y
gPH

gpUq : H Ă G and cardpHq ă 8

*

and define the set function S1 : KpXq Ñs ´ 8, 0s by

S1pKq :“ SpKq ´ cardpHqSpUq

with K “ YgPH gpUq. Taking the assertion (b) of Definition 2.12 into account, as S is
subadditive and G-invariant, it is easily seen that S1 is decreasing, i.e., for every K P KpXq
and every K 1 P KpXq,

K Ă K 1 implies S1 pKq ě S1 pK 1q . (5.8)

Noticing that Q`
t,1 P KpXq, as µ is G-invariant we can assert that

S
`
Q`

t,1

˘

µ
`
Q`

t,1

˘ “
S1

`
Q`

t,1

˘

µ
`
Q`

t,1

˘ `
SpUq

µpUq
. (5.9)
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On the other hand, by the assertion (d) of Definition 2.12 (with H “ G`
t,1 Ă G) there exist

it P N
˚ and ft P G such that

Q`
t,1 Ă ftohitpUq.

Thus, using (5.8), from (5.9) we obtain

S
`
Q`

t,1

˘

µ
`
Q`

t,1

˘ ě
S1 pftohitpUqq

µ pftohitpUqq
`

SpUq

µpUq
ě inf

pf,iqPGˆN˚

S1 pf ohipUqq

µ pf ohipUqq
`

SpUq

µpUq
. (5.10)

But, using the assertion (c) of Definition 2.12, we see that for each f P G and each i P N
˚

we have f ohipUq “ YgPGipfq gpUq. So, as S and µ are G-invariant, we get

S1 pf ohipUqq

µ pf ohipUqq
“

S pf ohipUqq

µ pf ohipUqq
´ cardpGipfqq

SpUq

µ pf ohipUqq

ě
S phipUqq

µ phipUqq
´

SpUq

µpUq

ě inf
kPN˚

S phkpUqq

µ phkpUqq
´

SpUq

µpUq

for all f P G and all i P N
˚, and consequently

inf
pf,iqPGˆN˚

S1 pf ohipUqq

µ pf ohipUqq
ě inf

kPN˚

S phkpUqq

µ phkpUqq
´

SpUq

µpUq
. (5.11)

Combining (5.7) with (5.10) and with (5.11), we deduce that

inf
kPN˚

S phkpUqq

µ phkpUqq
ď

S phtpQqq

µ phtpQqq
`

cµ
`
Q`

t,1zQ´
t,1

˘

µ phtpQqq
,

and (5.6) follows by letting t Ñ 8 and using (2.17). �

Proof of Theorem 2.20. The proof consists of applying Corollary 2.3. For this, it suffices
to verify that (2.7) is satisfied.
For each ξ P M, we consider the set function Sξ : B0pXq Ñ r0,8s defined by

SξpAq :“ inf

"ż

Å

Lpy, ξ ` ∇µwpyqqdµpyq : w P W
1,p
µ,0

`
Å;Rm

˘*
.

As tLtutą0 is a family of pG, thtutą0q-periodic integrands modelled on L (see Definition 2.18),
we have

Sξ phtpQqq “ inf

"ż

htpQq

Lpy, ξ ` ∇µwpyqqdµpyq : w P W
1,p
µ,0phtpQq;Rmq

*

“ inf

"ż

Q

Lphtpyq, ξ ` ∇µwphtpyqqqdph7
tµqpyq : w P W

1,p
µ,0phtpQq;Rmq

*

“ µphtpQqq inf

"
´

ż

Q

Ltpy, ξ ` ∇µwpyqqdµpyq : w P W
1,p
µ,0 pQ;Rmq

*

for all Q P BapXq and all t ą 0, and so:
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lim
tÑ8

Hρ
µLtpx, ξq “ lim

tÑ8

Sξ phtpQρpxqq

µ phtpQρpxqq
;

lim
tÑ8

Hρ
µLtpx, ξq “ lim

tÑ8

Sξ phtpQρpxqq

µ phtpQρpxqq

for µ-a.e. x P Ω, all ρ ą 0 and all ξ P M. But, from the second inequality in (2.3), it is easy

to see that SξpAq ď cµ
`
Å
˘

ď cµpAq for all A P B0pXq, where c :“ βp1 ` |ξ|pq, and moreover

the set function Sξ is clearly G-invariant and subadditive because, for each A,B P B0pXq,

µ
´
{̊A Y BzpÅ Y B̊q

¯
“ 0 since {̊A Y BzpÅ Y B̊q Ă BA Y BB and µpBAq “ µpBBq “ 0. Thus,

by Theorem 2.17 we see that

lim
tÑ8

Sξ phtpQρpxqq

µ phtpQρpxqq
“ inf

kPN˚

Sξ phkpUqq

µphkpUqq
“ Lhompξq,

which means that limtÑ8 Hρ
µLtpx, ξq “ limtÑ8 Hρ

µLtpx, ξq “ Lhompξq for µ-a.e. x P Ω, all
ρ ą 0 and all ξ P M, i.e., (2.7) holds, and finishes the proof. �

Proof of Theorem 2.21. Under the hypotheses of Theorem 2.21 it is easy to see that, by
using Theorem 2.2, we have:

ΓpLp
µq- lim

tÑ8
Etpu;Aq ě

ÿ

iPI

ż

ΩiXA

lim
ρÑ0

lim
tÑ8

Hρ
µL

i
tpx,∇µupxqqdµpxq;

ΓpLp
µq- lim

tÑ8
Etpu;Aq “

ÿ

iPI

ż

ΩiXA

lim
ρÑ0

lim
tÑ8

Hρ
µL

i
tpx,∇µupxqqdµpxq

for all u P W 1,ppΩ;Rmq and all A P OpΩq. Under these hypotheses, it is also easily seen that
Theorem 2.17 implies that for each i P I,

lim
tÑ8

Hρ
µL

i
tpx, ξq “ lim

tÑ8
Hρ

µL
i
tpx, ξq “ Li

hompξq

for µ-a.e. x P Ωi X A, all ρ ą 0 and all ξ P M with Li
hom given by (2.20), which gives the

result. �
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[Fra03] Ilaria Fragalà. Lower semicontinuity of multiple µ-quasiconvex integrals. ESAIM Control Optim.
Calc. Var., 9:105–124 (electronic), 2003.

[GH13] Jasun Gong and Piotr Haj lasz. Differentiability of p-harmonic functions on metric measure spaces.
Potential Anal., 38(1):79–93, 2013.

[GT01] Vladimir Gol’dshtein and Marc Troyanov. Axiomatic theory of Sobolev spaces. Expo. Math.,
19(4):289–336, 2001.

[Haj03] Piotr Haj lasz. Sobolev spaces on metric-measure spaces. In Heat kernels and analysis on mani-
folds, graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 173–218.
Amer. Math. Soc., Providence, RI, 2003.

[Hei07] Juha Heinonen. Nonsmooth calculus. Bull. Amer. Math. Soc. (N.S.), 44(2):163–232, 2007.
[HK95] Piotr Haj lasz and Pekka Koskela. Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math.,
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