
Parametric estimation of hidden Markov models by
least squares type estimation and deconvolution

Christophe Chesneau∗, Salima El Kolei†, Fabien Navarro‡

January 28, 2022

Abstract

This paper develops a simple and computationally efficient parametric approach
to the estimation of general hidden Markov models (HMMs). For non-Gaussian
HMMs, the computation of the maximum likelihood estimator (MLE) involves a
high-dimensional integral that has no analytical solution and can be difficult to
approach accurately. We develop a new alternative method based on the theory of
estimating functions and a deconvolution strategy. Our procedure requires the same
assumptions as the MLE and deconvolution estimators. We provide theoretical
guarantees about the performance of the resulting estimator; its consistency and
asymptotic normality are established. This leads to the construction of confidence
intervals. Monte Carlo experiments are investigated and compared with the MLE.
Finally, we illustrate our approach using real data for ex-ante interest rate forecasts.
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1 Introduction

In this paper, a hidden non-linear Markov model (HMM) with heteroskedastic noise is
considered; we observe n random variables Y1, . . . , Yn having the following additive struc-
ture {

Yi = Xi + εi
Xi+1 = bθ0(Xi) + σθ0(Xi)ηi+1,

(1)

where (Xi)i≥1 is a strictly stationary, ergodic unobserved Markov chain that depends
on two known measurable functions bθ0 and σθ0 up to the unknown parameter θ0. In
addition to its initial distribution, the chain (Xi)i≥1 is characterized by its transition,
i.e., the distribution of Xi+1 given Xi and by its stationary density fθ0 . We assume that
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Université de Caen - LMNO, France, E-mail: christophe.chesneau@unicaen.fr
†Salima El Kolei
CREST - ENSAI, France, E-mail: salima.el-kolei@ensai.fr
‡Fabien Navarro
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the transition distribution admits a density Πθ0 , defined by Πθ0(x, x′)dx′ = Pθ0(Xi+1 ∈
dx′|Xi = x). For the identifiability of (1), we assume that ε1 admits a known density
with respect to the Lebesgue measure denoted by fε.

Our objective is to estimate the parameter vector θ0 for non-linear HMMs with het-
eroskedastic innovations described by the function σθ0 in (1) assuming that the model is
correctly specified, i.e., θ0 belongs to the interior of a compact set Θ ⊂ Rr, with r ∈ N∗.

Many articles have focused on parameter estimation and on the study of asymptotic
properties of estimators when (Xi)i≥1 is an autoregressive moving average (ARMA) pro-
cess (see [9], [51] and [12]) or in a regression context with measurement error (see, e.g.,
[56], [43] or [24]). However, for more general models, (1) is known as HMM with po-
tentially a non-compact continuous state space. This model constitutes a very famous
class of discrete-time stochastic processes, with many applications in various fields such
as biology, speech recognition or finance. In [16], the authors study the consistency of the
MLE estimator for general HMMs, but they do not provide a method for calculating it
in practice. It is well-known that its computation is extremely expensive due to the non-
observability of the Markov chain and the proposed methodologies are essentially based on
expectation-maximization (EM) approach or Monte Carlo-based methods (e.g., Markov
chain Monte Carlo (MCMC), Sequential Monte Carlo (SMC) or particle Markov chain
Monte Carlo, see [1], [10] and [48]). Except in the Gaussian and linear setting, where the
MLE can be processed by a Kalman filter and in this particular case, the calculation will
be relatively fast but there are few cases where real data satisfy this assumption.

In this paper, we do not consider the Bayesian approach; we consider the model
(1) as a so-called convolution model, and our approach is therefore based on Fourier
analysis. The restrictions on error distribution and rate of convergence obtained for our
estimator are also of the same type. If we focus our attention on (semi-)parametric models,
few results exist. To the best of our knowledge, the first study that gives a consistent
estimator is [11]. The authors propose an estimation procedure based on least squares
minimization. Recently, in [13], the authors generalize this approach to models defined as
Xi = bθ0(Xi−1)+ηi, where bθ0 is the regression function assumed to be known up to θ0 and
for homoscedastic innovations ηi. Also, in [21] and [23], the authors propose a consistent
estimator for parametric models assuming knowledge of the stationary density fθ0 up to
the unknown parameters θ0 for the construction of the estimator. For many processes,
this density has no analytic expression, and even in some cases where it is known, it may
be more complex to apply deconvolution techniques using this density rather than the
transition density. For example, the autoregressive conditional heteroskedasticity (ARCH)
process is a family of processes for which transition density has a closed form as opposed
to the stationary density. These processes are widely used to model economic or financial
variables.

In this work, we aim to develop a new computationally efficient approach whose con-
struction does not require the knowledge of the invariant density. We provide a consistent
estimator with a parametric rate of convergence for general models. Our approach is
valid for non-linear HMMs with heteroskedastic innovations, and our estimation principle
is based on the contrast function proposed in a nonparametric context by [35, 3]. Thus,
we propose to adapt their approach in a parametric context, assuming that the form of
the transition density Πθ0 is known up to some unknown parameter θ0. The proposed
methodology is purely parametric, and we go a step further by proposing an analyti-
cal expression of the asymptotic variance matrix Σ(θ̂n), which allows us to consider the
construction of confidence intervals.
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Under general assumptions, we prove that our estimator is consistent and give some
conditions under which the asymptotic normality can be stated and also provide an ana-
lytical expression of the asymptotic variance matrix. We show that this approach is much
less greedy from a computational point of view than the MLE for non-Gaussian HMMs,
and its implementation is straightforward since it requires only Fourier transforms, as
in [13]. In particular, a numerical illustration is given for the three following models: a
Gaussian AR(1) model for which our approach can be well understood, an AR(1) pro-
cess with Laplace’s noise in order to study the influence of the smoothness of observation
noise on the estimation of the parameters since it is known in deconvolution to affect the
convergence rate (see, e.g., [25]), and a stochastic volatility model (SV) also referred to
as the unobserved components/stochastic volatility model (see, e.g., [52], [8] and [19]).
There is a large literature on the fitting of SV models (see, e.g., the reviews in [27], [2] and
[49]). All are based on Bayesian methods, and in particular, Markov chain Monte Carlo
(MCMC) methods. We therefore propose an alternative estimation method that is simple
to implement and quick to calculate for this model, which is widely used in practice. We
provide a simulation study for both linear and nonlinear examples and in a Gaussian
and non-Gaussian setting. We then compare the empirical performance of the proposed
method with other methods from the literature. We also illustrate the applicability of our
procedure on a real dataset to estimate the ex-ante real interest rate, since it is shown
in [32] and more recently in [39] that interest rates are subject to considerable real-time
measurement error. In particular, we focus on the great inflation period. We show that
during this period, the Gaussianity hypothesis of observation noise is not verified and
that in this study, an SV-type model gives better results for the latent variable estima-
tion. In this context, the Kalman filter is no longer optimal and therefore leads to a bias
in parameter estimation, since in this case we approach the noise density by a Gaussian
density to construct the MLE. This bias in the parameters propagates in the estimation
of the latent variable (see [22]). This cannot be overlooked in models where the latent
variable to be predicted is used to make political decisions. It seems important to study
estimators other than the MLE that cannot be calculated by the Kalman filter. In this
regard, our approach therefore provides better results than the (quasi-)MLE estimate.

The remainder of the paper is organized as follows. We present our assumptions about
the Markov chain in Section 2. Section 3 describes our estimator and its statistical prop-
erties, and also presents our main results: the consistency and asymptotic normality of
the estimator. Simulated examples are provided in Section 4 and the real data application
is in Section 5. The proofs are gathered in Section 6.

2 Framework

Before presenting in detail the main estimation procedure of our study, we introduce some
preliminary notations and assumptions.

2.1 Notations

The Fourier transform of an integrable function u is denoted by u∗(t) =
∫
e−itxu(x)dx,

and it satisfies the equation (u∗)∗(x) = 2πu(−x). We denote by ∇θg the vector of the
partial derivatives of g with respect to (w.r.t.) θ. The Hessian matrix of g w.r.t. θ
is denoted by ∇2

θg. For any matrix M = (Mi,j)i,j, the Frobenius norm is defined by
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‖M‖ =
√∑

i

∑
j |Mi,j|2. Finally, we set Yi = (Yi, Yi+1) and yi = (yi, yi+1) is a given

realization of Yi. We set (t⊗ s)(x, y) = t(x)s(y).

In the following, for the sake of conciseness, P,E,Var and Cov denote respectively the
probability Pθ0 , the expected value Eθ0 , the variance Varθ0 and the covariance Covθ0 when
the true parameter is θ0. Additionally, we write Pn (resp. P) the empirical expectation
(resp. theoretical), that is, for any stochastic variable X = (Xi)i, Pn(X) = (1/n)

∑n
i=1Xi

(resp. P(X) = E[X]). For the purposes of this study, we work with Πθ on a compact
subset A = A1 × A2. For more clarity, we write Πθ instead of Πθ1A and we denote by
||.||A (resp. ||.||2A) the norm in L1(A) (resp. L2(A)) defined as

||u||A =

∫ ∫
|u(x, y)|fθ0(x)1A(x, y)dxdy, ||u||2A =

∫ ∫
u2(x, y)fθ0(x)1A(x, y)dxdy.

2.2 Assumptions

For the construction of our estimator, we consider three different types of assumptions.

A 1.
Smoothness and mixing assumptions:

(i) The function to estimate Πθ belongs to L1(A) ∩ L2(A) and is twice continuously
differentiable w.r.t. θ ∈ Θ for any (x, x′) and measurable w.r.t. (x, x′) for all θ in
Θ. Additionally, each coordinate of ∇θΠθ and each coordinate of ∇2

θΠθ belongs to
L1(A) ∩ L2(A).

(ii) The (Xi)i is strictly stationary, ergodic and α-mixing with invariant density fθ0.

Assumptions on the noise εt and innovations ηt:

(iii) – The errors (εi)i are independent and identically distributed (i.i.d.) centered
random variables with finite variance, E [ε2

1] = σ2
ε . The random variable ε1

admits a known density, fε, belongs to L2(R), and for all x ∈ R, f ∗ε (x) 6= 0.

– The innovations (ηi)i are i.i.d. centered random variables.

Identifiability assumptions:

(iv) The mapping θ 7→ Pmθ = ‖Πθ − Πθ0‖
2
A − ‖Πθ0‖

2
A with mθ defined in (2) admits a

unique minimum at θ0 and its Hessian matrix denoted by Vθ is non-singular in θ0.

Section 3.3 provides further analysis and comments on these assumptions.

3 Estimation Procedure and Main Results

3.1 Least Squares Contrast Estimation

A key ingredient in the construction of our estimator of the parameter θ0 is the choice of
a “contrast function” depending on the data. Details about contrast estimators can be
found in [55]. For the purpose of this study, we consider the contrast function initially
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introduced by [35] in a nonparametric setting, inspired by regression-type contrasts and
later used in various works (see, e.g., [3, 36, 37, 38]), that is

Pnmθ =
1

n

n−1∑
i=1

mθ(yi), (2)

with mθ : y 7→ QΠ2
θ
(y) − 2VΠθ(y). The operators Q and V are defined for any function

h ∈ L1(A) ∩ L2(A) as

Vh(x, y) =
1

4π2

∫ ∫
ei(xu+yv) h∗(u, v)

f ∗ε (−u)f ∗ε (−v)
dudv, Qh(x) =

1

2π

∫
eixu

h∗(u, 0)

f ∗ε (−u)
du,

and must meet the following integrability condition:

A 2. The functions Π∗θ/f
∗
ε , (∂Πθ/∂θj)

∗/f ∗ε and (∂2Πθ/∂θj∂θk)
∗/f ∗ε for j, k = 1, . . . , r be-

longs to L1(A).

This assumption can be understood as Π∗θ and its first two derivatives (resp. (Π2
θ)
∗)

have to be smooth enough compared to f ∗ε .
We are now able to describe in detail the procedure of [35] to understand the choice of

this contrast function (see, e.g., [35, 3] for the links between this contrast and regression-
type contrasts). A full discussion of the hypothesis is given in Section 3.3.

Owing to the definition of the model (1), the Yi are not i.i.d.. However, by assumption
A1(ii), they are stationary ergodic1, so the convergence of Pnmθ to Pmθ as n tends to
infinity is provided by the ergodic theorem. Moreover, the limit Pmθ of the contrast
function can be analytically computed. To do this, we use the same technique as in the
convolution problem (see [36, 37]). Let us denote by FX the density of Xi and FY the
density of Yi. We remark that FY = FX ? (fε⊗ fε) and F ∗Y = F ∗X(f ∗ε ⊗ f ∗ε ), where ? stands
for the convolution product, and then by the Parseval equality we have

E[Πθ(Xi)] =

∫ ∫
ΠθFX =

1

2π

∫ ∫
Π∗θF

∗
X =

∫ ∫
Π∗θ

f ∗ε ⊗ f ∗ε
F ∗Y .

=
1

2π

∫ ∫
V ∗ΠθF

∗
Y =

∫ ∫
VΠθFY = E[VΠθ(Yi)].

Similarly, the operator Q is defined to replace the term
∫

Π2
θ(Xi, y)dy. The operators

Q and V are chosen to satisfy the following Lemma (see [36, 6.1. Proof of Lemma 2] for
the proof).

Lemma 3.1. For all i ∈ {1, . . . , n}, we have

1. E[VΠθ(Yi)] =
∫ ∫

Πθ(x, y)Πθ0(x, y)fθ0(x)dxdy.

2. E[QΠθ(Yi)] =
∫ ∫

Π2
θ(x, y)fθ0(x)dxdy.

3. E[VΠθ(Yi)|X1, . . . , Xn] = Πθ(Xi)

4. E[QΠθ(Yi)|X1, . . . , Xn] =
∫

Πθ(Xi, y)dy

1We refer the reader to [18] for the proof that if (Xi)i is an ergodic process then the process (Yi)i,
which is the sum of an ergodic process with an i.i.d. noise, is again stationary ergodic. Moreover, by the
definition of an ergodic process, if (Yi)i is an ergodic process then the couple Yi = (Yi, Yi+1) inherits the
property (see [26])
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It follows from Lemma 3.1 that

Pmθ =

∫ ∫
Π2
θ(x, y)fθ0(x)dxdy − 2

∫ ∫
Πθ(x, y)Πθ0(x, y)fθ0(x)dxdy

= ||Πθ||2A − 2〈Πθ,Πθ0〉A = ‖Πθ − Πθ0‖
2
A − ‖Πθ0‖

2
A . (3)

Under the identifiability assumption A1(iv), this quantity is minimal when θ=θ0.

Hence, the associated minimum-contrast estimator θ̂n is defined as any solution of

θ̂n = arg min
θ∈Θ

Pnmθ. (4)

3.2 Asymptotic Properties of the Estimator

The following result shows the consistency of our estimator and the central limit theorem
(CLT) for α-mixing processes. To achieve this aim, we further assume that the following
assumptions hold true:

A 3.

(i) Local dominance: E
[
supθ∈Θ

∣∣∣QΠ2
θ
(Y1)

∣∣∣] <∞.

(ii) Moment condition: For some δ > 0 and for j ∈ {1, . . . , r}:

E

∣∣∣∣∣Q ∂Π2
θ

∂θj

(Y1)

∣∣∣∣∣
2+δ
 <∞.

(iii) Hessian local dominance: For some neighborhood U of θ0 and for j, k ∈ {1, . . . , r}

E

[
sup
θ∈U

∣∣∣∣∣Q ∂2Π2
θ

∂θj∂θk

(Y1)

∣∣∣∣∣
]
<∞

Let us now introduce the matrix Σ(θ) given by

Σ(θ) = V−1
θ Ω(θ)V−1′

θ , Ω(θ) = Ω0(θ) + 2
+∞∑
j=2

Ωj−1(θ), (5)

where Ω0(θ) = Var (∇θmθ(Y1)) and Ωj−1(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj)).

Theorem 3.1. Under Assumptions A1–A3 let θ̂n be the least square estimator defined
in (4), we have

θ̂n −→ θ0 in probability as n→∞.

Moreover, √
n(θ̂n − θ0)→ N (0,Σ(θ0)) in law as n→∞.

The proof of Theorem 3.1 is provided in Subsection 6.1.
The following corollary gives an expression of the matrices Ω(θ0) and Vθ0 defined in

Σ(θ) of Theorem 3.1.
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Corollary 3.1. Under Assumptions A1–A3, the matrix Ω(θ0) is given by

Ω(θ0) = Ω1(θ0) + Ω2(θ0) + 2
+∞∑
j=3

Ωj(θ0),

where

Ω1(θ0) = E[Q2
∇θΠ2

θ
(Y1)] + 4E[V 2

∇θΠθ
(Y1)]− 4E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]

−

{
E
(∫

∇θΠ
2
θ(X1, y)dy

)2

+ 4E
(
∇θΠθ(X1)

)2

− 4E
(∫

∇θΠ
2
θ(X1, y)dy

)
E
(
∇θΠθ(X1)

)}
,

Ω2(θ) =E
[∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(X2, y)dy

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]2

− 2

(
E
[(∫

∇θΠ
2
θ(X1, y)dy

)
∇θΠθ(X2)

]
+ E[Q∇θΠ2

θ
(Y2)V∇θΠθ(Y1)]

)
− 4

(
E
[∫
∇θΠ

2
θ(X1, y)dy

]
E [∇θΠ(X2)] + E [∇θΠ(X1)]2 − E [V∇θΠθ(Y1)V∇θΠθ(Y2)]

)
and the covariance terms are given for j > 2 as

Ωj(θ0) = Cov
(∫
∇θΠ

2
θ(X1, y)dy,

∫
∇θΠ

2
θ(Xj, y)dy

)
+ 4

(
Cov (∇θΠθ(X1),∇θΠθ(Xj))− Cov

(∫
∇θΠ

2
θ(X1, y)dy,∇θΠθ(Xj)

))
,

where the differential ∇θΠθ is taken at point θ = θ0.
Furthermore, the Hessian matrix Vθ0 is given by(

[Vθ0 ]j,k

)
j,k

= 2

(〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉
f

)
j,k

∣∣∣
θ=θ0

.

The proof of Corollary 3.1 is given in Subsection 6.2.

Sketch of proof: Let us now state the strategy of the proof. The full proof is given
in Section 6. Clearly, the proof of Theorem 3.1 relies on M-estimator properties and on
the deconvolution strategy. The following observation explains the consistency of our
estimator: if Pnmθ converges to Pmθ in probability, and if the true parameter solves the
limit minimization problem, then, the limit of the argument of the minimum θ̂n is θ0.
By using the uniform convergence in probability and the compactness of the parameter
space, we show that the argmin of the limit is the limit of the argmin. Combining these
arguments with the dominance argument A3(i), we prove the consistency of our estimator,
and then, the first part of Theorem 3.1.

Asymptotic normality follows essentially from CLT for mixing processes (see [33]).
Thanks to the consistency, the proof is based on a moment condition of the Jacobian
vector of the function mθ(y) = QΠ2

θ
(y) − 2VΠθ(y) and on a local dominance condition

of its Hessian matrix. These conditions are given in A3(ii) and A3(iii). To refer to
likelihood results, one can see these assumptions as a moment condition of the score
function and a local dominance condition of the Hessian.
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3.3 Comments on the Assumptions

In the following, we provide a discussion of the hypotheses.

• Assumption A 1(i) is not restrictive; it is satisfied for many processes. Taking
the process (Xi)i defined in (1), we provide conditions on the functions b, σ and η
ensuring that Assumption A 1(ii) is satisfied (see [18] for more details).

(a) The random variables (ηi)i are i.i.d. with an everywhere positive and contin-
uous density function independent of (Xi)i.

(b) The function bθ0 is bounded on every bounded set; that is, for every K > 0,
sup|x|≤K |bθ0(x)| <∞.

(c) The function σθ0 satisfies, for every K > 0 and constant σ1, 0 < σ1 ≤
inf |x|≤K σθ0(x) and sup|x|≤K σθ0(x) <∞.

(d) There exist constants Cb > 0 and Cσ > 0, sufficiently large M1 > 0, M2 > 0,
c1 ≥ 0 and c2 ≥ 0 such that |bθ0(x)| ≤ Cb|x|+ c1, for |x| ≥ M1 and |σθ0(x)| ≤
Cσ|x|+ c2, for |x| ≥M2 and Cb + E[η1]Cσ < 1.

Assumption A 1(iii) on fε is quite usual when considering deconvolution estimation.
In particular, the first part is essential for the identifiability of the model (1). This
assumption cannot be easily removed: even if the density of εi is completely known
up to a scale parameter, the model (1) may be non-identifiable as soon as the
invariant density of Xi is smoother than the density of the noise (see [6]). The second
part of A 1(iii) is a classical assumption ensuring the existence of the estimation
criterion.

• For some models, the integrability assumption A 2 is not satisfied. In particular,
for models where this integrability assumption is not valid, we propose inserting a
weight function ϕ or a truncation kernel as in [13, p. 285] to circumvent the issue
of integrability. More precisely, we define the operators as follows:

Qh?KBn
(x) =

1

2π

∫
eixu

(h ? KBn)∗(u, 0)

f ∗ε (−u)
du, V ∗h?KBn =

(h ? KBn)∗

f ∗ε ⊗ f ∗ε
,

where K∗Bn denotes the Fourier transform of a density deconvolution kernel with
compact support and satisfies |1 − K∗Bn(t)| ≤ 1|t|>1 and Bn is a sequence which
tends to infinity with n. The contrast is then defined as

Pnmθ =
1

n

n−1∑
i=1

QΠ2
θ?KBn

(Yi)− 2VΠθ?KBn
(Yi). (6)

This contrast is still valid under Assumptions A 1–3 by taking KBn(t)∗ = 1|t|≤Bn
with Bn = +∞.

• It should be noted that the construction of the contrasts (2)-(6) does not need
to know the stationary density fθ0 . The second part of Assumption A1(iv) is an
exeption because the first part concerns the uniqueness of Pmθ, which is strictly
convex w.r.t. θ. Nevertheless, the second part requires computing the Hessian
matrix of Pmθ to ensure that it is invertible and secondly to calculate confidence
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intervals. For the latter, we propose to use in practice the following consistent
estimator for the confidence bounds:

Vθ̂n =
1

n

n−1∑
i=1

Q ∂2Π2
θ

∂θ2

(Yi)− 2V ∂2Πθ
∂θ2

(Yi), (7)

because, under the integrability assumption A2 and the Hessian local dominance
Assumption A3(iii), the matrix Vθ̂n is a consistent estimator of Vθ0 . This matrix
and its inverse can be computed in practice for a large class of models.

• The local dominance Assumptions A 3(i) and (iii) are not more restrictive than
Assumption A 2 and are satisfied if for j, k = 1, . . . , r the functions supθ∈Θ Π∗θ/f

∗
ε

and supθ∈Θ(∂2Πθ/∂θj∂θk)
∗/f ∗ε are integrable.

• In most applications, we do not know the bounds of the true parameter. The
compactness assumption can be replaced with: θ0 is an element of the interior
of a convex parameter space Θ ⊂ Rr. Then, under our assumptions except for
the compactness, the estimator is also consistent. The proof is the same and the
existence is proved by using convex optimization arguments. One can refer to [31]
for this discussion.

4 Simulations

4.1 Linear Autoregressive Processes

We start from this following HMM{
Yi = Xi + εi
Xi+1 = φ0Xi + ηi+1,

(8)

where the noises εi and the innovations ηi are supposed to be i.i.d. centered random
variables with variance respectively σ2

ε and σ2
0,η.

Here, the unknown vector of parameters is θ0 = (φ0, σ
2
0,η) and for stationary and

ergodic properties of the process Xi, we assume that the parameter φ0 satisfies |φ0| < 1
(see [18]). In this setting, the innovations ηi are assumed Gaussian with zero mean and
variance σ2

0,η. Hence, the transition function Πθ0(x, y) is also Gaussian with mean φ0x
and variance σ2

0,η. To analyse the effect of the regularity of the density of observation
noises on the estimation of parameters, we consider three types of noises:

Case 1: ARMA model with Gaussian noise (super smooth). The density of ε1 is
given by

fε(x) =
1

σε
√

2π
exp

(
− x2

2σ2
ε

)
, x ∈ R.

We have f ∗ε (x) = exp (−σ2
εx

2/2). The vector of parameters θ0 belongs to the compact
subset Θ given by Θ = [−1+r; 1−r]× [σ2

min;σ2
max] with σ2

min ≥ σ2
ε +r where r, r, σ2

min and
σ2

max are positive real constants. We consider this condition (σ2
0,η > σ2

ε) for integrability
assumption but one can relax this assumption (see Subsection 6.3 for the discussion on
Assumptions A 1-A 3).
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Case 2: ARMA model with Laplace’s noise (ordinary smooth). The density of
ε1 is given by

fε(x) =
1√
2σε

exp

(
−
√

2

σε
|x|

)
, x ∈ R.

It satisfies f ∗ε (x) = 1/(1 + σ2
εx

2/2).
Case 3: SV model: log−X 2 noise (super smooth). The density of ε1 is given by

fε(x) =
1√
2π

exp

(
x

2
− 1

2
exp(x)

)
, x ∈ R.

We have f ∗ε (x) = (1/
√
π)2ixΓ (1/2 + ix) e−iEx,where E = E[log(ξ2

i+1)] and Var[log(ξ2
i+1)]=

σ2
ε = π2/2, and Γ(x) denotes the gamma function defined by Γ(x) =

∫∞
0
tx−1e−tdt. For

the cases 2 and 3, the vector of parameters θ = (φ, σ2) belongs to the compact subset
Θ given by [−1 + r; 1 − r] × [σ2

min;σ2
max] with r, σ2

min and σ2
max positive real constants.

Furthermore, this latter case corresponds to the SV model introduced by Taylor in [53]:{
Ri+1 = exp

(
Xi+1

2

)
ξβi+1,

Xi+1 = φ0Xi + ηi+1,

where β denotes a positive constant. The noises ξi+1 and ηi+1 are two centered Gaussian
random variables with standard variance σ2

ε and σ2
0.

In the original paper [53], the constant β is equal to 12. In this case, by applying a
log transformation Yi+1 = log(R2

i+1)−E[log(ξ2
i+1)] and εi+1 = log(ξ2

i+1)−E[log(ξ2
i+1)], the

log-transform SV model is a special case of the defined model (8).
For all these models, we postponed in Subsection 6.3 the verification of Theorem 3.1

assumptions.

4.1.1 Expression of the Contrasts

For all the models described above, we can express the theoretical and empirical contrasts
regardless of the type of observation noise used. These expressions are given in the
following proposition.

Proposition 4.1. For the HMM model (8) the theoretical contrast defined in (3) is given
by

Pmθ = −1 +
ση + σ0,η

2
√
πσησ0,η

−

√
2(φ2

0 − 1)

πσ2
η(−1− φ2

0)− πσ2
0,η(1 + φ2 − 2φφ0)

, (9)

and the empirical contrasts used in our simulations are obtained as follows:

Pnm
G
θ =

1

2
√
πση
− 1

n

√
2

π(σ2
η − (φ2 + 1)σ2

ε)

n−1∑
i=1

exp

(
− Ai

2(σ2
η − (φ2 + 1)σ2

ε)

)
,

Pnm
L
θ =

1

2
√
πση
− 2

n
√

2πσ9
η

n−1∑
i=1

exp

(
− Ai

2σ2
η

)(
4σ8

η − 2(1 + φ2)σ4
ησ

2
ε(Ai − σ2

η)

+ φ2σ4
ε(A2

i − 6Aiσ2
η + 3σ4

η)

)
,

2We argue that our approach can be applied when we introduce a long mean parameter µ in the
volatility process.
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Figure 1: Contrast functions. (a): Pmθ as a function of the parameters φ and σ2
η for

one realization of (8), with n = 2000. (b): Pnm
G
θ . (c): Pnm

L
θ . (d): Pnm

X
θ . (e)-(h):

Corresponding contour lines. The red circle represents the global minimizer θ0 of Pmθ

and the blue circle, the one of Pnm
G
θ , Pnm

G
θ and Pnm

X
θ respectively.

where Ai = (Yi+1 − φYi)2.
The notations Pnm

G
θ and Pnm

L
θ corresponds to the case 1 and case 2, respectively,

(see Figure 1 for a visual representation of these contrasts as a function of the parameters
φ and σ2

η).

For the SV model (case 3), the inverse Fourier transform of Π∗θ/f
∗
ε does not have an

explicit expression in particular because of the gamma function Γ in f ∗ε . Nevertheless, the
contrast can be approached numerically using a fast Fourier transform (FFT) and is also
represented. Figure 1 depicts the three empirical and true contrast curves as a function
of the parameters φ and σ2

η for one realization of (8), with n = 2000. It can be observed
that these three empirical contrasts give reliable estimates for the theoretical contrast,
and in turn, also a high-quality estimate of the optimal parameter for the three types of
noise distributions considered in this simulation study.

4.1.2 Monte Carlo Simulation and Comparison with the MLE

Let us present the results of our simulation experiments. First, we perform a Monte Carlo
(MC) study for the first two cases to study the influence of the noise regularity on the
performance of the estimate (case 3 has the same regularity as case 1). For the first
case, we compare our approach to the MLE. This case is favorable for the MLE since
its calculation is fast via the Kalman filter. Indeed, the linearity of the model and the
gaussianity of the observation noises make the use of the Kalman filter suitable for the
computation of the MLE. However, this is no longer the case for non-Gaussian noises
such as Laplace noises. For noises other than Gaussian noises, the calculation of the
MLE is generally more complicated in practice and requires the use of algorithms such as
MCMC, EM, Stochastic Approximation of EM (SAEM), SMC, or alternative estimation
strategies (see [1], [10] and [48]), which require a longer computation time. In the case
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Figure 2: Boxplot of parameter estimators for different sample sizes in case 1. The
horizontal lines represent the values of true parameters σ2

η and φ.

of Laplace’s noise, we use the R package tseries [54] to fit an ARMA(1,1) model to the
Yi observations by a conditional least squares method [30]. Moreover, it is important
to note that even in the most favourable case for calculating the MLE, our approach is
faster than the Kalman filter as it only requires the minimization of an explicitly known
contrast function as opposed to the MLE where the Kalman filter is used to construct the
likelihood of the model to be maximized.

For each simulation, we consider three different signal-to-noise ratios denoted by SNR
(i.e., SNR = σ2

η/σ
2
ε = 1/σ2

ε , with σ2
ε equals to 1/40, 1/20 and 1/10 corresponding to low,

medium, and high noise levels). For all experiments, we set φ = 0.7 and generate samples
of different sizes (i.e., n = 500 up to 2000) while keeping the financial and economic
context in mind. We represent the results obtained, on boxplots for each parameter and
for 100 repetitions in Figure 2 and Figure 3 (corresponding to cases 1 and 2, respectively).
We can see that, as already noticed in the deconvolution setting, there is little difference
between Laplace and Gaussian εi’s. The convergence is slightly better for Laplace noise.
Moreover, increasing the sample size leads to noticeable improvements in the results.
In the Gaussian case (Figure 2), the MLE provides better overall results, which is not
surprising since in case 1, it is the best unbiased linear estimator. However, we can see that
for the φ parameter, our estimator is slightly better. The estimation of the variance σ2

η is
more difficult, especially as the SNR decreases. For Laplace’s noise (Figure 3, our contrast
estimator provides better results, whatever the number of observations and the SNR. The
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Figure 3: Boxplot of parameter estimators for different sample sizes in case 2. The
horizontal lines represent the values of true parameters σ2

η and φ.

differences with the MLE are even more significant when estimating the variance σ2
η. The

contrast approach is an interesting alternative to the MLE in the non-Gaussian case.
Our estimation procedure allows us to deepen our analysis since Theorem 3.1 applies

and as we already mentioned, Corollary 3.1 allows to compute confidence intervals (CIs)
in practice, i.e., for i = 1, 2:

P

θ̂n,i − z1−α/2

√
e′iΣ(θ̂n)ei

n
≤ θ0,i ≤ θ̂n,i + z1−α/2

√
e′iΣ(θ̂n)ei

n

→ 1− α,

as n → ∞ where z1−α/2 is the 1 − α/2 quantile of the Gaussian distribution, θ0,i is the
ith coordinate of θ0 and ei is the ith coordinate of the vector of the canonical basis of R2.
The covariance matrix Σ(θ̂n) is computed by plug-in the variance matrix defined in (7).

We investigate the coverage probabilities for sample sizes ranging from 100 to 2000
with a replication number of 1000. We compute the confidence interval for each sample
and plot the proportion of samples for which the true parameters are contained in the
confidence interval for the two cases 1 and 2. The results are shown in Figure 4. It can be
seen that the computed proportions provide good estimators for the empirical coverage
probability for the confidence intervals of both parameters, whatever the type of noise. We
can also see that these proportions deviate slightly from the theoretical value as the noise
level increases. Indeed, the size of the ICs tends to increase as the noise level increases.
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Figure 4: Coverage probability for 95%CIs versus sample size n (Case 1 top Case 2
bottom) based on 1000 simulations.

4.1.3 Sensibility of the Contrast w.r.t. σ2
ε

In this section, we focus on the sensitivity of our contrast estimator when we relax the
assumption A1(iii), that is, we assume that fε is known up to the unknown σ2

ε . Many
authors have addressed this issue from both a theoretical and practical perspective. We
can highlight the following works, although this list is not exhaustive: in the context of
[20] and [45], where the error density is unknown and estimated from additional direct
observations which come from the error density. [42] considered a testing procedure for
two possible densities competing to be the error density. [7] introduce a uniformly con-
sistent estimation procedure when the error variance σ2

ε is unknown but restricted to a
known compact interval. In [34], the authors consider two different models: a first one
where an additional sample of pure noise is available, as well as the model of repeated
measurements, where the contaminated random variables of interest can be observed re-
peatedly, with independent errors. In [14] the authors propose a completely new approach
to this problem, which does not require any extra data of any kind and does not require
smoothness assumptions on the signal distribution.

To estimate σ2
ε here, we use the approach proposed in [42], which is very simple to

implement and yields good results. Let us present the methodology. We consider the
absolute empirical Fourier transform defined by

ϕ̂n(t) =

∣∣∣∣ 1n
n∑
j=1

eitYj
∣∣∣∣.

In the sequel we denote (kn)n∈N, (ωn)n∈N and (σ2
n)n∈N three sequences of positive numbers

described below. We set

σ̃2
n = −2k−2

n log

(
ϕ̂n(kn)

Ck−βn

)
,
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Figure 5: Left. Estimation of φ with unknown σ2
ε . (Horizontal line: true value). Right.

Estimation of σ2
η with unknown σ2

ε . (Horizontal line: true value).

with C and β > 0 arbitrary constants not stipulated to be known, so they might be
misspecified in practice. If we know the regularity of the density of Xi, that is, if fθ ∈ F ,
where F is the ordinary smooth or super smooth function class, one can choose these
parameters according to it. For all examples considered in this section, the stationary
density fθ is super smooth. Otherwise, we fix these parameters arbitrarily and set ωn =
kn/log(kn) with kn →∞. Thus, the estimator of σ2

ε is defined as

σ̂2
n,ε =


0 if σ̃2

n < 0

σ̃2
n if σ̃2

n ∈ [0, σ2
n].

σ2
n if σ̃2

n > σ2
n

(10)

To analyse the sensitivity of our approach w.r.t. the noise variance σ2
ε , we applied our

contrast estimator defined in Proposition 4.1 for the AR Gaussian model where we plugged
the estimator given in (10). We then compared our results with the MLE estimation where
the same variance estimator is used. The results are shown in Figure 5 for each parameter
and for a different number of observations. For the construction of the estimator (10), we
took the following parameters C = 1/4, β = 4, σ2

n = 1 and kn =
√
n and a number of

MC trials equal to 50. We tested different sets of parameters to see the influence of these
parameters. As the influence was negligible, we did not report all the tests.

The results obtained are similar to those of the Section 4.1.2. We note that whatever
the number of observations, the MLE is more robust in this favourable case (Gaussian
measurement noise). Nevertheless, our approach gives as good results as when the variance
is assumed to be known. The given estimator (10) is a good alternative in practice
when we relax the hypothesis on the knowledge of the observation noises and is readily
implementable.
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Table 1: Asymptotic variance Σ(θ̂n) w.r.t. the truncation J for n = 500, 1000 and 5000.

J 2 5 10 20

n = 500
φ0 = 0.7 0.2367 0.2364 0.2338 0.2338
σ2
η = 1 0.4299 0.4287 0.4211 0.4211

n = 1000
φ0 = 0.7 0.1671 0.1664 0.1653 0.1653
σ2
η = 1 0.3032 0.3008 0.2977 0.2977

n = 5000
φ0 = 0.7 0.0747 0.0744 0.0739 0.0739
σ2
η = 1 0.1356 0.1345 0.1332 0.1332

4.1.4 Sensibility of the Contrast w.r.t. the truncature of the Asymptotic
Variance Matrix

The asymptotic variance of our estimator Σ(θ) defined in (5) suggests computing the
covariance matrix Ω(θ), which requires the computation of the infinite sum of covariance
terms. In practice, we use the following empirical covariance with lag j defined as

Ω̂j(θ̂n) =
1

n

n∑
i=|j|+1

(
∇θmθ(Yi−|j|)

)(
∇θmθ(Yi)

)
,

and the sum in (5) has been truncated for a large value of j. In this part we wish to
analyze the influence of this truncation on the asymptotic variance of our estimator. The
illustration is made for the Gaussian AR model. In Table 1, we report the asymptotic
variance w.r.t. the truncation denoted J and the number of observations n. We note
that the asymptotic variance decreases w.r.t. J and no longer varies for a given moderate
lag, whatever the number of observations. This phenomenon is explained by the fact
that at a certain rank j0, we have that for j ≥ j0 the covariance terms Ωj are infinitely
small and negligible in front of Ω1, which is in agreement with the mixing assumption
A1(ii), satisfied for the AR process. Furthermore, as expected, the asymptotic variance
also decreases with the number of observations.

4.2 NonLinear Autoregressive Processes

We conclude this simulation study with an example of a nonlinear process of the form{
Yi = Xi + εi
Xi+1 = φ0 sin(Xi) + ηi+1,

(11)

where the noises εi and the innovations ηi are supposed to be i.i.d. centered random
variables with variance respectively σ2

ε and σ2
0,η. The transition density is given by

Πθ0(x, y) = fη(y − φ0 sin(x)) (see [44]). In spite of the explicit expressions of the Fourier
transforms of Πθ0 and fε the contrast does not admit an explicit expression but can easily
be calculated by FFT or numerical integration. More precisely, in this typical example,
the operator VΠθ in the contrast is not explicit, but we give in Section 6.3 some details
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Table 2: Nonlinear AR(1): MSE for n = 500 up to 2000 and MC = 50. The number of
particles for the SAEM is 50.

n 500 1000 2000

Contrast
0.0049 0.0029 0.0014

EKF
0.0074 0.0049 0.0042

SAEM
nbIter=100 0.0073 0.0061 0.0051
nbIter=400 0.0062 0.0032 0.0026

of its computation. For this example, we compare our contrast to the MLE computed
with the Extended Kalman filter (EKF) adapted to nonlinear models. The latter, after
a linearization of the model, can be used to compute the likelihood. Nevertheless, the
properties of EKF are known to be good when the model is not strongly nonlinear, which
is not the case for the drift function given by the sinus. We therefore propose to also
compare our approach with the more general SAEM (see [15] for more details). Given
the unobservable character of the variables Xi, the latter uses a conditional particle filter
(see [41]) in the expectation step. For this experiment we take SNR = 1/40, φ0 = 0.7,
σ2

0,η = 0.5, a number of replications MC = 50 and we generate samples of different sizes
n = 500, 1000 and 2000. For the SAEM, we took a number of particles equal to 50 in the
conditional particle filter and a number of iterations (denoted nbIter) for the convergence
of the EM equal to 400 (below this threshold, there was no convergence). The results
are represented by boxplots for each parameter (see Figures 6) and synthesized in the
Table 2, where the mean square error (MSE) is given and computed as

MSE(θ0, θ̂0) =
1

MC

MC∑
j=1

(φ̂j − φ0)2 + (σ̂2
η,j − σ2

η,0)2

We observe from Table 2 that the EKF gives worse results than the two other ap-
proaches, in terms of MSE. This result was expected and in accordance with the prop-
erties of the EKF when the model is not linear. The contrast gives better results than
the SAEM method, whatever the number of observations and the number of iterations
considered in the EM step. From Table 2, we can see that the results for SAEM tend to be
better and closer to the contrast when we increase the number of iterations (nbIter=100
to nbIter=400). Indeed, the results of SAEM depend strongly on the initial condition
for θ and the number of iterations that control the convergence of the algorithm. We
voluntarily tested different thresholds for the number of iterations since, for nbIter=100,
the convergence did not take place for the drift parameter φ. On the other hand, the
SAEM results do not depend on the number of particles chosen since a conditional filter
has been used with an ancestral resampling step, which allows the use of a reasonable
number of particles in terms of computation time (see [41] for more details). Contrary to
the SAEM, our approach does not require parameter calibration and gives good results,
even in a nonlinear framework, whatever the initial condition.
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Figure 6: Boxplot of parameter estimators for different sample sizes and MC = 50,
nbIter=400 and NbParticles=50 for the SAEM. The horizontal lines represent the values
of true parameters σ2

η and φ. Left: parameter σ2
η. Right: parameter φ.

5 Application on the Ex-Ante Real Interest Rate

Ex-ante real interest rate is important in finance and economics because it provides a
measure of the real return on an asset between now and the future. It is a fruitful
indicator of the monetary policy direction of central banks. Nevertheless, it is important
to make a distinction between the ex-post real rate, which is the observed series, and the
ex-ante real rate, which is unobserved. While the ex-post real rate is simply the difference
between the observed nominal interest rate and the observed actual inflation, the ex-ante
real rate is defined as the difference between the nominal rate and the unobserved expected
inflation rate. Since monetary policy makers cannot observe inflation within the period,
they must establish their interest rate decisions on the expected inflation rate. Hence, the
ex-ante real rate is probably a better indicator of the monetary policy orientation.

There are two different strategies for the estimation of the ex-ante real rate. The first
consists of using a proxy variable for the ex-ante real rate (see, e.g., [32] for the US region
and more recently in [39] for Canada, the Euro Area and the UK). The second strategy
consists of treating the ex-ante real rate as an unknown variable using a latent factor
model (see, e.g., [5, 29, 28]). Our procedure is in line with this second strategy in which
the factor model is specified as follows:{

Yt = α +Xt + εt

Xt = φXt−1 + ηt,
(12)

where Yt is the observed ex-post real interest rate, Xt is the latent ex-ante real interest
rate adjusted by a parameter α, φ a parameter of persistence and εt (resp. ηt) centered
Gaussian random variables with variance σ2

ε (resp. σ2
η).

This model is derived from the fact that if we denote by Y e
t , the ex-ante real interest

rate, we have that Y e
t = Rt − Iet with Rt the observed nominal interest rate and Iet the

expected inflation rate. So, the unobserved part of Y e
t comes from the expected inflation

rate. Furthermore, the ex-post real interest rate Yt is obtained from Yt = Rt−It with It
the observed actual inflation rate. As a result, expanding these expressions to allow for
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Figure 7: (a): Observed ex-post real rate. (b): Observed actual inflation rate.

expected inflation rate Iet gives

Yt = Rt − Iet + Iet − It = Y e
t + εt,

where εt = Iet −It is the random variable for inflation expectation. If people do not make
systematic errors in forecasting inflation, εt can be assumed to be a Gaussian white noise
with variance denoted by σ2

ε . This assumption is known as the Rational Expectation Hy-
pothesis (REH). Thus, the REH lends itself very naturally to a state-space representation
(see, e.g., [4]), and defining Xt = Y e

t − α as the ex-ante real interest rate adjusted by its
population mean, α, yields the modelization (12).

The dataset was split into in and out-of-sample monthly data sets. The in-sample
contained 75% (it ranges from 1 January 1962 to 1 March 1973) of the total dataset
and the out-of-sample contained the remaining 25% (from 1 April 1973 to 1 March 1975,
i.e., for a horizon of two years). This places us in the period of great inflation for the
US region. More precisely, the ex-post real interest rates, Yt (depicted in Figure 7(a)),
is calculated as the difference between the logarithm annualized nominal funds rate and
the logarithm annualized percentage inflation rate, It (depicted in Figure 7(b)), obtained
from the consumer price index for all urban consumers. The data are available from
the Federal Reserve Economic Data and for this data, we consider two of the models
previously studied, the Gaussian AR model and the SV model.

Let us denote θ = (α, φ, σ2
η) the vector of unknown parameters to be estimated. We

estimate the unknown parameter vector θ on the in-sample in two stages: first, we min-
imize the contrast introduced in this paper to estimate the unknown parameter vector θ
on the in-sample. The second step is devoted to the ex-ante real rate forecasts and the
expected inflation rate forecasts on the out-of-sample by plugging θ̂ obtained from the
in-sample set in the first stage by running a Kalman filter. So all forecasts are computed
using the pseudo out-of-sample method.

The value of the estimation obtained in the first step is as follows: α̂AR = 1.5699,
α̂SV = 2.1895, φ̂AR = 0.5750, φ̂SV = 0.8500, σ̂2

AR = 4.4048 and σ̂2
SV = 3.1756 and the

forecasts obtained from the out-of-sample are shown in Figure 8. A first examination
of our results reveals that our forecasts expected inflation series is plausible for the two
models. Nevertheless, the results are better for the SV model: the Mean Squared Forecast
Error is divided by a factor 10 for the SV model. The Lilliefors test [40], a variant of the
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Figure 8: (a): Ex-post real rate forecasts. (b): Expected inflation rate forecasts.
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Figure 9: (a): Correlogram of êt for AR model. (b): Correlogram of êt for SV model.

Kolmogorov-Smirnov test when certain parameters of the distributions must be estimated
which is the case here, suggests that during the great inflation period the data are no longer
Gaussian and exhibit more like a distribution with heavy tails. The null hypothesis is
rejected at level α = 0.05. This result may explain why the SV model is significantly
better than the AR model. The mean of the forecast error êt = It−Îet is sufficiently close
to zero and the Ljung box test accepts the null hypothesis, meaning that the forecast
errors are not correlated for the two models. The correlograms for the two models are
given in Figure 9. These results are consistent with the rational expectation hypothesis.
If one compares the results of the parameters estimation for the two models, one can see
that the persistence parameter φ is higher for the SV model than the AR model. On the
other hand, the variance is lower. Therefore, the variance of Îet is smaller than that of It
for the SV model. These results are consistent with the economically intuitive notion that
expectations are smoother than realizations. Most importantly, these results corroborate
those of the thorough analysis in [52] and [50], whose findings show that the persistence
parameter is high and close to one for this period of study.
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Conclusion

In this paper, we propose a new parametric estimation strategy for non-linear and non-
Gaussian HMM models inspired by [37]. We also provide an analytical expression of
the asymptotic variance matrix Σ(θ̂n) which allows us to consider the construction of
confidence intervals. This methodology makes it possible to bypass the MLE estimate
known to be difficult to calculate for these models. Our approach is not based on MC
methods (MCMC or particle filtering methods), which avoids the instability problems of
most of the proposed methods when minimizing the criterion following MC errors (see
[17]). The parameter estimation step in HMM models is very important since it is shown
in [22] that the bias in the parameters propagates in the estimation of the latent variable.
This cannot be overlooked in models where the latent variable to be predicted is used
to make political decisions. In this paper, for example, we looked at the prediction of
ex-ante interest rates and found that during periods of high inflation, the annualized
inflation rate has a distribution with heavy tails. Thus, in this context, the SV model
seems more appropriate and gives better results. Nevertheless, since this model is no
longer Gaussian, it seems important to study estimators other than the MLE that cannot
be calculated by the Kalman filter. In this context, we provide a new and simple way
to estimate the parameters in a Gaussian and non-Gaussian setting. This provides an
alternative estimation method to those proposed in the literature that are largely based
on MC methods.

6 Proofs

6.1 Proofs of Theorem 3.1

For the reader’s convenience, we split the proof of Theorem 3.1 into three parts: in
Subsection 6.1.1, we give the proof of the existence of our contrast estimator defined in
(3). In Subsection 6.1.2, we prove consistency, that is, the first part of Theorem 3.1.
Then, we prove the asymptotic normality of our estimator in Subsection 6.1.3, that is,
the second part of Theorem 3.1. Section 6.2 is devoted to Corollary 3.1.

6.1.1 Existence of the M-Estimator

By assumption, the function mθ(yi) = QΠ2
θ
(yi)− 2VΠθ(yi) is continuous w.r.t. θ. Hence,

the function Pnmθ = 1
n

∑n
i=1mθ(Yi) is continuous w.r.t. θ belonging to the compact

subset Θ. So, there exists θ̃ belongs to Θ such that infθ∈Θ Pnmθ = Pnmθ̃.

6.1.2 Consistency

For the consistency of our estimator, we need to use the uniform convergence given in the
following Lemma. Let us consider the following quantities:

Pnhθ =
1

n

n∑
i=1

hθ(Yi); PnSθ =
1

n

n∑
i=1

∇θhθ(Yi), PnHθ =
1

n

n∑
i=1

∇2
θhθ(Yi),

where hθ(y) is a real function from Θ× Y with value in R.

Lemma 6.1. Uniform Law of Large Numbers (see [46] for the proof). Let (Yi)i≥1 be an
ergodic stationary process and suppose that:
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1. hθ(y) is continuous in θ for all y and measurable in y for all θ in the compact subset
Θ.

2. There exists a function s(y) (called the dominating function) such that |hθ(y)| ≤ s(y)
for all θ ∈ Θ and E[s(Y1)] <∞. Then

sup
θ∈Θ
|Pnhθ −Phθ| → 0 in probability as n →∞.

Moreover, Phθ is a continuous function of θ.

By assumption Πθ is continuous w.r.t. θ for any x and measurable w.r.t. x for
all θ which implies the continuity and the measurability of the function Pnmθ on the
compact subset Θ. Furthermore, the local dominance assumption A3(i) implies that
E [supθ∈Θ |mθ(Yi)|] is finite. Indeed, by assumption A3(i), we have

|mθ(yi)| =
∣∣∣QΠ2

θ
(yi)− 2VΠθ(yi)

∣∣∣ ≤ ∣∣∣QΠ2
θ
(yi)
∣∣∣+ 2 |VΠθ(yi)| <∞.

Lemma 6.1 gives the uniform convergence in probability of the contrast function: for
any ε > 0:

lim
n→∞

P
(

sup
θ∈Θ
|Pnmθ −Pmθ| ≤ ε

)
= 1.

Combining the uniform convergence with [47, Theorem 2.1 p. 2121 chapter 36] yields the
weak (convergence in probability) consistency of the estimator.

6.1.3 Asymptotic Normality

For the CLT, we need to define the α-mixing property of a process (we refer the reader
to [18] for a complete review of mixing processes).

Definition 6.1 (α-mixing (strongly mixing process)). Let Y := (Yi)i denote a general
sequence of random variables on a probability space (Ω,F ,Pθ) and let Fmk = σ(Yk, . . . , Ym).
The sequence Y is said to be α-mixing if α(n)→ 0 as n→∞, where

α(n) := sup
k≥1

sup
A∈Fk1 ,B∈F∞k+n

|Pθ(A ∩ B)− Pθ(A)Pθ(B)|.

The proof of the CLT is based on the following Lemma.

Lemma 6.2. Suppose that the conditions of the consistency hold. Suppose further that:

(i) (Yi)i is α-mixing.

(ii) (Moment condition): for some δ > 0 and for each j ∈ {1, . . . , r}

E

[∣∣∣∣∂mθ(Y1)

∂θj

∣∣∣∣2+δ
]
<∞.

(iii) (Hessian Local condition): for some neighborhood U of θ0 and for j, k ∈ {1, . . . , r}:

E
[
sup
θ∈U

∣∣∣∣∂2mθ(Y1)

∂θj∂θk

∣∣∣∣] <∞.
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Then, θ̂n defined in (4) is asymptotically normal with asymptotic covariance matrix given
by

Σ(θ0) = V−1
θ0

Ω(θ0)V−1
θ0
,

where Vθ0 is the Hessian of the mapping Pmθ given in (3).

Proof. The proof follows from [31, Proposition 7.8 p. 472] and [33], and by using the
fact that, by regularity assumptions A1(i) and the Lebesgue Differentiation Theorem, we
have E[∇2

θmθ(Y1)] = ∇2
θE[mθ(Y1)].

It just remains to check that the conditions (ii) and (iii) of Lemma 6.2 hold under our
assumptions A3(ii) and A(iii).

(ii): As the function Πθ is twice continuously differentiable w.r.t. θ, ∀yi ∈ R2 and so also
Π2
θ, the mapping mθ(yi) : θ ∈ Θ 7→ mθ(yi) = QΠ2

θ
(yi) − 2VΠθ(yi) is twice continuously

differentiable ∀θ ∈ Θ and its first derivatives are given by

∇θmθ(yi) = ∇θQΠ2
θ
(yi)− 2∇θVΠθ(yi).

By assumption, for each j ∈ {1, . . . , r}, ∂Πθ
∂θj

and
∂Π2

θ

∂θj
belong to L1(A), therefore one

can apply the Lebesgue Differentiation Theorem and Fubini Theorem to obtain

∇θmθ(yi) =
[
Q∇θΠ2

θ
(yi)− 2V∇θΠθ(yi)

]
. (13)

Then, for some δ > 0, by the moment assumption A3(ii), we have

|∇θmθ(yi)|2+δ =
∣∣∣Q∇θΠ2

θ
(yi)− 2V∇θΠθ(yi)

∣∣∣2+δ

≤ C1

∣∣∣Q∇θΠ2
θ
(yi)
∣∣∣2+δ

+ C2 |V∇θΠθ(yi)|
2+δ <∞,

where C1 and C2 denote three positive constants.

(iii): For j, k ∈ {1, . . . , r}, ∂2Πθ
∂θj∂θk

and
∂2Π2

θ

∂θj∂θk
belong to L1(A), the Lebesgue Differentiation

Theorem gives

∇2
θmθ(yi) =

[
Q∇2

θΠ2
θ
(yi)− 2V∇2

θΠθ(yi)
]
,

and, for some neighborhood U of θ0, by the local dominance assumption A3(iii),

E
[
sup
θ∈U

∥∥∇2
θmθ(Yi)

∥∥] ≤ E
[
sup
θ∈U

∥∥∥Q∇2
θΠ2

θ
(Yi)

∥∥∥]+ 2E
[
sup
θ∈U

∥∥∥V∇2
θΠθ(Yi)

∥∥∥] <∞.
This ends the proof of Theorem 3.1.

6.2 Proof of Corollary 3.1

By replacing ∇θmθ(Y1) by its expression (13), we have for j = 1

Ω1(θ) = Var
[
Q∇θΠ2

θ
(Y1)− 2V∇θΠθ(Y1)

]
= Var

(
Q∇θΠ2

θ
(Y1)

)
+ 4Var (V∇θΠθ(Y1))− 4Cov

(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y1)

)
.
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Owing to Lemma 3.1, we obtain

Var
(
Q∇θΠ2

θ
(Y1)

)
= E[Q∇θΠ2

θ
(Y1)2]− E[Q∇θΠ2

θ
(Y1)]2

= E[Q∇θΠ2
θ
(Y1)2]− E[

∫
∇θΠ

2
θ(X1, y)dy]2.

In a similar manner, using again Lemma 3.1, we have

Var (V∇θΠθ(Y1)) = E[V∇θΠθ(Y1)2]− E[V∇θΠθ(Y1)]2

= E[V∇θΠθ(Y1)2]− E[∇θΠθ(X1)]2

and

Cov
(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y1)

)
= E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]

− E[

∫
∇θΠ

2
θ(X1, y)dy]E[∇θΠθ(X1)].

Hence

Ω1(θ) = Var (∇θmθ(Y1))

= E[Q∇θΠ2
θ
(Y1)2] + 4E[V∇θΠθ(Y1)2]− 4E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Y1)]

−
(

4E[∇θΠθ(X1)]2 + E[

∫
∇θΠ

2
θ(X1, y)dy]2 − 4E[

∫
∇θΠ

2
θ(X1, y)dy]E[∇θΠθ(X1)]

)
.

For j = 2, we have

Ω2(θ) = Cov (∇θmθ(Y1),∇θmθ(Y2))

= Cov
(
Q∇θΠ2

θ
(Y1), Q∇θΠ2

θ
(Y2)

)
− 2Cov

(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y2)

)
− 2Cov

(
Q∇θΠ2

θ
(Y2), V∇θΠθ(Y1)

)
+ 4Cov (V∇θΠθ(Y1), V∇θΠθ(Y2)) ,

where the different terms are obtained from Lemma 3.1.

Cov
(
Q∇θΠ2

θ
(Y1), Q∇θΠ2

θ
(Y2)

)
= E

[∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(X2, y)dy

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]
E
[∫
∇θΠ

2
θ(X2, y)dy

]
.

Cov
(
Q∇θΠ2

θ
(Y1), V∇θΠθ(Y2)

)
= E

[(∫
∇θΠ

2
θ(X1, y)dy

)
∇θΠθ(X2)

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]
E [∇θΠ(X2)] .

Cov
(
Q∇θΠ2

θ
(Y2), V∇θΠθ(Y1)

)
= E[Q∇θΠ2

θ
(Y2)V∇θΠθ(Y1)]− E

[∫
∇θΠ

2
θ(X2, y)dy

]
E [∇θΠ(X1)] .

Cov (V∇θΠθ(Y1), V∇θΠθ(Y2)) = E[V∇θΠθ(Y1)V∇θΠθ(Y2)]− E [∇θΠ(X1)]E [∇θΠ(X2)] .

Now, by using the stationarity assumption A1(iv) of (Xi)i≥1 we obtain that

Ω2(θ) =E
[∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(X2, y)dy

]
− E

[∫
∇θΠ

2
θ(X1, y)dy

]2

− 2

(
E
[(∫

∇θΠ
2
θ(X1, y)dy

)
∇θΠθ(X2)

]
+ E[Q∇θΠ2

θ
(Y2)V∇θΠθ(Y1)]

)
− 4

(
E
[∫
∇θΠ

2
θ(X1, y)dy

]
E [∇θΠ(X2)] + E [∇θΠ(X1)]2 − E [V∇θΠθ(Y1)V∇θΠθ(Y2)]

)
.
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Calculus of the covariance matrix of Corollary 3.1 for j > 2: By replacing ∇θmθ(Y1)
by its expression (13), we have

Ωj(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj))

= E[∇θmθ(Y1)∇θmθ(Yj)]− E[∇θmθ(Y1)]E[∇θmθ(Yj)].

It follows from Lemma 3.1 and the stationarity assumption A1(iv) of (Xi)i≥1 that

E[∇θmθ(Y1)] = E[

∫
∇θΠ

2
θ(X1, y)dy]− 2E[∇θΠθ(X1)].

Moreover

E[∇θmθ(Yj)] = E[

∫
∇θΠ

2
θ(Xj)]− 2E[∇θΠθ(Xj)].

Hence

E[∇θmθ(Y1)]E[∇θmθ(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy]E[

∫
∇θΠ

2
θ(Xj, y)dy]

− 2E[

∫
∇θΠ

2
θ(X1, y)dy]E[∇θΠθ(Xj)]

− 2E[∇θΠθ(X1)]E[

∫
∇θΠ

2
θ(Xj, y)dy]

+ 4E[∇θΠθ(X1)]E[∇θΠθ(Xj)].

On the other hand, we have

E[∇θmθ(Y1)∇θmθ(Yj)] = E
[
(Q∇θΠ2

θ
(Y1)− 2V∇θΠθ(Y1))(Q∇θΠ2

θ
(Yj)− 2V∇θΠθ(Yj))

]
= E[Q∇θΠ2

θ
(Y1)Q∇θΠ2

θ
(Yj)]− 2E[Q∇θΠ2

θ
(Y1)V∇θΠθ(Yj)]

− 2E[V∇θΠθ(Y1)Q∇θΠ2
θ
(Yj)] + 4E[V∇θΠθ(Y1)V∇θΠθ(Yj)].

Furthermore, conditioning by X1:n and using the Tower property yields

E[Q∇θΠ2
θ
(Y1)Q∇θΠ2

θ
(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(Xj, y)dy].

Similarly, we have

E[V∇θΠθ(Y1)V∇θΠθ(Yj)] = E[∇θΠθ(X1)∇θΠθ(Xj)].

Noting that for j > 2 the stationarity of (Xi)i≥1 implies that E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)] =

E[Q∇θΠ2
θ
(Yj)V∇θΠθ(Y1)]. Hence,

E[∇θmθ(Y1)∇θmθ(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(Xj, y)dy]

+ 4E[∇θΠθ(X1)∇θΠθ(Xj)]− 4E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)].

By using Lemma 3.1, the last term is equal to

E[Q∇θΠ2
θ
(Y1)V∇θΠθ(Yj)] = E[

∫
∇θΠ

2
θ(X1, y)dy∇θΠθ(Xj)].
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Therefore, the covariance matrix is given by

Ωj(θ) = Cov (∇θmθ(Y1),∇θmθ(Yj))

= E[

∫
∇θΠ

2
θ(X1, y)dy

∫
∇θΠ

2
θ(Xj, y)dy]− E[

∫
∇θΠ

2
θ(X1, y)dy]E[

∫
∇θΠ

2
θ(Xj, y)dy]

+ 4E[∇θΠθ(X1)∇θΠθ(Xj)]− 4E[∇θΠθ(X1)]E[∇θΠθ(Xj)]

− 4E[

∫
∇θΠ

2
θ(X1, y)dy∇θΠθ(Xj)] + 4E[

∫
∇θΠ

2
θ(X1, y)]E[∇θΠθ(Xj)].

Thus

Cov (∇θmθ(Y1),∇θmθ(Yj)) = Cov
(∫
∇θΠ

2
θ(X1, y)dy,

∫
∇θΠ

2
θ(Xj, y)dy

)
+ 4

(
Cov (∇θΠθ(X1),∇θΠθ(Xj))

− Cov

(∫
∇θΠ

2
θ(X1, y)dy,∇θΠθ(Xj)

))
.

Expression of the Hessian matrix Vθ: We have

Pmθ = ‖Πθ‖2
A − 2 〈Πθ,Πθ0〉A .

Under A1(i), ∀θ in Θ, the mapping θ 7→ Pmθ is twice differentiable w.r.t. θ on the
compact subset Θ. For j ∈ {1, . . . , r}, at the point θ = θ0, we have

∂Pm

∂θj
(θ) = 2

〈
∂Πθ

∂θj
,Πθ

〉
− 2

〈
∂Πθ

∂θj
,Πθ0

〉
= 2

〈
∂Πθ

∂θj
,Πθ − Πθ0

〉
= 0

and for j, k ∈ {1, . . . , r}:

∂2Pm

∂θj∂θk
(θ) = 2

(〈
∂2Πθ

∂θjθk
,Πθ − Πθ0

〉
+

〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉)
j,k

= 2

(〈
∂Πθ

∂θk
,
∂Πθ

∂θj

〉)
j,k

.

The proof of Corollary 3.1 is completed.

6.3 Contrast and Checking Assumptions for the Simulations

Contrasts for the linear AR simulations: To compute the several contrasts defined
in Proposition 4.1, the following quantities are essentially required: (Π2

θ(x, 0))∗,Π∗θ(x, y)
and f ∗ε (x). For the model defined in (8), the square of the transition density is also
Gaussian up to the parameter 1/(2

√
πσ2

η) with mean φx and variance σ2
η/2. Hence, we

are interested in computing the following Fourier transform:

(Π2
θ(x, 0))∗ =

∫
e−ixu

(∫
Π2
θ(u, v)dv

)
du =

∫
e−ixuΠ̃θ(u)du

= (Π̃θ(x))∗.

By integration of the Gaussian density, we have that Π̃θ(x) = 1/
(
2
√
πσ2

η

)
∀x, which

is integrable on L1(A). Nevertheless, for the cases 1 and 3 (super smooth noises), As-
sumptions A 2 and A 3(i)-(iii) are not satisfied since x 7→ (Π̃θ(x))∗/f ∗ε (x) is not in-
tegrable despite the fact that the numerator and denominator taken separately can be
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integrated. In this case, we introduce a weight function ϕ belongs to S(R), where S(R)
is the Schwartz space of functions defined by S(R) = {f ∈ C∞(R), ∀α,N there exists
CN,α s.t. |∇α

xf(x)| ≤ CN,α(1 + |x|)−N}.

Hence, ∀ϕ ∈ S(R), we have

〈
ϕ, Π̃∗θ

〉
=

∫
ϕ(x)dx

∫
Π̃θ(u)e−ixudu =

1

2
√
πσ2

η

∫
ϕ(x)dx

∫
e−ixudu =

1

2
√
πσ2

η

〈
ϕ, δ0

〉
,

where δx is the Dirac distribution at point x.

Hence, by taking ϕ : u 7→ ϕ̃(u)eixu/f ∗ε (−u) ∈ S(R) with ϕ̃ : u 7→ 2πe−σ
2
εu

2
, we obtain

the operator Q as follows

QΠ2
θ
(x) =

1

2π

∫
eixu

ϕ̃(u)Π̃∗θ(u)

f ∗ε (−u)
du =

〈
ϕ, Π̃∗θ

〉
=

1

2
√
πσ2

η

〈
ϕ, δ0

〉
=

1

2
√
πσ2

η

ϕ(0),

where ϕ(0) = 1 for all cases in Section 4. Here, we take ϕ̃ dependent of σ2
ε since we

assume that this variance is known but one can take any function ϕ̃ such that ϕ̃/f ∗ε is in
S.

For Π∗θ(x, y) we make the same analogy, that is let Πu,θ(v) the function v 7→ Πθ(u, v)
∀u. For the Gaussian transition density Πθ we have ∀u,

(Πu,θ(y))∗ =

∫
e−iyvΠθ(u, v)dv =

∫
e−iyv

1√
2πσ2

η

e
− (v−φu)2

2σ2
η dv = e(−iφuy−

σ2
η
2
y2).

Let Πy,θ(u) be the function u 7→ (Πu,θ(y))∗ ∀y. Then, we have ∀ϕ ∈ S and ∀y

〈
ϕ,Πy,θ

〉
=

∫
ϕ(x)dx

∫
e−ixu(Πu,θ(y))∗du

=

∫
ϕ(x)dx

∫
e−ixue−iφuy−

σ2
η
2
y2

du

= e−
σ2
η
2
y2

∫
ϕ(z − φy)dx

∫
e−iuzdu

= e−
σ2
η
2
y2

〈
ϕ(.− φy),1∗

〉
= e−

σ2
η
2
y2

〈
ϕ(.− φy), δ0

〉
= e−

σ2
η
2
y2

ϕ(−φy).
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Hence, the operator VΠθ is obtained as follows for the case 1, i.e.,

VΠθ(x, y) =
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)ei(xu+yv) Π∗θ(u, v)

f ∗ε (−u)f ∗ε (−v)
dudv

=
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)

f ∗ε (−u)f ∗ε (−v)
ei(xu+yv)

(∫
e−iwu(Πw,θ(v))∗dw

)
dudv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv
(∫

ϕ̃1(u)

f ∗ε (−u)
eixu
(∫

e−iwu−iφwv−
σ2
η
2
v2

dw

)
du

)
dv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

(∫
ϕ̃1(u)

f ∗ε (−u)
eixu
(∫

e−iw(u+φv)dw

)
du

)
dv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

(∫
ϕ̃1(z − φv)

f ∗ε (φv − z)
eix(z−φv)

(∫
e−iwzdw

)
dz

)
dv

=
1

2π

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

(〈
ϕ(.− φv),1∗

〉)
dv

=
1

2π

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−

σ2
η
2
v2

ϕ(−φv)dv

=
1

2π

∫
e−ivy

(
eiv(y−φx)−(σ2

η−σ2
ε(1+φ2)) v

2

2

)
dv

=
1

2π

∫
eivy
(
e−iv(y−φx)−(σ2

η−σ2
ε(1+φ2)) v

2

2

)
dv

=
1√

2π(σ2
η − σ2

ε(1 + φ2))
exp

(
− (y − φx)2

2(σ2
η − σ2

ε(1 + φ2))

)
,

where ϕ : u 7→ eixuϕ̃1(u)/f ∗ε (−u) with ϕ̃1 : u 7→ 2πe−σ
2
εu

2
and ϕ̃2 : v 7→ e−ivy−σ

2
εv

2
and

such that ϕ, ϕ1 and ϕ2 ∈ S. For the cases 2 and 3, one can make the same computations
by replacing f ∗ε by its expression given in Section 4.

Checking assumptions A1–A3: By inspecting the function bθ0 : x 7→ φ0x one can
easily see that regularity assumptions are well satisfied and, if φ0 satisfies |φ0| < 1, the
process is strictly stationary. It remains to check Assumptions A1(iv) and A2–A3. The
strict convexity of the function Pmθ implies that θ0 is a minimum and Assumption A1(iv)
also requires to compute the Hessian matrix belonging to Sym2×2 (where Sym represents the
space of symmetric matrix). The stationary density fθ0 is here a centered Gaussian density
with zero mean and variance σ2

0,η/(1− φ2
0), so the Hessian matrix Vθ0 is given by

Vθ0 =
1

4
√
πσ3

η

(
− σ2

0,η

−1+φ2
0

0

0 3
2

)
.

(see Corollary 3.1). Nevertheless, we assume here that fθ0 is unknown, so the Hessian
matrix is consistently estimated by

Vθ̂n =
1

n

n−1∑
i=1

Q ∂2Π2
θ

∂θ2

(Yi)− 2V ∂2Πθ
∂θ2

(Yi).

The computation of this matrix can be easily done for Gaussian AR processes whatever
the noises since all derivatives of the Gaussian densities are explicit.
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As we have pointed out, the integrability Assumptions A2 and A3(i) and (iii) are not
satisfied for Gaussian AR processes with super smooth noises (cases 1 and 3), hence the
introduction in practice of a weight function ϕ belonging to the Swchartz space S is then
mandatory. On the other hand, for Laplace noises the convergence towards zero of the
modulus of the Fourier transform is polynomial and the functions (Π∗θ/f

∗
ε ), (∂Πθ/∂θj)

∗/f ∗ε
and (∂2Πθ/∂θj∂θl)

∗/f ∗ε have the following form C1(θ)P (x) exp(−C2(θ)x2) (meaning that
they are super smooth and so integrable) where C1(θ) and C2(θ) are two constants well-
defined in the compact parameter set Θ and P (x) a polynomial function independent of
θ. Hence, moment conditions and local dominance are satisfied.
Contrasts for the nonlinear AR simulations: Consider the nonlinear process in
(11). For this model the transition density is Gaussian with mean bθ0(x) = φ0 sin(x) and
variance σ2

0,η. In the same manner the square of the transition density is also Gaussian with
the same mean bθ0(x) and variance σ2

0,η/2 up to the constant of normalization 1/(2
√
πσ0,η).

Hence, the computation of the operator QΠ2
θ

remains unchanged, and we have to compute
the operator VΠθ . Because of the nonlinearity of the drift function, this operator does not
admit an explicit form and is given by

VΠθ(x, y) =
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)ei(xu+yv) Π∗θ(u, v)

f ∗ε (−u)f ∗ε (−v)
dudv

=
1

4π2

∫ ∫
ϕ̃1(u)ϕ̃2(v)

f ∗ε (−u)f ∗ε (−v)
ei(xu+yv)

(∫
e−iwu(Πw,θ(v))∗dw

)
dudv

=
1

4π2

∫
ϕ̃2(v)

f ∗ε (−v)
eiyv
(∫

ϕ̃1(u)

f ∗ε (−u)
eixu
(∫

e−iwu−ivbθ(w)−
σ2
η
2
v2

dw

)
du

)
dv

=
1

4π2

∫∫
ϕ̃1(u)

f ∗ε (−u)
eiu(x−w)

(∫
ϕ̃2(v)

f ∗ε (−v)
eiyv−ibθ(w)v−

σ2
η
2
v2

dv

)
dwdu

=
1

4π2

∫∫
ϕ̃1(u)

f ∗ε (−u)
eiu(x−w)

(∫
eiyv(e−iv(y−bθ(w))−

(σ2
η+σ2

ε)

2
v2

)dv

)
dwdu

=
1

4π2

∫∫
ϕ̃1(u)

f ∗ε (−u)
eiu(x−w)

(
2π

1√
2π(σ2

η + σ2
ε)
e
− (y−bθ(w))2

2(σ2
η+σ2

ε)

)
dwdu

=
1

2π

1√
2π(σ2

η + σ2
ε)

∫
ϕ̃1(u)

f ∗ε (−u)
eiux
(∫

e−iuwe
− (y−bθ(w))2

2(σ2
η+σ2

ε) dw

)
du

=

∫
ϕ(u)

(∫
e−iuw

1√
2π(σ2

η + σ2
ε)
e
− (y−bθ(w))2

2(σ2
η+σ2

ε) dw

)
du

where ϕ : u 7→ 2πeixue−σ
2
εu

2
/f ∗ε (−u) and ϕ̃2 : v 7→ e−ivy−σ

2
εv

2
.
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