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CUTOFF FOR A STRATIFIED RANDOM WALK ON THE
HYPERCUBE

ANNA BEN-HAMOU AND YUVAL PERES

Abstract. We consider the random walk on the hypercube which moves by
picking an ordered pair (i, j) of distinct coordinates uniformly at random and
adding the bit at location i to the bit at location j, modulo 2. We show that
this Markov chain has cutoff at time 3

2 n log n with window of size n, solving a
question posed by Chung and Graham (1997).

1. Introduction

Let SLn(Z2) be the set of invertible matrices with coefficients in Z2, and consider
the Markov chain on SLn(Z2) which moves by picking two distinct rows at random
and adding the first one to the other. This walk has received significant attention,
both from group theoreticians and cryptologists. ? ] showed that the `2-mixing
time was O(n4), and the powerful results of ? ] yield the upper-bound O(n3). One
may observe that if Zt ∈ {0, 1}n\{0} denotes the first column of the matrix at time
t, then the process {Zt}t≥0 is also a Markov chain (defined more precisely below).
? ] showed that the log-Sobolev constant of this chain is O(n2), which yields an
upper-bound of order n2 log n on the `2-mixing time. They however conjectured
that the right order for the total-variation mixing was n log n. ? ] confirmed this
conjecture. They showed that the relaxation time of {Zt} was of order n (which
yields a tight upper-bound of order n2 for `2-mixing) and that the total-variation
mixing time tmix(ε) was smaller than cεn log n for some constant cε. They asked
whether one could make this bound more precise and replace cε by a universal
constant which would not depend on ε. We answer this question positively by
proving that the chain {Zt} has cutoff at time 3

2n log n, with window of order n.
The matrix walk problem was brought to our attention by Ron Rivest, who

was mostly interested in computational mixing aspects [? ]. The question of
determining the total-variation mixing time of this walk is still largely open. By a
diameter bound, it can be lower bounded by Ω

(
n2

logn

)
(see ? ? ]). The best known

upper-bound is O(n3) as established by ? ].

Main result. Let X = {0, 1}n\{0} and consider the Markov chain {Zt}t≥0 on
X defined as follows: if the current state is x and if x(i) denotes the bit at the
ith coordinate of x, then the walk proceeds by choosing uniformly at random an
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ordered pair (i, j) of distinct coordinates, and replacing x(j) by x(j) + x(i) (mod
2).

The transition matrix P of this chain is symmetric, irreducible and aperiodic.
Its stationary distribution π is the uniform distribution over X , i.e. for all x ∈ X ,
π(x) = 1

2n−1 . We are interested in the total-variation mixing time, defined as

tmix(ε) = min {t ≥ 0, d(t) ≤ ε} ,

where d(t) = max
x∈X

dx(t) and dx(t) is the total-variation distance between P t(x, ·)
and π:

dx(t) = sup
A⊂X

(
π(A)− P t(x,A)

)
=

∑
y∈X

(
P t(x, y)− π(y)

)
+
.

Theorem 1. The chain {Zt} has total-variation cutoff at time 3
2n log n with win-

dow n, i.e.

lim
α→+∞

lim inf
n→+∞

d
(3

2n log n− αn
)

= 1 ,

and

lim
α→+∞

lim sup
n→+∞

d
(3

2n log n+ αn
)

= 0 .

Before proving Theorem 1, we first state some useful properties of the birth-and-
death chain given by the Hamming weight of Zt. In particular, we show that this
projected chain also has cutoff at 3

2n log n (Section 2). Section 3 is then devoted
to the proof of Theorem 1.

2. The Hamming weight

For a vertex x ∈ X , we denote by H(x) the Hamming weight of x, i.e.

H(x) =
n∑
i=1

x(i) .

Consider the birth-and-death chain Ht := H(Zt), and denote by PH , πH , and
dH(·) its transition matrix, stationary distribution, and total-variation distance to
equilibrium. For 1 ≤ k ≤ n, we have

PH(k, k + 1) = k(n− k)
n(n− 1) ,

PH(k, k − 1) = k(k − 1)
n(n− 1) ,

PH(k, k) = n− k
n

,
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and

πH(k) =

(
n
k

)
2n − 1 .

The hitting time of state k is defined as

Tk = min {t ≥ 0, Ht = k} .

One standard result in birth-and-death chains is that, for 2 ≤ ` ≤ n,

E`−1(T`) = 1
PH(`, `− 1)

`−1∑
i=1

πH(i)
πH(`) , (1)

(see for instance [? , Section 2.5]). The following lemma will be useful.

Lemma 1. Let 0 < β < 1 and K = (1−β)n2 . Then there exist constants cβ, Cβ ∈ R
depending on β only such that

E1(TK) ≤ n log n+ cβn ,

and

Var1TK ≤ Cβn
2 .

Proof of Lemma 1. For 2 ≤ k ≤ K, let µk = Ek−1Tk and vk = Vark−1(Tk). Re-
sorting to (1), we have

µk =

(
n
k−1

)
(
n−2
k−2

) k−1∑
i=1

(
n
i

)
(

n
k−1

) ≤
(

n
k−1

)
(
n−2
k−2

) k−1∑
i=1

(
k − 1

n− k + 2

)k−i−1

≤ n2

k(n− 2k) (2)

Summing from 2 to K yields the desired bound on E1TK . Moving on to the
variance, by independence of the successive hitting times, we have

Var1TK =
K−1∑
k=1

vk+1 .

Hence, it is sufficient to show that there exists a constant aβ > 0 such that vk+1 ≤
aβn

2

k2 for all k ≤ K. To do so, we consider the following distributional identity for
the hitting time Tk+1 starting from k:

Tk+1 = 1 + (1− I)T̃k+1 + IJ(T̂k + T̂k+1) ,

where I is the indicator that the chain moves (i.e. that a one is picked as updating
coordinate), J is the indicator that the chain decreases given that it moves (i.e.
that the chosen one is added to another one), T̃k+1 and T̂k+1 are copies of Tk+1,
and T̂k is the hitting time of k starting from k − 1. All those variables may be
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assumed to be independent. After computation we obtain the following induction
relation:

vk+1 = k − 1
n− 1(vk + vk+1) +

(
1− k

n

)
µ2
k+1 + k − 1

n− 1

(
1− k(k − 1)

n(n− 1)

)
(µk + µk+1)2

≤ k

n
(vk + vk+1) + µ2

k+1 + k

n
(µk + µk+1)2 .

Using the fact that for all k ≤ K, we have µk ≤ n
βk

(which can be seen by inequality
(2)), and after some simplification, we get

vk+1 ≤
k

n− k
vk + 3n3

β2k2(n− k) ≤
k

n− k
vk + 6n2

β2k2 ·

By induction and using that v2 ≤ n2, we obtain that vk+1 ≤ aβn
2

k2 for all k ≤ K.
�

The following proposition establishes cutoff for the chain {Ht} and will be used
in the next section to prove cutoff for the chain {Zt}.

Proposition 2. The chain Ht exhibits cutoff at time 3
2n log n with window n.

Proof. For the lower bound, we want to show that for t = 3
2n log n− 2αn

dH(t) ≥ 1− ε(α) ,

where ε(α) → 0 as α → +∞. Consider the chain started at H0 = 1 and let
k = n

2 − α
√
n and A = {k, k + 1, . . . , n}. By definition of total-variation distance,

dH(t) ≥ πH(A)− P t
H(1, A) ≥ πH(A)− P1(Tk ≤ t) .

By the Central Limit Theorem, lim
α→∞

lim
n→∞

πH(A) = 1. Moving on to P1(Tk ≤ t), let
us write

P1(Tk ≤ t) = P1
(
Tn/3 ≤ n log n− αn

)
+ Pn/3

(
Tk ≤

n log n
2 − αn

)
.

Note that Tn/3 is stochastically larger than∑n/3
i=1Gi, where (Gi)n/3i=1 are independent

Geometric random variables with respective parameter i/n (this is because at each
step, we need at least to pick a one to just move from the current position). By
Chebyshev’s Inequality,

P1
(
Tn/3 ≤ n log n− αn

)
= O

( 1
α2

)
.

Now, starting from Hamming weight n/3 and up to time Tk, we may couple Ht

with H̃t, the Hamming weight of the standard lazy random walk on the hypercube
(at each step, pick a coordinate uniformly at random and randomize the bit at this
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coordinate), in such a way Tk ≥ Sk, where Sk = inf{t ≥ 0, H̃t = k}. It is known
that Sk satisfies

Pn/3
(
Sk ≤

n log n
2 − αn

)
≤ ε(α) ,

with ε(α) → 0 as α → +∞ (see for instance the proof of [? , Proposition 7.13]),
which concludes the proof of the lower bound.

For the upper bound, letting t = 3
2n log n+ 2αn, we have

dH(t) ≤ P1
(
Tn/3 > n log n+ αn

)
+ max

k≥n/3
d

(k)
H

(
n log n

2 + αn

)
. (3)

Lemma 1 entails that Tn/3 concentrates well: E1(Tn/3) = n log n + cn for some
absolute constant c, and Var1(Tn/3) = O(n2). By Chebyshev’s Inequality,

P1
(
Tn/3 > n log n+ αn

)
= O

( 1
α2

)
. (4)

To control the second term in the right-hand side of (3), we use the coupling
method (see ? , Chapter 5]). For all starting point k ≥ n/3, we consider the
following coupling between a chain Ht started at k and a chain Hπ

t started from
stationarity: at each step t, ifHt makes an actual move (a one is picked as updating
bit in the underlying chain Zt), we try “as much as possible” not to move Hπ

t

(picking a zero as updating bit). Conversely, when Ht does not move, we try “as
much as possible” to move Hπ

t , the goal being to increase the chance that the two
chains do not cross each other. The chains stay together once they have met for
the first time. We claim that the study of the coupling time can be reduced to
the study of the first time when the chain started at n/3 reaches n/2. Indeed, as
πH([2n/3, n]) = o(1), with high probability, Hπ

0 ≤ 2n/3, and as starting from a
larger Hamming weight can only speed up the chain, P2n/3(Tn/2 > t) ≤ Pn/3(Tn/2 >
t). Now, when both chains have reached n/2, either they have met, or they have
crossed each other. In this last situation, we know however that the expected
time of their first return to n/2 is O(

√
n), so that Pn/2

(
T+
n/2 >

√
αn
)

= O(1/
√
α).

Moreover, thanks to our coupling, during each of those excursions, the chains have
positive probability to meet, so that after an additional time of order α

√
n we can

guarantee that they have met with large probability. We are thus left to prove
that Pn/3

(
Tn/2 >

n logn
2 + αn

)
≤ ε(α), for a function ε tending to 0 at +∞.

Starting from H0 = n/3, we first argue that Ht will remain above 2n/7 for a
very long time. Namely, defining Gt =

{
T2n/7 > t

}
, we have

Pn/3 (Gn2) = 1− o(1) . (5)
This can easily be seen by considering T+

k = min{t ≥ 1, Ht = k} and taking a
union bound over the excursions around k = n/3 which visit m = 2n/7:

Pk(Tm ≤ n2) ≤ n2Pk(Tm ≤ T+
k ) ,
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and

Pk(Tm ≤ T+
k ) = Ek(T+

k )
Em(Tk) + Ek(Tm) ≤

Ek(T+
k )

Em(T+
m) = πH(m)

πH(k) ,

which decreases exponentially fast in n.
Our goal now will be to analyse the tail of τ = inf{t ≥ 0, Dt ≤ 0}, where

Dt = n

2 −Ht .

Observe that

Dt+1 −Dt =


1 with probability Ht(Ht−1)

n(n−1)

−1 with probability Ht(n−Ht)
n(n−1)

0 otherwise.

(6)

We get

E [Dt+1 −Dt |Dt] = −
2
(
n
2 −Dt

)
(Dt + 1)

n(n− 1) ≤ −Dt

n
+ 2D2

t

n(n− 1) · (7)

Writing a similar recursion for the second moment of Dt gives

E
[
D2
t+1 −D2

t |Dt

]
= −4HtDt(Dt + 1/2)

n(n− 1) + Ht

n
≤ −4HtD

2
t

n2 + 2 .

On the event Gt,

E
[
D2
t+1 −D2

t |Dt

]
≤ −8D2

t

7n + 2 .

By induction, letting Dt = 1GtDt (and noticing that Gt+1 ⊂ Gt), we get

E
[
D2
t

]
≤ E[D2

0]
(

1− 8
7n

)t
+ 7n

4 ≤ n2

4 e−8t/7n + 2n .

Plugging this back in (7),

E [Dt+1] ≤
(

1− 1
n

)
E [Dt] + e−8t/7n + 4/n ,

and by induction,

E [Dt] ≤ an e−t/n + b , (8)

for absolute constants a, b ≥ 0. Also, letting τ? = inf{t ≥ 0, Dt = 0}, we see by
(6) that, provided τ? > t, the process {Dt} is at least as likely to move down-
wards than to move upwards and that there exists a constant σ2 > 0 such that
Var (Dt+1 | Dt) ≥ σ2 (this is because, on Gt the probability to make a move at time
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t in larger than some positive absolute constant). By ? , Proposition 17.20], we
know that for all u > 0 and k ≥ 0,

Pk(τ? > u) ≤ 4k
σ
√
u
. (9)

Now take H0 = n/3, D0 = n/6, s = 1
2n log n and u = αn. We have

PD0 (τ > s+ u) ≤ PD0 (τ? > s+ u) + PH0 (Gcn2) .
By equation (5), PH0 (Gcn2) = o(1), and, combining (9) and (8), we have

PD0 (τ? > s+ u) = ED0 [PDs (τ? > u)] ≤ ED0

[
4Ds
σ
√
u

]
= O

(
1√
α

)
,

which implies

max
k≥n/3

d
(k)
H (s+ u) = O

(
1√
α

)
, (10)

and concludes the proof of the upper bound. �

3. Proof of Theorem 1

First note that, as projections of chains can not increase total-variation dis-
tance, the lower bound on d(t) readily follows from the lower bound on dH(t), as
established in Proposition 2. Therefore, we only have to prove the upper bound.

Let E = {x ∈ X , H(x) ≥ n/3} and τE be the hitting time of set E . For all
t, s > 0, we have

d(t+ s) ≤ max
x0∈X

Px0 (τE > s) + max
x∈E

dx(t) .

By (4), taking s = n log n+ αn, we have maxx0∈X Px0(τE > s) = O(1/α2), so that
our task comes down to showing that for all x ∈ E ,

dx

(
n log n

2 + αn

)
≤ ε(α) ,

with ε(α)→ 0 as α→ +∞. Let us fix x ∈ E . Without loss of generality, we may
assume that x is the vertex with x̄ ≥ n/3 ones on the first x̄ coordinates, and n− x̄
zeros on the last n− x̄ coordinates. We denote by {Zt} the random walk started at
Z0 = x and for a vertex z ∈ X , we define a two-dimensional object W(z), keeping
track of the number of ones within the first x̄ and last n− x̄ coordinates of z, that
is

W(z) =
 x̄∑
i=1

z(i),
n∑

i=x̄+1
z(i)

 .

The projection of {Zt}t≥0 induced by W will be denoted Wt = W(Zt) = (Xt, Yt).
We argue that the study of {Zt}t≥0 can be reduced to the study of {Wt}t≥0,
and that, when coupling two chains distributed as Wt, we can restrict ourselves
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to initial states with the same total Hamming weight. Indeed, letting νx̄ be the
uniform distribution over {z ∈ X , H(z) = x̄}. By the triangle inequality,

dx(t) ≤ ‖Px (Zt ∈ ·)− Pνx̄ (Zt ∈ ·) ‖tv + ‖Pνx̄ (Zt ∈ ·)− π(·)‖tv (11)

Starting from νx̄, the conditional distribution of Zt given {H(Zt) = h} is uniform
over {y ∈ X , H(y) = h}. This entails

‖Pνx̄ (Zt ∈ ·)− π(·)‖tv = ‖Px̄ (Ht ∈ ·)− πH(·)‖tv .

For t = n logn
2 +αn, we know by (10) in the proof of Proposition 2 that ‖Px̄ (Ht ∈ ·)−

πH(·)‖tv = O(1/
√
α). As for the first term in the right-hand side of (11), note

that if z and z′ are two vertices such that W(z) = W(z′), then for all t ≥ 0,
Px(Zt = z) = Px(Zt = z′), and that for all y ∈ X such that W(y) = (k, `)

Pνx̄ (Zt = y) =
∑
i,j

i+j=x̄

∑
z,W(z)=(i,j)

1(
n
x̄

)Pz (Zt = y)

=
∑
i,j

i+j=x̄

(
x̄
i

)(
n−x̄
j

)
(
n
x̄

) ∑
z,W(z)=(i,j)

Pz (Zt = y)(
x̄
i

)(
n−x̄
j

)

=
∑
i,j

i+j=x̄

(
x̄
i

)(
n−x̄
j

)
(
n
x̄

) P(i,j) (Wt = (k, `))(
x̄
k

)(
n−x̄
`

) ·

Hence,

‖Px (Zt ∈ ·)− Pνx̄ (Zt ∈ ·) ‖tv ≤ max
i,j

i+j=x̄

‖P(x̄,0) (Wt ∈ ·)− P(i,j) (Wt ∈ ·) ‖tv .

Now let y ∈ E such that H(y) = x̄, and consider the chains Zt, Z̃t started at x
and y respectively. Let W(Zt) = (Xt, Yt) and W(Z̃t) = (X̃t, Ỹt). We couple Zt
and Z̃t as follows: at each step t, provided H(Zt) = H(Z̃t) and W(Zt) 6= W(Z̃t),
we consider a random permutation πt which is such that Zt(i) = Z̃t(πt(i)) for all
1 ≤ i ≤ n, that is, we pair uniformly at random the ones (resp. the zeros) of Zt
with the ones (resp. the zeros) of Z̃t. If Zt moves to Zt+1 by choosing the pair (it, jt)
and updating Zt(jt) to Zt(jt) + Zt(it), then we move from Z̃t to Z̃t+1 by updating
Z̃t(πt(jt)) to Z̃t(πt(jt)) + Z̃t(πt(it)). Once W(Zt) = W(Z̃t), the permutation πt
is chosen in such a way that the ones in the top (resp. in the bottom) in Zt are
matched with the ones in the top (resp. in the bottom) in Z̃t, guaranteeing that
from that time W(Zt) and W(Z̃t) remain equal. Note that this coupling ensures
that for all t ≥ 0, the Hamming weight of Zt is equal to that of Z̃t, and we may
unequivocally denote it by Ht. In particular, coupling of the chains W(Zt) and
W(Z̃t) occurs when Xt and X̃t are matched. As Xt ≥ X̃t for all t ≥ 0, we may



9

consider

τ = inf{t ≥ 0, Dt = 0} ,

where Dt = Xt − X̃t.
Before analysing the behaviour of {Dt}, we first notice that the worst possible

y for the coupling time satisfies W(y) = (max{0, 2x̄− n},min{x̄, n− x̄}). We
now fix y to be such a vertex, and show that, starting from x, y, the variables
W(Zt),W(Z̃t) remain “nice” for a very long time. More precisely, defining

Bt =
t⋂

s=0

{
Hs ≥ 2n/7, Xs ≥

x̄

p
, Ỹs ≥

min{x̄, n− x̄}
p

}
,

we claim that we can choose p ≥ 1 fixed such that

Px,y (Bn2) = 1− o(1) . (12)

Indeed, the fact that Pn/3(T2n/7 ≤ n2) = o(1) has already been established in the
proof of Proposition 2 (equation (5)), and with the same kind of arguments, we
show that P(x̄,0)

(
∪n2

s=0{Xs < x̄/p}
)

= o(1). Letting A = {(x̄/p, `), ` = 0, . . . , n −
x̄}, πW be the stationary distribution of Wt, and kx̄ = min

{
x̄
2 ,

n−x̄
2

}
, we have

P(x̄,0)(TA ≤ n2) ≤ P(x̄/2,kx̄)(TA ≤ n2) ≤ n2
n−x̄∑
`=0

P(x̄/2,kx̄)
(
T(x̄/p,`) ≤ T+

(x̄/2,kx̄)

)

≤ n2
n−x̄∑
`=0

πW(x̄/p, `)
πW(x̄/2, kx̄)

=
n22n−x̄

(
x̄
x̄/p

)
(
x̄
x̄/2

)(
n−x̄
kx̄

) ,

and we can choose p large enough such that this quantity decreases exponentially
fast in n. Similarly, starting from y, the value of Ỹs will remain at a high level for
a very long time, establishing (12).

Let us now turn to the analysis of {Dt}. On the event {t < τ},

Dt+1 −Dt =


1 with probability pt1
−1 with probability pt−1

0 otherwise,

(13)

where

pt1 = Ht

n
· n−Ht

n− 1 ·
x̄−Xt

n−Ht

· n− x̄− Ỹt
n−Ht

+ Ht

n
· Ht − 1
n− 1 ·

Yt
Ht

· X̃t

Ht

,

and

pt−1 = Ht

n
· n−Ht

n− 1 ·
x̄− X̃t

n−Ht

· n− x̄− Yt
n−Ht

+ Ht

n
· Ht − 1
n− 1 ·

Xt

Ht

· Ỹt
Ht

·
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After computation, we get, on {t < τ},

E
[
Dt+1 −Dt |Zt, Z̃t

]
= − HtDt

n(n− 1)

(
1 + Ht − 1

Ht

)
≤ −Dt

n2 (2Ht − 1) (14)

From (14), it is not hard to see that the variable

Mt = 1{τ>t}Dt exp
(
t−1∑
s=0

(2Hs − 1)
n2

)

is a super-martingale, which implies Ex,y [Mt] ≤ Ex,y [D0] ≤ n.
Now let τ? = inf{t ≥ 0, 1BtDt = 0}. By (13), we see that, provided {τ? > t}, the

process {1BtDt} is a supermartingale (pt−1 ≥ pt1) and that there exists a constant
σ2 > 0 such that the conditional variance of its increments is larger than σ2

(because on Bt, the probability to make a move pt−1 + pt1 is larger than some
absolute constant). By ? , Proposition 17.20], for all u > 0 and k ≥ 0,

Pk(τ? > u) ≤ 4k
σ
√
u
· (15)

Now take t = n logn
2 and u = αn. We have

Px,y(τ > t+ u) ≤ Px,y(Bcn2) + Px,y(τ? > t+ u) .

By (12), we have Px,y(Bcn2) = o(1). Also, considering the event

At−1 =
{
t−1∑
s=0

Hs ≥
n2 log n

4 − βn2
}
,

and resorting to (15), we have

Px,y (τ? > t+ u) ≤ Ex,y
[
1{τ?>t}PZt,Z̃t (τ? > u)

]
≤ Px,y

(
{τ? > t} ∩ Act−1

)
+ Ex,y

[
1At−11{τ?>t}

4Dt

σ
√
u

]
·

On the one hand, recalling the notation and results of Section 2 (in particular
equation (8)), and applying Markov’s Inequality,

Px,y
(
{τ? > t} ∩ Act−1

)
≤ Px,y

(
t−1∑
s=0
Ds > βn2

)

≤ 1
βn2

t−1∑
s=0

(
an e−s/n + b

)
= O

(
1
β

)
·

On the other hand,

Ex,y
[
1{τ?>t}1At−1Dt

]
≤ exp

(
− log n

2 + t

n2 + 2β
)
Ex,y [Mt] = O

(
e2β√n

)
.
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In the end, we get

Px,y (τ > t+ u) = O

(
1
β

+ e2β
√
α

)
·

Taking for instance β = 1
5 logα concludes the proof of Theorem 1.
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