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ESTIMATING GRAPH PARAMETERS VIA RANDOM WALKS WITH
RESTARTS

ANNA BEN-HAMOU, ROBERTO I. OLIVEIRA, AND YUVAL PERES

ABSTRACT. In this paper we discuss the problem of estimating graph parameters from
a random walk with restarts. In this setting, an algorithm observes the trajectory of
a random walk over an unknown graph G, starting from a vertex x. The algorithm
also sees the degrees along the trajectory. The only other power that the algorithm
has is to request that the random walk be reset to its initial state x at any given time,
based on what it has seen so far. Our main results are as follows. For regular graphs
G, one can estimate the number of vertices ng and the £? mixing time of G from « in
5(\/% (S .:1)3/%) steps, where t$ ;; is the uniform mixing time on G. The algorithm is
based on the number of intersections of random walk paths X,Y, i.e. the number of
times (¢, s) such that X; = Y;. Our method improves on previous methods by various
authors which only consider collisions (7.e. times ¢ with X; = Y;). We also show that
the time complexity of our algorithm is optimal (up to log factors) for 3-regular graphs
with prescribed mixing times. For general graphs, we adapt the intersections algorithm
to compute the number of edges meg and the £? mixing time from the starting vertex
in 5(\/% (tS.:1)%/*) steps. Under mild additional assumptions (which hold e.g. for
sparse graphs) the number of vertices can also be estimated by this time. Finally,
we show that these algorithms, which may take sublinear time, have a fundamental
limitation: it is not possible to devise a sublinear stopping time at which one can be
reasonably sure that our parameters are well estimated. On the other hand, we show
that, given either m¢ or the mixing time of G, we can compute the “other parameter”
with a self-stopping algorithm.

1. INTRODUCTION

What can one learn about a graph from random walk trajectories on it? The (trivial)
answer is that, given enough time and resources, we can learn everything. If the graph is
connected, and one is willing to wait for long enough, eventually all edges of the graph
are crossed by the walk. Given some more time, one can even be nearly sure that no
other edges exist and it is safe to stop exploring the graph.

This paper is inspired by a more interesting question: what can one learn from the
random walk way before the graph is fully covered? Our motivation is the analysis of
large networks that can contain millions (or even billions) of nodes and edges. Direct
manipulation or full observations of such huge graphs are typically impractical. Random-
walk-based methods, which are local and lightweight, are often used in dealing with this

kind of graph (see Das Sarma et al. [3] and the references therein). Our problem, then, is
1
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to determine the least number of random walk steps that are needed to compute interesting
graph parameters via random walks.

Our main contribution is to analyze this problem in an algorithmic model that we call
random walks with restarts (RWR). We assume our algorithm has black-box access to a
random walk on a graph G starting from a vertex x. At each time step ¢, the algorithm
sees the current vertex and its degree. It then decides whether it wants to jump to a
neighboring vertex, or to “reset” the walker back to x.

The algorithm produces an estimate 7; of a parameter v = v(G) of interest after ¢
time steps, solely by looking at the traces of the random walk and the vertex degrees
along the way. The goal is to achieve

e (| 1
Vit >ty PG <’7(G) —1’§2> >1—¢,
with ty as small as possible.

In general, the time complexity parameter ty will depend on the error parameter
and on unknown characteristics of the graph. This leads us to consider the possibility of
“self-stopping” algorithms that decide on their own when to stop exploring G.

Section 2 defines the RWR model and self stopping algorithms more precisely. For
now, we point out that our model is one of the most restrictive models for random walk
algorithms that actually make sense in real life. In practical settings, if we can simulate
a random walk over a graph G, we can most likely restart it at will, and also compute
degrees along the way.

1.1. What we do. In anutshell, this paper gives nearly optimal algorithms for estimating
the number of vertices, number of edges, and mizing time of G from the starting point x
in the RWR model. For regular graphs GG, one can estimate these parameters with about

\/ﬁtiﬁf random walk steps, where n is the number of vertices and typif is the uniform
i
m is the number of edges (this requires minor assumptions on degrees in the case of
estimating n). For estimation of n in regular graphs, these complexity bounds on the
number of random walk steps are then shown to be optimal up to a factor of order at
most (logn)3/4.

Let us describe our results in more detail, postponing the definition of the model to
Section 2. In Section 3, we review results by Peres et al. [17] on intersections of two

mixing time of G. For general graphs, our algorithms use about \/mtf’1 steps, where

independent random walks X,Y on a regular graph. By definition, intersections are
pairs of times (¢, s) with X; = Y;. Using intersection counts gives us a simple algorithm
for estimating numbers of vertices ng of a regular graph G in O (\/@ (tfmf)?’/ 4) steps,
where tanif is its uniform mixing time.

In Section 4, we prove that this algorithm is optimal up to a factor of (Inng)3/%. More
specifically, for any pre-specified function t : N — N, we construct an infinite sequence

of 3-regular graphs G with uniform mixing time t& . = O(t(ng)). We then show that
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any RWR algorithm that finds the number of vertices of these graphs requires at least

Q < G 3/ 4) .
VG (m) time steps.

Our next step is to consider arbitrary graphs G. In Section 5, we adapt the intersec-
tions algorithm to show that the number of edges m¢g of G can be estimated in time
O(yma (tfnif):}/ 4). Under simple assumptions — for instance, if G is sparse —, the same
bounds apply to estimating the number of vertices ng.

Up to this point all algorithms we described are essentially optimal for our model.
They are also space-efficient. They just need to store a single real number and maintain a
list of visits to each vertex, which is only read or changed during visits. Another desirable
trait of our algorithms is that they run in sub-linear time when the mixing time is small
(less than o(mZG/?’)). This property of (relatively) fast mixing is expected to hold in social
networks [12] and other large graphs.

However, our algorithms also suffer from a serious drawback: they are not self-stopping.
As it turns out, this is unavoidable. We argue in Section 6 that self-stopping algorithms
for the number of vertices must cover nearly all edges of the graph. This is true even if
our graph is guaranteed to be 3-regular and have polylog mixing time. We deduce that,
while it may be possible to know the size of a graph after sub-linear time, knowing that
we already know the size may take much longer.

We complement these results by showing that if either mg or the mixing time is
known, the other parameter can be estimated with few steps via a self-stopping al-
gorithm. In Section 7, we show how one can use an upper-bound 7 on the mixing
time to compute the number of edges via a self-stopping algorithm with time com-
plexity O (\/TTGT3/4 log log mg) (or O(y/ng m3/*loglog ng) steps if G is regular). Sec-
tion 8 then presents a result for estimating ¢,(0), the ¢>-mixing time from z, with time
complexity O(/ma (tG )3/ *loglogmg), assuming a good estimate for the number of
edges is available. A corollary is that both the mixing time from z and the number
of edges m can be approximated by a self-stopping algorithm with time complexity
(@) (\/WG 73/4log log mg>, assuming an upper-bound 7 on the uniform mixing time is
available.

1.2. Background. Our result relates to the a large body of work on inferring graph (or
Markov chain) parameters from random walks. We give here a brief overview of these
papers, with a focus on results most closely resembling ours.

In some cases, one has to estimate parameters from a single path of the random walk.
One possibility is to use return times to the initial vertex to estimate ng or mg, as
proposed by Cooper et al. [7] and Benjamini et al. [3]. Other parameters, such as the
spectral gap, may be quite challenging to estimate (see Hsu et al. [9] and Levin and Peres
[13]). In any case, all of these algorithms require time that is at least of the order of the
number of vertices, whereas our own algorithms are sublinear in certain cases.

Another line of work, which is similar to our random walks with restarts, is to consider
several random walks on the same graph. Typically, estimators in this case rely on
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collisions of random walks at their endpoints. Assume for instance that G is regular and
an upper bound for the mixing time is known. In order to find the number of vertices
of GG, one can then run k£ random walks from point x for a time larger then ty;x. The
endpoints form an independent sample with nearly uniform distribution over the vertex
set. There are then multiple methods for estimating the number of vertices, most of which
take advantage of the birthday paradox (see [0] for a review). As the first collision in an
LI.D. drawn from the uniform distribution occurs at time of order /n, the running time
of such procedures on regular graphs is typically O(tmixy/n). Less brutal strategies allow
to improve this upper-bound up to O(t.e14/n), where ¢, is the relaxation time of the
walk. Similar methods may be designed to estimate the number of edges and vertices in
non-regular graphs Katzir et al. [11] and to estimate mixing times Benjamini and Morris
[2]. Our results show that random walk intersections, which take whole trajectories into
account, give strictly more information than collisions, and lead to nearly optimal time
dependence on the mixing time.

1.3. Future directions. Our results are just a first step towards understanding es-
timation via random walks. It would be interesting to understand what other graph
parameters can be computed efficiently in our model. Extensions of our results to oriented
graphs and other models of access to the graph (including distributed access as in [3])
would also be worthwhile.

2. NOTATION AND DEFINITIONS

Let G = (V, E) be a finite connected graph on ng vertices and mg edges. For v € V,
we let N(u) be the set of neighbors of u in G, and deg(u) = |N(u)| be the degree of wu.

Let also
[e.e]
v=|JV*,
t=0
the set of finite length sequences of elements of V.

2.1. Patterns of sequences. For ¢ > 0 and for a sequence of vertices ufy = (uq, ..., u;) €
Vil et r(u;) be the index of the first occurrence of u; in ufy and define the pattern of uf,
as the length-(¢ 4 1) sequence (r(up),...,r(ut)), each vertex being replaced by its rank of
occurrence in ufy. For instance, the pattern of (g, a,a, ¢, g,d,a,b,d) is (1,2,2,3,1,4,2,5,4).
Note that the pattern is invariant under vertex-relabelling. Also let ® be the map defined
on V by: for all t > 0, for all uf, € VI

(up) = ((r(us). deg(uy))_ .

=0
In other words, for each finite length sequence of vertices uf,, the function ® captures the
pattern and the sequence of degrees, and takes values in
S=JNxN).
>0

From now on, the term pattern will actually refer to the function ®.
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2.2. Random walk with restarts and estimators. Fix x € V and a map RESTART :
S — {0,1}, and generate a sample as follows: initially Xy = x and for all s > 0,
conditionally on X§ = (Xo, ..., Xs), the distribution of Xy is given by: for all y € V,

s Tiy—s if RESTART (®(X§)) =1,
P(Xen=y|X3) = § " . .
T (X0 Liyen(x,)y if RESTART (®(X§)) =0 ,
The sample X} = (Xo,...,X;) will be called a random walk with restarts (RWR) at

z, and we denote by P$ the corresponding probability measure over trajectories. To
avoid periodicity issues, it will be convenient to consider the lazy version of a RWR: if
RESTART (® (X)) = 0, the walk stays at its current position with probability 1/2, and
moves to a uniformly chosen neighbor with probability 1/2.

An estimator is a pair (RESTART, EST) with RESTART : § — {0,1} and EST: S — R,
which returns the value EST (®(X})) for a RWR X} characterized by RESTART. More
precisely, letting v(G) be some parameter of interest (e.g. 7(G) = ng or v(G) = mg),
the goal is to produce a map RESTART : § — {0,1} and an estimator EST : S — R such
that, for all graph G = (V, E) for all starting point x € V, for all t > t(¢, G)

(2.1) S (’Wl‘>;> <e,

for t(e, G) as small as possible.

2.3. Lower bounds. The lower bound problem can be formalized as follows: we say
that t(G) is a lower bound for the estimation of v(G) if there exists ¢ > 0 such that for
all function RESTART, for all estimator EST, there exists an infinite sequence of graphs G
and z € V(G) such that for all t < §t(G),

(2.2) pS (‘W—l‘>;> zi.

To obtain more refined lower bound, one may further require that all graphs in the
infinite sequence belong to some specified class.

2.4. Self-stopping algorithms. The time ¢(e, G) above which inequality (2.1) holds
usually depends on unknown parameters of the graph, possibly on v(G) itself. This
prompts the search for self-stopping algorithms.

In addition to the functions RESTART and EST, self-stopping algorithms also rely on a
function sSTOP : § — {0,1}. Defining, for a RWR X{ (for a given function RESTART),

7 =inf{t > 0, sTop ((X{)) = 1},

then the self-stopping algorithm defined by RESTART, STOP and EST returns the value
EST (®(X{)). One then has to control the deviations of EST (®(X{)) with respect to
v(G) and the expectation of the stopping time 7.
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3. INTERSECTIONS AND REGULAR GRAPHS

3.1. Definitions and preliminary results. Let G = (V,E) be a finite connected
regular graph with n vertices. Let X and Y be two independent lazy random walks

started at the same vertex z € V. Define
t—1¢—1

I = >0 Lxi=vy)

i=0 j=0
i.e. I is the number of intersections between the trajectories of X and Y up to time
t — 1. Let also

be the expected number of visits to vertex u before time ¢ (also known as the Green’s
function). It is not hard to see that
(3.1) E.I; = Z gi(z,u)?.
ueV
Denote by tunif the uniform mixing time of the chain, i.e.
PXi=y) 1’ < 1} :
(y) 4
where 7 is the stationary distribution of the chain. Also, letting 1 =Xy > Ay > ... >
An > 0 be the eigenvalues of the transition matrix of the walk, in decreasing order (the

fact that all eigenvalues are positive is by laziness of the walk), the relaxation time is
defined as

tunit = inf {t >0, max
z,yeV

1
1— X

For regular graphs, the following inequalities were established by Peres et al. [17].

trel

Lemma 1 ([17]). Assume that G = (V, E) is a finite connected d-regular graph. Let

t, = min {tunif7 trel (10g<trel) + 1)} .
Then for all x € V,
t2 5t2
- S EmIt S Cti/Q + — 9
n 4n

for some universal constant C' > 0. Moreover
2
E.I? < ( 32 4 ) E, T, .
n

Here and throughout the paper, for two functions f, g, the notation f(n) < g(n) means
that there exists an absolute constant C' > 0 such that f(n) < Cg(n) for all n > 1.

Let us note that a critical element in the proof of Lemma 1 is Aldous and Fill [I,
Proposition 6.16], which establishes that on regular graphs, for all t < 5n?,

(3.2) gi(z,x) < BVt.
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3.2. A simple estimator for the number of vertices. Lemma 1 suggests the fol-
lowing simple estimator for the number of vertices in a regular graph: consider 2K
independent lazy random walks X W y® . XE) yE) ]l started at the same vertex
x € V. For each k between 1 and K, let It(k) be the number of intersections of X*) and
Y ) between 0 and ¢ — 1, and define

t2
1 K (0
7 k=11t
This estimator clearly falls into the RWR model, the function RESTART being simply given
by

(3.3) Ay =

1 f7T4+1=0 (modt),

0 otherwise.

RESTART ((I)(XOT)) = {

For t > ti/ 4\/5 and K large enough, this estimator starts returning a faithful value for
n. Indeed, using Lemma 1, for a large enough constant A and t > Ati/ 4\/5, we have
% <E.I; < % and Var,I; < (E,I;)%. Hence, by Chebyshev’s Inequality

® 1 gy 2t 1

P¢ -1 <P¢ I, PC =M1 —)=0(=).

(%> 3) <w8 (R n > 20 ) o (a0 <5 ) = 0[5
The case of the cycle on n vertices gives an example where this bound is tight. Indeed,

in this case, tunit =< trel =< n?, and thus te 3/4 Vn =< n?.

random walks requires at least order n? steps to distinguish between a cycle of size n and
a cycle of size 2n. Section 4 is devoted to the elaboration of a more refined lower bound.

And any procedure based on

4. LOWER BOUNDS FOR REGULAR GRAPHS

For a given function t : N — N| let us denote by C(t) the class of connected 3-regular

graphs with uniform mixing time ¢ .. smaller than t(ng). Note that for the class C(t)

to be non-empty, one has at least to assume t(n) > lolg(fg&/)él), which is a general lower

bound for the mixing time of 3-regular graphs (see [, Chapter 7]).

Proposition 2. There exists 6 > 0 such that for any function t : N — N with
t(-) > blog(-), for any functions RESTART : S — {0,1} and EST : S — N, there ez-
ists an infinite sequence of 3-reqular graphs G € C(t) and x € V(G) such that, for all

4G 3/4
t<o ( Ogj;;) iR
PG<

where X} is a RWR characterized by RESTART.

EST (®(X{))
ng

—1

>1 >1
2 -4’

Before proving Proposition 2, we first establish the following lemma.
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Lemma 3. There exists ko > 1 such that for all even k > kg, there exists a connected
3-reqular graph &, with |V (E)|=k and x € V(&) satisfying

o tunif(gk) < 510g k;
e denoting Gy the subgraph spanned by the edges visited by a random walk on &
with restarts at x (for any function RESTART), then, if t < Vk/3,

3
(4.1) PE* (Gy is a tree) > 1

Proof of Lemma 3. To establish Lemma 3, it is sufficient to show that, with positive
probability, a uniform random 3-regular graphs satisfy those properties. First, by the
results of [5], we know that, with probability tending to 1 with &, a uniform random
3-regular graph is an expander, and thus the mixing time of the simple random walk on
such a graph is of order log k. Lubetzky et al. [15] actually determine the precise order
of the mixing time: with probability tending to 1, a uniform random d-regular graphs
on k vertices has mixing time equivalent to d%dmogk()gljn' For d = 3, we see that the first

property in Lemma 3 easily follows. Now, to establish (4.1), we use a common method to
generate a uniform 3-regular random graph, known as the configuration model (see [1]).
One initially considers k isolated vertices, each vertex v being endowed with 3 half-edges
(v,1), (v,2), (v,3). A random matching on the half-edges is then chosen uniformly, and
each pair of half-edges is interpreted as an edge between the corresponding vertices. It is
well-known that Gy, is simple with probability bounded away from 0 (see for instance [10]),
and that, conditionally on being simple, its distribution is uniform over simple 3-regular
graphs. One nice feature of this model is that it allows to generate sequentially and
simultaneously the graph and the random walk (with restarts), as follows. Let RESTART
be any function from S to {0,1}. Initially, all half-edges are unpaired and Xy = x. Then,
at each step s > 0,

e cither RESTART (®(X()) = 1 and we set Xqy1 = z,

e or RESTART (®(X)) = 0 and we then choose with probability 1/3 a half-edge
(X5, *) attached to X,. If (Xg,*) has already been paired to some half-edge
(v, %), we let X511 = v. Otherwise, we choose uniformly at random an unpaired
half-edge (u, %), match (X, *) and (u,*), and let Xs11 = u.

With this procedure, it is not hard to see that the first cycle is formed at time s with

probability smaller than 3k;3—335 (by time s, we have exposed at most 3s half-edges). Hence,

the (annealed) probability that G; contains a cycle is smaller than 3,§t_23t. For t = v/k/3,
this probability is smaller than 1/8. If P¢* denotes the (quenched) probability associated
with the random walk on G with restarts at x, then, by Markov’s Inequality,

oo 1 1
P IP’xk(thsnotatree)>Z < 3"

This entails that, with positive probability, a uniform 3-regular random graph satis-
fies (4.1). [
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In particular, it means that for any function RESTART, one can find a coupling (X,Y)
where X (resp. Y') is a random walk on & with restarts at = (resp. on £4, with restarts
at y), such that for all t < Vk/3,

3
(4.2) P,y (B(XE) = ©(Y)) > 5,
since, with probability 3/4, none of the walks is able to distinguish its base-graph from a

3-regular infinite tree.
Let us now turn to the proof of Proposition 2.

Proof of Proposition 2. For k > 1, consider a 3-regular graph & satisfying the properties
of Lemma 3. Now, in place of each edge e € F (&), put a path of length m > 1. To make
the graph 3-regular, we add edges between pairs of interior vertices at distance 2 within
the same path (assuming m — 1 is even). Let G}, be the resulting graph (see Figure 1).
Note that

AN
e
o

FIGURE 1. The graph Gj,, (kK =8, m = 5). The
green star-shaped vertices are the original vertices
of gk

3k
(4.3) (Grm) =k + (m— 1)? ,
and, as the time needed to cross one path is of order m?, the mixing time on G s

(4.4) tunit (Gom) = © <m2 log k) .

For any target function t (with t(-) > 5log(+)), and for an infinity of integers n, the
parameters k£ and m may be adjusted so that n(Grm) = n and tunit(Grm) < t(n).
We now consider the graphs G}, ,, on n vertices and Gyp. ., on 4n vertices. Combining
equation (4.2) and the m?-slow down induced by paths, we get that we can find § > 0,
starting points (z,y) € V(Grm) X V(Gakm), and a coupling (X,Y") of random walks
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with restarts at « and y (for the same function RESTART) such that

(4.5) P,y (Ay) > with A, ={0(X)) = &(Y))} and t=om*Vk.

OJ\[\D

Let EST : S — N be an estimator, and define

t t
px oL omsr@X) 31 g pr o JLoEsr@et) 3l
2 n 2 2 4n 2

Assume that it holds simultaneously that P, (BtX ) > 3/4 and Py (Bty > > 3/4. Then,
by (4.5),

P, (BXﬂAt) 1-P (BX) 5
Py (BtX ‘At) - xypwt(At) =1- Pm,:(At) =3
and similarly, P, ( h ]At) 2, so that
1

Py (BB |A) > e

However, on the event A;, the events B and B} can not occur simultaneously,

: : L . (X,
implying a contradiction. Hence, we either have P, (\EST((O)) -1 > %) > L or

n

q t
Py <|E5T(i§Y°)) -1 > ;) > 1 The proof is then concluded by noticing that, thanks

4
to (4.3) and (4.4),

tunif 3/4

logn

5. COMPUTING PARAMETERS OF GENERAL GRAPHS

5.1. Intersections on general graphs. To deal with non-regular graphs, it will be
convenient to consider a weighted version of the number of intersections, which we call
the weighted number of intersections, defined as

t—1t—-1

szeg Lix,=v}

=0 7=0

where X and Y are two independent lazy simple random walks on G.

As in the previous section, tu,if and t.e are respectively the uniform mixing time and
the relaxation time of the walk, and t, = min {typif, trel (10g(tre1) + 1)}. The following
Lemma is an analogue of Lemma 1 for non-regular graphs..

Lemma 4. Forallx €V,
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Moreover
. +2
E, 22 < < 82 ) E,Z; .
2m

Let us first state the following generalization to general graphs of inequality (3.2), as
established by Lyons [16, Lemma 3.4].
Lemma 5 (Lyons [16]). For a lazy random walk X on G, for allt > 0,
4 deg(x)
Vi+1

Note that Lemma 5 implies that g¢(z,r) < tr(z) + 8deg(z)v/t for all t > 0, which in
turn yields that

P.( Xy =2) < 7(x)+

(5.1) vt <16m?,  gi(z,2) < 10deg(z)Vt.

Let us also recall the following alternative bound on the return probabilities, which
follows for instance from [14, Inequality 12.11].

Claim 6. Forallz €V andt >0,
P.(X;=2) < m(x)+ M.
We are now ready to prove Lemma 4.

Proof of Lemma 4. Using Jensen’s Inequality,

gi(x,u)? )>2
E, 7, = = = 2m
et — deg(u Z (deg (u)

gi(x,u) 2 B 12
2m (Zw(u) (;eg(u) ) T 2m’

u

v

establishing the lower bound on the first moment. For the upper bound, the weighting in
the definition of Z; allows us to use reversibility and obtain that

E:}:It =

7]0“

ZP z+j:x)‘

,j=0

(5.2) deg

Dividing the sum according to whether i + j > t,, we obtain

1 ti—1

53) E,I, < k+ 1D)Py(Xp = 2) + Py(Xiy; = ).
63 BL < goos (4 DR e ;0 =)
z+]>t*
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For the first term in the right-hand side of (5.3), we note that as t, < tynit and as, on all

connected graphs tynir < 8mn (combining for instance [1, Corollary 6.8] and [14, Theorem
10.14]), we may resort to inequality (5.1) and get

1 til(kH)P (Xp=o) = D0elD) g
deg(r) /= vAE ~  deg(z) ~ '

For the second term in the right-hand side of (5.3), we consider two cases. The first
case is when t, = tunir. Then, we use that for all 7,5 such that ¢ + j > tunir, we have
Py (Xiyj =2) < Mgiff), which gives

5t2
Po(Xipj =) < —.
]2:0 i+ r) < m

’L+] >ty

deg

In the second case, t, = tye] (log(trel) + 1). Then, we use Claim 6, and obtain

Z t2 “+o0o K
Po(Xipj=2) < —+ ) (E+1)A3
deg 320 2m P
z+]>t*
t2 t 1
< — 4\ x )
- 2m+ 2(1—)\2+(1—)\2)2
42
< — + 2t
2m

Altogether, we have checked that for all x € V and ¢t > 0,

as desired.
Moving on to the bound on the second moment, we have

2
1
S ngmg()( 2 P$<X"‘“’X’“‘”>)

0<i,k<t—1

< gt(xv U)Q.gt(u7 U)Q
~ 4= deg(u)deg(v)

— deg(u)

t2
N ( 3/2 + 2m> E.Z:,

by the previously established upper-bound on the first moment. |
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5.2. A simple estimator for the number of edges. Lemma 4 suggests the following
simple estimator for the number of edges, namely:
2

(5.4) My =
25K 7

where {It(k)}K_ are independent copies of Z;, the weighted number of intersections
between to independent random walks started at some 2 € V. Using Lemma 4, for a large
enough constant A and ¢ > Ati/4\/m, we have % <E,Z; < % and Var,Z; < (EmIt)2.
Hence, by Chebyshev’s Inequality

Pf(‘ir:—l‘>;>20(;>.

Remark 1. Note that once we have a good estimate for the number of edges, it is quite
easy to deduce an estimate for the number of vertices. Indeed, what remains to estimate

is just the mean degree. Consider the function f :xz € V — f(z) = m, and note
that Ex f = 5. Applying [1/, Proposition 12.19] to the function f, we know that for
r > tmix(e/2) and t > %trel, forallz eV,

=
Px ( ;Zf(XH-S) _Efrf
s=0
1
Observing that Vary f < E,f? = o Z deg(u) ™', we see that estimating the mean degree
m
ueV
can be done in time of order tmix + trelﬁz Z deg(u)
n ueV
on the degrees’ heterogeneity, or assuming that the graph is sparse (m = O(n)), the

dominant term in this sum is tmix, which is smaller than ti/4\/m (see [17, Claim 4.4]).

>77E7rf> < €.

~L. Under some weak assumption

The estimators n; and m; defined at (3.3) and (5.4) thus start “being right” after times
3/ 4\/ﬁ and ti/ 4\/ﬁ respectively. In practice however, a user would want to know when
to stop the random walks. This prompts the search for self-stopping procedures. The
next section, however, is devoted to establishing a negative result: there is no sublinear
self-stopping algorithm for the estimation of the number of vertices.

6. NO SELF-STOPPING ALGORITHMS IN GENERAL

In this section, we show that one can not hope for a general sublinear self-stopping
algorithm, even with the restriction that the graphs have polylog mixing time.
Let C be the class of graphs G such that t% .. < (logng)?.

unif =
Proposition 7. There exists 6 > 0, such that, for all functions RESTART, STOP and
EST, there is an infinite sequence of graphs G € C and x € V(G) such that

pe ({Tzang}u{\w—q%}) > 1
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where X{ is a RWR characterized by RESTART and 7 = inf{t > 0, sTOP (®(X()) = 1}.

Proof of Proposition 7. Consider a 3-regular expander G on ng = n vertices and another
graph H obtained from G as follows: let GW, ... G2 be 2" identical copies of G. For
all i € {1,...,2"}, choose three distinct vertices (ul,u},u}) uniformly at random in
V(G(i)). Now let G be some other 3-regular expander on 2" vertices, labelled from 1 to
2. One may mark each edge of G by a label in {1,2,3} in such a way that no pair of
edges incident to the same vertex have the same label. Now if there is an edge between
vertices ¢ and j in G and if this edge has label k € {1,2,3}, then we create an edge
between vertices “i; and u{c Let H be the resulting graph (ng = n2™). Note that, as G
is an expander, and as the random walk on H needs order n steps to go from some u} to
either u} or u4, we have t .. < nlog(2"), so that both G and H belong to the class C. It
is not hard to check that one can find y € V(G() and § > 0, such that for any function
RESTART,

on 92

i (m [v.¢ {ui,u;,u;,}}) >2.

s=0
Therefore, there exist starting points (z,y) € V(G) x V(H), and a coupling (X,Y) of
random walks with restarts at z and y (for the same function RESTART) such that

2
(6.1) Poy(A) > 5. with A= {o(x)) =o(v))} and t=on.
Let EST : S — N be an estimator and STOP : S — {0, 1}. Define
EST (®(X7") 1
Bg;(—{TX<6ng}ﬂ{‘<o)—1‘ < -2,
ngG 2

and

7_Y
B{,—{TY<5nH}m{\EST((f;w—1\g;} :

where 7% = inf {s >0, sTOP (®(X{§)) = 1} and 7¥ = inf {s >0, sTop (®(Yy)) = 1}.
Assume that we both have P, (Bé() > 3/4 and P, (Bg) > 3/4. Then, by (6.1),

P, (B N A,) 1-P, (BY)

5
P,, (BE|A;) = >1-——~ /5"
x’y( ¢l t) Pry(Ay) Pry(Ay)  — 87
and similarly, P, ,, (B}/I | At) > %, so that
1
P, (BENBY|A) > 1

However, on the event A;, we have {7% < dng} N{r¥ < ény} = {7% < dng} n{r¥ =
7%}, so that EST (@(ng)) = EST (CD(YOTY)) and the events Bg and B}; can not occur
simultaneously, implying a contradiction. |
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7. A SELF-STOPPING ALGORITHM FOR THE NUMBER OF EDGES

Let G = (V, E) be a finite connected graph. Initially, the only information we have
about G is an upper-bound 7 on the uniform mixing time t,ni(1/4), and access to a
random walk with restarts at a fixed vertex € V. The goal is to estimate m = |E|.

The algorithm is as follows (and borrows several ideas from [2]). For ¢ = 0,1,...,
iterate the following procedure until stopped:

e let m = 29 be the current guess for the number of edges and let t = t, = 3/4/2m.
o let R =R, = [8log(2/e)+8Clogq]| (for a constant C' to be specified later) and
repeat the following experiment R times.
—let XMy . XE) yE) he 2K independent random walks started from
x (for a fixed integer K > 1 to be specified later) and define

1 K 0 ) t—1 1
Wy=—> 1,7, where 1,7 = - 1 '
K gzzl t t 1’73‘2_0 deg(Xi(e)) {Xi(Z):Yj(Z)}

— IfW, > 873/ 2. call the experiment a success.
e If the number of successes is larger than R/2, then stop and estimate m by
m = 24; otherwise, go from ¢ to ¢ + 1.

This algorithm satisfies the two following properties.

Fact 1. The probability that the algorithm stops at a value of q such that 29 < m/2 is
smaller than €.

Fact 2. The expected running time of the algorithm is O (m73/4 log log m)
Proof of Fact 1. Note that, by Lemma 4, it always holds that
(7.1) T2 < B, < 145732

m m

Hence, assuming that ¢ is such that m = 27 < m/2, the expectation of W, is smaller
than 773/2. By Chebyshev’s Inequality,

P, (Wt287'3/2> < P, (Wt—EchtZTg/Q) < V;fft.

2
Now by Lemma 4, Var,Z; < (7—3/ 24 %) < 73. Hence, we may choose K large enough
such that P, (Wt > 873/ 2) < 1/4. Using Hoeffding’s Inequality, the probability that
there are more than R/2 successes is smaller than exp (—R/8) = £¢~¢. Choosing C

large enough and taking a union bound, we obtain that the probability for the algorithm
to return an estimate smaller than m/2 is smaller than e. |

Proof of Fact 2. Let g be such that 27 > m. By equation (7.1), the expectation of W is
larger than 1473/2. Hence

P, (Wt < 873/2) < P, (Wt < éEIWt

> < Vaert
-7

~ K (E.L,)°
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Again, Lemma 4 entails that the constant K may be chosen such that the above probability
is smaller than 1/4. If ¢* = inf{q > 0, 27 > m}, then, for all ¢ > ¢*, the probability that
the algorithm stops at step ¢ is smaller than (1/4)?77". Now when the algorithm stops
at step ¢, the running time is smaller, up to constant factors, than

q
> Rit; S Ryt
=0

so that the expected running time is smaller up to constant factors, than

1\ ¢4
Ryt + Z <4) Ry, = O (\/ET?’/4 loglogm) :

>q*

Remark 2. On d-reqular graphs, one may simplify this algorithm using the unweighted
number of intersections and resorting to Lemma 1, and obtain an algorithm which
estimates n, the number of vertices, in expected time O (7'3/4\/7110g log n), without any
further dependence in d than the one which might comes from T.

8. ALGORITHMS FOR THE MIXING TIME

The number of intersections may also be used to estimate the mixing time from a
given vertex x € V. Assume that the number of edges m in G = (V, E) is known. Let

a(t) = sz@) (w—lf

m(y)

be the fy-distance between P, (X; € -) and m(-). Our goal now is to estimate
t(8) = inf{t >0, dy(t)? < 5} :

]P)z (th :SC)
w(z)

it 2
) g - 5t (E) L

1,j=0

for 0 < 6 < 1. By reversibility, d,(t)? = — 1, so that, using (5.2),

2m
Equation (8.1) suggests the following self-stopping algorithm. For ¢ = 0,1, ..., iterate
the following procedure until stopped:

o Let t = t; = 29 be the current guess for the mixing time ¢,(6) and let

a Jm
K = Kq = {pmax{l, 1‘;:1/4}—‘ 5

for a constant C7 > 0 to be specified later.
o Let R = R, = [8log(2/e) + 8C>logq]| (for a constant Cy to be specified later)
and repeat the following experiment R times.
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— Let XM ... X&) be K independent random walks started from z and

define
1 (LK) h) _~~ 1
Jo="m 2 Ji, where JU = gl
(5) 1<l<k<K ij=t deg(Xi( )) {Xi =X }
-t < (1 + g) %, call the experiment a success.

e If the number of successes is larger than R/2, then stop and estimate ¢,(J) by
t = 29; otherwise, go from g to ¢ + 1.

This algorithm satisfies the two following properties.

Fact 3. The probability that the algorithm stops at a value of q such that 29 < t,(0)/2 is
smaller than €.

Fact 4. The expected running time of the algorithm is

0 (gtx(6/4)3/4 log logtx(5/4)> .

Before analysing this self-stopping algorithm, we prove the following useful lemma.

Lemma 8. Let X,Y, Z be three independent random walks started at x and let
g Z_ deg(X;) T

Define similarly Jt(X’Z) to be the weighted number of intersections of X and Z between
time t and 2t. Then for all t > 0,

(8.2) Var, ) < max {E,7;} E, 75,
U

and

(XY) AX.2)\ < (X,Y)\3/2
(8.3) Cov, (7, 715 < fmax {E.Z,} (E.757)7

Proof of Lemma 8. Let us define

2t—1
gimat(z,u) = Y Po(Xi=u) = gala,u) — gi(w,u).
i=t
One easily checks that
2
E, 7XY) gt—2t(z,u)
7 deg(u)
and that
E <(j(X,Y))2> < Grat(x,u)2ge(u, v)? _ gmzt(%u)zE T
NN ~ 4= deg(u) deg(v) —~ deg(u)
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Taking the maximum over u € V of E,Z; establishes inequality (8.2). Moving on to the
covariance, we have

7% ) groe(x, u)?ge (u, v) g (,v)
deg( ) deg(v) ’

E. (77
and, by Cauchy-Schwarz Inequality,

2
E, (7 7) 5 B j(”\/ gtjiztg(a;‘) EZ.

Again, maximizing E,Z; over u € V establishes inequality (8.3). |
Remark 3. By the results of Section 5, we know that for all t < 16m?,
EL} < 372
wey Bk S

whereas for t > 16m?, as tunir < 8m?,

t2
E.Z <
glea&{{ wli} S 2m

We are now ready to prove Facts 3 and 4.

Proof of Fact 3. Assume that ¢ is such that t =27 <t,(5)/2. By equation (8.1), the
expectation of J; is larger than (1 + 5) . By Chebyshev’s Inequality,

5\ t? Var,J;
) < .
Fe (‘% <(1+3) 2m> ~ (BT

Var, jt(x,y) Cov, ( jt(X,Y)’ jt(X,Z))
Var, J; S K2 + K :

Now combining Lemma 8 and Remark 3, we see that the constant C' in the definition of
K can be made large enough so that the above probability is smaller than 1/4. Using
Hoeffding’s Inequality, the probability that there are more than R/2 successes is then

smaller than exp (—R/8) = § ¢~ ¢2. Choosing C5 large enough and taking a union bound,

We have

we obtain that the probablhty for the algorithm to return an estimate smaller than
t>(6)/2 is smaller than e. [ |

Proof of Fact j. Let q be such that ¢t =29 > t,(6/4). Then E,J; < (1 + 5/4) and by

Chebyshev’s Inequality
5\ t? Var, J;
P I+ S 5= -3
(jt ” ( * 2) 2m> S 2 (Epd)?

As in the proof of Fact 3, combining Lemma 8 and Remark 3, and taking C large enough,
the above probability is smaller than 1/4. Hence, if ¢* = inf{q > 0, 27 > ¢,(6/4)}, then
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for all ¢ > ¢*, the probability that the algorithm stops at ¢ is smaller than (1 /4)‘1*‘1*.
Now, the running time up to some step ¢ is smaller, up to constant factors, than
vm

q
2 RiKiti < 672(%)3/4 logg.

Altogether, the expected running time is less, up to constant factor, than
Vm V

* o m
5T<tq*)3/4 logq + Z (1/4)(] q 672(tq)3/4 logq,
7>q*

which is O (*g—?tm(é/él)?’/‘1 loglog tz(5/4)). [ |

Remark 4. On d-reqular graphs, one may simplify this algorithm using the unweighted
number of intersections, and obtain an algorithm that estimates t,(J) in expected time

o) <gtx(5/4)3/4 loglogtx(é/él)) .

We assume, for simplicity, that the true value of m is known. However, our estimation
scheme can easily be extended to the case where only a good approximation of m is
available. In Section 7, we showed how an upper-bound on the uniform mixing could be
used to devise a self-stopping algorithm returning a faithful estimate for the number of
edges, entailing the following.

Corollary 9. An upper-bound T on the uniform mizing time can be used to precisely
estimate both the number of edges and the mizing time from x, via a self-stopping algorithm
with time complexity O (\/mT3/4 log log m)
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