Density of the set of probability measures with the martingale representation property - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2019

Density of the set of probability measures with the martingale representation property

Résumé

Let $\psi$ be a multi-dimensional random variable. We show that the set of probability measures $\mathbb{Q}$ such that the $\mathbb{Q}$-martingale $S^{\mathbb{Q}}_t=\mathbb{E}^{\mathbb{Q}}\left[\psi\lvert\mathcal{F}_{t}\right]$ has the Martingale Representation Property (MRP) is either empty or dense in $\mathcal{L}_\infty$-norm. The proof is based on a related result involving analytic fields of terminal conditions $(\psi(x))_{x\in U}$ and probability measures $(\mathbb{Q}(x))_{x\in U}$ over an open set $U$. Namely, we show that the set of points $x\in U$ such that $S_t(x) = \mathbb{E}^{\mathbb{Q}(x)}\left[\psi(x)\lvert\mathcal{F}_{t}\right]$ does not have the MRP, either coincides with $U$ or has Lebesgue measure zero. Our study is motivated by the problem of endogenous completeness in financial economics.
Fichier principal
Vignette du fichier
MR.pdf (320.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01598651 , version 1 (29-09-2017)
hal-01598651 , version 2 (08-08-2019)

Identifiants

Citer

Dmitry Kramkov, Sergio Pulido. Density of the set of probability measures with the martingale representation property. Annals of Probability, 2019, 47 (4), pp.2563-2581. ⟨10.1214/18-AOP1321⟩. ⟨hal-01598651v2⟩
259 Consultations
330 Téléchargements

Altmetric

Partager

More