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Introduction

What can one learn from the random walk on a graph long before the graph is fully covered? Our motivation is the analysis of large networks that can contain millions (or even billions) of nodes and edges. Direct manipulation or full observations of such huge graphs are typically impractical. Random-walk-based methods, which are local and lightweight, are often used in dealing with this kind of graph (see Das Sarma et al. [START_REF] Sarma | Distributed random walks[END_REF] and the references therein). Our problem, then, is to determine the least number of random walk steps that are needed to compute interesting graph parameters via random walks. 1 We assume our algorithm has black-box access to K random walks of length t on a graph G starting from the same fixed vertex x. It then produces an estimate γ t of a parameter γ = γ(G) of interest, solely by looking at the traces of the random walks and the vertex degrees along the way. The goal is to achieve

∀t ≥ t 0 : P x γ t γ(G) -1 ≤ 1 2 ≥ 1 -ε,
with t 0 as small as possible. In general, the time complexity parameter t 0 will depend on the error parameter ε and on unknown characteristics of the graph. This leads us to consider the possibility of "self-stopping" algorithms that decide on their own when to stop exploring G.

1.1. What we do. Let us describe our results in more detail, postponing the precise definition of the model to Section 2. In Section 3, we build on recent results of Peres et al. [START_REF] Peres | Intersection and mixing times for reversible chains[END_REF] and Oliveira and Peres [START_REF] Oliveira | Random walks on graphs: new bounds on hitting, meeting, coalescing and returning[END_REF] to derive bounds on the number of intersections between two independent random walks X, Y , i.e. the number of pairs of times (t, s) with X t = Y s . Using new bounds from [START_REF] Oliveira | Random walks on graphs: new bounds on hitting, meeting, coalescing and returning[END_REF], we show in particular that if X and Y are two independent lazy random walks on G, and if τ I denotes the time of the first intersection between X and Y , i.e.

τ I = inf {t ≥ 0, {X 0 , . . . , X t } ∩ {Y 0 , . . . , Y t } = ∅} , then max

x,y∈V

E x,y τ I t 3/4 rel m/d
where m is the number of edges in G and d is the minimum degree.

In Section 4, we focus on the particular case of regular graphs. Using intersection counts gives us a simple algorithm for estimating numbers of vertices n of a regular graph G in O t

3/4 rel

√

n random walk steps. Moreover, we prove that this algorithm is optimal. More specifically, for any n and 1 t(n) n 2 , we construct a graph G with about n vertices and relaxation time about t(n). We then show that any rw algorithm that finds the number of vertices of this graph requires at least Ω t(n) 3/4 √ n time steps. We then consider arbitrary graphs G in Section 5. In section 5.1, we show that the number of edges m of G can be estimated in time of order t 3/4 rel m/d ∧ t unif + t 5/6 rel √ n , where t unif is the uniform mixing time on G, and we prove in section 5.2 that the bound t 5/6 rel

√

n is tight for the estimation of the number of edges on graphs with any prescribed relaxation time. We then show in section 5.3 that the bound t 5/6 unif √ n, which suffices to estimate the number of edges, may not be sufficient to estimate the number of vertices. However, provided a good estimate for the number of edges is known, the number of vertices follows from estimation of the mean degree, which can be done in times of order (m/n)t unif . Altogether, the number of vertices in general graphs can be estimated with random walks in time of order

t 3/4 rel m/d ∧ t 5/6 rel √ n + t unif m n , ,
and this is optimal. Up to this point all algorithms we described are essentially optimal for our model. They are also space-efficient. They just need to store a single real number and maintain a list of visits to each vertex, which is only read or changed during visits. Another desirable trait of our algorithms is that they run in sub-linear time when the mixing time is small (less than o(n 3/5 )). This property of (relatively) fast mixing is expected to hold in social networks [START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters[END_REF] and other large graphs.

However, our algorithms also suffer from a serious drawback: they are not self-stopping. As it turns out, this is unavoidable. We argue in Section 6 that it is not possible to devise a sublinear stopping time at which one can be reasonably sure that our parameters are well estimated. This is true even if our graph is guaranteed to be 3-regular and have polylog mixing time. We deduce that, while it may be possible to know the size of a graph after sub-linear time, knowing that we already know the size may take much longer.

We complement these results by showing that if either m or the mixing time is known, the other parameter can be estimated with few steps via a self-stopping algorithm. In Section 7, we show how one can use an upper-bound τ on the mixing time to compute the number of edges via a self-stopping algorithm with time complexity O τ 3/4 √ m log log m

(or O(τ 3/4 √ n log log n) steps if G is regular)
. Section 8 then presents a result for estimating t x (δ), the 2 -mixing time from x, with time complexity O(t x (δ/4) 3/4 √ m log log t x (δ/4)), assuming a good estimate for the number of edges is available. A corollary is that both the mixing time from x and the number of edges m can be approximated by a self-stopping algorithm with time complexity O τ 3/4 √ m log log m , assuming an upper-bound τ on the uniform mixing time is available. 1.2. Background. Our result relates to the a large body of work on inferring graph (or Markov chain) parameters from random walks. We give here a brief overview of these papers, with a focus on results most closely resembling ours.

In some cases, one has to estimate parameters from a single path of the random walk. One possibility is to use return times to the initial vertex to estimate n or m, as proposed by Cooper et al. [START_REF] Cooper | Estimating network parameters using random walks[END_REF] and Benjamini et al. [START_REF] Benjamini | Waiting for a bat to fly by (in polynomial time)[END_REF]. Other parameters, such as the spectral gap, may be quite challenging to estimate (see Hsu et al. [START_REF] Hsu | Mixing time estimation in reversible markov chains from a single sample path[END_REF] and Levin and Peres [START_REF] Levin | Estimating the spectral gap of a reversible markov chain from a short trajectory[END_REF]). In any case, all of these algorithms require time that is at least of the order of the number of vertices, whereas our own algorithms are sublinear in certain cases.

Another line of work, which is closer to ours, is to consider several, say k, random walks started from the same vertex x. Typically, estimators in this case rely on collisions of random walks at their endpoints. If each random walk has length greater than the mixing time t unif , then the k-sample formed by their endpoints is an independent sample with nearly stationary distribution over the vertex set. In the case where G is regular, the problem comes down to estimating the size of a finite set through independent uniform samples from that set. It is well-known that counting collisions and resorting to the birthday paradox allow one to estimate n with order √ n samples. The time complexity, measured by the total number of random walk steps, is then of order t unif √ n (the same kind of method was also used by Benjamini and Morris [START_REF] Benjamini | The birthday problem and markov chain monte carlo[END_REF] to estimate the mixing time of regular graphs). If the graph is not regular, the stationary distribution is no longer uniform, and estimation of the support size can be more challenging (see [START_REF] Bunge | Estimating the number of species: a review[END_REF] and [START_REF] Valiant | Estimating the unseen: an n/log (n)-sample estimator for entropy and support size, shown optimal via new clts[END_REF] on support size estimation, and [START_REF] Acharya | Optimal testing for properties of distributions[END_REF] on the related question of testing closeness between distributions). Katzir et al. [START_REF] Katzir | Estimating sizes of social networks via biased sampling[END_REF] showed, through a variant of collision counting, that taking k = O( √ n + m/n) suffices to estimate n (if one is willing to use more information about the graph, the bound may be improved to k = O π -1 2 +m/n , where π 2 is the Euclidean norm of the stationary distribution π). Kanade et al. [START_REF] Kanade | How large is your graph?[END_REF] established a corresponding lower bound for k in this setting. This yields a time complexity of t unif ( √ n + m/n). Kanade et al. [START_REF] Kanade | How large is your graph?[END_REF] asked whether the factor t unif in those bounds was really necessary or whether more efficient estimators could be designed. Indeed, in those methods, each unit of information already costs t unif steps. Can we improve the performance by using the information held by the whole trajectories of walks ? We show that this is indeed the case, and that considering intersections of random walks' paths (instead of collisions at their endpoints) gives strictly more information, and leads to optimal time complexity.

Our results are just a first step towards understanding estimation via random walks. It would be interesting to understand what other graph parameters can be computed efficiently in our model. Extensions of our results to oriented graphs and other models of access to the graph (including distributed access as in [START_REF] Sarma | Distributed random walks[END_REF]) would also be worthwhile.

Notation and definitions

Let G = (V, E) be a finite connected graph on n vertices and m edges. For u ∈ V , we let deg(u) = |{v ∈ V, {u, v} ∈ E}| be the degree of u.

Random walks and estimators. Our estimators take as input trajectories of random walks, along with the degrees of visited vertices. However, they do not rely on a particular vertex labeling. To make this more precise, we introduce the profile of a sequence of vertices. For t ≥ 1 and for a sequence of vertices u t = (u 0 , . . . , u t-1 ) ∈ V t , let r(u t ) be the length-t sequence where each vertex is replaced by the index of its first occurrence in u t . For instance, the image of the sequence (g, a, a, c, g, d, a, b, d) by r is (1, 2, 2, 3, 1, 4, 2, 5, 4). Note that r is invariant under vertex-relabeling. The profile Φ of u t is then defined as Φ(u t ) = r(u t ), ( deg(u i )) t-1 i=0 . In other words, for each finite length sequence of vertices u t , the function Φ captures the ranks of occurrence and the degrees, and takes values in

S = t≥1 N 2t .
Now let x ∈ V be some fixed vertex. An estimator is a function est : S → R, which takes as input the profile of the trajectories of K independent lazy random walks (lrw) of length t, all started at x. More precisely, for integers K, t ≥ 1, let X (1) , . . . , X (K) be K independent lrw on G started at x, and define

X (i) t = (X (i) 0 , . . . , X (i) t-1
), the trajectory of X (i) up to time t -1, for i = 1, . . . , K. Letting γ(G) be some parameter of interest (e.g. γ(G) = n or γ(G) = m), the goal is to produce a map est : S → R, returning the value

γ K,t = est Φ X (1) t , . . . , X (K) t ,
such that, for all connected graph G = (V, E), for all x ∈ V , for all t ≥ t(ε, G) and K ≥ K(ε, G), (2.1)

P x γ K,t γ(G) -1 > 1 2 ≤ ε ,
for t(ε, G)×K(ε, G) as small as possible. The product t(ε, G)×K(ε, G) corresponds to the total number of random walk steps and will often be referred to as the time complexity of the estimator. Let us point out right away that, in our estimation procedures, the critical quantity will be t(ε, G), the random walks' length, rather than K(ε, G), the number of random walks, which will simply be chosen according to the desired precision ε.

Convergence of random walks. To study the large-time behavior of our estimators, it is natural to take advantage of the convergence of lrw to its stationary distribution π, given by π(u) = deg(u)/2m. Denote by t unif the uniform mixing time defined as

t unif = inf t ≥ 0, max x,y∈V P t (x, y) π(y) -1 ≤ 1 4 , Also, letting 1 = λ 1 > λ 2 ≥ . . . ≥ λ n ≥
0 be the eigenvalues of P in decreasing order (the fact that all eigenvalues are non-negative is by laziness of the walk), the relaxation time is defined as

t rel = 1 1 -λ 2 •
Self-stopping algorithms. The time t(ε, G) above which inequality (2.1) holds usually depends on unknown parameters of the graph, possibly on γ(G) itself. This prompts the search for self-stopping algorithms, i.e. algorithms which automatically stop at some random time, according to what has been seen so far. One then needs to control both the error probability for the returned value, and the expected value of the stopping time (see Sections 6, 7 and 8).

Intersections of random walks

We start by some results on intersections of random walks' trajectories. For X and Y two independent lrw on a finite connected graph G = (V, E), the number of intersections between X and Y up to time t -1 is defined as

I t = t-1 i=0 t-1 j=0 I {X i =Y j } .
For non-regular graphs, a more relevant quantity is the weighted number of intersections, defined as

I t = t-1 i,j=0 1 deg(X i ) I {X i =Y j } .
When X and Y start at x and y respectively, the probability law will be denoted P x,y and the corresponding expectation E x,y . When x = y, we just write P x and E x . Let P be the transition matrix of X and

g t (x, u) = t-1 i=0 P i (x, u)
be the expected number of visits to vertex u before time t (also known as the Green's function). We have

(3.1) E x I t = u∈V g t (x, u) 2 deg(u) .
The expected number of intersections is intimately related to return probabilities. Indeed, by reversibility, deg(x)g t (x, u) = deg(u)g t (u, v) and we get

(3.2) E x I t = t-1 i,j=0 P i+j (x, x) deg(x) •
We also define J t to be the weighted number of intersections counted from the mixing time t unif , i.e.

J t = t unif +t-1 i,j=t unif 1 deg(X i ) I {X i =Y j } .
Proposition 1. For all finite connected graph G = (V, E) with m edges, minimum degree d and relaxation time t rel , for all x ∈ V ,

(3.3) t 2 2m ≤ E x I t ≤ t 2 2m + 16t 3/2 rel d ,

and

(3.4)

E x I 2 t ≤ 4 max a∈V E a I t E x I t .
Proposition 2. For all finite connected graph G = (V, E) with m edges, n vertices and relaxation time t rel , for all x ∈ V ,

(3.5) 3 4 2 t 2 2m ≤ E x J t ≤ 5 4 2 t 2
2m , and

(3.6) E x J 2 t t 2 m 2 t 2 + nt 5/3 rel .
Here and throughout the paper, for two functions f, g, the notation f (n) g(n) means that there exists an absolute constant C > 0 such that f (n) ≤ Cg(n) for all n ≥ 1.

Before proving Proposition 1 and 2, let us state three useful results. The following bound on the Green's function was established by [START_REF] Oliveira | Random walks on graphs: new bounds on hitting, meeting, coalescing and returning[END_REF].

Lemma 3 ([18], Lemma 2). Let X be a lrw on G. For all x ∈ V , for all 1 ≤ t ≤ 36m 2 d , g t (x, x) ≤ 6 deg(x) √ t d •
By [START_REF] Oliveira | Random walks on graphs: new bounds on hitting, meeting, coalescing and returning[END_REF], Proposition 1, we have

(3.7) t rel ≤ 12mn d •
In particular, the bound of Lemma 3 is valid up to t rel . The following powerful result on the sum of return probabilities was established by Lyons and Oveis Gharan [START_REF] Lyons | Sharp bounds on random walk eigenvalues via spectral embedding[END_REF].

Lemma 4 ([17]

). For a lazy random walk X on G, for all t ≥ 0,

u∈V P t (u, u) ≤ 1 + 13n (t + 1) 1/3 •
Finally, we also need the following lemma. Lemma 5. For any f ∈ R X , if P is reversible, irreducible and has non-negative spectrum, then

+∞ s=0 (s + 1) f, P s f π -f, 1 2 π ≤ t rel (1 -1/ e) 2 t rel -1 s=0 [ f, P s f π -f, 1 2 π ] .
Proof of Lemma 5. Partitioning N in blocks of length t rel , we may write

+∞ s=0 (s + 1) f, P s f π -f, 1 2 π = +∞ k=0 t rel -1 s=0 (t rel k + s + 1) f, P t rel k+s f π -f, 1 2 π .
The terms in the above sums can be written in the form:

f, P r f π -f, 1 2 π = n j=2 λ r j f, Ψ j 2 π
where λ 1 = 1 > λ 2 ≥ λ 2 ≥ . . . ≤ λ n ≥ 0 are the eigenvalues of P and (Ψ 1 = 1, Ψ 2 , . . . , Ψ n ) is an orthonormal basis of eigenvectors for the inner product •, • π . By definition of t rel , we have λ t rel k j ≤ e -k for all j ≥ 2. Therefore,

f, P t rel k+s f π -f, 1 2 π ≤ e -k [ f, P s f π -f, 1 2 π ]. Summing the bounds, we obtain +∞ s=0 (s + 1) f, P s f π -f, 1 2 π ≤ +∞ k=0 t rel -1 s=0 (t rel k + s + 1) e -k f, P s f π -f, 1 2 π ≤ +∞ k=0 t rel (k + 1) e -k t rel -1 s=0 f, P s f π -f, 1 2 π ≤ t rel (1 -1/ e) 2 t rel -1 s=0 [ f, P s f π -f, 1 2 π ] .
Proof of Proposition 1. By (3.2), we have

E x I t = t-1 i,j=0 P i+j (x, x) deg(x) = t 2 m + 1 2m t-1 i,j=0 P i+j (x, x) π(x) -1 .
All summands in the right-hand side are non-negative (this can be seen, for instance, by the spectral decomposition P r (x, x) = π(x) + n j=2 λ r j Ψ j (x) 2 π(x) and by non-negativity of the eigenvalues). Moreover, by Lemma 5 applied to the function f =

I {•=x} π(x) , t-1 i,j=0 P i+j (x, x) π(x) -1 ≤ +∞ s=0 (s + 1) P s (x, x) π(x) -1 ≤ t rel (1 -1/ e) 2 t rel -1 s=0 P s (x, x) π(x) -1 (3.8) ≤ t rel (1 -1/ e) 2 g t rel (x, x) π(x) •
Resorting to Lemma 3, we obtain

E x I t ≤ t 2 2m + 6t 3/2 rel (1 -1/ e) 2 d ≤ t 2 2m + 16t 3/2 rel d ,
concluding the proof of the first moment bounds. Moving on to the second moment, we have

E x I 2 t = u,v 1 deg(u) deg(v)   t-1 i,k=0 P x (X i = u, X k = v)   2 ≤ u,v 1 deg(u) deg(v) (g t (x, u)g t (u, v) + g t (x, v)g t (v, u)) 2 ≤ 4 u,v g t (x, u) 2 g t (u, v) 2 deg(u) deg(v) = 4 u g t (x, u) 2 deg(u) E u I t ≤ 4 max u∈V E u I t E x I t ,
and (3.4) follows from the upper-bound in (3.3).

Proof of Proposition 2. The bounds on the expectation of J t are straightforward. Indeed

E x J t = y,z P t unif (x, y)P t unif (x, z)E y,z I t ,
so that, by definition of t unif and the fact that y,z π(y)π(z)E y,z

I t = t 2 /2m, 3 4 
2 t 2 2m ≤ E x J t ≤ 5 4 2 t 2 2m •
Moving on to (3.6), again by definition of t unif , we have

E x J 2 t y,z π(y)π(z)E y,z I 2 t y,z u,v π(y)π(z) deg(u) deg(v) i,j,k, P y (X i = u, X k = v)P z (Y j = u, Y = v) u,v 1 deg(u) deg(v)   y π(y) i,k P y (X i = u, X k = v)   2 u,v 1 deg(u) deg(v) y π(y)g t (y, u)g t (u, v) 2 .
Using that y π(y)g t (y, u) = y π(u)g t (u, y) = tπ(u), we have

E x J 2 t t 2 m 2 u,v deg(u) deg(v) g t (u, v) 2 = t 2 m 2 t-1 i,j=0 u P i+j (u, u) ,
where the last equality comes from reversibility. Now, by inequality (3.8),

t-1 i,j=0 u P i+j (u, u) = t 2 + u π(u) t-1 i,j=0 P i+j (u, u) π(u) -1 ≤ t 2 + t rel (1 -1/ e) 2 t rel -1 s=0 u P s (u, u) -1 .
Finally, resorting to Lemma 4, we obtain

E x J 2 t t 2 m 2 t 2 + nt 5/3 rel
, concluding the proof of Proposition 2.

Remark 1. Proposition 1 entails bounds on E x,y I t . Indeed, for x = y, we may use the bound

P t (x, y) π(y) -1 ≤ P t (x, x) π(x) -1 P t (y, y) π(y) -1 ,
which follows, for instance, from Cauchy-Schwarz Inequality in the spectral decomposition

P t (x, y) = π(y) 1 + n j=2 λ t j Ψ j (x)Ψ j (y) . This entails E x,y I t - t 2 2m ≤ E x,x I t - t 2 2m E y,y I t - t 2 2m .
Moreover, one may check easily that max 

E x I 2 t t 2 n + t 3/2 rel 2 .
This suggests the following simple estimator for the number of vertices in a regular graph: consider 2K independent lazy random walks X (1) , Y (1) , . . . , X (K) , Y (K) all started at the same vertex x ∈ V . For each k between 1 and K, let

I (k) t
be the number of intersections of X (k) and Y (k) between 0 and t -1, and define

n t = t 2 1 K K k=1 I (k) t • (4.1) For t ≥ 2 √ 6t 3/4 rel √ n, we have t 2 n ≤ E x I t ≤ 5t 2 3n
and Var x I t t 4 /n 2 . Hence, by Chebyshev's Inequality • for more than 9/10 th of the vertices x ∈ V , for all t, K ≥ 1 with tK ≤ δt(n) 3/4 √ n,

P x n t n -1 > 1 2 ≤ P x 1 K K k=1 I (k) t -E x I t > t 2 3n = O 1 K .
P x n t n -1 > 1 2 ≥ 1 4
,

where n t = est Φ X (1) t , . . . , X (K) t .
Before proving Proposition 6, we first establish the following lemma.

Lemma 7. For k ≥ 2 even, let G k be a uniform random 3-regular graph on k vertices. Then [START_REF] Acharya | Optimal testing for properties of distributions[END_REF] The probability that G k is connected tends to 1 as k → ∞;

(2) The relaxation time

t rel (G k ) tends to (1 -2 √ 2/3) -1 in probability; (3) For k large enough, for all x ∈ V (G k ), letting (X s ) s≥0 be the concatenation of inde- pendent rws of length t ≥ 1 on G k started at x (i.e. (X s ) s≥0 = (X (1) t , X (2) 
t , . . . )), we have, as soon as s ≤ √ k/20,

P x (G s is a tree ) ≥ 93 95 ,
where G s is the subgraph induced by the edges visited by (X 0 , . . . , X s-1 ).

Proof of Lemma 7. The first item is a well-known fact, valid for random graphs with given degrees, as soon as the minimum degree is larger or equal to 3. The second item is by Friedman's Theorem [START_REF] Friedman | A proof of Alon's second eigenvalue conjecture and related problems[END_REF], which states that a random d-regular graph is with high probability weakly Ramanujan, i.e. its relaxation time is asymptotic to (1-2 √ d -1/d) -1 . Now, to establish the third item, we use a common method to generate a uniform 3regular random graph, known as the configuration model (see [START_REF] Bollobás | A probabilistic proof of an asymptotic formula for the number of labelled regular graphs[END_REF]). One initially considers k isolated vertices, each vertex v being endowed with 3 half-edges (v, 1), (v, 2), (v, 3). A random matching on half-edges is then chosen uniformly, and each pair of matched half-edges is interpreted as an edge between the corresponding vertices. The probability that this creates a simple graph tends to e -2 (see for instance [START_REF] Janson | The probability that a random multigraph is simple[END_REF]), and, conditionally on being simple, the graph is uniformly distributed over simple 3-regular graphs. One nice feature of this model is that it allows to generate sequentially and simultaneously the graph and the random walks, as follows. Initially, all half-edges are unpaired and X 0 = x. Then, at each step s ≥ 1,

• either s is a multiple of t and we set X s = x (hereby starting a new walk), • or s is not a multiple of t and we then choose with probability 1/3 a half-edge (X s-1 , * ) attached to X s-1 . If (X s-1 , * ) has already been paired to some half-edge (v, * ), we let X s = v. Otherwise, we choose uniformly at random an unpaired half-edge (u, * ), match (X s-1 , * ) and (u, * ), and let X s = u.

Observe that the edges spanned by (X s ) form a tree up to the first time s when (X s-1 , * ) is unpaired but is then matched to a half-edge attached to a visited vertex (creating a cycle in the induced graph). The probability that this event first occurs at time s is smaller than 3s 3k-3s (by time s -1, we have exposed at most 3s half-edges). Hence, the (annealed) probability that this event occurs before time s is smaller than 3s 2 3k-3s . For s = √ k/20, this probability is smaller than 1/380. For k large enough, the probability for the configuration model to yield a simple graph is larger than 1/8, hence, on G k , we have P x (G s is a tree ) ≥ 1 -8/380 = 93/95. Lemma 7 entails the following: there exists k 0 ≥ 1 such that for all even k ≥ k 0 , there exist connected 3-regular graphs E k and E 4k on k and 4k vertices respectively, satisfying

(4.2) max{t rel (E k ), t rel (E 4k )} ≤ 18 ,
and, for more than 9/10 th of the pairs of vertices (x, y) 

∈ V (E k ) × V (E 4k ),
) = Φ(Y s 0 )) < 3 4 > 1 10 (k × 4k) ≤ 80 95 •
Hence we can find graphs E k and E 4k satisfying (4.3).

Proof of Proposition 6. For some constant Λ > 0 to be specified later, let n ≥ Λ and Λ ≤ t(n) ≤ Λn 2 , and define = 4

    1 4 t(n) Λ     + 1 and k = 2n 3 -1 .
Now let G k, and G 4k, be constructed as follows:

(1) take two 3-regular graphs E k and E 4k satisfying (4.3) (by our assumptions on n and t(n), the constant Λ can be chosen large enough so that k ≥ k 0 ); (2) in each graph, in place of each edge, put a path of length .;

(3) to make those graphs 3-regular, add edges between pairs of interior vertices at distance 2 on the same path (this is possible because -1 is a multiple of 4).

See Figure 1. Note that, using ≤ n + 1,

n ≤ |V (G k, )|= k 2 (3 -1) ≤ 7n 2 ,
and similarly 4n ≤ |V (G 4k,m )|≤ 14n. Moreover, choosing Λ large enough, we have

max {t rel (G k, ), t rel (G k, )} ≤ Λ 4 2 .
This can be seen by conductance arguments (the bottleneck ratio of E k is bounded away from 0 by expansion, entailing that the one of G k, is up to constant factors larger than 1/ , and by Cheeger's Inequality, the relaxtion time is smaller than 2 up to constant factors). By definition of and the fact that Λ ≤ t(n),

max {t rel (G k, ), t rel (G 4k, )} ≤ Λ 4   t(n) Λ + 1   2 ≤ Λ 4   2 t(n) Λ   2 ≤ t(n) .
Combining equation ( 4.3) and the 2 -slow down induced by paths, we obtain that for 9/10 of the starting points (x,

y) ∈ V (G k, ) × V (G 4k, )
, there is a coupling of random walks such that, letting . Define

A t = Φ X ( 
B X t = 1 2 ≤ n t (X) n ≤ 3 2
, and

B Y t = 1 2 ≤ n t (Y ) 4n ≤ 3 2 .
Assume that it holds simultaneously that P x B X t ≥ 3/4 and P y B Y t ≥ 3/4. Then, by (4.4),

P x,y B X t | A t = P x,y B X t ∩ A t P x,y (A t ) ≥ 1 - 1 -P x B X t P x,y (A t ) ≥ 2 3 ,
and similarly,

P x,y B Y t | A t ≥ 2 3 , so that P x,y B X t ∩ B Y t | A t ≥ 1 3
. However, on the event A t , the events B X t and B Y t can not occur simultaneously, implying a contradiction.

We either have P

x | nt(X) n -1| > 1 2 ≥ 1 4 or P y | nt(Y ) 4n -1| > 1 2 ≥ 1 4 .
The proof is then concluded by noticing that

2 √ k t(n) 3/4 √ n .
5. Computing parameters of general graphs 5.1. A simple estimator for the number of edges. In the non-regular case, Proposition 1 suggests the following simple estimator for the number of edges, namely:

m t = t 2 2 K K k=1 I (k) t , (5.1)
where

I (k) t K k=1
are independent copies of I t , the weighted number of intersections between to independent random walks started at some x ∈ V . For t ≥ 4 √ 3t 

P x m t m -1 > 1 2 = P x 1 K K k=1 I (k) t -E x I t > t 2 6m = O 1 K .
Alternatively, considering the other estimator

m t = t 2 2 K K k=1 J (k) t , (5.2)
where J (k) t K k=1 are independent copies of J t , we obtain, by Proposition 2, that for

t t 5/6 rel √ n, P x m t m -1 > 1 2 = O 1 K .
Since intersections are counted from the uniform mixing time, the total time complexity of m t to reach error probability

ε is O ε -1 (t unif + t 5/6 rel √ n) .

Lower bounds for general graphs. The bound t 5/6 rel

√ n is achieved on a graph known as the barbell, formed by two cliques of size n joined by a path of length n. Indeed, the relaxation time of this graph has order n 3 , so that t 5/6 rel √ n n 3 , and any procedure based on random walks needs time n 3 to correctly estimate n, since this is the time needed by a random walk to go from one clique to the other.

As in Section 4.2, we now exhibit graphs achieving the bound t 5/6 rel √ n for any n and any relaxation time t rel . For two integers k, q ≥ 1, consider the graph constructed as follows:

(1) Take a 3-regular graph E k on k vertices, satisfying the properties of Lemma 7;

(2) Replace each node of E k by a clique of size q;

(3) Replace each edge of E k by a path of length q.

See Figure 2. Such a graph has a number of vertices n of order kq and relaxation time

K q K q K q K q K q K q K q K q Figure 2
t rel of order q 3 . Parameters k and q may then be tuned so as to obtained (almost) any possible n and t rel . Now, to estimate correctly the number of edges, one needs to get the correct order for k. By Lemma 7, a random walk on E k needs order √ k steps to make a cycle and thus be able to distinguish E k from an infinite 3-regular tree. Since adding cliques and paths of size q slows down the random walk by a factor of q 3 (the time to go from one clique to an other in the modified graph), the estimation of the number of edges on such a graph requires at least order q 3 √ k t 5/6 rel √ n steps.

5.3.

Estimating the number of vertices on general graphs. We first note that estimating the number of vertices might take much more time than estimating the number of edges. More precisely, we show that order t 5/6 rel √ n steps may not be enough to estimate n. Indeed, consider the graph formed by a clique of size with path of length q attached to each vertex of the clique, with q (see Figure 3). The number n of vertices is of

K Figure 3
order q, and, as q , the number m of edges if of order 2 . Moreover, the relaxation time is of order q 2 (this can be seen by a coupling argument). Estimating m is relatively easy: starting from the end of one path, the walk has to traverse it to reach the clique, which takes time q 2 , and then to wait for a collision in the clique, which, by the birthday paradox, takes time √ . Estimating n however takes more time: starting from the clique, the walk has to visit a positive fraction of at least one of the paths, and this takes time q. As soon as q 3/7 , we have q √ q 13/6 t 5/6 rel √ n.

Estimating n might thus require more time. However, once a good estimate for the number of edges is known, it is quite easy to deduce an estimate for the number of vertices. Indeed, what remains to estimate is just the mean degree. Consider the function

f : x ∈ V → f (x) = 1 deg(x)
, and note that E π f = n 2m . Applying [START_REF] Levin | Markov chains and mixing times[END_REF]Proposition 12.19] to the function f , we know that for r ≥ t mix (ε/2) and t ≥ 16 Varπf ε(Eπf ) 2 t rel , for all x ∈ V ,

P x 1 t t-1 s=0 f (X r+s ) -E π f > E π f 2 ≤ ε . Observing that Var π f ≤ E π f 2 = (2m) -1 u deg(u) -1
and that t mix (ε/2) log(1/ε)t unif , the mean degree can be estimated with error probability less than ε in time of order

log(1/ε)t unif + t rel m εn 2 u∈V deg(u) -1 ε -1 t unif m n •
Note that this is optimal by the previous example of Figure 3, for which q t unif m/n. Altogether, the number of vertices of a connected graph can be estimated by random walks in time

ε -1 t 3/4 rel m/d ∧ t 5/6 rel √ n + t unif m n .

No self-stopping algorithms in general

In this section, we show that one can not hope for a general sublinear self-stopping algorithm, even when restricting to graphs with polylog mixing time.

Let C be the class of graphs G such that t unif (G) ≤ (log n G ) 3 . Consider the following process on a graph, called random walk with restarts: at each time step t ≥ 0, based on Φ(X 0 , . . . , X t ), the process decides whether it wants to make a random walk step from X t , or to reset back to the starting point x. A self-stopping algorithm is based on the profile of a random walk with restarts, up to some stopping time τ . More precisely, it relies on a function stop : S → {0, 1}. Defining

τ = inf t ≥ 0, stop Φ(X t 0 ) = 1 ,
where X t 0 = (X 0 , . . . , X t ) is the trajectory of a random walk with restarts up to time t, then the self-stopping algorithm defined by stop and est returns the value est (Φ(X τ 0 )).

Proposition 8. There exists δ > 0, such that, for all functions stop and est, there is an infinite sequence of graphs G ∈ C and x ∈ V (G) such that

P G x {τ ≥ δn G } ∪ est (Φ(X τ 0 )) n G -1 > 1 2 ≥ 1 4 ,
where X is a rw with restarts and τ = inf{t ≥ 0, stop (Φ(X τ 0 )) = 1}.

Proof of Proposition 8. Consider a 3-regular expander G on n vertices and a graph G obtained from G as follows: let G (1) , . . . , G (2 n ) be 2 n identical copies of G. For all i ∈ {1, . . . , 2 n }, choose three distinct vertices (u i , v i , w i ) uniformly at random in V (G (i) ). Now let F be some other 3-regular expander on 2 n vertices, labelled from 1 to 2 n . For all 1 ≤ i ≤ 2 n , if i has neighbors j < k < in F , put an edge between u i and u j , between v i and v k , between w i and w . Let G be the resulting graph (on |V (G )|= n2 n vertices). Note that, as F is an expander, and as the random walk on G needs order n steps to go from some u i to either v i or w i , we have t unif (G ) n log(2 n ), so that both G and G belong to the class C. It is not hard to check that one can find y ∈ V (G (1) ) and δ > 0, such that

P G y δn s=0 {Y s ∈ {u 1 , v 1 , w 1 }} ≥ 2 3 •
Therefore, there exist starting points (x, y) ∈ V (G) × V (G ), and a coupling (X, Y ) of random walks with restarts at x and y (for the same restarting rule) such that (6.1)

P x,y (A t ) ≥ 2 3 , with A t = Φ(X t 0 ) = Φ(Y t 0 )
and t = δn .

Let est : S → N be an estimator and stop : S → {0, 1}. For (Z, H) ∈ {(X, G), (Y, G )}, define

B Z H = τ Z < δ |V (H)| ∩    est Φ(Z τ Z 0 ) |V (H)| -1 ≤ 1 2    ,
where τ Z = inf {s ≥ 0, stop (Φ(Z s 0 )) = 1}. Assume that we both have P x B X G ≥ 3/4 and P y B Y G ≥ 3/4. Then, by (6.1), 

P x,y B X G | A t = P x,y B X G ∩ A t P x,y (A t ) ≥ 1 - 1 -P x B X G P x,y (A t ) ≥ 5 
< δ|V (G)|} ∩ {τ Y < δ|V (G )|} = {τ X < δn} ∩ {τ Y = τ X }, so that est Φ(X τ X 0 ) = est Φ(Y τ Y 0
) and the events B X G and B Y G can not occur simultaneously, implying a contradiction.

A self-stopping algorithm for the number of edges

Let G = (V, E) be a finite connected graph and let τ be an upper-bound on the relaxation time t rel . Algorithm 1. For q = 0, 1, . . . , iterate the following procedure until stopped:

• let m = 2 q be the current guess for the number of edges and let t = t q = τ 3/4 √ 2 m. • let R = R q = 8 log(4/ε) + 16 log(q + 1) and repeat the following experiment R times.

let X (1) , Y (1) , . . . , X (K) , Y (K) be 2K independent lrw started from x (for a fixed integer K ≥ 1 to be specified later) and define

Q t = 1 K K =1 I ( )
t , where I ( )

t = t-1 i,j=0 1 deg(X ( ) i ) I X ( ) i =Y ( ) j
.

-If Q t ≥ 18τ 3/2 , call the experiment a success. • If the number of successes is larger than R/2, then stop and estimate m by m = 2 q ; otherwise, go from q to q + 1.

Proposition 9. Algorihtm 1 satisfies the two following properties:

(1) The probability that the algorithm stops at a value of q such that 2 q < m or 2 q > 38m is smaller than ε. 

τ 3/2 m m ≤ E x Q t ≤ τ 3/2 m m + 16τ 3/2 .
Assume that q is such that m = 2 q < m. Then the expectation of Q t is smaller than 17τ 3/2 . By Chebyshev's Inequality,

P x Q t ≥ 18τ 3/2 ≤ P x Q t -E x Q t ≥ τ 3/2 Var x I t Kτ 3 .
Now by equation 3.4 and since t < τ 3/4 √ 2m, we have Var x I t τ 3 . Hence, we may choose K large enough such that P x Q t ≥ 20τ 3/2 ≤ 1/4. Using Hoeffding's Inequality, the probability that there are more than R/2 successes at this step is smaller than exp (-R/8) = ε 4 (q + 1) -2 . Taking a union bound, the probability for the algorithm to stop at a value of q such that 2 q < m is smaller than ε/2.

Let now q be such that m = 2 q > 19m. By equation (7.1), the expectation of Q t is larger than 19τ 3/2 . Hence

P x Q t < 18τ 3/2 ≤ P x Q t < 18 19 E x Q t Var x I t K (E x I t ) 2 •
Again, equation 3.4 entails that the constant K may be chosen such that the above probability is smaller than 1/4. And by Hoeffding's Inequality, the probability that there are less than R/2 successes is smaller than exp(-R/8) ≤ ε/4. Clearly, the probability to stop at a step q with 2 q > 38m is smaller than the probability not to have stopped at q = inf{q ≥ 0, 2 q > 19m}, which is smaller than ε/4.

(2) By the above, for all q > q , the probability that the algorithm stops at step q is smaller than (ε/4) q-q . Now the running time up to step q is smaller, up to constant factors, than q i=0 R i t i R q t q , so that the expected running time is smaller, up to constant factors, than 

R q t q + q>q ε 4 q-q R q t q = O √ mτ 3/

Algorithms for the mixing time

The number of intersections may also be used to estimate the mixing time from a given vertex x ∈ V . Assume that the number of edges m in G = (V, E) is known. Let

d x (t) = y π(y) P x (X t = y) π(y) -1 2 
be the 2 (π)-distance between P x (X t ∈ •)/π(•) and 1. Our goal now is to estimate

t x (δ) = inf t ≥ 0, d x (t) 2 ≤ δ , 0 < δ < 1 .
Before describing a self-stopping algorithm to estimate t x (δ), we prove the following useful lemma.

Lemma 10. Let X, Y, Z be three independent random walks started at x and let

L (X,Y ) t = I (X,Y ) 2t -I (X,Y ) t
be the weighted number of intersections of X and Y between t and 2t. Define L (X,Z) t similarly. For all t ≥ 0,

E x L (X,Y ) t = 2t-1 i,j=t d x i+j 2 2 + 1 2m , (8.1) Var x L (X,Y ) t E x L (X,Y ) t max u E u I t , (8.2) and Cov x L (X,Y ) t , L (X,Z) t E x L (X,Y ) t 3/2 max u E u I t . (8.3) Proof of Lemma 10. By reversibility, d x (t) 2 = Px(X 2t =x) π(x)
-1, and

E x L (X,Y ) t = 1 deg(x) 2t-1 i,j=t P x (X i+j = x) = 2t-1 i,j=t d x i+j 2 2 + 1 2m • Moving on to (8.2), defining g t→2t (x, u) = g 2t (x, u) -g t (x, u), one easily checks that E x L (X,Y ) t = u g t→2t (x, u) 2 deg(u) ,
and that

E x L (X,Y ) t 2 u,v g t→2t (x, u) 2 g t (u, v) 2 deg(u) deg(v) = u g t→2t (x, u) 2 deg(u) E u I t , which implies E x L (X,Y ) t 2 E x L (X,Y ) t max u E u I t .
Finally, to establish (8.3), observe that

E x L (X,Y ) t L (X,Z) t u,v g t→2t (x, u) 2 g t (u, v)g t→2t (x, v) deg(u) deg(v) ,
and that, by Cauchy-Schwarz Inequality,

E x L (X,Y ) t L (X,Z) t ≤ E x L (X,Y ) t 3/2 max u E u I t .
Algorithm 2. For q = 0, 1, . . . , iterate the following procedure until stopped:

• Let t = t q = 2 q be the current guess for the mixing time t x (δ) and let

K = K q = Cδ -2 √ mt -1/4
, for a constant C > 0 to be specified later. • Let R = R q = 8 log(4/ε) + 16 log(q + 1) and repeat the following experiment R times.

-Let X (1) , . . . , X (K) be K independent lrw started from x and define

L t = 1 K 2 1≤ <k≤K L ( ,k) t
, where L

( ,k) t = 2t-1 i,j=t 1 deg(X ( ) i ) I X ( ) i =X (k) j
.

-

If L t ≤ 1 + δ 2 t 2
2m , call the experiment a success. • If the number of successes is larger than R/2, then stop and estimate t x (δ) by t = 2 q ; otherwise, go from q to q + 1.

Proposition 11. Algorithm 2 satisfies the two following properties:

(1) The probability that the algorithm stops at a value of q such that 2 q < t x (δ)/2 or 2 q > 2t x (δ/4) is smaller than ε. [START_REF] Ben-Hamou | Estimating graph parameters via random walks with restarts[END_REF] The expected running time of the algorithm is O δ -2 √ mt x (δ/4) 3/4 log log t x (δ/4) .

Proof of Proposition 11. (1) Assume that q is such that t = 2 q < t x (δ)/2. By equation (8.1), the expectation of L t is larger than (1 + δ) , and the constant C can be made large enough so that the right-hand side in (8.4) is smaller than 1/4. Using Hoeffding's Inequality, the probability that there are more than R/2 successes is then smaller than exp (-R/8) = ε 4 (q + 1) -2 . Taking a union bound, we obtain that the probability for the algorithm to return an estimate smaller than t x (δ)/2 is smaller than ε/2. Now let q be such that t = 2 q > t x (δ/4). Then E x L t ≤ (1+δ/4) t 2 2m and by Chebyshev's Inequality

P x L t > 1 + δ 2 t 2 2m Var x L t δ 2 (t 2 /m) 2 .
By the same arguments as above, the constant C can be chosen large enough so that the above probability is smaller than 1/4. By Hoeffding's Inequality, the probability that there are less than R/2 successes is smaller than exp (-R/8) ε 4 . Clearly, the probability to stop at a value q such that 2 q > 2t x (δ/4) is smaller than the probability not to have stopped at q = inf{q ≥ 0, 2 q > t x (δ/4)}, which is smaller than ε/4.

(2) By the above, for all q > q , the probability that the algorithm stops at step q is smaller than (ε/4) q-q . Moreover, the running time up to step q is smaller, up to constant factors, than q i=0 R i K i t i δ -2 √ m(t q ) 3/4 log(q + 1). Altogether, the expected running time is less, up to constant factor, than √ m δ 2 (t q ) 3/4 log(q + 1) + q>q (1/4) q-q √ m δ 2 (t q ) 3/4 log(q + 1) , which is O δ -2 √ mt x (δ/4) 3/4 log log t x (δ/4) .

Remark 3.

If the graph is d-regular of if the minimum degree d is known, Proposition 1 actually allows to design an algorithm which estimates t x (δ) in expected time O δ -2 m/dt x (δ/4) 3/4 log log t x (δ/4) .

We assume, for simplicity, that the true value of m is known. However, our estimation scheme can easily be extended to the case where only a good approximation of m is available. Combining Proposition 9 and 11 then entails the following corollary. 
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 1 Figure 1. The graph G k, (k = 8, = 5). The blue star-shaped vertices are the original vertices of E k .
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 2 The expected running time of the algorithm is O √ mτ 3/4 log log m . Proof of Proposition 9. (1) By equation (3.3) in Proposition 1 and since d ≥ 1, it always holds that (7.1)
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 12 An upper-bound τ on the uniform mixing time can be used to precisely estimate both the number of edges and the mixing time from x, via a self-stopping algorithm with time complexity O √ mτ 3/4 log log m .
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