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We study Γ-convergence of nonconvex variational integrals of the calculus of variations in the setting of Cheeger-Sobolev spaces. Applications to relaxation and homogenization are given.

Introduction

Let pX, d, µq be a metric measure space, where pX, dq is a length space which is complete, separable and locally compact, and µ is a positive Radon measure on X. Let p ą 1 be a real number and let m ě 1 be an integer. Let Ω Ă X be a bounded open set and let OpΩq be the class of open subsets of Ω. In this paper we consider a family of variational integrals E t : W 1,p µ pΩ; R m q ˆOpΩq Ñ r0, 8s defined by E t pu, Aq :"

ż A L t px, ∇ µ upxqqdµpxq, (1.1) 
where L t : Ω ˆM Ñ r0, 8s is a family of Borel measurable integrands depending on a parameter t ą 0 and not necessarily convex with respect to ξ P M, where M denotes the space of real m ˆN matrices. The space W 1,p µ pΩ; R m q denotes the class of p-Cheeger-Sobolev functions from Ω to R m and ∇ µ u is the µ-gradient of u (see §3.1 for more details). We are concerned with the problem of computing the variational limit, in the sense of the Γ-convergence (see Definition 2.1), of the family tE t u tą0 , as t Ñ 8, to a variational integral E 8 : W 1,p µ pΩ; R m q ˆOpΩq Ñ r0, 8s of the type

E 8 pu, Aq " ż A L 8 px, ∇ µ upxqqdµpxq (1.2)
with L 8 : Ω ˆM Ñ r0, 8s which does not depend on the parameter t. When L 8 is independent of the variable x, the procedure of passing from (1.1) to (1.2) is referred as homogenization and was studied by many authors in the euclidean case, i.e., when the metric measure space pX, d, µq is equal to R N endowed with the euclidean distance and the Lebesgue measure, see [START_REF] Braides | Homogenization of multiple integrals[END_REF] and the references therein. In this paper we deal with the metric measure and non-euclidean case. Such a attempt for dealing with integral representation problems of the calculus of variations in the setting of metric measure spaces was initiated in [START_REF] Anza | On the relaxation of variational integrals in metric Sobolev spaces[END_REF] for relaxation, see also [START_REF] Mocanu | Variational integrals in metric measure spaces[END_REF][START_REF] Heikki Hakkarainen | Relaxation and integral representation for functionals of linear growth on metric measure spaces[END_REF]. In fact, the interest of considering a general measure is that its support can modeled an hyperelastic structure together with its singularities like for example thin dimensions, corners, junctions, etc (for related works, see [BBS97, ABCP99, Man00, Zhi01, BF01, Zhi02, BF02b, BF02a, CJLP02, AHM03, Fra03, BF03, AHM04, BFR04, Man05, BCP08]). Such mechanical singular objects naturally lead to develop calculus of variations in the setting of metric measure spaces. Indeed, for example, a low multi-dimensional structures can be described by a finite number of smooth compact manifolds S i of dimension k i on which a superficial measure µ i " H k i | S i is attached. Such a situation leads to deal with the finite union of manifolds S i , i.e., X " Y i S i , together with the finite sum of measures µ i , i.e., µ " ř i µ i , whose mathematical framework is that of metric measure spaces (for more examples, we refer the reader to [START_REF] Bouchitte | Energies with respect to a measure and applications to low-dimensional structures[END_REF][START_REF] Zhikov | Averaging of problems in the theory of elasticity on singular structures[END_REF][START_REF] Chechkin | On homogenization of networks and junctions[END_REF] and [CPS07, Chapter 2, §10] and the references therein).

The plan of the paper is as follows. In the next section, we state the main results, see Theorem 2.2 (and Corollary 2.3), Corollary 2.4 and Theorems 2.20 and 2.21. In fact, Corollary 2.4 is a relaxation result that we already proved in [START_REF] Anza | On the relaxation of variational integrals in metric Sobolev spaces[END_REF]. Here we obtain it by applying Theorem 2.2 which is a general Γ-convergence result in the p-growth case. Theorem 2.20, which is also a consequence of Theorem 2.2, is a homogenization theorem of Braides-Müller type (see [START_REF] Braides | Homogenization of some almost periodic coercive functional[END_REF][START_REF] Müller | Homogenization of nonconvex integral functionals and cellular elastic materials[END_REF]) in the setting of metric measure spaces. Note that to obtain such a metric homogenization theorem we need to make some refinements on our general framework (see Section 2.3 and especially Definitions 2.5, 2.7, 2.10, 2.12, 2.14 and 2.18) in order to establish a subadditive theorem (see Theorem 2.17) of Ackoglu-Krengel type (see [START_REF] Akcoglu | Ergodic theorems for superadditive processes[END_REF]). Theorem 2.21, which generalizes Theorem 2.20, aims to deal with homogenization on low dimensional structures. In Section 3 we give the auxiliary results that we need for proving Theorem 2.2. Then, Section 4 is devoted to the proof of Theorem 2.2. Finally, Theorems 2.17, 2.20 and 2.21 are proved in Section 5.

Notation. The open and closed balls centered at x P X with radius ρ ą 0 are denoted by: Q ρ pxq :" ! y P X : dpx, yq ă ρ ) ;

Q ρ pxq :" ! y P X : dpx, yq ď ρ

) .

For x P X and ρ ą 0 we set BQ ρ pxq :" Q ρ pxqzQ ρ pxq " ! y P X : dpx, yq " ρ ) .

For A Ă X, the diameter of A (resp. the distance from a point x P X to the subset A) is defined by diampAq :" sup x,yPA dpx, yq (resp. distpx, Aq :" inf yPA dpx, yq).

The symbol ş stands for the mean-value integral

ż B f dµ " 1 µpBq ż B f dµ.

Main results

2.1. The Γ-convergence theorem. Here and subsequently, we assume that µ is doubling on Ω, i.e., there exists a constant C d ě 1 (called doubling constant) such that µ pQ ρ pxqq ď C d µ ´Qρ 2 pxq ¯(2.1) for all x P Ω and all ρ ą 0, and Ω supports a weak p1, pq-Poincaré inequality, i.e., there exist C P ą 0 and σ ě 1 such that for every x P Ω and every ρ ą 0,

ż Qρpxq ˇˇˇˇf ´ż Qρpxq f dµ ˇˇˇˇd µ ď ρC P ˜ż Qσρpxq g p dµ ¸1 p (2.2)
for every f P L p µ pΩq and every p-weak upper gradient g P L p µ pΩq for f . (For the definition of the concept of p-weak upper gradient, see Definition 3.2.) For each t ą 0, let L t : Ω ˆM Ñ r0, 8s be a Borel measurable integrand. We assume that L t has p-growth, i.e., there exist α, β ą 0, which do not depend on t, such that

α |ξ| p ď L t px, ξq ď β p1 `|ξ| p q (2.3)
for all ξ P M and µ-a.e. x P Ω. Denote the Γ-limit inf and the Γ-limit sup of E t as t Ñ 8 with respect to the strong convergence of L p µ pΩ; R m q by ΓpL p µ q-lim tÑ8 E t and ΓpL p µ q-lim tÑ8 E t which are defined by:

ΓpL p µ q-lim tÑ8 E t pu; Aq :" inf " lim tÑ8 E t pu t , Aq : u t L p µ Ñ u * ; ΓpL p µ q-lim tÑ8 E t pu; Aq :" inf " lim tÑ8 E n pu t , Aq : u t L p µ Ñ u
* for all u P W 1,p µ pΩ; R m q and all A P OpΩq. Definition 2.1 ([DGF75, DG75]). The family tE t u tą0 of variational integrals is said to be ΓpL p µ q-convergent to the variational functional E 8 as t Ñ 8 if

ΓpL p µ q-lim tÑ8 E t pu, Aq ě E 8 pu, Aq ě ΓpL p µ q-lim tÑ8 E t pu, Aq,
for any u P W 1,p µ pΩ; R m q and any A P OpΩq, and we then write ΓpL p µ qlim tÑ8 E t pu, Aq " E 8 pu, Aq.

(For more details on the theory of Γ-convergence we refer to [START_REF] Dal | An introduction to Γ-convergence[END_REF].)

For each t ą 0 and each ρ ą 0, let H ρ µ L t : Ω ˆM Ñ r0, 8s be given by

H ρ µ L t px, ξq :" inf # ż Qρpxq L t py, ξ `∇µ wpyqqdµpyq : w P W 1,p µ,0 pQ ρ pxq; R m q + (2.4)
where the space W 1,p µ,0 pQ ρ pxq; R m q is the closure of Lip 0 pQ ρ pxq; R m q :" ! u P LippΩ; R m q : u " 0 on ΩzQ ρ pxq ) with respect to the W 1,p µ -norm, where LippΩ; R m q :" rLippΩqs m with LippΩq denoting the algebra of Lipschitz functions from Ω to R. The main result of the paper is the following.

Theorem 2.2. If (2.3) holds then:

ΓpL p µ q-lim tÑ8 E t pu; Aq ě ż A lim ρÑ0 lim tÑ8 H ρ µ L t px, ∇ µ upxqqdµpxq; (2.5) ΓpL p µ q-lim tÑ8 E t pu; Aq " ż A lim ρÑ0 lim tÑ8 H ρ µ L t px, ∇ µ upxqqdµpxq (2.6)
for all u P W 1,p µ pΩ; R m q and all A P OpΩq. As a direct consequence, we have

Corollary 2.3. If (2.3) holds and if lim tÑ8 H ρ µ L t px, ξq " lim tÑ8 H ρ µ L t px, ξq (2.7)
for µ-a.e. x P Ω, all ρ ą 0 and all ξ P M, then

ΓpL p µ q-lim tÑ8 E t pu; Aq " ż A lim ρÑ0 lim tÑ8 H ρ µ L t px, ∇ µ upxqqdµpxq
for all u P W 1,p µ pΩ; R m q and all A P OpΩq. 2.2. Relaxation. The equality (2.7) is trivially satisfied when L t " L, i.e., L t does not depend on the parameter t. In such a case, we have

ΓpL p µ q-lim tÑ8 E t pu; Aq " inf " lim tÑ8 ż A Lpx, ∇ µ u t pxqqdµpxq : u t L p µ Ñ u * ": Epu, Aq,
i.e., the ΓpL p µ q-limit of tE t u tą0 as t Ñ 8 is simply the L p µ -lower semicontinuous envelope of the variational integral ş A Lpx, ∇ µ uqdµ. Thus, the problem of computing the Γ-limit of tE t u tą0 becomes a problem of relaxation. We set

Q µ Lpx, ξq :" lim ρÑ0 H ρ µ Lpx, ξq,
where H ρ µ L is given by (2.4) with L t replaced by L, and we naturally call Q µ L the µquasiconvexification of L. Then, Corollary 2.3 implies the following result.

Corollary 2.4. If (2.3) holds then Epu, Aq " ż A Q µ Lpx, ∇ µ upxqqdµpxq for all u P W 1,p
µ pΩ; R m q and all A P OpΩq. We thus retrieve [AHM15, Corollary 2.29].

Homogenization.

In order to apply Theorem 2.2 (and Corollary 2.3) to homogenization, it is necessary to make some refinements on our general setting. These refinements are a first attempt to develop a framework for dealing with homogenization of variational integrals of the calculus of variations in metric measure spaces.

We begin with the following five definitions (see Definition 2.5 together with Definitions 2.7-2.10 and Definitions 2.12-2.14) which set a framework to deal with homogenization of variational integrals in Cheeger-Sobolev spaces. Let HomeopXq be the group of homeomorphisms on X and let BpXq be the class of Borel subsets of X.

Definition 2.5. The metric measure space pX, d, µq is called a pG, th t u tą0 q-metric measure space if it is endowed with a pair pG, th t u tą0 q, where G and th t u tą0 are subgroups of HomeopXq, such that: (a) the measure µ is G-invariant, i.e., g 7 µ " µ for all g P G;

(b) there exists U P BpXq, which is called the unit cell, such that µ `Ů ˘Ps0, 8r and µpBUq " 0 with BU " Uz Ů; (c) the family th t u tą0 of homeomorphisms on X is such that:

h 1 " id X ;
(2.8) h st " h s oh t for all s, t ą 0;

(2.9)

h 7 t µ " µph t pUqqµ for all t ą 0.
(2.10)

Remark 2.6. Assuming that pX, d, µq is a pG, th t u tą0 q-metric measure space, it is easy to see that µph st pUqq " µph s pUqqµph t pUqq (2.11) for all s, t ą 0. In particular, as µpUq " 0 we have µph t pUqq " 0 for all t ą 0, and so we see that µpUq " 1 by using (2.10).

Definition 2.7. When pX, d, µq is a pG, th t u tą0 q-metric measure space, we say that pX, d, µq is meshable if for each i P N ˚and each k P N ˚there exists a finite subset G k i of G such that pg oh k pUqq gPG k i is a disjointed finite family and h ik pUq " Y

gPG k i g oh k pUq.
(2.12)

Remark 2.8. It is easily seen that a pG, th t u tą0 q-metric measure space pX, d, µq is meshable if and only if for each i P N ˚and each k P N ˚there exists a finite subset G k i of G such that pg oh k pUqq gPG k i is a disjointed finite family of subsets of h ik pUq and cardpG k i q " µph i pUqq.

(2.13)

In particular, the cardinal of G k i does not depend on k. (Here and in what follows, N ˚denotes the set of integers greater than 1.) Remark 2.9. When X " R N is endowed with the euclidean distance d 2 and the Lebesgue measure L N , we consider G " Z N , U " r0, 1r N ": Y and th t u tą0 given by h t : R N Ñ R N defined by h t pxq " tx. In this case, for each i P N ˚and each k P N ˚, we have

G k i "
! pkn 1 , kn 2 , ¨¨¨, kn N q : n j P t0, ¨¨¨, i ´1u with j P t1, ¨¨¨, Nu

) .

Note that G k i " kG 1 i and so cardpG k i q does not depend on k. More precisely, we have cardpG k i q " i N " L N ph i pY qq. In addition, pR N , d 2 , L N q is meshable. In what follows, F pXq denotes an arbitrary subclass of BpXq.

Definition 2.10. When pX, d, µq is a meshable pG, th t u tą0 q-metric measure space, we say that pX, d, µq is asymptotically periodic with respect to F pXq if for each A P F pXq and for each k P N ˚there exists t A,k ą 0 such that for each t ě t A,k , there exist k t , k t P N ˚and g t , g t P G such that: g t oh kk t pUq Ă h t pAq Ă g t oh kk t pUq;

(2.14)

lim tÑ8 µ `hk t pUq μ`h k t pUq ˘" 1.
(2.15)

Remark 2.11. For pX, d, µq " pR N , d 2 , L N q we consider G " Z N , U " Y and th t u tą0 given by h t : R N Ñ R N defined by h t pxq " tx (see Remark 2.9). In particular, we have g oh k pY q " kY `g for all k P N ˚and all g P G. Then pR N , d 2 , µq is asymptotically periodic with respect to CubpR N q, where CubpR N q is the class of open cubes Nevertheless, pR N , d 2 , L N q is not asymptotically periodic with respect to BapR N q, where BapR N q is the class of open balls (with respect to d 2 ) of R N .

C of R N . Indeed, if C " ś N i"1 sa i , b i r with c " b 1 ´a1 " ¨¨¨" b N ´aN
In light of Remark 2.11 we introduce another "weak" notion of "asymptotic periodicity" together with another "strong" notion of "meshability", see Definitions 2.14 and 2.12 below which plays the role of Definitions 2.7 and 2.10 (see also Remark 2.15). Definition 2.12. When pX, d, µq is a pG, th t u tą0 q-metric measure space, we say that pX, d, µq is strongly meshable if the following four assertions are satisfied: (a) for each finite subset H of G, the family pgpUqq gPH is finite and disjointed; q with G " Z N , U " Y and th t u tą0 " ttxu tą0 , Definition 2.14 is satisfied with F pXq " Conv b pR N q, where Conv b pR N q denotes the class of bounded Borel convex subsets of R N . In this case, for each A P Conv b pR N q, each k P N ˚and each t ą 0, we have:

G t,k " ! z P kZ N : z `kY Ă tA ) ; G t,k " ! z P kZ N : pz `kY q X tA " H
) .

Thus, pR N , d 2 , L N q is weakly asymptotically periodic with respect to BapR N q and CubpR N q.

In the framework of a pG, th t u tą0 q-metric measure space (see Definition 2.5) which is either meshable and asymptotically periodic (Definitions 2.7 and 2.10) or strongly meshable and weakly asymptotically periodic (see Definitions 2.12 and 2.14), we can establish a subadditive theorem, see Theorem 2.17, of Ackoglu-Krengel type (see [START_REF] Akcoglu | Ergodic theorems for superadditive processes[END_REF]). Let B 0 pXq denote the class of Borel subsets A of X such that µpAq ă 8 and µpBAq " 0 with BA " Az Å. We first recall the definition of a subadditive (with respect to the disjointed union) and G-invariant set function.

Definition 2.16. Let S : B 0 pXq Ñ r0, 8s be a set function.

(a) The set function S is said to be subadditive (with respect to the disjointed union) if

SpA Y Bq ď SpAq `SpBq for all A, B P B 0 pXq such that A X B " H. (b) Given a subgroup G of HomeopXq, the set function S is said to be G-invariant if S `gpAq ˘" SpAq
for all A P B 0 pXq and all g P G.

The following result, which is proved in Section 5, will be used in the proof of Theorems 2.20 and 2.21 below. In what follows SpXq denotes a subclass of B 0 pXq. Theorem 2.17. Assume that pX, d, µq is a pG, th t u tą0 q-metric measure space which is either meshable and asymptotically periodic or strongly meshable and weakly asymptotically periodic with respect to SpXq and S : B 0 pXq Ñ r0, 8s is a subadditive and G-invariant set function with the following property:

SpAq ď cµpAq (2.18) for all A P B 0 pXq and some c ą 0. Then

lim tÑ8 S `ht pQq μ`h t pQq ˘" inf kPN ˚S ph k pUqq µph k pUqq for all Q P SpXq.
Let L : X ˆM Ñ r0, 8s be a Borel measurable integrand assumed to be G-invariant, i.e., for µ-a.e. x P X and every ξ P M, Lpgpxq, ξq " Lpx, ξq for all g P G. For each t ą 0, Let L t : X ˆM Ñ r0, 8s be given by L t px, ξq " Lph t pxq, ξq.

(2.19) (Note that tL t u tą0 is then pG, th t u tą0 q-periodic, i.e., L t pph ´1 t ogoh t qpxq, ξq " L t px, ξq for all x P X, all ξ P M, all t ą 0 and all g P G.)

For convenience, we introduce the following definition.

Definition 2.18. Such a tL t u tą0 , defined by (2.19), is called a family of pG, th t u tą0 q-periodic integrands modelled on L.

Remark 2.19. If pX, d, µq " pR N , d 2 , L N q with G " Z N , U " Y and th t u tą0 " ttxu tą0 , then G-periodicity is Y -periodicity and pG, th t u tą0 q-periodicity corresponds to 1 t Y -periodicity. Let BapXq be the class of open balls Q of X such that µpBQq " 0, where BQ :" QzQ. (Then BapXq Ă B 0 pXq.) Applying Corollary 2.3 we then have Theorem 2.20. Assume that pX, d, µq is a pG, th t u tą0 q-metric measure space which is either meshable and asymptotically periodic or strongly meshable and weakly asymptotically periodic with respect to BapXq. If (2.3) holds and if tL t u tą0 is a family of pG, th t u tą0 q-periodic integrands modelled on L then

ΓpL p µ q-lim tÑ8 E t pu; Aq " ż A L hom p∇ µ upxqqdµpxq
for all u P W 1,p µ pΩ; R m q and all A P OpΩq with L hom : M Ñ r0, 8s given by

L hom pξq :" inf kPN ˚inf # ż h k p Ůq Lpy, ξ `∇µ wpyqqdµpyq : w P W 1,p µ,0 ´hk `Ů ˘; R m ¯+ .
Theorem 2.20 can be applied when X is a N-dimensional manifold diffeomorphic to R N . In such a case, we have dp¨, ¨q " d 2 pΨ ´1p¨q, Ψ ´1p¨qq, µ " pΨ ´1q 7 L N , U " ΨpY q, G " ΨpZ N q and th t u tą0 Ă HomeopXq is given by h t pxq " ΨptΨ ´1pxqq, where Ψ is the corresponding diffeomorphism from R N to X. Moreover, Theorem 2.20 can be generalized as follows.

Theorem 2.21. Assume that there exists a finite family tX i u iPI of subsets of X such that X " Y iPI X i and µpX i X X j q " 0 for all i " j and for which every pX i , d |X i q is a complete, separable and locally compact length space and every pX i , d |X i , µ |X i q is a pG i , th i t u tą0 q-metric measure space which is either meshable and asymptotically periodic or strongly meshable and weakly asymptotically periodic with respect to BapX i q, where G i and th i t u tą0 are subgroups of HomeopX i q. Let tL t u tą0 be given by L t px, ¨q :" L i t px, ¨q if x P X i , where every tL i t u tą0 is a family of pG i , th i t u tą0 q-periodic integrands modelled on

L i . If Ω " Y iPI Ω i with every Ω i Ă X i being an open set and if (2.3) holds then ΓpL p µ q-lim tÑ8 E t pu; Aq " ÿ iPI ż Ω i XA L i hom p∇ µ upxqqdµpxq
for all u P W 1,p µ pΩ; R m q and all A P OpΩq, where every L i hom : M Ñ r0, 8s is given by

L i hom pξq :" inf kPN ˚inf # ż h i k p Ůiq L i py, ξ `∇µ wqdµ : w P W 1,p µ,0 ph i k `Ů i ˘; R m q + (2.20)
with U i denoting the unit cell in X i .

Auxiliary results

3.1. The p-Cheeger-Sobolev spaces. Let p ą 1 be a real number, let pX, d, µq be a metric measure space, where pX, dq is a length space which is complete, separable and locally compact, and µ is a positive Radon measure on X, and let Ω Ă X be a bounded open set. We begin with the concept of upper gradient introduced by Heinonen and Koskela (see [START_REF] Heinonen | Quasiconformal maps in metric spaces with controlled geometry[END_REF]).

Definition 3.1. A Borel function g : Ω Ñ r0, 8s is said to be an upper gradient for f : Ω Ñ R if |f pcp1qq ´f pcp0qq| ď ş 1 0 gpcpsqqds for all continuous rectifiable curves c : r0, 1s Ñ Ω. The concept of upper gradient has been generalized by Cheeger as follows (see [Che99, Definition 2.8]).

Definition 3.2. A function g P L p µ pΩq is said to be a p-weak upper gradient for f P L p µ pΩq if there exist tf n u n Ă L p µ pΩq and tg n u n Ă L p µ pΩq such that for each n ě 1, g n is an upper gradient for f n , f n Ñ f in L p µ pΩq and g n Ñ g in L p µ pΩq. Denote the algebra of Lipschitz functions from Ω to R by LippΩq. (Note that, by Hopf-Rinow's theorem (see [BH99, Proposition 3.7, p. 35]), the closure of Ω is compact, and so every Lipschitz function from Ω to R is bounded.) From Cheeger and Keith (see [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF]Theorem 4.38] and [Kei04, Definition 2.1.1 and Theorem 2.3.1]) we have Theorem 3.3. If µ is doubling on Ω, i.e., (2.1) holds, and Ω supports a weak p1, pq-Poincaré inequality, i.e., (2.2) holds, then there exists a countable family tpΩ α , ξ α qu α of µ-measurable disjoint subsets Ω α of Ω with µpΩz Y α Ω α q " 0 and of functions ξ α " pξ α 1 , ¨¨¨, ξ α N pαq q : Ω Ñ R N pαq with ξ α i P LippΩq satisfying the following properties: (a) there exists an integer N ě 1 such that Npαq P t1, ¨¨¨, Nu for all α; (b) for every α and every f P LippΩq there is a unique D α µ f P L 8 µ pΩ α ; R N pαq q such that for µ-a.e. x P Ω α ,

lim ρÑ0 1 ρ }f ´fx } L 8 µ pQρpxqq " 0,
where f x P LippΩq is given by f x pyq :" f pxq `Dα µ f pxq ¨pξ α pyq ´ξα pxqq; in particular D α µ f x pyq " D α µ f pxq for µ-a.e. y P Ω α ; (c) the operator D µ : LippΩq Ñ L 8 µ pΩ; R N q given by D µ f :"

ÿ α 1 Xα D α µ f,
where 1 Ωα denotes the characteristic function of Ω α , is linear and, for each f, g P LippΩq, one has D µ pf gq " f D µ g `gD µ f ; (d) for every f P LippΩq, D µ f " 0 µ-a.e. on every µ-measurable set where f is constant.

Remark 3.4. Theorem 3.3 is true without the assumption that pX, dq is a length space.

Let LippΩ; R m q :" rLippΩqs m and let ∇ µ : LippΩ; R m q Ñ L 8 µ pΩ; Mq given by

∇ µ u :" ¨Dµ u 1 . . . D µ u m ' with u " pu 1 , ¨¨¨, u m q.
From Theorem 3.3(c) we see that for every u P LippΩ; R m q and every f P LippΩq, one has

∇ µ pf uq " f ∇ µ u `Dµ f b u. (3.1)
Definition 3.5. The p-Cheeger-Sobolev space W 1,p µ pΩ; R m q is defined as the completion of LippΩ; R m q with respect to the norm }u} W 1,p µ pΩ;R m q :" }u} L p µ pΩ;R m q `}∇ µ u} L p µ pΩ;Mq .

(3.2)

Taking Proposition 3.7(a) below into account, since }∇ µ u} L p µ pΩ;Mq ď }u} W 1,p µ pΩ;R m q for all u P LippΩ; R m q the linear map ∇ µ from LippΩ; R m q to L p µ pΩ; Mq has a unique extension to W 1,p µ pΩ; R m q which will still be denoted by ∇ µ and will be called the µ-gradient. Remark 3.6. When Ω is a bounded open subset of X " R N and µ is the Lebesgue measure on R N , we retrieve the (classical) Sobolev spaces W 1,p pΩ; R m q. For more details on the various possible extensions of the classical theory of the Sobolev spaces to the setting of metric measure spaces, we refer to [Hei07, §10-14] (see also [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF][START_REF] Shanmugalingam | Newtonian spaces: an extension of Sobolev spaces to metric measure spaces[END_REF][START_REF] Gol | Axiomatic theory of Sobolev spaces[END_REF][START_REF] Haj | Sobolev spaces on metric-measure spaces[END_REF]).

The following proposition (whose proof is given below, see also [AHM15, Proposition 2.28]) provides useful properties for dealing with calculus of variations in the metric measure setting. Proposition 3.7. Under the hypotheses of Theorem 3.3, we have: (a) the µ-gradient is closable in W 1,p µ pΩ; R m q, i.e., for every u P W 1,p µ pΩ; R m q and every A P OpΩq, if upxq " 0 for µ-a.e. x P A then ∇ µ upxq " 0 for µ-a.e. x P A; (b) Ω supports a p-Sobolev inequality, i.e., there exist C S ą 0 and χ ě 1 such that ˜żQρpxq

|v| χp dµ ¸1 χp ď ρC S ˜żQρpxq |∇ µ v| p dµ ¸1 p (3.3)
for all 0 ă ρ ď ρ 0 , with ρ 0 ą 0, and all v P W1,p µ,0 pQ ρ pxq; R m q, where, for each A P OpΩq, W 1,p µ,0 pA; R m q is the closure of Lip 0 pA; R m q with respect to W 1,p µ -norm defined in (3.2) with Lip 0 pA; R m q :" u P LippΩ; R m q : u " 0 on ΩzA ( ; (c) Ω satisfies the Vitali covering theorem, i.e., for every A Ă Ω and every family F of closed balls in Ω, if inftρ ą 0 : Q ρ pxq P F u " 0 for all x P A then there exists a countable disjointed subfamily G of F such that µpAz Y QPG Qq " 0; in other words, A Ă `YQPG Q ˘Y N with µpNq " 0; (d) for every u P W 1,p µ pΩ; R m q and µ-a.e. x P Ω there exists u x P W 1,p µ pΩ; R m q such that: ∇ µ u x pyq " ∇ µ upxq for µ-a.e. y P Ω;

(3.4) 

lim
px i qq " 0 such that µ `Az Y iPI Q ρ i px i q ˘" 0.
Proof of Proposition 3.7. Firstly, Ω satisfies the Vitali covering theorem, i.e., the property (c) holds, because µ is doubling on Ω (see [Fed69, Theorem 2.8.18]). Secondly, the closability of the µ-gradient in LippΩ; R m q, given by Theorem 3.3(d), can be extended from LippΩ; R m q to W 1,p µ pΩ; R m q by using the closability theorem of Franchi, Haj lasz and Koskela (see [FHK99, Theorem 10]). Thus, the property (a) is satisfied. Thirdly, according to Cheeger (see [Che99, §4, p. 450] and also [START_REF] Haj | Sobolev meets Poincaré[END_REF][START_REF] Haj | Sobolev met Poincaré[END_REF]), since µ is doubling on Ω and Ω supports a weak p1, pq-Poincaré inequality, we can assert that there exist c ą 0 and χ ą 1 such that for every 0 ă ρ ď ρ 0 , with ρ 0 ě 0, every v P W 1,p µ,0 pΩ; R m q and every p-weak upper gradient g P L p µ pΩ; R m q for v, ˜żQρpxq

|v| χp dµ ¸1 χp ď ρc ˜żQρpxq |g| p dµ ¸1 p . (3.7)
On the other hand, from Cheeger (see [Che99, Theorems 2.10 and 2.18]), for each w P W 1,p µ pΩq there exists a unique p-weak upper gradient for w, denoted by g w P L p µ pΩq and called the minimal p-weak upper gradient for w, such that for every p-weak upper gradient g P L p µ pΩq for w, g w pxq ď gpxq for µ-a.e. x P Ω. Moreover (see [START_REF] Cheeger | Differentiability of Lipschitz functions on metric measure spaces[END_REF]§4] and also [BB11, §B.2, p. 363], [START_REF] Björn | L q -differentials for weighted Sobolev spaces[END_REF] and [GH13, Remark 2.15]), there exists α ě 1 such that for every w P W 1,p µ pΩq and µ-a.e. x P Ω, 1 α |g w pxq| ď |D µ wpxq| ď α|g w pxq|.

As for v " pv i q i"1,¨¨¨,m P W 1,p µ pΩ; R m q we have ∇ µ v " pD µ v i q i"1,¨¨¨,m , it follows that

1 α |g v pxq| ď |∇ µ vpxq| ď α|g v pxq| (3.8)
for µ-a.e. x P Ω, where g v :" pg v i q i"1,¨¨¨,m is naturally called the minimal p-weak upper gradient for v. Combining (3.7) with (3.8) we obtain the property (b). Fourthly, from Björn (see [Bjö00, Theorem 4.5 and Corollary 4.6] and also [GH13, Theorem 2.12]) we see that for every α, every u P W 1,p µ pΩ; R m q and µ-a.e. x P Ω α , ∇ µ u x pyq " ∇ µ upxq for µ-a.a. y P Ω α , where u x P W 1,p µ pΩ; R m q is given by u x pyq :" upyq ´upxq ´∇µ upxq ¨pξ α pyq ´ξα pxqq and u is L p µ -differentiable at x, i.e., lim ρÑ0 1 ρ }upyq ´ux pyq} L p µ pQρpxq;R m q " 0.

Hence the property (d) is verified. Fifthly, given ρ ą 0, s Ps0, 1r and x P Ω, there exists a Uryshon function ϕ P LippΩq for the pair pΩzQ ρ pxqq, Q sρ pxqq such

}Lipϕ} L 8 µ pΩq ď 1 ρp1 ´sq ,
where for every y P Ω, Lipϕpyq :" lim dpy,zqÑ0

|ϕpyq ´ϕpzq| dpy, zq .

But, since µ is doubling on Ω and Ω supports a weak p1, pq-Poincaré inequality, from Cheeger (see [Che99, Theorem 6.1]) we have Lipϕpyq " g ϕ pyq for µ-a.e. y P Ω, where g ϕ is the minimal p-weak upper gradient for ϕ. Hence }D µ ϕ} L 8 µ pΩ;R N q ď α ρp1 ´sq because |D µ ϕpyq| ď α|g ϕ pyq| for µ-a.e. y P Ω. Consequently the property (e) holds. Finally, if moreover pX, dq is a length space then so is pΩ, dq. Thus, from Colding and Minicozzi II (see [START_REF] Colding | Liouville theorems for harmonic sections and applications[END_REF] and [Che99, Proposition 6.12]) we can assert that there exists β ą 0 such that for every x P Ω, every ρ ą 0 and every s Ps0, 1r, µpQ ρ pxqzQ sρ pxqq ď 2 β p1 ´sq β µpQ ρ pxqq, which implies the property (f).

3.2. The De Giorgi-Letta lemma. Let Ω " pΩ, dq be a metric space, let OpΩq be the class of open subsets of Ω and let BpΩq be the class of Borel subsets of Ω, i.e., the smallest σ-algebra containing the open (or equivalently the closed) subsets of Ω. The following result is due to De Giorgi and Letta (see [START_REF] Giorgi | Une notion générale de convergence faible pour des fonctions croissantes d'ensemble[END_REF] and also [But89, Lemma 3.3.6 p. 105]). Lemma 3.9. Let S : OpΩq Ñ r0, 8s be an increasing set function, i.e., SpAq ď SpBq for all A, B P OpΩq such A Ă B, satisfying the following four conditions: (a) SpHq " 0; (b) S is superadditive, i.e., SpA Y Bq ě SpAq `SpBq for all A, B P OpΩq such that A X B " H; (c) S is subadditive, i.e., SpA Y Bq ď SpAq `SpBq for all A, B P OpΩq; (d) there exists a finite Radon measure ν on Ω such that SpAq ď νpAq for all A P OpΩq. Then, S can be uniquely extended to a finite positive Radon measure on Ω which is absolutely continuous with respect to ν.

Proof of the Γ-convergence theorem

This section is devoted to the proof of Theorem 2.2 which is divided into five steps.

Step 1: integral representation of the Γ-limit inf and the Γ-limit sup. For each u P W 1,p µ pΩ; R m q we consider the set functions S ú , S ù : OpΩq Ñ r0, 8s given by: S ú pAq :" ΓpL p µ qlim tÑ8 E t pu, Aq;

S ù pAq :" ΓpL p µ qlim tÑ8 E t pu, Aq.

Lemma 4.1. If (2.3) holds then:

S ú pAq " ż A λ ú pxqdµpxq; S ù pAq " ż A λ ù pxqdµpxq
for all u P W 1,p µ pΩ; R m q and all A P OpΩq with λ ú , λ ù P L 1 µ pΩq given by: Thus, the condition (d) of Lemma 3.9 is satisfied with ν " βp1 `|∇ µ u| p qdµ (which is absolutely continuous with respect to µ). On the other hand, it is easily seen that the conditions (a) and (b) of Lemma 3.9 are satisfied. Hence, the proof is completed by proving the condition (c) of Lemma 3.9, i.e., S ú pA Y Bq ď S ú pAq `Sú pBq for all A, B P OpΩq (4.3) `resp. S ù pA Y Bq ď S ù pAq `Sù pBq for all A, B P OpΩq ˘.

λ ú pxq
(4.4) Indeed, by Lemma 3.9, the set function S ú (resp. S ù ) can be (uniquely) extended to a (finite) positive Radon measure which is absolutely continuous with respect to µ, and the theorem follows by using Radon-Nikodym's theorem and then Lebesgue's differentiation theorem.

Remark 4.2. Lemma 4.1 shows that both ΓpL p µ qlim tÑ8 E t pu, ¨q and ΓpL p µ qlim tÑ8 E t pu, ¨q can be uniquely extended to a finite positive Radon measure on Ω which is absolutely continuous with respect to µ.

To show (4.3) (resp. (4.4)) we need the following lemma.

Lemma 4.3. If U, V, Z, T P OpΩq are such that Z Ă U and T Ă V , then S ú pZ Y T q ď S ú pUq `Sú pV q (4.5) `resp. S ù pZ Y T q ď S ù pUq `Sù pV q ˘.

(4.6)

Proof of Lemma 4.3. As the proof of (4.5) and (4.6) are exactly the same, we will only prove (4.5). Let tu t u tą0 and tv t u tą0 be two sequences in W 1,p µ pΩ; R m q such that: Fix δ Ps0, distpZ, BUqr with BU :" U zU, fix any t ą 0 and any q ě 1 and consider W í , W ì Ă Ω given by: W í :"

u t Ñ u in L p µ pΩ; R m q; (4.7) v t Ñ
! x P Ω : distpx, Zq ď δ 3 `pi´1qδ 3q 
) ;

W ì :"

! x P Ω : δ 3 `iδ 3q ď distpx, Zq ) ,
where i P t1, ¨¨¨, qu. For every i P t1, ¨¨¨, qu there exists a Uryshon function ϕ i P LippΩq for the pair pW ì , W í q. Define w i t P W 1,p µ pΩ; R m q by w i t :" ϕ i u t `p1 ´ϕi qv t . Setting W i :" ΩzpW í Y W ì q and using Theorem 3.3(d) and (3.1) we have

∇ µ w i t " $ & % ∇ µ u t in W í D µ ϕ i b pu t ´vt q `ϕi ∇ µ u t `p1 ´ϕi q∇ µ v t in W i ∇ µ v t in W ì . Noticing that Z Y T " ppZ Y T q X W í q Y pW X W i q Y pT X W ì q with pZ Y T q X W í Ă U, T X W ì Ă V and W :" T X tx P U : δ 3 ă distpx, Zq ă 2δ 3 u we deduce that ż ZYT L t px, ∇ µ w i t qdµ ď ż U L t px, ∇ µ u t qdµ `żV L t px, ∇ µ v t qdµ (4.11) `żW XW i L t px, ∇ µ w i t qdµ
for all i P t1, ¨¨¨, qu. Moreover, from the right inequality in (2.3) we see that for each i P t1, ¨¨¨, qu, ż

W XW i L t px, ∇ µ w i t qdµ ď c}D µ ϕ i } p L 8 µ pΩ;R N q }u t ´vt } p L p µ pΩ;R m q (4.12) `c ż W XW i p1 `|∇ µ u t | p `|∇ µ v t | p qdµ
with c :" 2 2p β. Substituting (4.12) into (4.11) and averaging these inequalities, it follows that for every t ą 0 and every q ě 1, there exists i t,q P t1, ¨¨¨, qu such that ż

ZYT L t px, ∇ µ w it,q t qdµ ď ż U L t px, ∇ µ u t qdµ `żV L t px, ∇ µ v t qdµ `c q q ÿ i"1 }D µ ϕ i } p L 8 µ pΩ;R N q }u t ´vt } p L p µ pΩ;R m q `c q ˆµpΩq `żU |∇ µ u t | p dµ `żV |∇ µ v t | p dµ ˙.
On the other hand, by (4.7) and (4.8) we have:

lim tÑ8 }u t ´vt } p L p
µ pΩ;R m q " 0; lim tÑ8 }w it,q t ´u} p L p µ pΩ;R m q " 0 for all q ě 1. Moreover, using (4.9) and (4.10) together with the left inequality in (2.3) we see that:

lim tÑ8 ż U |∇ µ u t pxq| p dµpxq ă 8; lim tÑ8 ż V |∇ µ v t pxq| p dµpxq ă 8.
Letting t Ñ 8 (and taking (4.9) and (4.10) into account) we deduce that for every q ě 1,

S ú pZ Y T q ď lim tÑ8 ż ZYT L t px, ∇ µ w it,q
t pxqqdµpxq ď S ú pUq `Sú pV q `ĉ q (4.13) with ĉ :" cpµpΩq `lim tÑ8 ş U |∇ µ u t pxq| p dµpxq `lim tÑ8 ş V |∇ µ v t pxq| p dµpxqq, and (4.5) follows from (4.13) by letting q Ñ 8. 

We now prove (4.3) and (4.4). Fix

S ú pA Y Bq ď S ú p Ĉ Y Dq `ε `resp. S ú p Ĉ Y Dq ď S ú pAq `Sú pBq ˘; S ù pA Y Bq ď S ù p Ĉ Y Dq `ε `resp. S ù p Ĉ Y Dq ď S ù pAq `Sù pBq ˘,
and (4.3) and (4.4) follows by letting ε Ñ 0.

Step 2: other formulas for the Γ-limit inf and the Γ-limit sup. Consider the variational integrals E 0 , E 0 : W 1,p µ pΩ; R m q ˆOpΩq Ñ r0, 8s given by:

E 0 pu, Aq :" inf " lim tÑ8 E t pu t , Aq : W 1,p µ,0 pA; R m q Q u t ´u L p µ Ñ 0 * ; E 0 pu, Aq :" inf " lim tÑ8 E t pu t , Aq : W 1,p µ,0 pA; R m q Q u t ´u L p µ Ñ 0 * . Lemma 4.4. If (2.
3) holds then: for all u P W 1,p µ pΩ; R m q and all A P OpΩq. Proof of Lemma 4.4. As the proof of (4.14) and (4.15) are exactly the same, we will only prove (4.15). Fix u P W 1,p µ pΩ; R m q and A P OpΩq. Noticing that W 1,p µ,0 pA; R m q Ă W 1,p µ pΩ; R m q we have E 0 pu; Aq ě ΓpL p µ qlim tÑ8 E t pu, Aq. Thus, it remains to prove that

ΓpL p µ q-lim tÑ8 E t pu
E 0 pu; Aq ď ΓpL p µ q-lim tÑ8 E t pu, Aq. (4.16) Let tu t u tą0 Ă W 1,p µ pΩ; R m q be such that u t Ñ u in L p µ pΩ; R m q; (4.17) lim tÑ8 ż A L t px, ∇ µ u t pxqqdµpxq " ΓpL p µ q-lim tÑ8 E t pu, Aq ă 8. (4.18)
Fix δ ą 0 and set A δ :" tx P A : distpx, BAq ą δu with BA :" AzA. Fix any t ą 0 and any q ě 1 and consider W í , W ì Ă Ω given by W í :"

! x P Ω : distpx, A δ q ď δ 3 `pi´1qδ 3q 
) ;

W ì :"

! x P Ω : δ 3 `iδ 3q ď distpx, A δ q
) , where i P t1, ¨¨¨, qu. (Note that W í Ă A.) For every i P t1, ¨¨¨, qu there exists a Uryshon function ϕ i P LippΩq for the pair pW ì , W í q. Define w i t : X Ñ R m by w i t :" ϕ i u t `p1 ´ϕi qu. Then w i t ´u P W 1,p µ,0 pA; R m q. Setting W i :" ΩzpW í Y W ì q Ă A and using Theorem 3.3(d) and (3.1) we have

∇ µ w i t " $ & % ∇ µ u t in W í D µ ϕ i b pu t ´uq `ϕi ∇ µ u t `p1 ´ϕi q∇ µ u in W i ∇ µ u in W ì .
Noticing that A " W í Y W i Y pA X W ì q we deduce that for every i P t1, ¨¨¨, qu, ż

A L t px, ∇ µ w i t qdµ ď ż A L t px, ∇ µ u t qdµ `żAXW ì L t px, ∇ µ uqdµ (4.19) `żW i L t px, ∇ µ w i t qdµ.
Moreover, from the right inequality in (2.3) we see that for each i P t1, ¨¨¨, qu, ż

W i L t px, ∇ µ w i t qdµ ď c}D µ ϕ i } p L 8 µ pΩ;R N q }u t ´u} p L p µ pΩ;R m q (4.20) `c ż W i p1 `|∇ µ u t | p `|∇ µ u| p qdµ
with c :" 2 2p β. Substituting (4.20) into (4.19) and averaging these inequalities, it follows that for every t ą 0 and every q ě 1, there exists i t,q P t1, ¨¨¨, qu such that ż

A L t px, ∇ µ w it,q t qdµ ď ż A L t px, ∇ µ u t qdµ `1 q ż A L t px, ∇ µ uqdµ `c q q ÿ i"1 }D µ ϕ i } p L 8 µ pΩ;R N q }u t ´u} p L p µ pΩ;R m q `c q ˆµpAq `żA |∇ µ u t | p dµ `żA |∇ µ u| p dµ ˙.
On the other hand, by (4.17) we have lim tÑ8 }w it,q t ´u} p L p µ pΩ;R m q " 0 for all q ě 1. Moreover, using (4.18) together with the left inequality in (2.3) we see that

lim tÑ8 ż A |∇ µ u t pxq| p dµpxq ă 8.
Letting t Ñ 8 (and taking (4.18) into account) we deduce that for every q ě 1,

E 0 pu; Aq ď lim tÑ8 ż A L t px, ∇ µ w it,q t qdµ (4.21) ď ΓpL p µ q-lim tÑ8 E t pu, Aq `1 q ż A L t px, ∇ µ uqdµ `ĉ q
with ĉ :" βpµpAq `lim tÑ8 ş A |∇ µ u t pxq| p dµpxq `şA |∇ µ upxq| p dµpxqq, and (4.16) follows from (4.21) by letting q Ñ 8.

Step 3: using the Vitali envelope. For each u P W 1,p µ pΩ; R m q we consider the set functions m u , m u : OpΩq Ñ r0, 8s by: m u pAq :" lim tÑ8 inf E t pv, Aq : v ´u P W 1,p µ,0 pA; R m q ( ; m u pAq :" lim

tÑ8 inf E t pv, Aq : v ´u P W 1,p µ,0 pA; R m q ( .
For each ε ą 0 and each A P OpΩq, denote the class of countable families tQ i :"

Q ρ i px i qu iPI
of disjoint open balls of A with x i P A, ρ i " diampQ i q Ps0, εr and µpBQ i q " 0 such that µpAz Y iPI Q i q " 0 by V ε pAq, consider m ε u : OpΩq Ñ r0, 8s given by

m ε u pAq :" inf # ÿ iPI m u pQ i q : tQ i u iPI P V ε pAq + ,
and define m ů : OpΩq Ñ r0, 8s by

m ůpAq :" sup εą0 m ε u pAq " lim εÑ0 m ε u pAq.
The set function m ů is called the Vitali envelope of m u , see [AHM16, Section 3] for more details. (Note that as Ω satisfies the Vitali covering theorem, see Proposition 3.7(c) and Remark 3.8, we have V ε pAq " H for all A P OpΩq and all ε ą 0.) Lemma 4.5. If (2.3) holds then:

ΓpL p µ q-lim tÑ8 E t pu, Aq ě m u pAq; (4.22) ΓpL p µ q-lim tÑ8 E t pu, Aq " m ůpAq (4.23)
for all u P W 1,p µ pΩ; R m q and all A P OpΩq. Proof of Lemma 4.5. From Lemma 4.4 it is easy to see that ΓpL p µ qlim tÑ8 E t pu, Aq ě m u pAq and ΓpL p µ qlim tÑ8 E t pu, Aq ě m u pAq and so ΓpL p µ qlim tÑ8 E t pu, Aq ě m ůpAq because in the proof of Lemma 4.1 it is established that ΓpL p µ qlim tÑ8 E t pu, ¨q can be uniquely extended to a finite positive Radon measure on Ω, see Remark 4.2. Hence (4.22) holds and, to establish (4.23), it remains to prove that

ΓpL p µ q-lim tÑ8 E t pu, Aq ď m ůpAq (4.24)
with m ůpAq ă 8. Fix any ε ą 0. Given A P OpΩq, by definition of m ε u pAq, there exists

tQ i u iPI P V ε pAq such that ÿ iPI m u pQ i q ď m ε u pAq `ε 2 . (4.25)
Fix any t ą 0 and define m t u : OpΩq Ñ r0, 8s by m t u pAq :" inf E t pv, Aq :

v ´u P W 1,p µ,0 pA; R m q ( .
(Thus m u p¨q " lim tÑ8 m t u p¨q.) Given any i P I, by definition of m t u pQ i q, there exists v i t P W 1,p µ pQ i ; R m q such that v i t ´u P W 1,p µ,0 pQ i ; R m q and

E t pv i t , Q i q ď m t u pQ i q `εµpQ i q 2µpAq . (4.26) Define u ε t : Ω Ñ R m by u ε t :" " u in ΩzA v i t in Q i . Then u ε t ´u P W 1,p µ,0 pA; R m q.
Moreover, because of Proposition 3.7(a), ∇ µ u ε t pxq " ∇ µ v i t pxq for µ-a.e. x P Q i . From (4.26) we see that On the other hand, we have

E t pu ε t , Aq ď ÿ iPI m t u pQ i q `ε 2 , hence lim tÑ8 E t pu ε t ,
}u ε t ´u} p L χp µ pΩ;R m q " ˆżA |u ε t ´u| χp dµ ˙1 χ " ˜ÿ iPI ż Q i |v i t ´u| χp dµ ¸1 χ ď ÿ iPI ˆżQ i |v i t ´u| χp dµ ˙1 χ
with χ ě 1 given by (3.3). As Ω supports a p-Sobolev inequality, see Proposition 3.7(b), and diampQ i q Ps0, εr for all i P I, we have

}u ε t ´u} p L χp µ pΩ;R m q ď ε p C p S ÿ iPI ż Q i |∇ µ v i t ´∇µ u| p dµ
with C S ą 0 given by (3.3), and so for all u P W 1,p µ pΩ; R m q and all A P OpΩq. Moreover, we have Lemma 4.6. For µ-a. ) .

}u ε t ´u} p L χp µ pΩ;R m q ď 2 p ε p C p S ˜ÿ iPI ż Q i |∇ µ v i t | p dµ `żA |∇ µ u| p dµ ¸. ( 4 
Fix any ε ą 0. Using the definition of N s , we can assert that for each x P N s there exists tρ x,n u n Ăs0, εr with ρ x,n Ñ 0 as n Ñ 8 such that for every n ě 1, µpBQ ρx,n pxqq " 0 and Q ρx,n pxq P G s . Consider the family F 0 of closed balls in Ω given by

F 0 :" ! Q ρx,n pxq : x P N s and n ě 1
) .

Then inf r ą 0 : Q r pxq P F 0 ( " 0 for all x P N s . As Ω satisfies the Vitali covering theorem, there exists a disjointed countable subfamily tQ i u iPI 0 of closed balls of F 0 (with µpBQ i q " 0 and diampQ i q Ps0, εr) such that

N s Ă ´Y iPI 0 Q i ¯Y ´Ns z Y iPI 0 Q i ¯with µ ´Ns z Y iPI 0 Q i ¯" 0.
If µ `YiPI 0 Q i ˘" 0 then (4.34) will follow. Indeed, in this case we have µpN s q " 0, i.e., µpΩzN s q " µpΩq, and given x P ΩzN s there exists δ ą 0 such that m ůpQ ρ pxqq ď m u pQ ρ pxqq sµpQ To establish that µ `YiPI 0 Q i ˘" 0 it is sufficient to prove that for every finite subset J of I 0 ,

µ ´Y iPJ Q i ¯" 0. (4.35)
As Ω satisfies the Vitali covering theorem and Ωz Y iPJ Q i is open, there exists a countable family tB i u iPI of disjoint open balls of Ωz Y iPJ Q i , with µpBB i q " 0 and diampB i q Ps0, εr, such that

µ ´´Ωz Y iPJ Q i ¯z Y iPI B i ¯" µ ´Ωz ´Y iPI B i ¯Y ´Y iPJ Q i ¯¯" 0. (4.36)
Recalling that m ů is the restriction to OpΩq of a finite positive Radon measure which is absolutely continuous with respect to µ (see Lemmas 4.1, Remark 4.2 and 4.5), from (4.36) we see that m ůpΩq " ÿ iPI m ůpB i q `ÿ iPJ m ůpQ i q.

Moreover, Q i P G s for all i P J, i.e., m ůpQ i q ą m u pQ i q `sµpQ i q for all i P J, and m ů ě m u , hence

m ůpΩq ě ÿ iPI m u pB i q `ÿ iPJ m u pQ i q `sµ ´Y iPJ Q i ¯.
As for all u P W 1,p pΩ; R m q and all A P OpΩq.

tB i u iPI Y tQ i u iPJ P V ε pΩq we have ř iPI m u pB i q `řiPJ m u pQ i q ě m ε u pΩq, hence m ůpΩq ě m ε u pΩq `sµpY iPJ Q i q,
Step 5: removing by affine functions. According to (4.32) and (4.37), the proof of Theorem 2.2 will be completed if we prove that for each u P W 1,p µ pΩ; R m q and µ-a.e. where H ρ µ L t : M Ñ r0, 8s is given by (2.4).

We only give the proof of (4.38) because the equality (4.39) follows from two inequalities whose the proofs use the same method as in (4.38). For each t ą 0 and each z P W 1,p µ pΩ; R m q, let m t z : OpΩq Ñ r0, 8s be given by m t z pAq :" inf E t pw, Aq : w ´z P W for some γ ą 0 (which does not depend on ρ). Define v P W 1,p µ pQ ρ pxq; R m q by v :" ϕu `p1 ´ϕqu x .

Then v ´ux P W 1,p µ,0 pQ ρ pxq; R m q. Using Theorem 3.3(d) and (3.1) we have

∇ µ v " " ∇ µ u in Q sρ pxq D µ ϕ b pu ´ux q `ϕ∇ µ u `p1 ´ϕq∇ µ upxq in Q ρ pxqzQ sρ pxq.
As w ´u P W 1,p µ,0 pQ sρ pxq; R m q we have v `pw ´uq ´ux P W 1,p µ,0 pQ ρ pxq; R m q. Noticing that µpBQ sρ pxqq " 0 and, because of Proposition (3.7)(a), ∇ µ pw ´uqpyq " 0 for µ-a.e. y P Q ρ pxqzQ sρ pxq and taking (4.40), the right inequality in (2.3) and ( 4 

Proof of homogenization theorems

This section is devoted to the proof of Theorems 2.20 and 2.21. We begin by proving Theorem 2.17.

Proof of Theorem 2.17. Fix Q P SpXq.

Case 1: pX, d, µq is assumed to be a meshable pG, th t u tą0 q-metric measure space which is asymptotically periodic with respect to SpXq. Fix k P N ˚and consider t Q,k ą 0 given by Definition 2.10. with K " Y gPH gpUq. Taking the assertion (b) of Definition 2.12 into account, as S is subadditive and G-invariant, it is easily seen that S 1 is decreasing, i.e., for every K P KpXq and every K 1 P KpXq, K Ă K 1 implies S 1 pKq ě S 1 pK 1 q .

(5.8) Noticing that Q t,1 P KpXq, as µ is G-invariant we can assert that S `Qt ,1 μ `Qt (5.9)

On the other hand, by the assertion (d) of Definition 2.12 (with H " G t,1 Ă G) there exist i t P N ˚and f t P G such that Q t,1 Ă f t oh it pUq.

Thus, using (5.8), from (5.9) we obtain S `Qt H ρ µ L i t px, ∇ µ upxqqdµpxq for all u P W 1,p pΩ; R m q and all A P OpΩq. Under these hypotheses, it is also easily seen that Theorem 2.17 implies that for each i P I, lim tÑ8 H ρ µ L i t px, ξq " lim tÑ8 H ρ µ L i t px, ξq " L i hom pξq for µ-a.e. x P Ω i X A, all ρ ą 0 and all ξ P M with L i hom given by (2.20), which gives the result.

  A, B P OpΩq. Fix any ε ą 0 and consider C, D P OpΩq such that C Ă A, D Ă B and ż E βp1 `|∇ µ upxq| p qdµpxq ă ε with E :" AYBzC Y D. Then S ú pEq ď ε by (4.1) and S ù pEq ď ε by (4.2). Let Ĉ, D P OpΩq be such that C Ă Ĉ, Ĉ Ă A, D Ă D and D Ă B. Applying Lemma 4.3 with U " Ĉ Y D, V " T " E and Z " C Y D (resp. U " A, V " B, Z " Ĉ and T " D) we obtain:

  e. x P Ω, lim ρÑ0 m ůpQ ρ pxqq µpQ ρ pxqq ď lim ρÑ0 m u pQ ρ pxqq µpQ ρ pxqq . (4.34) Proof of Lemma 4.6. Fix any s ą 0. Denote the class of open balls Q ρ pxq, with x P Ω and ρ ą 0, such that m ůpQ ρ pxqq ą m u pQ ρ pxqq `sµpQ ρ pxqq by G s and define N s Ă Ω by N s :" ! x P Ω : @δ ą 0 Dρ Ps0, δr Q ρ pxq P G s

ρ

  pxqq for all ρ Ps0, δr. Hence lim ρÑ0 m ůpQ ρ pxqq µpQ ρ pxqq ď lim ρÑ0 m u pQ ρ pxqq µpQ ρ pxqq `s for all s ą 0, and (4.34) follows by letting s Ñ 0.

(b) if H 1 and H 2 are two finite subsets of G such that Y gPH 1 gpUq Ă Y gPH 2 gpUq, then H 1 Ă H 2 and

  Definition 2.14. When pX, d, µq is a strongly meshable pG, th t u tą0 q-metric measure space, we say that pX, d, µq is weakly asymptotically periodic with respect to F pXq if for each A P F pXq, each k P N ˚and each t ą 0, there exist finite subsets G t,k and G t,k of G such that the families pg oh k pUqq gPG t,k and pg oh k pUqq gPG t,k

	Y gPH 2 (c) for each i P N ˚and each f P G there exists a finite subset G i pf q of G such that gpUq " ˆY gPH 1 gpUq ˙Y ˆY gPH 2 zH 1 gpUq ˙; f oh i pUq " Y gPG i pf q gpUq; (d) for each finite subset H of G, there exist i H P N ˚and f H P G such that Y gPH gpUq Ă f H oh i H pUq. Remark 2.13. The metric measure space pR N , d 2 , L N q where G " Z N , U " Y and th t u tą0 " ttxu tą0 is strongly meshable with G i pzq " ! properties: Y gPG t,k g oh k pUq Ă h t pAq Ă Y gPG t,k g oh k pUq; (2.16) lim tÑ8 µ ˆY gPG t,k g oh k pUqz Y gPG t,k g oh k pUq μph t pAqq " 0. (2.17) z `pn 1 , n are disjointed and satisfy the following two Remark 2.15. From Nguyen and Zessin [NZ79, Lemma 3.1] (see also [LM02, Lemma 2.2]) we

2 , ¨¨¨, n N q : n j P t0, ¨¨¨, i ´1u with j P t1, ¨¨¨, Nu ) for all i P N ˚and all z P Z N . see that for pX, d, µq " pR N , d 2 , L N

  LippΩq for the pair pΩzQ ρ pxq, Q sρ pxqq 1 such that}D µ ϕ} L 8 µ pΩ;R N q ď

	ρÑ0	1 ρ p	ż Qρpxq	|upyq ´ux pyq| p dµpyq " 0;	(3.5)
							α
						ρp1 ´sq
	for some α ą 0.					
	If moreover pX, dq is a length space then		
	(f) for µ-a.e. x P Ω,					
	lim sÑ1 ´lim ρÑ0	µpQ sρ pxqq µpQ ρ pxqq	" lim sÑ1 ´lim ρÑ0	µpQ sρ pxqq µpQ ρ pxqq	" 1.	(3.6)

(e) for every x P Ω, every ρ ą 0 and every s Ps0, 1r there exists a Uryshon function ϕ P Remark 3.8. As µ is a Radon measure, if Ω satisfies the Vitali covering theorem, i.e., Proposition 3.7(c) holds, then for every A P OpΩq and every ε ą 0 there exists a countable family tQ ρ i px i qu iPI of disjoint open balls of A with x i P A, ρ i Ps0, εr and µpBQ ρ i

  pAq " m ůpAq ă 8. According to (4.27) and (4.29), by diagonalization there exists a mapping t Þ Ñ ε t , with ε t Ñ 0 as t Ñ 8, such that: lim tÑ8 E t pu; Aq ď lim tÑ8 E t pw t , Aq.Step 4: differentiation with respect to µ. First of all, using Lemma 4.1, Remark 4.2 and Lemma 4.5 it easily seen that:

	because lim εÑ0 m ε u lim tÑ8	}w t ´u} p L χp µ pΩ;R m q " 0;	(4.30)
					lim tÑ8	E t pw t , Aq ď m ůpAq	(4.31)
	with w t :" u εt t . Since χp ě p, w t Ñ u in L p µ pΩ; R m q by (4.30), and (4.24) follows from (4.31)
	by noticing that ΓpL p µ q-ΓpL p µ q-lim tÑ8 E t pu, Aq ě ΓpL p µ q-lim tÑ8 E t pu, Aq "	ż A ż A	lim ρÑ0 lim ρÑ0	m u pQ ρ pxqq µpQ ρ pxqq m ůpQ ρ pxqq µpQ ρ pxqq	dµpxq; dµpxq ě	ż	A	lim ρÑ0	m u pQ ρ pxqq µpQ ρ pxqq	dµpxq	(4.32) (4.33)
												.28)
	Taking the left inequality in (2.3), (4.26) and (4.25) into account, from (4.28) we deduce
	that	lim tÑ8	}u ε t ´u} p L χp µ pΩ;R m q ď 2 p C p S ε p	ˆ1 α	pm ε u pAq `εq	`żA	|∇ µ u| p dµ	ẇhich
	gives										
					lim εÑ0	lim tÑ8	}u ε t ´u} p L χp µ pΩ;R m q " 0	(4.29)

  Proof of (4.38). Fix any ε ą 0. Fix any s Ps0, 1r and any ρ Ps0, εr. By definition of m t u pQ sρ pxqq, where there is no loss of generality in assuming that µpBQ sρ pxqq " 0, there exists w : Ω Ñ R m such that w ´u P W 1,p µ,0 pQ sρ pxq; R m q and ż Qsρpxq L t py, ∇ µ wpyqqdµpyq ď m t u pQ sρ pxqq `εµpQ sρ pxqq.(4.40)From Proposition 3.7(e) there exists a Uryshon function ϕ P LippΩq for the pair pΩzQ ρ pxq, Q sρ pxqq such that }D µ ϕ} L 8 µ pΩ;R N q ď

	where we recall that E t pw, Aq :"	ş	1,p µ,0 pA; R m q A L t px, ∇ µ wpxqqdµpxq. Note that: (	,
	m z p¨q :" lim tÑ8	m t z p¨q		
	(resp. m z p¨q :" lim tÑ8	m t z p¨qq.	
					γ ρp1 ´sq	(4.41)

  :" µpQ ρ pxqzQ sρ pxqq|∇ µ upxq| p `żQρpxqzQsρpxq |∇ µ u| p dµ. Qrpxq ˇˇ|∇ µ upyq| p ´|∇ µ upxq| p ˇˇdµpyq " 0. Qρpxq ˇˇ|∇ µ upyq| p ´|∇ µ upxq| p ˇˇdµpyq

	with						
	A ρ,s Thus, noticing that µpQ ρ pxqq ě µpQ sρ pxqq and letting t Ñ 8, we obtain
	m ux pQ ρ pxqq µpQ ρ pxqq	ď	m u pQ sρ pxqq µpQ sρ pxqq ˜γp `ε				(4.42) ¸.
			`22p β	p1 ´sq p	µpQ ρ pxqq µpQ sρ pxqq	1 ρ p	ż Qρpxq	|u ´ux | p dµ	`Aρ,s µpQ sρ pxqq
	On the other hand, as µ is a doubling measure we can assert that
	lim rÑ0 ż But A ρ,s µpQ sρ pxqq ď 2 ∇ µ upxq| and so ˆµpQ ρ pxqq µpQ sρ pxqq ´1˙| lim ρÑ0 A ρ,s µpQ sρ pxqq ď 2 ˆlim ρÑ0 µpQ ρ pxq µpQ sρ pxqq ´1˙| ∇ µ upxq| p .	(4.43)
	Letting ρ Ñ 0 in (4.42) and using (3.5) and (4.43) we see that
	deduce that m t ux pQ ρ pxqq µpQ sρ pxqq lim ρÑ0 m ux pQ ρ pxqq ď µpQ ρ pxqq Letting s Ñ 1 and using (3.6) we conclude that ď lim ρÑ0 m u pQ sρ pxqq µpQ sρ pxqq `ε " lim ρÑ0 m u pQ ρ pxqq µpQ ρ pxqq `ε `2 `2 ˆlim ˆlim ρÑ0 ρÑ0 µpQ sρ pxqq µpQ ρ pxq µpQ sρ pxqq µpQ ρ pxq ż 1 L t py, ∇ µ v `∇µ pw ´uqqdµ µpQ sρ pxqq Qρpxq " 1 ż L t py, ∇ µ u `∇µ pw ´uqqdµ lim ρÑ0 m ux pQ ρ pxqq µpQ ρ pxqq ď lim ρÑ0 m u pQ ρ pxqq `ε µpQ ρ pxqq µpQ sρ pxqq Q sρ pxq QρpxqzQ sρ pxq `1 µpQ sρ pxqq ż L t py, ∇ µ vqdµ and (4.38) follows by letting ε Ñ 0.	.41) into account we ´1˙| ∇ µ upxq| p ´1˙| ∇ µ upxq| p .
		ď	m t u pQ sρ pxqq µpQ sρ pxqq ˜γp `ε				¸
			`22p β	p1 ´sq p	µpQ ρ pxqq µpQ sρ pxqq	1 ρ p	ż Qρpxq	|u ´ux | p dµ	`Aρ,s µpQ sρ pxqq

p

`µpQ ρ pxqq µpQ sρ pxqq ż

  To each t ě t Q,k there correspond k t , k t P N ˚and g t , g t P G such that (2.14) and (2.15) hold. Fix any t ě t k,Q . Taking the left inclusion in (2.14) into account, we see that h t pQq " g t oh kk t pUq Y ´ht pQqzg t oh kk t pUq ¯. As S is subadditive and G-invariant, it follows that S ph t pQqq ď S ´hkk t pUq ¯`S ´ht pQqzg t oh kk t pUq ¯. (5.1) Taking the right inclusion in (2.14) into account, it is easily seen that h t pQqzg t oh kk t pUq Ă g t oh kk t pUqzg t oh kk t pUq, hence S ´ht pQqzg t oh kk t pUq ¯ď c ´µ ´gt oh kk t pUq ¯´µ ´gt oh kk t pUq ¯with As S is subadditive and G-invariant, it follows that Sph k t pUqq ď S ph t pQqq `S ´gt oh k t pUqzh t pQq ¯. oh k t pUqzh t pQq Ă g t oh k t pUqzg t oh k t pUq, and using (2.18) we obtain S ´gt oh k t pUqzh t pQq ¯ď c `µph k t pUqq ´µph k t pUqq ˘. Sph k t pUqq ď S ph t pQqq `c`µ ph k t pUqq ´µph k t pUqq ˘, Since µ is G-invariant, from the right inequality in (2.14) (with k " 1), we have µph t pQqq ď µph k t pUqq. where G t,k are G t,k are given by Definition 2.14. By the left inclusion in (2.16) we have Q t,k Ă h t pQq and so h t pQq " Q t,k Y `ht pQqzQ t,k ˘. Hence Moreover, h t pQq Ă Q t,k by the right inclusion in (2.16) which implies that h t pQqzQ t,k Ă Q t,k zQ t,k and so S `ht pQqzQ t,k ˘ď cµ `Qt ,k zQ t,k Qt ,k ˘ď µph t pQqq since Q t,k Ă h t pQq. Letting t Ñ 8 and using (2.17), and then passing to the infimum on k, we obtain Fix any t ą 0. As h t pQq Ă Q t,1 :" Y gPG t,1 gpUq by the right inclusion in (2.16) we have Q t,1 " h t pQq Y `Qt ,1 zh t pQq ˘, and so S `Qt ,1 ˘ď S ph t pQqq `S `Qt ,1 zh t pQq because S is subadditive. But, as Y gPG t,1 gpUq ": Q t,1 Ă h t pQq by the left inclusion in (2.16), we have Q t,1 zh t pQq Ă Q t,1 zQ t,1 , hence Consider the subclass KpXq of B 0 pXq given by

							(5.4) with
	By (2.14) (with k " 1) we have g t (5.5) From (5.4) and (5.5) we deduce that c ą 0 given by (2.18). It follows that Sph t pQqq µph t pQqq ď S ph k pUqq µ ph k pUqq µ `Qt ,k μph t pQqq ,k zQ t,k μph `cµ `Qt t pQqq ď S ph k pUqq µ ph k pUqq ,k zQ t,k μph `cµ `Qt t pQqq because µ `lim tÑ8 Sph t pQqq µph t pQqq ď inf kPN ˚S ph k pUqq µ ph k pUqq .
	Hence We now prove that inf kPN ˚S ph k pUqq µph k pUqq	ď inf Sph k t pUqq µph k t pUqq kPN ˚S ph k pUqq µ ph k pUqq	ď ď lim S ph t pQqq µ ph t pQqq tÑ8 Sph t pQqq `c ˜1 µph t pQqq .	´µph k t pUqq µph k t pUqq	¸.	(5.6)
	Letting t Ñ 8 and using (2.15), we obtain Moreover, since S is subadditive and G-invariant, taking (2.12) and (2.13) into account, we ‰ . (5.2) inf kPN ˚S ph k pUqq µph k pUqq ď lim
	can assert that	Sph kk t pUqq ď	ÿ		(5.3)
	gPG k k From (5.1), (5.2) and (5.3) we deduce that S `Qt ,1 μ `Qt ,1 ˘ď S `Qt ,1 μ ph t pQqq ď S ph t pQqq µ ph t pQqq	`cµ `Qt ,1 zQ t,1 ph t pQqq	μ	(5.7)
	by using (2.18). KpXq :"	"	Y	
	Hence Letting t Ñ 8 and using (2.15), and then passing to the infimum on k, we obtain S ph t pQqq µ ph t pQqq ď µph k t pUqq µph k t pUqq S ph k pUqq µph k pUqq `c ˜µph k t pUqq ´1¸. Sph t pQqq ď S `Qt ˘, ,k ˘`S `ht pQqzQ t,k µph k t pUqq lim tÑ8 S ph t pQqq µ ph t pQqq ď inf kPN ˚S ph k pUqq µph k pUqq . and consequently Sph t pQqq µph t pQqq ď S `Qt ,k μ `Qt ,k ˘µ `Qt ,k μph t pQqq `S `ht pQqzQ t,k μph

c ą 0 given by (2.18), and so

S

´ht pQqzg t oh kk t pUq ¯ď c ´µ ´hkk t pUq ¯´µ ´hkk t pUq ¯because µ is G-invariant. From (2.10) and (2.11) it follows that S ´ht pQqzg t oh kk t pUq ¯ď cµph k pUqq " µph k t pUqq ´µph k t pUqq t S pg oh k pUqq " µ `hk t pUq ˘S ph k pUqq . S ph t pQqq ď µ `hk t pUq ˘S ph k pUqq `cµph k pUqq " µph k t pUqq ´µph k t pUqq ‰ . As µ is G-invariant, from the left inclusion in (2.14) and (2.11) we see that µph t pQqq ě µph k pUqqµph k t pUqq. Consider now t 1,Q ą 0 given by Definition 2.10 with k " 1. Taking the right inclusion in (2.14) (with k " 1) into account, we see that g t oh k t pUq " h t pQq Y ´gt oh k t pUqzh t pQq ¯. tÑ8 S ph t pQqq µ ph t pQqq , and the proof of case 1 is complete. Case 2: pX, d, µq is assumed to be a strongly meshable pG, th t u tą0 q-metric measure space which is weakly asymptotically periodic with respect to SpXq. Fix any k P N ånd any t ą 0 and set: Q t,k :" Y gPG t,k g oh k pUq; Q t,k :" Y gPG t,k g oh k pUq, t pQqq . As S is subadditive and G-invariant (resp. µ is G-invariant) we have S `Qt ,k ˘ď card `Gt ,k ˘Sph k pUqq `resp. µ `Qt ,k ˘" card `Gt ,k ˘µph k pUqq ˘. gPH gpUq : H Ă G and cardpHq ă 8 * and define the set function S 1 : KpXq Ñs ´8, 0s by S 1 pKq :" SpKq ´cardpHqSpUq

  But, using the assertion (c) of Definition 2.12, we see that for each f P G and each i P N ẘe have f oh i pUq " Y gPG i pf q gpUq. So, as S and µ are G-invariant, we getS 1 pf oh i pUqq µ pf oh i pUqq " S pf oh i pUqq µ pf oh i pUqq ´cardpG i pf qq SpUq µ pf oh i pUqqProof of Theorem 2.20. The proof consists of applying Corollary 2.3. For this, it suffices to verify that (2.7) is satisfied. For each ξ P M, we consider the set function S ξ : B 0 pXq Ñ r0, 8s defined by S As tL t u tą0 is a family of pG, th t u tą0 q-periodic integrands modelled on L (see Definition 2.18), we have S ξ ph t pQqq " inf Lph t pyq, ξ `∇µ wph t pyqqqdph 7 t µqpyq : w P W 1,p µ,0 ph t pQq; R m q ph t pQ ρ pxqq µ ph t pQ ρ pxqq ; ph t pQ ρ pxqq µ ph t pQ ρ pxqq for µ-a.e. x P Ω, all ρ ą 0 and all ξ P M. But, from the second inequality in (2.3), it is easy to see that S ξ pAq ď cµ `Å ˘ď cµpAq for all A P B 0 pXq, where c :" βp1 `|ξ| p q, and moreover the set function S ξ is clearly G-invariant and subadditive because, for each A, B P B 0 pXq,µ ´{ A Y Bzp Å Y Bq ¯" 0 since { A Y Bzp Å Y Bq Ă BA Y BBand µpBAq " µpBBq " 0. Thus, by Theorem 2.17 we see that lim tÑ8 S ξ ph t pQ ρ pxqq µ ph t pQ ρ pxqq " inf kPN ˚S ξ ph k pUqq µph k pUqq " L hom pξq, which means that lim tÑ8 H ρ µ L t px, ξq " lim tÑ8 H ρ µ L t px, ξq " L hom pξq for µ-a.e. x P Ω, all ρ ą 0 and all ξ P M, i.e., (2.7) holds, and finishes the proof. Proof of Theorem 2.21. Under the hypotheses of Theorem 2.21 it is easy to see that, by using Theorem 2.2, we have:

	lim tÑ8	H ρ µ L t px, ξq " lim						
		,1 μ ,1 `Qt ˘ě S 1 pf t oh it pUqq µ pf t oh it pUqq	`SpUq µpUq	ě	inf pf,iqPGˆN	˚S1 pf oh i pUqq µ pf oh i pUqq	`SpUq µpUq	.	(5.10)
				ě	S ph i pUqq µ ph i pUqq	´SpUq µpUq
				ě inf kPN			
	ΓpL p µ q-lim	Ω i XA	lim ρÑ0	lim tÑ8	kPN t px, ∇ µ upxqqdµpxq; ˚S ph k pUqq µ ph k pUqq ´SpUq µpUq µ L i H ρ	.	(5.11)
	inf kPN ˚S ph k pUqq µ ph k pUqq Combining (5.7) with (5.10) and with (5.11), we deduce that ď S ph t pQqq µ ph t pQqq `cµ `Qt ph t pQqq ,1 zQ t,1 ΓpL p µ q-lim	, μ
	and (5.6) follows by letting t Ñ 8 and using (2.17).
		"ż							*
				Lpy, ξ `∇µ wpyqqdµpyq : w P W 1,p µ,0 ph t pQq; R m q
		htpQq "ż					
		" inf						

˚S ph k pUqq µ ph k pUqq ´SpUq µpUq for all f P G and all i P N ˚, and consequently inf pf,iqPGˆN

˚S1 pf oh i pUqq µ pf oh i pUqq ě inf ξ pAq :" inf "ż Å Lpy, ξ `∇µ wpyqqdµpyq : w P W 1,p µ,0 `Å; R m ˘* . Q * " µph t pQqq inf " ż Q L t py

, ξ `∇µ wpyqqdµpyq : w P W 1,p µ,0 pQ; R m q * for all Q P BapXq and all t ą 0, and so: lim tÑ8 H ρ µ L t px, ξq " lim tÑ8 S ξ tÑ8 S ξ tÑ8 E t pu; Aq ě ÿ iPI ż tÑ8 E t pu; Aq " ÿ iPI ż Ω i XA lim ρÑ0 lim tÑ8

Given a metric space pΩ, dq, by a Uryshon function from Ω to R for the pair pΩzV, Kq, where K Ă V Ă Ω with K compact and V open, we mean a continuous function ϕ : Ω Ñ R such that ϕpxq P r0, 1s for all x P Ω, ϕpxq " 0 for all x P ΩzV and ϕpxq " 1 for all x P K.