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Christophe Chesneau∗, Salima El Kolei†, Fabien Navarro†
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Abstract

This paper develops a simple and computationally efficient parametric approach
to the estimation of general hidden Markov models (HMMs). For non-Gaussian
HMMs, the computation of the maximum likelihood estimator (MLE) involves a
high-dimensional integral that has no analytical solution and can be difficult to
approach accurately. We develop a new alternative method based on the theory
of estimating functions and deconvolution strategy. Our procedure requires the
same assumptions as the MLE and deconvolution estimators. We provide theoret-
ical guarantees on the performance of the resulting estimator; its consistency and
asymptotic normality are established. This leads to the construction of confidence
intervals. Monte Carlo experiments are investigated and compared with the MLE.
Finally, we illustrate our approach on real data for ex-ante interest rate forecasts.

MSC 2010 subject classifications: 62F12.
Keywords: Contrast function; deconvolution; hidden Markov models; least square esti-
mation; parametric inference.

1 Introduction

In this paper, a hidden non-linear Markov model (HMM) with heteroskedastic noise is
considered; we observe n random variables Y1, . . . , Yn having the following additive struc-
ture {

Yi = Xi + εi
Xi+1 = bθ0(Xi) + σθ0(Xi)ηi+1,

(1)

where (Xi)i≥1 is a strictly stationary, ergodic unobserved Markov chain that depends on
two unknown measurable functions bθ0 and σθ0 . In addition to its initial distribution, the
chain (Xi)i≥1 is characterized by its transition, i.e., the distribution of Xi+1 given Xi and
by its stationary density fθ0 . We assume that the transition distribution admits a density
Πθ0 , defined by Πθ0(x, x′)dx′ = Pθ0(Xi+1 ∈ dx′|Xi = x). For the identifiability of (1), we
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assume that ε1 admits a known density with respect to the Lebesgue measure denoted by
fε.

Our objective is to estimate the parameter vector θ0 for non-linear HMMs with het-
eroskedastic innovations described by the function σθ0 in (1) assuming that the model is
correctly specified, i.e., θ0 belongs to the interior of a compact set Θ ⊂ Rr, with r ∈ N∗.

Many articles have focus on parameter estimation and to the study of asymptotic
properties of estimators when (Xi)i≥1 is an autoregressive moving average (ARMA) pro-
cess (see [8], [39] and [11]). However, for more general models, (1) is known as HMM with
potentially a non-compact continuous state space. This model constitutes a very famous
class of discrete-time stochastic processes, with many applications in various fields such
as biology, speech recognition or finance. In [13], the authors study the consistency of the
MLE estimator for general HMMs, but they do not provide a method for calculating it
in practice. It is well-known that its computation is extremely expensive due to the non-
observability of the Markov chain and the proposed methodologies are essentially based on
Expectation-Maximization approach or Monte Carlo-based methods (e.g., Markov chain
Monte Carlo, Sequential Monte Carlo or particle Markov chain Monte Carlo, see [1],[9]
and [36]). Except in the Gaussian and linear setting, where the MLE can be processed
by a Kalman filter and in this particular case, the calculation will be relatively fast but
there are few cases where real data satisfy this assumption.

In this paper, we do not consider the Bayesian approach; we consider the model
(1) as a so-called convolution model, and our approach is therefore based on Fourier
analysis. The restrictions on error distribution and rate of convergence obtained for our
estimator are also of the same type. If we focus our attention on (semi-)parametric models,
few results exist. To the best of our knowledge, the first study that gives a consistent
estimator is [10]. The authors propose an estimation procedure based on a least squares
minimization. Recently, in [12], the authors extend this approach in a general context
for models defined as Xi = bθ0(Xi−1) + ηi, where bθ0 is the regression function assumed
to be known up to θ0 and for homoscedastic innovations ηi. Also, in [16] and [18], the
authors propose a consistent estimator for parametric models assuming knowledge of
the stationary density fθ0 up to the unknown parameters θ0 for the construction of the
estimator. For many processes, this density has no analytic expression, and even in some
cases where it is known, it may be more complex to apply deconvolution techniques using
this density rather than the transition density. For example, the autoregressive conditional
heteroskedasticity (ARCH) process is a family of processes for which transition density
has a closed form as opposed to the stationary density. These processes are widely used
to model economic or financial variables.

In this work, we aim to develop a new computationally efficient approach whose con-
struction does not require the knowledge of the invariant density. We provide a consistent
estimator with a parametric rate of convergence for general models. Our approach is
valid for non-linear HMMs with heteroskedastic innovations and our estimation principle
is based on the contrast function proposed in a nonparametric context by [28, 3]. Thus,
we propose to adapt their approach in a parametric context, assuming that the form of
the transition density Πθ0 is known up to some unknown parameter θ0. The proposed
methodology is purely parametric and we are going further in this direction by propos-
ing an analytical expression of the asymptotic variance matrix Σ(θ̂n), which allows us to
consider the construction of confidence intervals.

Under general assumptions, we prove that our estimator is consistent and give some
conditions under which the asymptotic normality can be stated and also provide an ana-
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lytical expression of the asymptotic variance matrix. We show that this approach is much
less greedy from a computational point of view than the MLE for non-Gaussian HMMs
and its implementation is straightforward since it requires to compute only Fourier trans-
forms as in [12]. In particular, a numerical illustration is given for the three following
models: a Gaussian AR(1) model for which our approach can be well understood, an
AR(1) process with Laplace’s noise in order to study the influence of the smoothness of
observation noise on the estimation of the parameters since it is known in deconvolution
to affect the convergence rate (see, e.g., [19]), and a stochastic volatility model (SV) also
referred to as the unobserved components/stochastic volatility model (see, e.g., [40] and
[7]). There is by now a large literature on the fitting of SV models (see, e.g., the reviews in
[21], [2] and [37]). All are based on Bayesian methods and in particular MCMC methods.
We therefore propose an alternative estimation method that is simple to implement and
quick to calculate for this model, which is widely used in practice. We also illustrate the
applicability of our procedure on a real dataset to estimate the ex-ante real interest rate
since it is shown in [26] and recently in [32] that interest rates are subject to considerable
real-time measurement error. In particular, we focus on the great inflation period. We
show that during this period the Gaussianity hypothesis of observation noise is not ver-
ified and that in this study a SV-type model gives better results for the latent variable
estimation. In this context, the Kalman filter is no longer optimal and therefore leads
to a bias in parameter estimation, since in this case we approach the noise density by a
Gaussian density to construct the MLE. This bias on the parameters propagates in the
estimation of the latent variable (see [17]). This cannot be overlooked in models where
the latent variable to be predicted is used to make political decisions. It seems important
to study estimators other than the MLE that cannot be calculated by the Kalman fil-
ter. In this regard, our approach therefore provides better results than the (quasi-)MLE
estimate.

The remainder of the paper is organized as follows. In Section 2, we present our
assumptions on the Markov chain. Section 3 describes our estimator and its statistical
properties and also presents our main results: the consistency and the asymptotic nor-
mality of the estimator. Simulated examples are provided in Section 4 and the real data
application in Section 5. The proofs are gathered in Section 6.

2 Framework

Before presenting in detail the main estimation procedure of our study, we introduce some
preliminary notations and assumptions.

2.1 Notations

The Fourier transform of an integrable function u is denoted by u∗(t) =
∫
e−itxu(x)dx,

it satisfies (u∗)∗(x) = 2πu(−x). We denote by ∇θg the vector of the partial derivatives
of g with respect to (w.r.t) θ. The Hessian matrix of g w.r.t θ is denoted by ∇2

θg. For

any matrix M = (Mi,j)i,j, the Frobenius norm is defined by ‖M‖ =
√∑

i

∑
j |Mi,j|2.

Finally, we set Yi = (Yi, Yi+1) and yi = (yi, yi+1) is a given realization of Yi. We set
(t⊗ s)(x, y) = t(x)s(y).

In the following, for the sake of conciseness, P,E,Var and Cov denote respectively the
probability Pθ0 , the expected value Eθ0 , the variance Varθ0 and the covariance Covθ0 when
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the true parameter is θ0. Additionally, we write Pn (resp. P) the empirical expectation
(resp. theoretical), that is, for any stochastic variable X = (Xi)i, Pn(X) = (1/n)

∑n
i=1Xi

(resp. P(X) = E[X]). For the purposes of this study, we work with Πθ on a compact
subset A = A1 × A2. For more clarity, we write Πθ instead of Πθ1A and we denote by
||.||A (resp. ||.||2A) the norm in L1(A) (resp. L2(A)) defined as

||u||A =

∫ ∫
|u(x, y)|fθ0(x)1A(x, y)dxdy, ||u||2A =

∫ ∫
u2(x, y)fθ0(x)1A(x, y)dxdy.

2.2 Assumptions

For the construction of our estimator, we consider three different types of assumptions.

A 1.
Smoothness and mixing assumptions:

(i) The function to estimate Πθ belongs to L1(A) ∩ L2(A) and is twice continuously
differentiable w.r.t θ ∈ Θ for any (x, x′) and measurable w.r.t (x, x′) for all θ in
Θ. Additionally, each coordinate of ∇θΠθ and each coordinate of ∇2

θΠθ belongs to
L1(A) ∩ L2(A).

(ii) The (Xi)i is strictly stationary, ergodic and α-mixing with invariant density fθ0.

Assumptions on the noise εt and innovations ηt:

(iii) – The errors (εi)i are independent and identically distributed (i.i.d.) centered
random variables with finite variance, E [ε2

1] = σ2
ε . The random variable ε1

admits a known density, fε, belongs to L2(R), and for all x ∈ R, f ∗ε (x) 6= 0.

– The innovations (ηi)i are i.i.d. centered random variables.

Identifiability assumptions:

(iv) The mapping θ 7→ Pmθ = ‖Πθ − Πθ0‖
2
A − ‖Πθ0‖

2
A with mθ defined in (2) admits a

unique minimum at θ0 and its Hessian matrix denoted by Vθ is non-singular in θ0.

3 Estimation Procedure and Main Results

3.1 Least Squares Contrast Estimation

A key ingredient in the construction of our estimator of the parameter θ0 is the choice of
a “contrast function” depending on the data. Details about contrast estimators can be
found in [43]. For the purpose of this study, we consider the contrast function initially
introduced by [28] in a nonparametric setting, inspired by regression-type contrasts and
later used in various works (see, e.g., [3, 29, 30, 31]), that is

Pnmθ =
1

n

n−1∑
i=1

mθ(yi). (2)

with mθ : y 7→ QΠ2
θ
(y) − 2VΠθ(y). The operators Q and V are defined for any function

h ∈ L1(A) ∩ L2(A) as

Vh(x, y) =
1

4π2

∫ ∫
ei(xu+yv) h∗(u, v)

f ∗ε (−u)f ∗ε (−v)
dudv, Qh(x) =

1

2π

∫
eixu

h∗(u, 0)

f ∗ε (−u)
du,

and need to satisfy the following integrability condition:
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A 2. The functions Π∗θ/f
∗
ε , (∂Πθ/∂θj)

∗/f ∗ε and (∂2Πθ/∂θj∂θk)
∗/f ∗ε for j, k = 1, . . . , r be-

longs to L1(A).

This assumption can be understood as Π∗θ and its first two derivatives (resp. (Π2
θ)
∗)

have to be smooth enough compared to f ∗ε .

We are now able to describe in detail the procedure of [28] to understand the choice of
this contrast function (see, e.g., [28, 3] for the links between this contrast and regression-
type contrasts). A full discussion of hypothesis is given in Section 3.3.

Owing to the definition of the model (1), the Yi are not i.i.d.. However, by assumption
A1(ii), they are stationary ergodic1, so the convergence of Pnmθ to Pmθ as n tends to
infinity is provided by the ergodic theorem. Moreover, the limit Pmθ of the contrast
function can be analytically computed. To do this, we use the same technique as in the
convolution problem (see [29, 30]). Let us denote by FX the density of Xi and FY the
density of Yi. We remark that FY = FX ? (fε⊗ fε) and F ∗Y = F ∗X(f ∗ε ⊗ f ∗ε ), where ? stands
for the convolution product, and then by Parseval equality we have

E[Πθ(Xi)] =

∫ ∫
ΠθFX =

1

2π

∫ ∫
Π∗θF

∗
X =

∫ ∫
Π∗θ

f ∗ε ⊗ f ∗ε
F ∗Y .

=
1

2π

∫ ∫
V ∗ΠθF

∗
Y =

∫ ∫
VΠθFY = E[VΠθ(Yi)].

Similarly, the operator Q is defined to replace the term
∫

Π2
θ(Xi, y)dy. The operators

Q and V are chosen to satisfy the following Lemma (see [29, 6.1. Proof of Lemma 2] for
the proof).

Lemma 3.1. For all i ∈ {1, . . . , n}, we have

1. E[VΠθ(Yi)] =
∫ ∫

Πθ(x, y)Πθ0(x, y)fθ0(x)dxdy.

2. E[QΠθ(Yi)] =
∫ ∫

Π2
θ(x, y)fθ0(x)dxdy.

3. E[VΠθ(Yi)|X1, . . . , Xn] = Πθ(Xi)

4. E[QΠθ(Yi)|X1, . . . , Xn] =
∫

Πθ(Xi, y)dy

It follows from Lemma 3.1 that

Pmθ =

∫ ∫
Π2
θ(x, y)fθ0(x)dxdy − 2

∫ ∫
Πθ(x, y)Πθ0(x, y)fθ0(x)dxdy

= ||Πθ||2A − 2〈Πθ,Πθ0〉A = ‖Πθ − Πθ0‖
2
A − ‖Πθ0‖

2
A . (3)

Under the identifiability assumption A1(iv), this quantity is minimal when θ=θ0.

Hence, the associated minimum-contrast estimator θ̂n is defined as any solution of

θ̂n = arg min
θ∈Θ

Pnmθ. (4)

1We refer the reader to [15] for the proof that if (Xi)i is an ergodic process then the process (Yi)i,
which is the sum of an ergodic process with an i.i.d. noise, is again stationary ergodic. Moreover, by the
definition of an ergodic process, if (Yi)i is an ergodic process then the couple Yi = (Yi, Yi+1) inherits the
property (see [20])
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3.2 Asymptotic Properties of the Estimator

The following result states the consistency of our estimator and the central limit theo-
rem (CLT) for α-mixing processes. To this aim, we further assume that the following
assumptions hold true:

A 3.

(i) Local dominance: E
[
supθ∈Θ

∣∣∣QΠ2
θ
(Y1)

∣∣∣] <∞.

(ii) Moment condition: For some δ > 0 and for j ∈ {1, . . . , r}:

E

∣∣∣∣∣Q ∂Π2
θ

∂θj

(Y1)

∣∣∣∣∣
2+δ
 <∞.

(iii) Hessian local dominance: For some neighborhood U of θ0 and for j, k ∈ {1, . . . , r}

E

[
sup
θ∈U

∣∣∣∣∣Q ∂2Π2
θ

∂θj∂θk

(Y1)

∣∣∣∣∣
]
<∞

Let us now introduce the matrix Σ(θ) given by

Σ(θ) = V−1
θ Ω(θ)V−1′

θ , Ω(θ) = Ω0(θ) + 2
+∞∑
j=2

Ωj−1(θ),

where Ω0(θ) = Var (∇θmθ(Y1)) and Ωj−1(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj)).

Theorem 3.1. Under Assumptions A1–A3 let θ̂n be the least square estimator defined
in (4), we have

θ̂n −→ θ0 in probability as n→∞.
Moreover, √

n(θ̂n − θ0)→ N (0,Σ(θ0)) in law as n→∞.

The proof of Theorem 3.1 is provided in Subsection 6.1.
The following corollary gives an expression of the matrices Ω(θ0) and Vθ0 defined in

Σ(θ) of Theorem 3.1.

Corollary 3.1. Under Assumptions A1–A3, the matrix Ω(θ0) is given by

Ω(θ0) = Ω1(θ0) + Ω2(θ0) + 2
+∞∑
j=3

Ωj(θ0),

where

Ω1(θ0) = E[Q2
∇θΠ2

θ
(Y1)] + 4E[V 2

∇θΠθ
(Y1)]− 4E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]

−

{
E
(∫

∇θΠ
2
θ(X1, y)dy

)2

+ 4E
(
∇θΠθ(X1)

)2

− 4E
(∫

∇θΠ
2
θ(X1, y)dy

)
E
(
∇θΠθ(X1)

)}
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and,

Ω2(θ) =E
[∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(X2, y)dy

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]2

− 2

(
E
[(∫

∇θΠ
2
θ(X1, y)dy

)
∇θΠθ(X2)

]
+ E[Q∇θΠ2

θ
(Y2)V∇θΠθ(Y1)]

)
− 4

(
E
[∫
∇θΠ

2
θ(X1, y)dy

]
E [∇θΠ(X2)] + E [∇θΠ(X1)]2 − E [V∇θΠθ(Y1)V∇θΠθ(Y2)]

)
and, the covariance terms are given for j > 2 as

Ωj(θ0) = Cov
(∫
∇θΠ

2
θ(X1, y)dy,

∫
∇θΠ

2
θ(Xj, y)dy

)
+ 4

(
Cov (∇θΠθ(X1),∇θΠθ(Xj))− Cov

(∫
∇θΠ

2
θ(X1, y)dy,∇θΠθ(Xj)

))
,

where the differential ∇θΠθ is taken at point θ = θ0.
Furthermore, the Hessian matrix Vθ0 is given by(

[Vθ0 ]j,k

)
j,k

= 2

(〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉
f

)
j,k

∣∣∣
θ=θ0

.

The proof of Corollary 3.1 is given in Subsection 6.2.

Sketch of proof: Let us now state the strategy of the proof, the full proof is given in
Section 6. Clearly, the proof of Theorem 3.1 relies on M-estimator properties and on
the deconvolution strategy. The consistency of our estimator comes from the following
observation: if Pnmθ converges to Pmθ in probability, and if the true parameter solves
the limit minimization problem, then, the limit of the argument of the minimum θ̂n is θ0.
By using the uniform convergence in probability and the compactness of the parameter
space, we show that the argmin of the limit is the limit of the argmin. Combining these
arguments with the dominance argument A3(i), we prove the consistency of our estimator,
and then, the first part of Theorem 3.1.

The asymptotic normality follows essentially from CLT for mixing processes (see [27]).
Thanks to the consistency, the proof is based on a moment condition of the Jacobian
vector of the function mθ(y) = QΠ2

θ
(y) − 2VΠθ(y) and on a local dominance condition

of its Hessian matrix. These conditions are given in A3(ii) and A3(iii). To refer to
likelihood results, one can see these assumptions as a moment condition of the score
function and a local dominance condition of the Hessian.

3.3 Comments on the Assumptions

In the following, we provide a discussion of the hypotheses.

• Assumption A 1(i) is not restrictive; it is satisfied for many processes. Taking
the process (Xi)i defined in (1), we provide conditions on the functions b, σ and η
ensuring that Assumption A 1(ii) is satisfied (see [15] for more details).

(a) The random variables (ηi)i are i.i.d. with an everywhere positive and contin-
uous density function independent of (Xi)i.
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(b) The function bθ0 is bounded on every bounded set; that is, for every K > 0,
sup|x|≤K |bθ0(x)| <∞.

(c) The function σθ0 satisfies, for every K > 0 and constant σ1, 0 < σ1 ≤
inf |x|≤K σθ0(x) and sup|x|≤K σθ0(x) <∞.

(d) There exist constants Cb > 0 and Cσ > 0, sufficiently large M1 > 0, M2 > 0,
c1 ≥ 0 and c2 ≥ 0 such that |bθ0(x)| ≤ Cb|x|+ c1, for |x| ≥ M1 and |σθ0(x)| ≤
Cσ|x|+ c2, for |x| ≥M2 and Cb + E[η1]Cσ < 1.

Assumption A 1(iii) on fε is quite usual when considering deconvolution estimation,
in particular, the first part is essential for the identifiability of the model (1). This
assumption cannot be easily removed: even if the density of εi is completely known
up to a scale parameter, the model (1) may be non-identifiable as soon as the
invariant density of Xi is smoother than the density of the noise (see [6]). The second
part of A 1(iii) is a classical assumption ensuring the existence of the estimation
criterion.

• For some models, the integrability assumption A 2 is not satisfied. In particular,
for models where this integrability assumption is not valid we propose to insert a
weight function ϕ or a truncation Kernel as in [12, p. 285] to circumvent the issue
of integrability. More precisely, we define the operators as follows

Qh?KBn
(x) =

1

2π

∫
eixu

(h ? KBn)∗(u, 0)

f ∗ε (−u)
du, V ∗h?KBn =

(h ? KBn)∗

f ∗ε ⊗ f ∗ε
,

where K∗Bn is the Fourier transform of a density deconvolution kernel with compact
support and satisfies |1 − K∗Bn(t)| ≤ 1|t|>1 and Bn is a sequence which tends to
infinity with n. The contrast is then defined as

Pnmθ =
1

n

n−1∑
i=1

QΠ2
θ?K

(Yi)− 2VΠθ?K(Yi). (5)

This contrast still works under Assumptions A 1–3 by taking KBn(t)∗ = 1|t|≤Bn
with Bn = +∞.

• It should be noted that the construction of the contrasts (2)-(5) does not need to
know the stationary density fθ0 . The exception is the second part of Assumption
A1(iv) since the first part concerns the uniqueness of Pmθ which is strictly convex
w.r.t. θ. Nevertheless, the second part implies computing the Hessian matrix of Pmθ

to check firstly that it is invertible and secondly to calculate confidence intervals.
For the latter, we propose to use in practice the following consistent estimator for
the confidence bounds

Vθ̂n =
1

n

n−1∑
i=1

Q ∂2Π2
θ

∂θ2

(Yi)− 2V ∂2Πθ
∂θ2

(Yi), (6)

since under the integrability assumption A2 and the Hessian local dominance As-
sumption A3(iii) the matrix Vθ̂n is a consistent estimator of Vθ0 . This matrix and
its inverse can be computed in practice for a large class of models.
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• The local dominance Assumptions A 3(i) and (iii) are not more restrictive than
Assumption A 2 and are satisfied if for j, k = 1, . . . , r the functions supθ∈Θ Π∗θ/f

∗
ε

and supθ∈Θ(∂2Πθ/∂θj∂θk)
∗/f ∗ε are integrable.

• In most applications, we do not know the bounds for the true parameter. One can
replace the compactness assumption by: θ0 is an element of the interior of a convex
parameter space Θ ⊂ Rr. Then, under our assumptions except the compactness,
the estimator is also consistent. The proof is the same and the existence is proved
by using convex optimization arguments. One can refer to [25] for this discussion.

4 Simulations

4.1 The Models

We start from this following HMM{
Yi = Xi + εi
Xi+1 = φ0Xi + ηi+1,

(7)

where the noises εi and the innovations ηi are supposed to be i.i.d. centered random
variables with variance respectively σ2

ε and σ2
0,η.

Here, the unknown vector of parameters is θ0 = (φ0, σ
2
0,η) and for stationary and

ergodic properties of the process Xi, we assume that the parameter φ0 satisfies |φ0| < 1
(see [15]). In this setting, the innovations ηi are assumed Gaussian with zero mean and
variance σ2

0,η. Hence, the transition function Πθ0(x, y) is also Gaussian with mean equal
to φ0x and variance σ2

0,η. And, to analyse the effect of the regularity of the density of
observation noises on the estimation of parameters, we consider three types of noises:
Case 1: ARMA model with Gaussian noise (super-smooth). The density of ε1 is
given by

fε(x) =
1

σε
√

2π
exp

(
− x2

2σ2
ε

)
, x ∈ R.

We have f ∗ε (x) = exp (−σ2
εx

2/2). The vector of parameters θ0 belongs to the compact
subset Θ given by Θ = [−1+r; 1−r]× [σ2

min;σ2
max] with σ2

min ≥ σ2
ε +r where r, r, σ2

min and
σ2

max are positive real constants. We consider this condition (σ2
0,η > σ2

ε) for integrability
assumption but one can relax this assumption (see Subsection 6.3 for the discussion on
Assumptions A 1-A 3).
Case 2: ARMA model with Laplace’s noise (ordinary smooth). The density of
ε1 is given by

fε(x) =
1√
2σε

exp

(
−
√

2

σε
|x|

)
, x ∈ R.

It satisfies f ∗ε (x) = 1/(1 + σ2
εx

2/2).
Case 3: SV model: log−X 2 noise (super smooth). The density of ε1 is given by

fε(x) =
1√
2π

exp

(
x

2
− 1

2
exp(x)

)
, x ∈ R.

We have f ∗ε (x) = (1/
√
π)2ixΓ (1/2 + ix) e−iEx,where E = E[log(ξ2

i+1)] and Var[log(ξ2
i+1)]=

σ2
ε = π2/2, and Γ(x) denotes the gamma function defined Γ(x) =

∫∞
0
tx−1e−tdt. For the
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cases 2 and 3, the vector of parameters θ = (φ, σ2) belongs to the compact subset Θ given
by [−1+r; 1−r]×[σ2

min;σ2
max] with r, σ2

min and σ2
max positive real constants. Furthermore,

this latter case corresponds to the stochastic volatility model introduced by Taylor in [41]{
Ri+1 = exp

(
Xi+1

2

)
ξβi+1,

Xi+1 = φ0Xi + ηi+1,

where β denotes a positive constant. The noises ξi+1 and ηi+1 are two centered Gaussian
random variables with standard variance σ2

ε and σ2
0.

In the original paper [41], the constant β is equal to 12. In this case, by applying a
log transformation Yi+1 = log(R2

i+1)−E[log(ξ2
i+1)] and εi+1 = log(ξ2

i+1)−E[log(ξ2
i+1)], the

log-transform SV model is a special case of the defined model (7).
For all these models, we postponed in Subsection 6.3 the verification of Theorem 3.1

assumptions.

4.2 Expression of the Contrasts

For all the models described above, we can express the theoretical and empirical contrasts
regardless of the type of observation noise used. These expressions are given in the
following proposition.

Proposition 4.1. For the HMM model (7) the theoretical contrast defined in (3) is given
by

Pmθ = −1 +
ση + σ0,η

2
√
πσησ0,η

−

√
2(φ2

0 − 1)

πσ2
η(−1− φ2

0)− πσ2
0,η(1 + φ2 − 2φφ0)

, (8)

and the empirical contrasts used in our simulations are obtained as follows

Pnm
G
θ =

1

2
√
πση
− 1

n

√
2

π(σ2
η − (φ2 + 1)σ2

ε)

n−1∑
i=1

exp

(
− Ai

2(σ2
η − (φ2 + 1)σ2

ε)

)
,

Pnm
L
θ =

1

2
√
πση
− 2

n
√

2πσ9
η

n−1∑
i=1

exp

(
− Ai

2σ2
η

)(
4σ8

η − 2(1 + φ2)σ4
ησ

2
ε(Ai − σ2

η)

+ φ2σ4
ε(A2

i − 6Aiσ2
η + 3σ4

η)

)
,

where Ai = (Yi+1 − φYi)2.
The notations Pnm

G
θ , Pnm

L
θ corresponds to the case 1, case 2 respectively (see Figure 1

for a visual representation of these contrasts as function of the parameters φ and σ2
η).

For the stochastic volatility model (case 3) the inverse Fourier transform of Π∗θ/f
∗
ε

does not have an explicit expression in particular because of the gamma function Γ in
f ∗ε . Nevertheless, the contrast can be approached numerically using FFT and is also
represented. Figure 1 depicts the three empirical and true contrast curves as a function
of the parameters φ and σ2

η for one realization of (7), with n = 2000. It can be observed
that these three empirical contrasts give reliable estimates for the theoretical contrast,
and in turn, also a high-quality estimate of the optimal parameter for the three types of
noise distributions considered in this simulation study.

2We argue that our approach can be applied when we introduce a long mean parameter µ in the
volatility process.
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Figure 1: Contrast functions. (a): Pmθ as a function of the parameters φ and σ2
η for

one realization of (7), with n = 2000. (b): Pnm
G
θ . (c): Pnm

L
θ . (d): Pnm

X
θ . (e)-(h):

Corresponding contour lines. The red circle represents the global minimizer θ0 of Pmθ

and the blue circle, the one of Pnm
G
θ , Pnm

G
θ and Pnm

X
θ respectively.

4.3 Monte Carlo Simulation and Comparison with the MLE

Let us present the results of our simulation experiments. First, we perform a MC study
for the first two cases to study the influence of the noise regularity on the performance
of the estimate (case 3 has the same regularity as case 1). For the first case, we compare
our approach to the MLE. This case is favorable for the MLE since its calculation is
fast via the Kalman filter. Indeed, the linearity of the model and the gaussianity of
the observation noises make the use of the Kalman filter suitable for the computation of
the MLE. However, this is no longer the case for non-Gaussian noises such as Laplace
noises. For noises other than Gaussian noises, the calculation of the MLE is generally
more complicated in practice and requires the use of algorithms such as MCMC, EM,
SAEM, SMC or alternative estimation strategies (see [1],[9] and [36]), which require a
longer computation time. In the case of Laplace’s noise, we use the R package tseries
[42] to fit an ARMA(1,1) model to the Yi observations by a conditional least squares
method [24]. Moreover, it is important to note that even in the most favourable case for
calculating the MLE, our approach is faster than the Kalman filter as it only requires the
minimization of an explicitly known contrast function as opposed to the MLE where the
Kalman filter is used to construct the likelihood of the model to be maximized.

For each simulation, we consider three different signal-to-noise ratios denoted SNR
(i.e., SNR = σ2

η/σ
2
ε = 1/σ2

ε , with σ2
ε equals to 1/40, 1/20 and 1/10 corresponding to low,

medium and high noise levels). For all experiments, we set φ = 0.7 and having in mind
financial and economic setting we generate samples of different sizes (i.e., n = 500 up to
2000). We represent the results obtained, on Boxplots for each parameter and for 100
repetitions in Figure 2 and Figure 3 (corresponding to cases 1 and 2 respectively).

We can see that, as already noticed in the deconvolution setting, there is little differ-
ence between Laplace and Gaussian εi’s. The convergence is slightly better for Laplace
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Figure 2: Boxplot of parameter estimators for different sample sizes in case 1. The
horizontal lines represent the values of true parameters σ2

η and φ.

noise. Moreover, increasing the sample size leads to noticeable improvements of the re-
sults and in all cases and for all the noise distributions the estimation is accurate. The
MLE provides better overall results which is not surprising since in the case 1 it is the
best unbiased linear estimator but we can see that for the parameter φ our estimator is
slightly better. The estimation of the variance σ2

η is more difficult and this is all the more
true as the SNR decreases. For Laplace’s noise, our contrast estimator is better whatever
the number of observations and the SNR. This finding is all the more important for the
variance parameter σ2

η.
Our estimation procedure allows us to deepen our analysis since Theorem 3.1 applies

and as we already mentioned, Corollary 3.1 allows to compute confidence intervals (CIs)
in practice, i.e., for i = 1, 2:

P

θ̂n,i − z1−α/2

√
e′iΣ(θ̂n)ei

n
≤ θ0,i ≤ θ̂n,i + z1−α/2

√
e′iΣ(θ̂n)ei

n

→ 1− α,

as n → ∞ where z1−α/2 is the 1 − α/2 quantile of the Gaussian distribution, θ0,i is the
ith coordinate of θ0 and ei is the ith coordinate of the vector of the canonical basis of R2.
The covariance matrix Σ(θ̂n) is computed by plug-in the variance matrix defined in (6).

We investigate the coverage probabilities for sample size ranging from 100 to 2000
with a replication number of 1000. We compute the confidence interval for each sample
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Figure 3: Boxplot of parameter estimators for different sample sizes in case 2. The
horizontal lines represent the values of true parameters σ2

η and φ.

and plot the proportion of samples for which the true parameters are contained in the
confidence interval for the two cases 1 and 2. The results are shown in Figure 4. It can be
seen that the computed proportions provide good estimators for the empirical coverage
probability for the confidence intervals of both parameters whatever the type of noise. We
can also see that these proportions deviate slightly from the theoretical value as the noise
level increases. Indeed, the size of the ICs tends to increase as the noise level increases.

5 Application on the Ex-Ante Real Interest Rate

Ex-ante real interest rate is important in finance and economics because it provides a
measure of the real return on an asset between now and the future. It is a fruitful
indicator of the monetary policy direction of central banks. Nevertheless, it is important
to make a distinction between the ex-post real rate, which is the observed series, and the
ex-ante real rate which is unobserved. While the ex-post real rate is simply the difference
between the observed nominal interest rate and the observed actual inflation, the ex-ante
real rate is defined as the difference between the nominal rate and the unobserved expected
inflation rate. Since monetary policy makers cannot observe inflation within the period,
they must establish their interest rate decisions on the expected inflation rate. Hence, the
ex-ante real rate is probably a better indicator of the monetary policy orientation.

There are two different strategies for the estimation of the ex-ante real rate. The first
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Figure 4: Coverage probability for 95%CIs versus sample size n (Case 1 top Case 2
bottom) based on 1000 simulations.

consists in using a proxy variable for the ex-ante real rate (see, e.g., [26] for the US region
and recently in [32] for Canada, the Euro Area and the UK). The second strategy consists
in treating the ex-ante real rate as an unknown variable using a latent factor model (see,
e.g., [5, 23, 22]). Our procedure is in line with this second strategy in which the factor
model is specified as follows. {

Yt = α +Xt + εt

Xt = φXt−1 + ηt,
(9)

where Yt is the observed ex-post real interest rate, Xt is the latent ex-ante real interest
rate adjusted by a parameter α, φ a parameter of persistence and εt (resp. ηt) centered
Gaussian random variables with variance σ2

ε (resp. σ2
η).

This modelization comes from the fact that if we denote by Y e
t the ex-ante real interest

rate, we have that Y e
t = Rt − Iet with Rt the observed nominal interest rate and Iet the

expected inflation rate. So, the unobserved part of Y e
t comes from the expected inflation

rate. Furthermore, the ex-post real interest rate Yt is obtained from Yt = Rt − It with
It the observed actual inflation rate. Hence, expanding these expressions to allow for
expected inflation rate Iet gives

Yt = Rt − Iet + Iet − It = Y e
t + εt,

where εt = Iet − It is the inflation expectations random variables. If people do not make
systematic errors in forecasting inflation, then εt, might reasonably be assumed to be
a Gaussian white noise with variance denotes by σ2

ε . This assumption is known as the
Rational Expectation Hypothesis (REH). Thus, the REH is very naturally suitable for a
state-space representation (see, e.g., [4]) and defining Xt = Y e

t − α as the ex-ante real
interest rate adjusted by its population mean α gives the modelization (9).
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Figure 5: (a): Observed ex-post real rate. (b): Observed actual inflation rate.

The dataset was split into in and out-of-sample monthly data sets. The in-sample
contained 75% (it ranges from 1 January 1962 to 1 March 1973) of the total dataset
and the out-of-sample the remaining 25% (from 1 April 1973 to 1 March 1975, i.e., for a
horizon of two years). This places us in the period of great inflation for the US region.
More precisely, the ex-post real interest rates Yt (represented in Figure 5(a)) is then
computed as the difference between the logarithm annualized nominal funds rate and
the logarithm annualized percentage inflation rate It (depicted in Figure 5(b)) obtained
from the consumer price index for all urban consumers. The data are available from
the Federal Reserve Economic Data and for this data, we consider two of the models
previously studied, the Gaussian AR model and the SV model.

Let us denote θ = (α, φ, σ2
η) the vector of unknown parameters to be estimated. We

make a two-stage estimation: in the first step we estimate the unknown parameter vector
θ on the in-sample by minimizing the contrast introduced in this paper. The second step
is devoted to the ex-ante real rate forecasts and the expected inflation rate forecasts on the
out-of-sample by plugging θ̂ obtained from the in-sample set in the first stage by running
a Kalman filter. So that all forecasts are computed using the pseudo out-of-sample.

The value of the estimation obtained in the first step is as follows: α̂AR = 1.5699,
α̂SV = 2.1895, φ̂AR = 0.5750, φ̂SV = 0.8500, σ̂2

AR = 4.4048 and σ̂2
SV = 3.1756 and the

forecasts obtained from the out-of-sample are shown in Figure 6. A first examination
of our results reveals that our forecasts expected inflation series is plausible for the two
models. Nevertheless, the results are better for the SV model: the Mean Squared Forecast
Error is divided by a factor 10 for the SV model. The Lilliefors test [33], a variant of the
Kolmogorov-Smirnov test when certains parameters of the distributions must be estimated
which is the case here, suggests that during the great inflation period the data are no longer
Gaussian and exhibit more like a distribution with heavy tails. The null hypothesis is
rejected at level α = 0.05. This result may explain why the SV model is significantly
better than the AR model. The mean of the forecast error êt = It−Îet is sufficiently close
to zero and the Ljung box test accepts the null hypothesis, meaning that the forecast
errors are not correlated for the two models. The correlograms for the two models are
given in Figure 7. These results are consistent with the rational expectation hypothesis.
If one compares the results of the parameters estimation for the two models one can see
that the persistence parameter φ is higher for the SV model than the AR model, on the
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Figure 6: (a): Ex-post real rate forecasts. (b): Expected inflation rate forecasts.
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Figure 7: (a): Correlogram of êt for AR model. (b): Correlogram of êt for SV model.

other hand, the variance is lower. Therefore, the variance of Îet is smaller than that of It
for the SV model. These results are consistent with the economically intuitive notion that
expectations are smoother than realizations. Most importantly, these results corroborate
those of the thorough analysis in [40] and [38] whose find that the persistence parameter
is high and close to one for this period of study.

Conclusion

In this paper, we propose a new parametric estimation strategy for non-linear and non-
Gaussian HMM models inspired by [30]. We go further by proposing an analytical ex-
pression of the asymptotic variance matrix Σ(θ̂n) which thus allows us to consider the
construction of confidence intervals. This methodology makes it possible to bypass the
MLE estimate known to be difficult to calculate for these models. Our approach is not
based on MC methods (MCMC or particle filtering methods), which avoids the instabil-
ity problems of most of the proposed methods when minimizing the criterion following
MC errors (see [14]). The parameter estimation step in HMM models is very important
since it is shown in [17] that the bias on the parameters propagates in the estimation of
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the latent variable. This cannot be overlooked in models where the latent variable to be
predicted is used to make political decisions. For example, in this paper, we have looked
at the prediction of the ex-ante interest rates and show that during the period of high
inflation the annualized inflation rate exhibits distribution with heavy tails. Thus, in this
context the SV model seems more appropriate and gives better results. Nevertheless,
since this model is no longer Gaussian, it seems important to study estimators other than
the MLE that cannot be calculated by the Kalman filter. In this context, we provide a
new and simple way to estimate the parameters in a Gaussian and non-Gaussian setting.
This provides an alternative estimation method to those proposed in the literature that
are largely based on MC methods.

6 Proofs

6.1 Proofs of Theorem 3.1

For the reader convenience, we split the proof of Theorem 3.1 into three parts: in Subsec-
tion 6.1.1, we give the proof of the existence of our contrast estimator defined in (3). In
Subsection 6.1.2, we prove the consistency, that is, the first part of Theorem 3.1. Then, we
prove the asymptotic normality of our estimator in Subsection 6.1.3, that is, the second
part of Theorem 3.1. The Section 6.2 is devoted to Corollary 3.1.

6.1.1 Existence of the M-Estimator

By assumption, the function mθ(yi) = QΠ2
θ
(yi)−2VΠθ(yi) is continuous w.r.t θ. Hence, the

function Pnmθ = 1
n

∑n
i=1 mθ(Yi) is continuous w.r.t θ belonging to the compact subset

Θ. So, there exists θ̃ belongs to Θ such that infθ∈Θ Pnmθ = Pnmθ̃.

6.1.2 Consistency

For the consistency of our estimator, we need to use the uniform convergence given in the
following Lemma. Let us consider the following quantities:

Pnhθ =
1

n

n∑
i=1

hθ(Yi); PnSθ =
1

n

n∑
i=1

∇θhθ(Yi), PnHθ =
1

n

n∑
i=1

∇2
θhθ(Yi),

where hθ(y) is a real function from Θ× Y with value in R.

Lemma 6.1. Uniform Law of Large Numbers (see [34] for the proof). Let (Yi)i≥1 be an
ergodic stationary process and suppose that:

1. hθ(y) is continuous in θ for all y and measurable in y for all θ in the compact subset
Θ.

2. There exists a function s(y) (called the dominating function) such that |hθ(y)| ≤ s(y)
for all θ ∈ Θ and E[s(Y1)] <∞. Then

sup
θ∈Θ
|Pnhθ −Phθ| → 0 in probability as n →∞.

Moreover, Phθ is a continuous function of θ.



18 C. Chesneau, S. El Kolei, F. Navarro

By assumption Πθ is continuous w.r.t θ for any x and measurable w.r.t x for all θ which
implies the continuity and the measurability of the function Pnmθ on the compact subset
Θ. Furthermore, the local dominance assumption A3(i) implies that E [supθ∈Θ |mθ(Yi)|]
is finite. Indeed, by assumption A3(i), we have

|mθ(yi)| =
∣∣∣QΠ2

θ
(yi)− 2VΠθ(yi)

∣∣∣ ≤ ∣∣∣QΠ2
θ
(yi)
∣∣∣+ 2 |VΠθ(yi)| <∞.

Lemma 6.1 gives us the uniform convergence in probability of the contrast function:
for any ε > 0:

lim
n→∞

P
(

sup
θ∈Θ
|Pnmθ −Pmθ| ≤ ε

)
= 1.

Combining the uniform convergence with [35, Theorem 2.1 p. 2121 chapter 36] yields the
weak (convergence in probability) consistency of the estimator.

6.1.3 Asymptotic Normality

For the CLT, we need to define the α-mixing property of a process (we refer the reader
to [15] for a complete review of mixing processes).

Definition 6.1 (α-mixing (strongly mixing process)). Let Y := (Yi)i denote a general
sequence of random variables on a probability space (Ω,F ,Pθ) and let Fmk = σ(Yk, . . . , Ym).
The sequence Y is said to be α-mixing if α(n)→ 0 as n→∞, where

α(n) := sup
k≥1

sup
A∈Fk1 ,B∈F∞k+n

|Pθ(A ∩ B)− Pθ(A)Pθ(B)|.

The proof of the CLT is based on the following Lemma.

Lemma 6.2. Suppose that the conditions of the consistency hold. Suppose further that:

(i) (Yi)i is α-mixing.

(ii) (Moment condition): for some δ > 0 and for each j ∈ {1, . . . , r}

E

[∣∣∣∣∂mθ(Y1)

∂θj

∣∣∣∣2+δ
]
<∞.

(iii) (Hessian Local condition): for some neighborhood U of θ0 and for j, k ∈ {1, . . . , r}:

E
[
sup
θ∈U

∣∣∣∣∂2mθ(Y1)

∂θj∂θk

∣∣∣∣] <∞.
Then, θ̂n defined in (4) is asymptotically normal with asymptotic covariance matrix given
by

Σ(θ0) = V−1
θ0

Ω(θ0)V−1
θ0
,

where Vθ0 is the Hessian of the mapping Pmθ given in (3).

Proof. The proof follows from [25, Proposition 7.8 p. 472] and [27], and by using the
fact that, by regularity assumptions A1(i) and the Lebesgue Differentiation Theorem, we
have E[∇2

θmθ(Y1)] = ∇2
θE[mθ(Y1)].
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It just remains to check that the conditions (ii) and (iii) of Lemma 6.2 hold under our
assumptions A3(ii) and A(iii).

(ii): As the function Πθ is twice continuously differentiable w.r.t θ, ∀yi ∈ R2 and so also
Π2
θ, the mapping mθ(yi) : θ ∈ Θ 7→ mθ(yi) = QΠ2

θ
(yi) − 2VΠθ(yi) is twice continuously

differentiable ∀θ ∈ Θ and its first derivatives are given by

∇θmθ(yi) = ∇θQΠ2
θ
(yi)− 2∇θVΠθ(yi).

By assumption, for each j ∈ {1, . . . , r}, ∂Πθ
∂θj

and
∂Π2

θ

∂θj
belong to L1(A), therefore one

can apply the Lebesgue Differentiation Theorem and Fubini Theorem to obtain

∇θmθ(yi) =
[
Q∇θΠ2

θ
(yi)− 2V∇θΠθ(yi)

]
. (10)

Then, for some δ > 0, by the moment assumption A3(ii), we have

|∇θmθ(yi)|2+δ =
∣∣∣Q∇θΠ2

θ
(yi)− 2V∇θΠθ(yi)

∣∣∣2+δ

≤ C1

∣∣∣Q∇θΠ2
θ
(yi)
∣∣∣2+δ

+ C2 |V∇θΠθ(yi)|
2+δ <∞,

where C1 and C2 denote three positive constants.

(iii): For j, k ∈ {1, . . . , r}, ∂2Πθ
∂θj∂θk

and
∂2Π2

θ

∂θj∂θk
belong to L1(A), the Lebesgue Differentiation

Theorem gives

∇2
θmθ(yi) =

[
Q∇2

θΠ2
θ
(yi)− 2V∇2

θΠθ(yi)
]
,

and, for some neighborhood U of θ0, by the local dominance assumption A3(iii),

E
[
sup
θ∈U

∥∥∇2
θmθ(Yi)

∥∥] ≤ E
[
sup
θ∈U

∥∥∥Q∇2
θΠ2

θ
(Yi)

∥∥∥]+ 2E
[
sup
θ∈U

∥∥∥V∇2
θΠθ(Yi)

∥∥∥] <∞.
This ends the proof of Theorem 3.1.

6.2 Proof of Corollary 3.1

By replacing ∇θmθ(Y1) by its expression (10), we have for j = 1

Ω1(θ) = Var
[
Q∇θΠ2

θ
(Y1)− 2V∇θΠθ(Y1)

]
= Var

(
Q∇θΠ2

θ
(Y1)

)
+ 4Var (V∇θΠθ(Y1))− 4Cov

(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y1)

)
.

Owing to Lemma 3.1, we obtain

Var
(
Q∇θΠ2

θ
(Y1)

)
= E[Q∇θΠ2

θ
(Y1)2]− E[Q∇θΠ2

θ
(Y1)]2

= E[Q∇θΠ2
θ
(Y1)2]− E[

∫
∇θΠ

2
θ(X1, y)dy]2.

In a similar manner, using again Lemma 3.1, we have

Var (V∇θΠθ(Y1)) = E[V∇θΠθ(Y1)2]− E[V∇θΠθ(Y1)]2

= E[V∇θΠθ(Y1)2]− E[∇θΠθ(X1)]2
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and

Cov
(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y1)

)
= E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]

− E[

∫
∇θΠ

2
θ(X1, y)dy]E[∇θΠθ(X1)].

Hence

Ω1(θ) = Var (∇θmθ(Y1))

= E[Q∇θΠ2
θ
(Y1)2] + 4E[V∇θΠθ(Y1)2]− 4E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]

−
(

4E[∇θΠθ(X1)]2 + E[

∫
∇θΠ

2
θ(X1, y)dy]2 − 4E[

∫
∇θΠ

2
θ(X1, y)dy]E[∇θΠθ(X1)]

)
.

For j = 2, we have

Ω2(θ) = Cov (∇θmθ(Y1),∇θmθ(Y2))

= Cov
(
Q∇θΠ2

θ
(Y1), Q∇θΠ2

θ
(Y2)

)
− 2Cov

(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y2)

)
− 2Cov

(
Q∇θΠ2

θ
(Y2), V∇θΠθ(Y1)

)
+ 4Cov (V∇θΠθ(Y1), V∇θΠθ(Y2))

where the different terms are obtained from Lemma 3.1

Cov
(
Q∇θΠ2

θ
(Y1), Q∇θΠ2

θ
(Y2)

)
= E

[∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(X2, y)dy

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]
E
[∫
∇θΠ

2
θ(X2, y)dy

]
Cov

(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y2)

)
= E

[(∫
∇θΠ

2
θ(X1, y)dy

)
∇θΠθ(X2)

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]
E [∇θΠ(X2)]

Cov
(
Q∇θΠ2

θ
(Y2), V∇θΠθ(Y1)

)
= E[Q∇θΠ2

θ
(Y2)V∇θΠθ(Y1)]− E

[∫
∇θΠ

2
θ(X2, y)dy

]
E [∇θΠ(X1)]

Cov (V∇θΠθ(Y1), V∇θΠθ(Y2)) = E[V∇θΠθ(Y1)V∇θΠθ(Y2)]− E [∇θΠ(X1)]E [∇θΠ(X2)]

Now, by using the stationarity assumption A1(iv) of (Xi)i≥1 we obtain that

Ω2(θ) =E
[∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(X2, y)dy

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]2

− 2

(
E
[(∫

∇θΠ
2
θ(X1, y)dy

)
∇θΠθ(X2)

]
+ E[Q∇θΠ2

θ
(Y2)V∇θΠθ(Y1)]

)
− 4

(
E
[∫
∇θΠ

2
θ(X1, y)dy

]
E [∇θΠ(X2)] + E [∇θΠ(X1)]2 − E [V∇θΠθ(Y1)V∇θΠθ(Y2)]

)
Calculus of the covariance matrix of Corollary 3.1 for j > 2: By replacing ∇θmθ(Y1)

by its expression (10), we have

Ωj(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj))

= E[∇θmθ(Y1)∇θmθ(Yj)]− E[∇θmθ(Y1)]E[∇θmθ(Yj)].
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It follows from Lemma 3.1 and the stationarity assumption A1(iv) of (Xi)i≥1 that

E[∇θmθ(Y1)] = E[

∫
∇θΠ

2
θ(X1, y)dy]− 2E[∇θΠθ(X1)].

Moreover

E[∇θmθ(Yj)] = E[

∫
∇θΠ

2
θ(Xj)]− 2E[∇θΠθ(Xj)].

Hence

E[∇θmθ(Y1)]E[∇θmθ(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy]E[

∫
∇θΠ

2
θ(Xj, y)dy]

− 2E[

∫
∇θΠ

2
θ(X1, y)dy]E[∇θΠθ(Xj)]

− 2E[∇θΠθ(X1)]E[

∫
∇θΠ

2
θ(Xj, y)dy]

+ 4E[∇θΠθ(X1)]E[∇θΠθ(Xj)].

On the other hand, we have

E[∇θmθ(Y1)∇θmθ(Yj)] = E
[
(Q∇θΠ2

θ
(Y1)− 2V∇θΠθ(Y1))(Q∇θΠ2

θ
(Yj)− 2V∇θΠθ(Yj))

]
= E[Q∇θΠ2

θ
(Y1)Q∇θΠ2

θ
(Yj)]− 2E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Yj)]

− 2E[V∇θΠθ(Y1)Q∇θΠ2
θ
(Yj)] + 4E[V∇θΠθ(Y1)V∇θΠθ(Yj)].

Furthermore, conditionning by X1:n and using the Tower property yields

E[Q∇θΠ2
θ
(Y1)Q∇θΠ2

θ
(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(Xj, y)dy].

Similarly, we have

E[V∇θΠθ(Y1)V∇θΠθ(Yj)] = E[∇θΠθ(X1)∇θΠθ(Xj)].

Noting that for j > 2 the stationarity of (Xi)i≥1 implies that E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)] =

E[Q∇θΠ2
θ
(Yj)V∇θΠθ(Y1)]. Hence,

E[∇θmθ(Y1)∇θmθ(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(Xj, y)dy]

+ 4E[∇θΠθ(X1)∇θΠθ(Xj)]− 4E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)].

By using Lemma 3.1, the last term is equal to

E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy∇θΠθ(Xj)].

Therefore, the covariance matrix is given by

Ωj(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj))

= E[

∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(Xj, y)dy]− E[

∫
∇θΠ

2
θ(X1, y)dy]E[

∫
∇θΠ

2
θ(Xj, y)dy]

+ 4E[∇θΠθ(X1)∇θΠθ(Xj)]− 4E[∇θΠθ(X1)]E[∇θΠθ(Xj)]

− 4E[

∫
∇θΠ

2
θ(X1, y)dy∇θΠθ(Xj)] + 4E[

∫
∇θΠ

2
θ(X1, y)]E[∇θΠθ(Xj)].
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Thus

Cov (∇θmθ(Y1),∇θmθ(Yj)) = Cov
(∫
∇θΠ

2
θ(X1, y)dy,

∫
∇θΠ

2
θ(Xj, y)dy

)
+ 4

(
Cov (∇θΠθ(X1),∇θΠθ(Xj))

− Cov

(∫
∇θΠ

2
θ(X1, y)dy,∇θΠθ(Xj)

))
.

Expression of the Hessian matrix Vθ: We have

Pmθ = ‖Πθ‖2
A − 2 〈Πθ,Πθ0〉A .

Under A1(i), ∀θ in Θ, the mapping θ 7→ Pmθ is twice differentiable w.r.t θ on the compact
subset Θ. For j ∈ {1, . . . , r}, at the point θ = θ0, we have

∂Pm

∂θj
(θ) = 2

〈
∂Πθ

∂θj
,Πθ

〉
− 2

〈
∂Πθ

∂θj
,Πθ0

〉
= 2

〈
∂Πθ

∂θj
,Πθ − Πθ0

〉
= 0

and for j, k ∈ {1, . . . , r}:

∂2Pm

∂θj∂θk
(θ) = 2

(〈
∂2Πθ

∂θjθk
,Πθ − Πθ0

〉
+

〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉)
j,k

= 2

(〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉)
j,k

.

The proof of Corollary 3.1 is completed.

6.3 Contrast and Checking Assumptions for the Simulations

Contrasts for the simulations: To compute the several contrasts defined in Proposi-
tion 8, the following quantities are essentially required: (Π2

θ(x, 0))∗,Π∗θ(x, y) and f ∗ε (x).
For the model defined in (7), the square of the transition density is also Gaussian up to
the parameter 1/(2

√
πσ2

η) with mean φx and variance σ2
η/2. Hence, we are interested in

computing the following Fourier transform:

(Π2
θ(x, 0))∗ =

∫
e−ixu

(∫
Π2
θ(u, v)dv

)
du =

∫
e−ixuΠ̃θ(u)du

= (Π̃θ(x))∗.

By integration of the Gaussian density, we have that Π̃θ(x) = 1/
(
2
√
πσ2

η

)
∀x, which

is integrable on L1(A). Nevertheless, for the cases 1 and 3 (super-smooth noises), As-
sumptions A 2 and A 3(i)-(iii) are not satisfied since x 7→ (Π̃θ(x))∗/f ∗ε (x) is not in-
tegrable despite the fact that the numerator and denominator taken separately can be
integrated. In this case, we introduce a weight function ϕ belongs to S(R), where S(R)
is the Schwartz space of functions defined by S(R) = {f ∈ C∞(R), ∀α,N there exists
CN,α s.t. |∇α

xf(x)| ≤ CN,α(1 + |x|)−N}.
Hence, ∀ϕ ∈ S(R), we have〈

ϕ, Π̃∗θ

〉
=

∫
ϕ(x)dx

∫
Π̃θ(u)e−ixudu =

1

2
√
πσ2

η

∫
ϕ(x)dx

∫
e−ixudu =

1

2
√
πσ2

η

〈
ϕ, δ0

〉
,
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where δx is the Dirac distribution at point x.

Hence, by taking ϕ : u 7→ ϕ̃(u)eixu/f ∗ε (−u) ∈ S(R) with ϕ̃ : u 7→ 2πe−σ
2
εu

2
, we obtain

the operator Q as follows

QΠ2
θ
(x) =

1

2π

∫
eixu

ϕ̃(u)Π̃∗θ(u)

f ∗ε (−u)
du =

〈
ϕ, Π̃∗θ

〉
=

1

2
√
πσ2

η

〈
ϕ, δ0

〉
=

1

2
√
πσ2

η

ϕ(0),

where ϕ(0) = 1 for all cases in Section 4. Here, we take ϕ̃ dependent of σ2
ε since we

assume that this variance is known but one can take any function ϕ̃ such that ϕ̃/f ∗ε is in
S.

For Π∗θ(x, y) we make the same analogy, that is let Πu,θ(v) the function v 7→ Πθ(u, v)
∀u. For the Gaussian transition density Πθ we have ∀u,

(Πu,θ(y))∗ =

∫
e−iyvΠθ(u, v)dv =

∫
e−iyv

1√
2πσ2

η

e
− (v−φu)2

2σ2
η dv = e(−iφuy−

σ2
η
2
y2).

Let Πy,θ(u) be the function u 7→ (Πu,θ(y))∗ ∀y. Then, we have ∀ϕ ∈ S and ∀y

〈
ϕ,Πy,θ

〉
=

∫
ϕ(x)dx

∫
e−ixu(Πu,θ(y))∗du

=

∫
ϕ(x)dx

∫
e−ixue−iφuy−

σ2
η
2
y2

du

= e−
σ2
η
2
y2

∫
ϕ(z − φy)dx

∫
e−iuzdu

= e−
σ2
η
2
y2

〈
ϕ(.− φy),1∗

〉
= e−

σ2
η
2
y2

〈
ϕ(.− φy), δ0

〉
= e−

σ2
η
2
y2

ϕ(−φy).

Hence, the operator VΠθ is obtain as follows for the case 1, i.e.,
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VΠθ(x, y) =
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)ei(xu+yv) Π∗θ(u, v)

f ∗ε (−u)f ∗ε (−v)
dudv

=
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)

f ∗ε (−u)f ∗ε (−v)
ei(xu+yv)

(∫
e−ixu(Πx,θ(v))∗dx

)
dudv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv
(∫

ϕ̃1(u)

f ∗ε (−u)
eixu
(∫

e−ixu−iφxv−
σ2
η
2
v2

dx

)
du

)
dv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

(∫
ϕ̃1(u)

f ∗ε (−u)
eixu
(∫

e−ix(u+φv)dx

)
du

)
dv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

(∫
ϕ̃1(z − φv)

f ∗ε (φv − z)
eix(z−φv)

(∫
e−ixzdx

)
dz

)
dv

=
1

2π

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

(〈
ϕ(.− φv),1∗

〉)
dv

=
1

2π

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

ϕ(−φv)dv

=
1

2π

∫
e−ivy

(
eiv(y−φx)−(σ2

η+σ2
ε(1+φ2)) v

2

2

)
dv

=
1

2π

∫
eivy
(
e−iv(y−φx)−(σ2

η+σ2
ε(1+φ2)) v

2

2

)
dv

=
1√

2π(σ2
η − σ2

ε(1 + φ2))
exp

(
− (y − φx)2

2(σ2
η − σ2

ε(1 + φ2))

)
,

where ϕ : u 7→ eixuϕ̃1(u)/f ∗ε (−u) with ϕ̃1 : u 7→ 2πe−σ
2
εu

2
and ϕ̃2 : v 7→ e−ivy−σ

2
εv

2
and

such that ϕ, ϕ1 and ϕ2 ∈ S. For the cases 2 and 3, one can make the same computations
by replacing f ∗ε by its expression given in Section 4.

Checking assumptions A1–A3: By inspecting the function bθ0 : x 7→ φ0x one can
easily see that regularity assumptions are well satisfied and, if φ0 satisfies |φ0| < 1, the
process is strictly stationary. It remains to check Assumptions A1(iv) and A2–A3. The
strict convexity of the function Pmθ gives that θ0 is a minimum and Assumption A1(iv)
also requires to compute the Hessian matrix belonging to Sym2×2 (where Sym represents
the space of symmetric matrix). The stationary density fθ0 is here a centered Gaussian
density with zero mean and variance σ2

0,η/(1− φ2
0), so the Hessian matrix Vθ0 is given by

Vθ0 =
1

4
√
πσ3

η

(
− σ2

0,η

−1+φ2
0

0

0 3
2

)
.

(see Corollary 3.1). Nevertheless, we assume here that fθ0 is unknown, so the Hessian
matrix is consistently estimated by

Vθ̂n =
1

n

n−1∑
i=1

Q ∂2Π2
θ

∂θ2

(Yi)− 2V ∂2Πθ
∂θ2

(Yi),

The computation of this matrix can be easily done for Gaussian AR processes whatever
the noises since all derivatives of the Gaussian densities are explicit.

As we have pointed out, the integrability Assumptions A2 and A3(i) and (iii) are not
satisfied for Gaussian AR processes with super-smooth noises (cases 1 and 3), hence the
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introduction in practice of a weight function ϕ belonging to the Swchartz space S is then
mandatory. On the other hand, for Laplace noises the convergence towards zero of the
modulus of the Fourier transform is polynomial and the functions (Π∗θ/f

∗
ε ), (∂Πθ/∂θj)

∗/f ∗ε
and (∂2Πθ/∂θj∂θl)

∗/f ∗ε have the following form C1(θ)P (x) exp(−C2(θ)x2) (meaning that
they are super-smooth and so integrable) where C1(θ) and C2(θ) are two constants well-
defined in the compact parameter set Θ and P (x) a polynomial function independent of
θ. Hence, moment conditions and local dominance are satisfied.
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