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Abstract

In this paper, we propose deep learning architectures (FNN, CNN and LSTM) to forecast a
regression model for time dependent data. These algorithm’s are designed to handle Floating
Car Data (FCD) historic speeds to predict road traffic data. For this we aggregate the speeds
into the network inputs in an innovative way. We compare the RMSE thus obtained with the
results of a simpler physical model, and show that the latter achieves better RMSE accuracy.
We also propose a new indicator, which evaluates the algorithms improvement when compared
to a benchmark prediction. We conclude by questionning the interest of using deep learning
methods for this specific regression task.
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Chapter 1

Road Traffic Speed forecasting:
Modelization, Results

1.1 Introduction

Traffic congestion is one of the major downsides of our ever-growing cities. The inconvenience for
individuals stuck in traffic jams can sometimes be counted in hours per day, and weeks per year.
In this context, a road traffic speed forecasting algorithm could have a highly beneficial impact:
it could feed a Dynamic Routing System (DRS), and allow one to anticipate the formation and
the resorption of congestion. This could lead to intelligent recommandation to drivers, and
point towards public measures for shifted departures to and from work (monetary incentives to
companies/individuals...)

The speeds measured on the road network can be seen as a spatio-temporal time series.
Although many models whether deterministic or stochastic have been created so far, these are
either too time consuming to be used in real time, too demanding in terms of storage, or give
too poor a result to prove valuable. Indeed the speeds present complex behaviors including
seasonality, time dependency, spatial dependency and drastic quick changes of patterns, making
it uneasy to forecast. Yet since the evolution of the speeds rely on a real behavior, these time
series present strong correlations and causality links that must be found.

In this paper, we focus on the design and implementation of Neural Networks (NN) to handle
the forecast of time series applied to the case of road traffic. Using NN allows one to include
a large number of explicative variables inside the model to capture the complexity of the time
series. For this we study three kinds of NN architectures – Feedforward (FNN), Convolutional
(CNN) and Recurrent (RNN) – to deal with the road traffic speed forecasting task.

There has been a growing interest for deep learning in the recent years, see for instance [22]
and references therein. Among all different kind of networks, CNN are mostly used to classify
images as in [21] or [40], and RNN are mostly used for Natural Language Processing tasks [27],
where one tries to guess the next word in a sentence given the previous ones. Yet for a regression
task when dealing with time dependent data, few results exist in the statistical literature.

In this work, we propose a way of feeding the NN to enhance the causality due to the
seasonality of the observations which will be compared to the usual one. In addition we propose
specific designs of the neural networks to forecast the data, each adapted to the type of NN
used in this study. Moreover, to evaluate the quality of the forecast, in addition to the standard
Root Mean Square Error (RMSE), we propose a new Q2 indicator, conceived so as to assess the
quality of the model for time series forecast, completing the information conveyed by RMSE.
Within this framework, we show that the Convolutional network severely underperforms the
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other NN variants and give some reasons why this may be. We also present a simple physical
model, embedding the seasonality of the road traffic, that outperforms all the deep learning
techniques while using order of magnitudes less parameters.

The paper divides as follow. We present the speed data at our disposal in Section 1.2.1,
and explain how we feed them to the NN in Section 1.2.2. The new criterion used to evaluate
the quality of the different models is explained in Section 1.3. The models themselves -FNN,
CNN, RNN-LSTM – are presented in Section 1.4. We finally present the setup of our different
simulations and our numerical results in Section 1.5.

1.2 Data

1.2.1 Speeds from FCD measures

We deal here with speed forecasting on a road network. A road network is an oriented graph. On
each oriented edge a speed is computed (via a technique called Floating Car Data, or FCD, see
for instance in [36]). A road network has to be described by several oriented edges as the speed
limit, the topology, the presence of a traffic light... change for different zones of the network.
On a edge l of a road network, the speed at time τ is denoted ṽlτ . In our study, the speeds are
available every 3 minutes, so that ṽlτ+1 comes 3 minutes after ṽlτ .

In practice, we will normalize speeds. This procedure helps to identify similar speed patterns:
formation of congestion or its resorption , without being affected by the absolute speed values.
Otherwise, a classification algorithm would for instance fail to cluster together two edges which
never experience any traffic jams if their speed limits are respectively 50 and 130 kph. To
normalize the speeds, one needs to know the so-called free flow speed vFFS

lτ as defined in [7]. The
free flow speed on Paris Ring Road is roughly 65kph. We will thus from now on deal with the
series of observations

vlτ =
ṽlτ
vFFS
lτ

.

In this paper, we will study the external Paris ring road: 396 oriented edges in our network.

Figure 1.1: External Paris Ring Road.

The training set will be data from the first 9 months of 2016, the test set belonging to tenth
month of 2016. Note that to avoid predicting on trivial traffic states of constant speeds, we first
removed the speed data from 11pm to 5 am of each day of our 10 month sample.
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1.2.2 Input speeds

In addition to the freedom of design in the FNN, CNN and RNN architectures, the way the past
speeds are taken into account in the input of the networks play a crucial role in the results that
one can obtain. Shall we take nearby edge past speed information, or can each edge predict
its future speeds knowing only its past ones ? How far into the past shall we go ? Hence the
creation of the learning set determines the behaviour of the model and should be studied with
care.

We will consider two kinds of input for the different NN architecture that we implement: a
full input (large quantity of data) and a reduced one (supposed to capture the seasonality of the
road traffic)

Full input

The full input of the NN corresponds to data on the current day (where one is trying to predict
future speeds) and the immediate past D days. On these D+ 1 days we consider N0 contiguous
edges of our graph. Starting at an arbitrary edge N (t) and an arbitrary time T (t), the full input
of the network is then ({

v
N(t)+l T (t)−b

}
,
{
v
N(t)+l T (t)−δD+p

})
, (1.2.1)

with

l ∈ J0, N0 − 1K , b ∈ J1,Bf K ,
δ ∈ J1,Df K , p ∈ J−P1f ,P2f K

where the f subscript stands for full. The t index represents the t sample of our training set,
and D is a constant representing a full day in 3 minute intervals (480). We are thus considering
the 3Bf minutes of speed data on the current day (just before T (t)), and a time window of 3P1f

minutes before T (t) and 3P2f minutes after T (t) on past days. In practice we take

N0 = Bf = 32 , Df = 7 ,

P1f = 15 , P2f = 16 .

This corresponds to F0f input variables with

F0f = N0 × (Bf + [P1f + P2f + 1]Df ) = 8192 .

The prediction task corresponding to this full input is{
v
N(t)+l T (t)+h

}
,

with h ∈ J0,Hf − 1K , and in practice we will take Hf = 20 , hence an output of size N0×Hf =
640 . The full input and the corresponding output is illustrated in Figure 1.2 for a given t sample
of the training set.
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Figure 1.2: full input used for the different NN architectures (left). Prediction example (right)

Here, the output of the network (on the right part of Figure 1.2) is the subsequent 20 three
minute time intervals of the N0 links of the current instance t of the training set (time between
6:06 and 7:03 am). On the left part of Figure 1.2, the eight colored matrices correspond to the
traffic on the current day (matrix in the foreground, time between 4:30 and 6:03 am) and the
traffic on the seven previous days (matrices in the background, time between 5:18 and 6:51 am).

Reduced input

Starting back from our arbitrary edge N (t) and arbitrary time T (t), the reduced input deals with
one edge. We thus forget the l index in this part. The reduced input reads({

v
N(t) T (t)−b

}
,
{
v̄
N(t) T (t)−δD+p

})
. (1.2.2)

where (the r subscript stands for reduced)

b ∈ J1,BrK , δ ∈ J1,DrK , p ∈ J−P1r,P2rK .

The signification of b and δ are unchanged (see Section 1.2.2). In practice we will take

Br = 4 , Dr = 7 .

However, the way in which the previous days are taken into account is changed as follows.
Instead of taking high resolution but noisy 3 minutes intervals, we will average over M such
intervals, so that

v̄
N(t) T (t)−δD+p

=
1

M

M−1∑
i=0

v
N(t) T (t)−δD+Mp+i

.

In practice we will take

M = 5 , P1r = 0 , P2r = 3 .

The reduced input will thus be of size

F0r = Br + [P1r + P2r + 1]Df = 32

The corresponding prediction task will now be
{
v
N(t) T (t)+h

}
, with h ∈ J0,Hr − 1K , and in

practice we will take Hr = 20 , and the output will be of size Hr = 20. The reduced input and
its corresponding output is illustrated in Figure 1.3
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Figure 1.3: Reduced input example.

On Figure 1.3, the traffic is represented for 8 contiguous days on the N (t)’th link of the Paris
road network. The first 7 days (x axis between 0 and 7) are considered to be past days, and
are pictured averaged per quarter-hours (corresponding to our M choice). The 8th day (x axis
between 7 and 8) is depicted by 3 minute intervals. T (t) characterizes the starting time at which
one tries to predict afterwards. In Figure 1.3, this corresponds to the green part of the curve
(see main plot and inset). The v

N(t) T (t)−b
are the blue part of the curve (see both main plot and

inset) while the v̄
N(t) T (t)−δD+p

are shown in red.

1.3 Model evaluation

1.3.1 RMSE and Q-score

Generally, in the speed forecasting paradigm[5],[9],[28],[35][37],[39] one evaluates the quality of
a prediction algorithm considering the Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

LT

T∑
h=0

L∑
l=1

(vlτ+h − v̂lτ+h)2

where v̂lτ is the speed predicted by the algorithm under consideration, vlτ+h the ground truth
speed, T (19 in our study) covering all the time intervals where the prediction is taking place,
and L all the links of the road network considered. In our opinion, this indicator is not sharp
enough to correctly assess the quality of a prediction algorithm. Indeed, for a constant time
series, any RMSE close to 0 could fool people into thinking that the prediction algorithm is a
good one, despite being worse than the prediction of taking a constant. At the other extreme,
for a widely and swiftly changing time series, a large RMSE does not necessarily imply that the
algorithm is a poor one.

To paliate this apparent paradox, it is necessary to introduce a new benchmark prediction. In
our study we chose the real time propagation benchmark RTPB (taking vlτ for any future speed
vlτ+h), which is what is widely used in industrial DRS described for instance in [8]. An algorithm
with a low RMSE is not worth much interest if it constantly predicts worse than this simple
benchmark, and an algorithm with a large RMSE but constantly beating the benchmark may
be worth considering; it might just be that the road network under investigation is experiencing
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a large change of speed. We thus introduce

Q2 = 1− RMSE2

RMSE2
bench

. (1.3.1)

where

RMSE
bench

=

√√√√ 1

LT

T∑
h=0

L∑
l=1

(vlτ+h − vlτ )2 .

This Q-score (or Q2 in the following) quantifies the improvement (or deterioration) of the con-
sidered algorithm when compared with the RTPB prediction. If Q2 > 0 then there is an
improvement (a Q2 equal to 1 would mean a perfect prediction), otherwise if Q2 < 0 there is a
deterioration. Without this Q2 specification, any speed prediction on an almost constant speed
road network could lead to a very low RMSE without nevertheless being good, and one might
be tempted to choose these kind of networks to beat ”state of the art” RMSE. We hasten to add
that this is not what was done by the papers that we reviewed [37, 9], but it is notwithstand-
ing hard to evaluate a traffic prediction algorithm having in mind real life applications if one
solely consider the RMSE. Some studies[5, 25] use an alternative indicator: the Mean Absolute
Percentage Error (MAPE).

MAPE =
100

LT

T∑
h=0

L∑
l=1

∣∣∣∣1− v̂lτ+h

vlτ+h

∣∣∣∣ .
Not using any benchmark algorithm, the MAPE is however subject to the same drawbacks as
the RMSE when used alone.

Loss function

The loss function is a critical component of a NN architecture. For a classification task, the
cross-entropy loss function is a standard choice. But in this study, as we are trying to make
quantitative speed predictions that could feed a DRS, we will take a quadratic loss function

Jt(Θ) =

N0−1∑
l=0

H−1∑
h=0

(
v̂
N(t)+l T (t)+h

− v
N(t)+l T (t)+h

)2
,

where v is the ground truth speed and v̂ the output of the NN under consideration. See Section
1.2.2 for more details on the other notations.

Note that considering this particular loss function means that we are considering the speed
forecasting problem as a regression task.

Jt corresponds to the loss error on one sample of the training set, and we still have to decide
how to train the NN. We make the standard choice of mini-batch Stochastic Gradient Descent
(SGD) as in [19], at each epoch E –one iteration of the training procedure, we pick Tmb samples
of the training set, and compute the mini-batch loss

J(Θ) =
1

2Tmb

Tmb−1∑
t=0

Jt(Θ) . (1.3.2)

To achieve better accuracy, we had to regularize the Loss function. This is achieved using
an `1 + `2 penalty, also known as elastic net penalty, see for instance in [41], detailed in Section
1.4.1.
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In this study we picked Tmb = 50 and E ∼ 5.104. The value of E is indicative, as we
performed early stopping in order to improve accuracy as it is often done by users of NN as in
[2] to overcome the issue of the convergence of the algorithm.

1.4 The models

We present the different NN studied, starting with their common blocks and ending with their
specificities

1.4.1 Common properties of the Networks

Output function

As we deal with normalized speed, we constrain the output of our model v̂ to be between zero
and one. We hence picked an output function o such that

o(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

Batch Normalization

Batch normalization (BN) is the most popular regularization procedure and consists in jointly
normalizing the mini-batch sets per data types at each input of a NN layer, except for the input
of the network itself. This is because we want to keep track of what the data represents, hence
keep their mean and standard deviation untouched. It should be mentioned from the outset
that BN is an empirical procedure, though it has been shown to drastically improve state of the
art performance on classification tasks for instance on CIFAR/MNIST on many challenges.

In the original paper[18], the authors argued that this step should be done after the weight
averaging/convolution (WA/C) operation and before the non-linear activation (NAC).

However, this choice stands on no theoretical grounds, and defeats the purpose of presenting
a standardardized input to each NN layer. In addition, the back-propagation rules are a bit
more cumbersome to write with the WA/C-BN-NAC convention. We therefore opted for a
WA/C-NAC-BN architecture for all the layers – except of course the pooling ones where there
is nor an NAC neither a BN – presented in this paper.

For the technical details on our BN implementation, see Section 1.9 of the supplementary
material.

Elastic net

In practice, using equation (1.3.2) for the loss function leads to poor results: the different NN
that we considered never reach a positive Q2. We thus had to regularize the loss function. This
we did by using both `1 and `2 penalties, a procedure which turns our NN to so-called elastic

nets. Calling Θ
(ν)f
f ′ the weight matrix between the ν’th and the ν + 1’th layer of our NN, this

procedure amounts to add the following terms to the loss function

Jreg(Θ) = J(Θ) +
λ
`2

2

N∑
ν=0

Fν−1∑
f ′=0

Fν+1−1∑
f=0

(
Θ

(ν)f
f ′

)2
+ λ

`1

N∑
ν=0

Fν−1∑
f ′=0

Fν+1−1∑
f=0

∣∣∣Θ(ν)f
f ′

∣∣∣ .
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With Fν (Fν+1) the size of the ν’th (ν + 1’th) layer of the NN. These new terms play a role in
the update rules of the weight matrices as shown in [6].

In our numerical simulations, we took λ
`1

and λ
`2

to be in the range 10−4 − 10−1, the best
value being picked by cross-validation.

No Dropout

In our study, it turned out that dropout – with the probability p of retaining a unit varying
between 0.2− 0.8 for both the input and hidden layers – only slows down convergence without
reducing the RMSE. We therefore chose to discard dropout from our architectures.

Adam Optimizer

For the mini-batch SGD used in backpropagation[24], we used the Adam optimizer proposed for
instance in [20] which keeps track of both the weight gradient ∆Θ

e (e ∈ J0, E − 1K) and its square
via two epoch dependent vectors m and v. For a given weight matrix Θ, we thus have

me = β1me−1 + (1− β1)∆Θ
e ,

ve = β2ve + (1− β2)
(
∆Θ
e

)2
,

with β1 and β2 parameters respectively set to 0.9 and 0.999, as advocated in the original
paper[20]. We also observed that the final RMSE is poorly sensitive to the specific β values.
The different weight matrices Θ are then updated thanks to (ε = 10−8)

Θe = Θe−1 −
η√
ve + ε

me .

This is the optimization technique used for all our NN, along side a learning rate decay ηe =
e−α0ηe−1 , where α0 determined by cross-validation, and η0 is usually initialized in the range
10−3 − 10−2. Without this weight decay, the NN perform poorly.

Activation function

We used Leaky-ReLU activation functions in all our simulations (slight improvement on the
standard ReLU choice), see for instance in [1]. We also tested without success the ELU choice.

1.4.2 Specificities of each Network

Feedforward Neural Networks

For our FNN, we considered both one and three hidden layer architectures, with the WA-NLA-
BN structure advocated in Section 1.4.1. We added no bias to the WA equation, as the latter
is handled by the BN procedure, see the supplementary material for more details. We took a
unique size FH for the hidden layers, and varied it in between 8− 256.

We did not consider ResNet architectures[16] in this study. This might be a natural following
step, but in the present state of the art techniques for regression task with NN, we are pessimistic
on any improvement this might achieve. Indeed, as shown in our results, our 1 hidden layer
FNN outperforms its 3 layer cousin.

Input of the FNN : To feed our FNN, we just stuck together either the full or the reduced

input (see equations (1.2.1) and (1.2.2)) into a matrix X
(t)
f . Here t is the mini-batch index and

f ∈ F0(fr) for respectively the full and reduced inputs.
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Weight initialization : we used the standard prescription[11]

[
Θ(ν)

]
init

=

√
6

Fν + Fν+1
×N (0, 1) .

Convolutional Neural Networks

In our CNN study, we implemented a 16 weights VGG architecture [31] (ResNet could be
considered in a future study). The input feature map is of size Df + 1, while the images
composing the input are of size Bf ×N0 for the current day and (P1f + P2f + 1) ×N0 for the
previous days. In practice this corresponds to eight 32×32 images, and we therefore implemented
the standard convolutions using 3× 3 receptive fields with 1 strides and a padding equal to 1 on
each image edge. We use pooling of 2× 2 receptive fields with 1 strides. The size of the hidden
feature maps has been taken in between 32−512, and the size of the subsequent fully connected
layers in between 256 − 512. More details on the architecture can be found in Section 2 of the
supplementary material.

Input of the CNN : For the CNN, we only considered the full input introduced in Section
1.2.2. Figure 1.2 makes complete sense for CNNs, as its left part represents the different feature

maps of the input. The latter is now a four dimensional tensor X
(t)
δl(pb) with t the mini-batch

index and

for δ = 0, X
(t)
δlb = v

N(t)+l T (t)−b
,

for δ 6= 0, X
(t)
δlp = v

N(t)+l T (t)−δD+p
,

Weight initialization : We used the same prescription as for FNN.

1.4.3 Recurrent Neural Networks

For our RNN, we used the LSTM variant [38] with no peepholes in the input, forget and output
gates. The latter are taken to be standard logistic σ functions, while the cell update as well as
the hidden state update are taken to be tanh functions. We performed BN as in the Feedfor-
ward/Convolutional before each input of a hidden layer. We took one hidden layer in the spatial
direction and H in the temporal one.

Input of the RNN-LSTM : an additional subtlety arises for RNN: the input depends on
the temporal direction τ of the network. For the full input, we just took (f here stands for
(b, p, l, δ) with l = 0 for the reduced input)

X
(t)(τ)
f =

({
v
N(t)+l T (t)+τ−b

}
,
{
v
N(t)+l T (t)+τ−δD+p

})
,

implying that the input of a current temporal layer has to be fed with the output of the previous
ones. We did just so in practice. We took the same FH as for FNNs.

Weight initialization : We used a diagonal prescription inspired from [32] (J is the unit
matrix, ε ∼ 10−2) [

Θ(ν)
]

init
=

1

2
I + JN (0, ε) .
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No clipping : Clipping [14] did not improve our model performances. We thus removed it.

1.5 Results

With all the building blocks in place, we report here in Figures 1.4 and 1.5 the compared
performance of all the algorithms.

1.5.1 Full input

The RMSE of our different NN can be found for the full input in Figure 1.4. Here one can see
several particular patterns.
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Figure 1.4: RMSE for the different models studied.
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Figure 1.5: Q-score for the different models studied.

Poor CNN performance : the CNN severely underperforms the FNN and the RNN-LSTM.
As the evolution of the car speeds is supposed to be a spatio-temporal field, considering the
daily spatio-temporal velocities as images that characterize the traffic seemed to be a good

13



frame to use CNN that proved helpful in pattern recognition. Yet road traffic speed prediction
is not a translationally invariant problem in the temporal direction and no matter how the CNN
weight matrices are tuned, the network assumes that the input image is translational invariant.
The CNN hence fails to capture the fact that the right part of the input images in Figure 1.2
play a more important role that the left part, since it represents more recent traffic states. We
extend our remark to any time series problem: the CNN seems ill equipped to handle prediction
task properly in the case where there is strong causality in the time direction. Note however
that another study in [37] reports otherwise on some specific Chinese road networks, while only
feeding the CNN with past traffic states of the current day (feature map of size 1 for the input
layer). This may be due to some particular conditions in Chinese trafic. Yet the performance
of NN are better than standard methods based on density models [26].

Similar FNN/RNN-LSTM performance : The two other kind of networks that we con-
sidered performed similarly, with a RMSE between 6− 11kph.

A simpler model performs better : We developed a simpler physical model (PM) embed-
ding the seasonality of the traffic. This model outperforms all NN, reaching state of the art
RMSE value. Note that this work will be published in a future patent.

Q2 utility : We can assess the quality of our prediction when compared to the RTPB. We
observe that FNN outperforms RNN-LSTM, despite having an almost identical RMSE. PM
outperforms all NN, especially at early times.

Storage issues for real life applications : the best FNN-3/VGG/LSTM models that we
obtained have respectively 284672/243712/8224 weight parameters, not counting the BN ones.
Our best PM has 640 parameters in total. In addition, it has a high degree of generalizability,
allowing to mutualize the parameters for large road networks.
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1.5.2 Reduced input
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Figure 1.6: RMSE for the reduced input

We present in Figure 1.6 and 1.7 the results obtained – by two FNN architectures and the
physical model – for the reduced input. From these Figures we draw

15



10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

Time (in mn)

Q
2
(%

be
nc

hm
ar
k
im

p
ro
ve
m
en

t)

Q2 for Paris ring road (reduced input)

Physical model
FNN-3
FNN-1

FNN-3 (full input)
Benchmark

Figure 1.7: Qbench for for the reduced inputs

The reduced input outperforms the Full one : The full input, though with a large
number of explanatory variables, leads to worse results in terms both of Q2 and RMSE. This
might be due to either a poor initial condition choice – we hope not – or to the regression
problem specificities.

The shallow FNN outperforms the deep one : FNN-1 gives slightly better results than
FNN-3.

The PM still outperforms NN: but not by much.
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1.5.3 Importance of the Q-score
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Figure 1.8: RMSE for different speed regimes

We have studied three speed regimes for the PM: the ”constant” (”changing”) one is the 10%
part of the training set where the speeds before and after T (t) vary the less (more). The standard
regime is the remaining 80%. Results are shown in Figures 1.8 and 1.9
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Figure 1.9: Q-score for different speed regimes

Constant speeds lead to better RMSE : The less the speed vary, the better the RMSE
is, as expected.

Changing speeds lead to better Q2 : Having low RMSE is not on its own a sign of a
working model. The PM can’t beat the Benchmark for ”constant” speeds, while beating it by
more than 50% after 50 minutes for the changing speeds. One should therefore jointly state
RMSE and Q2 in time series tasks.

1.6 Conclusion

We have implemented popular deep learning architectures, adapting their designs to the specific
regression problem of predicting future road speeds, a generic example for time series presenting
strong causality issues in both time and space. We showed that the CNN underperforms the
other networks while we built a PM that outperforms all NN architectures. We show that
feeding the NN with more data leads to worst results, as does adding more layers to the FNN.
We finally designed a new indicator, the Q2, to be used jointly with the RMSE in time series
problems.
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Chapter 2

Deep Learning: supplementary and
technical description

2.1 Feedforward Neural Networks

Feedforward networks (FNN) are an extension of the perceptron algorithm[29]. Their architec-
ture is simple, but training them can be a daunting task. In the next few Sections, we introduce
the minimum FNN mathematical survival kit, stating what – to the best of our knowledge – are
the empirical tricks and what stands on firmer mathematical ground.

2.1.1 Some notations and definitions

In the following, we call

• N the number of layers (not counting the input) in the Neural Network.

• Ttrain the number of training examples in the training set.

• Tmb the number of training instances in a mini-batch (more on that later).

• Fν the number of neurons in the ν’th layer.

• t ∈ J0, Tmb − 1K the mini-batch training instance index.

• ν ∈ J0, NK the index of the layer under consideration in the FNN.

• h(t)(ν)
f where f ∈ J0, Fν − 1K the neurons of the ν’th layer.

• X(t)
f = h

(t)(0)
f where f ∈ J0, F0 − 1K the input variables.

• y(t)
f where f ∈ [0, FN − 1] the output variables (to be predicted).

• ŷ(t)
f = h

(t)(N)
f where f ∈ [0, FN − 1] the output of the FNN.

• Θ
(ν)f ′

f for f ∈ [0, Fν − 1], f ′ ∈ [0, Fν+1 − 1] and ν ∈ [0, N − 1] the weight matrices.

• A bias term can be included. In practice, we see when talking about the batch-normalization
procedure that we can omit it, and we choose to do so in all our definitions.
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2.1.2 FNN architecture
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Figure 2.1: Neural Network with N +1 layers (N −1 hidden layers). For simplicity of notations,
the index referencing the training set has not been indicated. Shallow architectures (considered
in the core of the paper) use only one hidden layer. Deep learning amounts to take several
hidden layers, usually containing the same number of hidden neurons. This number should be
in the ballpark of the average of the number of input and output variables.

A FNN is made of one input layer, one (shallow network) or more (deep network, hence the
name deep learning) hidden layers and one output layer. Each layer of the network (except the
output one) is connected to a following layer. This connectivity is central to the FNN structure
and has two main features in its simplest form: a weight averaging feature and an activation
feature. We review these features extensively in the following subsections
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2.1.3 Weight averaging
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Figure 2.2: Weight averaging procedure.

One of the two main components of a FNN is a weight averaging procedure, which amounts to
average the previous layer with some weight matrix to obtain the next layer. This is illustrated
in Figure 2.2

Formally, the weight averaging procedure reads:

a
(t)(ν)
f =

Fν−1∑
f ′=0

Θ
(ν)f
f ′ h

(t)(ν)
f ′ =

(
Θ(ν)Th(t)(ν)

)
f
. (2.1.1)

Here we have delibarately ommited a potential bias term, as it is handled in Section 2.1.9
where we talk about batch normalization. In practice, for all our numerical simulations, the
weights are learned using the backpropagation procedure[24] with the Adam optimizer method
for gradient descent[20].

2.1.4 Activation function

The hidden neuron of each layer is defined as

h
(t)(ν+1)
f = g

(
a

(t)(ν)
f

)
, (2.1.2)

where g is an activation function – the second main ingredient of a FNN – whose non-linearity
allows the prediction of arbitrary output data. In practice, g is usually taken to be either a
sigmoid, a tanh a Rectified Linear Unit[15] (ReLU), or its variants: Leaky ReLU, ELU...[4].
The ReLU is defined as

g(x) = ReLU(x) =

{
x x ≥ 0

0 x < 0
. (2.1.3)

Its derivative is

ReLU′(x) =

{
1 x ≥ 0

0 x < 0
. (2.1.4)
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The choice of the activation function usually follows empirical tests, though it has been
formally shown [3],[30] that Neural Networks cannot converge if the activation function is too
complicated. With these building blocks in place, let us consider the different layers of the
network one at a time.

2.1.5 Input layer

As explained in the core of the paper, we consider a full and a reduced input. But for all purposes

here, we deal with an h
(t)(0)
f = X

(t)
f input layer, with f ∈ J0, F0 − 1K and t ∈ J0, Tmb − 1K.

2.1.6 Fully connected layer

The fully connected operation is just the conjunction of the weight averaging and the activation
procedure. Namely, for ν ∈ J0, N − 1K

a
(t)(ν)
f =

Fν−1∑
f ′=0

Θ
(ν)f
f ′ h

(t)(ν)
f ′ , (2.1.5)

and for ν ∈ J0, N − 2K

h
(t)(ν+1)
f = g

(
a

(t)(ν)
f

)
. (2.1.6)

In the case where ν = N − 1, the activation function is replaced by an output function (see the
next section).

2.1.7 Output layer

The output of the FNN reads

h
(t)(N)
f = o

(
a

(t)(N−1)
f

)
, (2.1.7)

where o is called the output function. In the case of the Euclidean loss function (se the next
section), the output function is just the identity. Nevertheless, in our case we know that the
normalized speeds cannot take values greater than 1 and smaller than 0, we therefore impose
this constraint on the output of our FNN and take

o(x) =


0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

. (2.1.8)

2.1.8 Loss function

The loss function evaluates the error made by the FNN when it tries to estimate the data to be
predicted. As explained in the core of the paper for a regression problem this is generally the
mean square error (MSE)

J(Θ) =
1

2Tmb

Tmb−1∑
t=0

FN−1∑
f=0

(
y

(t)
f − h

(t)(N)
f

)2
. (2.1.9)
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To obtain better results, one usually regularizes the Loss function. In addition to Batch nor-
malization (explained in the next section), we also use `1 and `2 regularization. This amounts
to add the following terms to the loss function

Jreg(Θ) = J(Θ) +
λ`2
2

N∑
ν=0

Fν−1∑
f ′=0

Fν+1−1∑
f=0

(
Θ

(ν)f
f ′

)2

+ λ`1

N∑
ν=0

Fν−1∑
f ′=0

Fν+1−1∑
f=0

∣∣∣Θ(ν)f
f ′

∣∣∣ . (2.1.10)

These new terms play a role in the update rules of the weight matrices[6].

2.1.9 Batch Normalization

As explained in the core of the paper, Batch normalization (BN) consists in jointly normalizing
the mini-batch sets Tmb per data types Fν at each input of a NN layer, except for the input of
the network itself. In our case, we thus consider for ν ∈ J0, N − 2K

h̃
(t)(ν)
f =

h
(t)(ν+1)
f − ĥ(ν)

f√(
σ̂

(ν)
f

)2
+ ε

. (2.1.11)

Here, ĥ
(ν)
f and σ̂

(ν)
f are respectively the mean and the standard deviation of h

(t)(ν+1)
f with respect

to the batch index t. To make sure that the Batch Normalization operation can also represent the
identity transform, we standardly add two additional parameters (γf , βf ) to the model (learned
by backpropagation [6])

y
(t)(ν)
f = γ

(ν)
f h̃

(t)(ν)
f + β

(ν)
f . (2.1.12)

The presence of the coefficient β
(ν)
f is what pushed us to get rid of the bias term. Indeed, it is

now naturally included in batchnorm. During training, one must compute a running sum for
the mean and the variance, that serve for the evaluation of the cross-validation and the test set.
calling e the current epoch

E
[
h

(t)(ν+1)
f

]
e+1

=
eE
[
h

(t)(ν)
f

]
e

+ ĥ
(ν)
f

e+ 1
, (2.1.13)

Var
[
h

(t)(ν+1)
f

]
e+1

=
eVar

[
h

(t)(ν)
f

]
e

+
(
σ̂

(ν)
f

)2

e+ 1
(2.1.14)

and what is used at test time is

E
[
h

(t)(ν)
f

]
= E

[
h

(t)(ν)
f

]
,

Var
[
h

(t)(ν)
f

]
=

Tmb

Tmb − 1
Var

[
h

(t)(ν)
f

]
. (2.1.15)

so that at test time

y
(t)(ν)
f = γ

(ν)
f

h
(t)(ν)
f − E[h

(t)(ν)
f ]√

Var
[
h

(t)(ν)
f

]
+ ε

+ β
(ν)
f . (2.1.16)
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In practice when using BN, and as advocated in the original paper[18], one can get rid without
loss of precision of the former most popular regularization technique before BN introduction:
Dropout[33]. We adopt this convention in the following, as our test experienced a loss of precision
with the joint use of BN and dropout. This might be due to the peculiarity of our problem which
is a regression and not a classification task. To the best of our knowledge, the litterature on NN
for regression task is pretty scarce. Going back to the FNN structure, this induces the following
change to the weight averaging formula of Section 2.1.6: for ν ∈ J1, N − 1K

a
(t)(ν)
f =

Fν−1∑
f ′=0

Θ
(ν)f
f ′ y

(t)(ν−1)
f ′ . (2.1.17)

2.1.10 Architecture considered in practice

Schematically denoting a hidden fully-connected unit as (with the WA/NLA/BN order advo-
cated in the core of the paper)

full ∗
Relu
BN

= full

Figure 2.3: A FNN fully connected layer

and the FNN output unit as

full ∗

Output o = Output

Figure 2.4: The FNN output layer

we consider in the core of our paper the following two FNN architectures. A one hidden
layer FNN depicted in Figure 2.5

I
n
p
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F
u
l
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O
u
t
p
u
t

Figure 2.5: FNN with one hidden layer

and a three hidden layer FNN depicted in Figure 2.6
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Figure 2.6: FNN with three hidden layers

In practice one could consider a lot of other FNN architectures: Resnet[16], highway Nets[34],
DenseNets[17]... This could be the object of future studies.

2.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a kind of network architecture particularly adapted to
image classification, be it numbers or animal/car/... category. In this Section we review the
novelty involved when dealing with CNN when compared to FNN as introduced in Section 2.1,
and do so for our regression task at hand. The most fundamental novelties are the two building
blocks of CNN: convolution and pooling operations. Before presenting them, let us introduce
some more notations specific to the CNN architectures

2.2.1 CNN new specific notations and definitions

In addition or in replacement to the notations introduced in Section 2.1.1, we denote in the
following

• Fν , the number of feature maps in the ν’th layer.

• Tν and Nν , respectively the width and the height of the ν’th feature map.

• h(t)(ν)
flm where ν ∈ J0, NK f ∈ J0, Fν − 1K, l ∈ J0, Nν − 1K and m ∈ J0, Tν − 1K, the ν’th layer

components.

• X(t)
flm = h

(t)(0)
flm where f ∈ J0, F0−1K, l ∈ J0, N0−1K and m ∈ J0, T0−1K, the input variables.

• y(t)
flm where f ∈ J0, FN − 1K, l ∈ J0, NN − 1K and m ∈ J0, TN − 1K, the output variables (to

be predicted).

• ŷ(t)
flm = h

(t)(N)
flm where f ∈ J0, FN − 1K, l ∈ J0, NN − 1K and m ∈ J0, TN − 1K, the output of

the CNN.

• Θ
(ν)f
f ′lm for ν ∈ [0, N−1], f ∈ [0, Fν+1−1], f ′ ∈ [0, Fν−1], l ∈ J0, Nν−1K and m ∈ J0, Tν−1K,

the weight matrices.

• RC and SC , respectively, the receptive field and the stride of the convolution operation.
Unless stated otherwise, these are kept the same for all the convolutions.

• RP and SP , respectively the receptive field and the stride of the pooling operation. Unless
stated otherwise, these are kept the same for all the poolings.
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2.2.2 CNN architecture

The CNN architecture involves convolutions (see Section 2.2.4), pooling (see Section 2.2.5) as well
as an input, an output and fully connected (similar to those a FNN, see Section 2.1.6) layers.
Here is a possible CNN architecture : an input is convolved with a first weight matrix then
pooled, convolved with a second weight matrix then pooled, then a fully connected operation
occurs before the output is computed.
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Figure 2.7: A typical CNN architecture (in this case LeNet[23] inspired): convolution operations
are followed by pooling operations, until the size of each feature map is reduced to one. Fully
connected layers can then be introduced.

The fully connected layers, the output layers and the loss function are unchanged (see Sec-
tions 2.1.6, 2.1.7 and 2.1.8). The batch normalization procedure is also used, and can easily be
adapted from what has been presented in Section 2.1.9. Let us now see the new and modified
layers.

2.2.3 Input layers

As explained in the core of the paper, we only consider the full input for CNN. But for all

purposes here, we deal with an h
(t)(0)
flm = X

(t)
f input layer, with f ∈ J0, F0 − 1K, l ∈ J0, N0 − 1K

and m ∈ J0, T0 − 1K.

2.2.4 Convolutional layers

The convolution operation that gives its name to the CNN is the fundamental building block
of this type of network. It amounts to convolute a feature map of a hidden layer input with a
weight matrix to give rise to an output feature map. The weight is really a four dimensional
tensor, one dimension (Fν) being the number of feature maps of the convolutional input layer,
another (Fν+1) the number of feature maps of the convolutional output layer. The two others
give the width and the height of the receptive field. The receptive field allows one to convolute
a subset instead of the whole input image. It aims at searching for similar patterns in the input
image, no matter where the pattern is (translational invariance). We saw in the core of our paper
the problem that this induces. The width and the height of the output image are determined by
the receptive field as well as by the stride: it is simply the number of pixels by which one slides
in the vertical and/or the horizontal direction before applying the convolution operation again.
The central convolution formula for the ν’th CNN layer (involving the o’th weight matrix for
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the o’th convolution operation) is

a
(t)(ν)
f lm =

Fν−1∑
f ′=0

RC−1∑
j=0

RC−1∑
k=0

Θ
(o)f
f ′ j kh

(t)(ν)
f ′ SC l+j SCm+k

=
(

Θ(o)T ? h(t)(ν)
)
flm

. (2.2.1)

Here SC l + j belongs to J0, Nν − 1K and SCm + k to J0, Tν − 1K. This implies the following
relation between Nν+1, Nν and Tν+1, Tν

Nν+1 =
Nν −RC

SC
+ 1 , Tν+1 =

Tν −RC
SC

+ 1 . (2.2.2)

One then computes the hidden units via the ReLU activation function g introduced in Section
2.1.4

h
(t)(ν+1)
f lm = g

(
a

(t)(ν)
f lm

)
. (2.2.3)

2.2.5 Pooling layers

The pooling operation, less and less used in the current state of the art CNN[16], is fundamentally
a dimension reduction step. It amounts to take the maximum of a sub-image (characterized by
the pooling receptive field RP and a stride SP ) of the input feature map Fν , to obtain an output
feature map Fν+1 = Fν of width and height

Nν+1 =
Nν −RP

SP
+ 1 < Nν , Tν+1 =

Tν −RP
SP

+ 1 < Tν . (2.2.4)

The max pooling procedure (That we use here instead of the other possible choice, the average
pooling) reads for any ν

a
(t)(ν)
f lm = max

j,k=J0,RP−1K
h

(t)(ν)
f SP l+j SPm+k . (2.2.5)

The hidden unit is then just

h
(t)(ν+1)
f lm = a

(t)(ν)
f lm . (2.2.6)

2.2.6 Architecture considered in practice

Schematically denoting a hidden Convolution unit as

Conv ∗
Relu
BN

= Conv

Figure 2.8: The structure of a convolution layer

we consider in the remaining of this paper the following CNN architecture: the so-called
VGG CNN[31], which was the 2014 state of the art convolutional network
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Figure 2.9: The structure of the VGG CNN.

All the other details of the model are in the core of the paper.

2.3 Recurrent Neural Networks - Long Short Term Memory

In this Section, we review the third kind of Neural Network architecture used in this paper:
Recurrent Neural Networks. The specificity of this kind of network is that the time dependency
of the data is built into the model. We briefly present the first Recurrent Neural Network (RNN)
architecture, as well as the current most popular one: the Long Short Term Memory (LSTM)
Neural Network. We use the latter in this study.

2.3.1 RNN new specific notations and definitions

In contrast to the previously discussed neural networks, where we defined

a
(t)(ν)
f = Weight Averaging

(
h

(t)(ν)
f

)
,

h
(t)(ν+1)
f = Activation function

(
a

(t)(ν)
f

)
, (2.3.1)

we now have hidden layers that are indexed by both a ”spatial” and a ”temporal” index, and
the general philosophy of the RNN is (now the a is usually characterized by a c for cell state,
this denotation, trivial for the basic RNN architecture will make more sense when we talk about
LSTM networks)

c
(t)(ντ)
f = Weight Averaging

(
h

(t)(ντ−1)
f , h

(t)(ν−1τ)
f

)
,

h
(t)(ντ)
f = Activation function

(
c

(t)(ντ)
f

)
. (2.3.2)

Here, the notations are

• N , the number of layers (not counting the input) in the spatial direction.

• T , the number of layers (not counting the first one) in the temporal direction (so that
T = 0 in a RNN corresponds to a standard FNN).

• h(t)(ντ)
f , where ν ∈ J0, NK, τ ∈ J0, T K and f ∈ J0, Fν − 1K, the ντ ’th layer components.

• X(t)(τ)
f = h

(t)(0τ)
f , where f ∈ J0, F0 − 1K and τ ∈ J0, T K, the input variables (more on that

in Section 2.3.5).

• y(t)(τ)
f , where f ∈ J0, FN − 1K, the output variables (to be predicted).

• ŷ(t)(τ)
f , where f ∈ J0, FN − 1K, the output of the RNN.
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• Θ
ν(ν)f
f ′ for (ν) ∈ [0, N − 1], f ∈ [0, Fν − 1], f ′ ∈ [0, Fν+1 − 1], the weight matrices in the

”spatial” direction of the RNN.

• Θ
τ(ν)f
f ′ for (ν) ∈ [1, N − 1], f ∈ [0, Fν − 1], f ′ ∈ [0, Fν+1 − 1], the weight matrices in the

”temporal” direction of the RNN.

2.3.2 RNN architecture

An example of a RNN architecture with N = 4 spatial and T = 7 temporal layers is depicted in
Figure 2.10
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Figure 2.10: RNN architecture, with data propagating both in ”space” and in ”time”. In our
example, the temporal dimension is of size T = 7 while the spatial one is of size N = 4.

Note that the weight matrices do not vary along the temporal direction, and this RNN only
has 2(N − 1) + 1 = 7 weight matrices (indicated in Figure 2.10).

2.3.3 RNN hidden layer

The FNN formula of Section 2.1.6 is replaced in a RNN by (note also the change in the activation
function, a standard choice in the RNN litterature[12])

h
(t)(ντ)
f = tanh

Fν−1−1∑
f ′=0

Θ
ν(ν)f
f ′ h

(t)(ν−1τ)
f ′ +

Fν−1∑
f ′=0

Θ
τ(ν)f
f ′ h

(t)(ντ−1)
f ′

 . (2.3.3)

As this network has fallen out of favor because of vanishing gradient issues in backpropaga-
tion[XX], we now turn our attention to the LSTM RNN architecture that we use in the core of
the paper.

2.3.4 LSTM hidden layer

In a Long Short Term Memory Neural Network[10], the state of a given unit is not directly
determined by its immediate spatial and temporal neighbours. Instead, a cell state is updated
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for each hidden unit, and the output of this unit is a probe of the cell state. Several gates are

introduced in the process: the input gate i
(t)(ντ)
f determines if we allow new information g

(t)(ντ)
f

to enter into the cell state. The output gate o
(t)(ντ)
f determines if we set or not the output hidden

value to 0, or really probe the current cell state. Finally, the forget state f
(t)(ντ)
f determines if

we forget or not the past cell state. All these concepts are illustrated in Figure 2.11

c(ν τ−1) c(ν τ)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

h(ν−1 τ)

h(ν τ−1)

Θfν (ν) Θiν (ν) Θgν (ν) Θoν (ν)

Θoτ (ν)

Θgτ (ν)

Θiτ (ν)

Θfτ (ν)

f (ν τ)

σ σ

tanh
i(ν τ) g(ν τ)

×
tanh

σ
o(ν τ)

×

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)

h(ν τ)h(ν τ)h(ν τ)h(ν τ)

+

+

+

+

× +

Figure 2.11: LSTM hidden unit details

Considering all the τ − 1 variable values to be 0 when τ = 0, we get the following formula
for the input, forget and output gates:

(i, f, o)
(t)(ντ)
f = σ

Fν−1−1∑
f ′=0

Θ
(i,f,o)ν (ν)f
f ′ h

(t)(ν−1τ)
f ′ +

F ν−1∑
f ′=0

Θ
iτ (ν)f
f ′ h

(t)(ντ−1)
f ′

 . (2.3.4)

The use of the sigmoid function is the reason why the functions i, f, o are called gates. Indeed,
they are valued in ]0, 1[. Therefore, it allows or forbids information to pass through the next
step. The cell state update is then performed in the following way

g
(t)(ντ)
f = tanh

Fν−1−1∑
f ′=0

Θ
gν (ν)f
f ′ h

(t)(ν−1τ)
f ′ +

Fν−1∑
f ′=0

Θ
gτ (ν)f
f ′ h

(t)(ντ−1)
f ′

 , (2.3.5)

and

c
(t)(ντ)
f = f

(t)(ντ)
f c

(t)(ντ−1)
f + i

(t)(ντ)
f g

(t)(ντ)
f . (2.3.6)

So that, as announced previously, hidden state update is just a probe of the current cell state

h
(t)(ντ)
f = o

(t)(ντ)
f tanh

(
c

(t)(ντ)
f

)
. (2.3.7)

There is a whole zoology of LSTM variations[13], amounting to also include the cell state in
the input (this is called peephole connections), forget and output update, removing some of the
gates... In this paper we choose to stick with the standard LSTM formulation.
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2.3.5 RNN-LSTM Input Layer

As explained in the core of the paper, we consider a full and a reduced input. But for all purposes

here, we deal with an h
(t)(0τ)
f = X

(t)(τ)
f input layer, with f ∈ J0, F0− 1K and t ∈ J0, Tmb− 1K and

τ ∈ J0, T K.

2.3.6 RNN-LSTM Output Layer

The output layer of a RNN-LSTM is similar in spirit to the FNN one and reads

h
(t)(Nτ)
f = o

FN−1−1∑
f ′=0

Θf
f ′h

(t)(N−1τ)
f

 , (2.3.8)

where the output function o is the one described in Section 2.1.7.

2.3.7 Change to the Loss function

Since the structure of the data has changed compared to a FNN/CNN, here is how the loss
function reads for a regression task in a RNN-LSTM framework

J(Θ) =
1

2Tmb

Tmb−1∑
t=0

T−1∑
τ=0

FN−1∑
f=0

(
h

(t)(Nτ)
f − y(t)(τ)

f

)2
. (2.3.9)

2.3.8 Architecture considered in practice

In the core of the paper, we consider a N = 2 (hence one hidden layer) RNN-LSTM architecture,
adopting the T = 20 size to the temporal size Hrf of the full/reduced output (see the core of
the paper).
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network based language model. In Interspeech, volume 2, page 3, 2010.

[28] T. Miwa, Y. Tawada, T. Yamamoto, and T. Morikawa. En-route updating methodology
of travel time prediction using accumulated probe-car data. Proc. of the 11th ITS World
Congress, 2004.

[29] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, pages 65–386, 1958.

33



[30] L. Sagun, V. Ugur Guney, and Y. Lecun. Explorations on high dimensional landscapes. 12
2014.

[31] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[32] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. Parsing With Compositional Vector
Grammars. In ACL. 2013.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958, Jan. 2014.

[34] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway Networks.

[35] H. Sun, H. X. Liu, H. Xiao, and B. Ran. Short term traffic forecasting using the local linear
regression model.

[36] S. Turksma. The various uses of floating car data. IET Conference Proceedings, pages
51–55(4), January 2000.

[37] M. Xiaolei, D. Zhuang, H. Zhengbing, M. Jihui, W. Yong, and W. Yunpeng. Learning traffic
as images: A deep convolutional neural network for large-scale transportation network speed
prediction. 2017.

[38] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional
lstm network: A machine learning approach for precipitation nowcasting. In Advances in
neural information processing systems, pages 802–810, 2015.

[39] X. Yuanchang, Z. Kaiguang, S. Ying, and C. Dawei. Gaussian processes for short-term traffic
volume forecasting. Transportation Research Board of the National Academies, 2165(-1):69–
78, 2010.

[40] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[41] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

34


	 Road Traffic Speed forecasting: Modelization, Results
	Introduction
	Data
	Speeds from FCD measures
	Input speeds

	Model evaluation
	RMSE and Q-score

	The models
	Common properties of the Networks
	Specificities of each Network
	Recurrent Neural Networks

	Results
	Full input
	Reduced input
	Importance of the Q-score

	Conclusion

	Deep Learning: supplementary and technical description
	Feedforward Neural Networks
	Some notations and definitions
	FNN architecture
	Weight averaging
	Activation function
	Input layer
	Fully connected layer
	Output layer
	Loss function
	Batch Normalization
	Architecture considered in practice

	Convolutional Neural Networks
	CNN new specific notations and definitions
	CNN architecture
	Input layers
	Convolutional layers
	Pooling layers
	Architecture considered in practice

	Recurrent Neural Networks - Long Short Term Memory
	RNN new specific notations and definitions
	RNN architecture
	RNN hidden layer
	LSTM hidden layer
	RNN-LSTM Input Layer
	RNN-LSTM Output Layer
	Change to the Loss function
	Architecture considered in practice



