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Decentralized Motion Planning and Scheduling
of AGVs in FMS

Guillaume Demesure, Michael Defoort, Abdelghani Bekrar, Member, IEEE,
Damien Trentesaux, Member, IEEE and Mohamed Djemaï, Senior member, IEEE

Abstract—In this paper, decentralized motion planning and
scheduling of automated guided vehicles (AGVs) in a flexible
manufacturing system (FMS) is proposed. A motion planner is
combined with a scheduler allowing each AGV to update its
destination resource during navigation in order to complete the
transported product. The proposed strategy is based on two steps.
The first step consists in planning a presumed trajectory to avoid
collision conflicts previously detected by a central supervisor, en-
abling more appropriate decentralized scheduling by AGVs. The
presumed trajectories, which represent the intentions of AGVs,
are then exchanged with neighboring AGVs. The second step uses
the presumed trajectories of neighbors to compute a collision–
free trajectory according to the priority policy. Numerical and
experimental results are provided to show the pertinence and the
feasibility of the proposed strategy.

Index Terms—Motion planning, Scheduling, Automated
Guided Vehicles, Flexible Manufacturing Systems.

I. INTRODUCTION

Technological advances in mechatronics, computer science,
and Information and Communication Technologies (ICT) fa-
cilitates the use of AGV-based fleets in manufacturing applica-
tions while limiting their costs [1]. AGV fleet-based factories
can now cover increasingly stricter industrial requirements [2],
looking for reactivity in the short term and market adaptability
in the long term. In this paper, a “factory of the future”-
oriented environment is assumed, where AGVs navigate freely
in the FMS transporting products from resource to resource.

In this context, scheduling and product transportation
are both well-known problems in the literature (Fig. 1). The
scheduling problem for each AGV concerns finding the "best"
resource on which the operation of the transported product
will be performed [3], [4] while respecting its production
specifications provided at a higher level dealing with Man-
ufacturing Operation and Resource Management (M.O.R.M.).
These specifications are composed of a due date and a set of
possible resources, which translates the flexibility of the FMS.
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In terms of product transportation, two similar problems are
primarily considered in the literature (see Fig. 1). On the one
hand, routing problems that consist in determining a collision-
free predefined route to reach the desired destination [5] and
on the other hand, motion planning that consists in generating
a collision–free trajectory from the initial configuration to the
desired destination [6]. From our perspective, the mentioned
motion planning is not local (i.e. generation of motions based
on the route and the determined behavior) [7]. Thus, the
main difference between these transportation problems is the
existence of predefined routes for the routing problem while,
in the case of motion planning, the AGVs can navigate with-
out following any imposed routes. Integrating the scheduling
problem into transportation problems is a major challenge in
AGV-based FMS. This integration allows reactive updating of
schedules during navigation in order to tackle any possible
conflicts as they occur.

In the literature, two types of integrated scheduling and
routing can be identified depending on routing flexibility [8]
which relates to the number of alternative routes an AGV can
choose to reach its destination [9]. The first considers reduced
routing flexibility with one or two alternative routes between
workstations (resources) [10], [11]. Although it reduces the
complexity of the routing problem, the full potential of the
AGVs is not exploited since routing flexibility is reduced. The
second type consists in using a mesh topology where a set of
collision-free routes (or nodes) throughout the network must
be computed to solve the routing problem [12], [13], [14].
Despite greater flexibility, the AGVs need to stop at nodes to
choose their next route.

Fig. 1: Scheduling and transportation problems of AGVs in
FMS.
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Although the integration of scheduling and routing has been
excessively studied over the past few decades, few studies
propose the integration of scheduling and motion planning
where AGVs do not follow an imposed route. Indeed, the
scheduling is computed by a central system and the motion
planning is decentralized [15]. The integration of scheduling
and motion planning depends on the chosen planning methods,
which have been studied excessively over the past few decades,
especially in the robotic field. Different methods have been
proposed such as roadmaps, cell decomposition, potential
fields and optimization techniques, among others [6], [16].
Optimization-based motion planners [17], [18] seem to be
interesting tools, especially when manufacturing performances
in terms of completion time, for instance, are required. By
considering integration with scheduling, [1] proposed an arti-
ficial potential fields approach. Besides its low computational
time, this heuristic method has issues with local minima and
equilibrium attraction. In [19], integration is achieved in a de-
centralized way. However, although decentralized architectures
are more suitable to satisfy flexibility requirements, they lead
to poorer global performance due to a lack of information [20].
In [21], the AGVs have to stop to synchronize their schedules.

This paper focuses on product transportation by AGVs in
a FMS (see Section II) while satisfying AGV behavior and
manufacturing constraints. In order to solve the limitations
identified, the contribution is the following. A motion planner
is combined with a scheduler to select the destination for
the ongoing operation, in a decentralized way and without
stopping to synchronize the schedule. Integrated scheduling
and motion planning (instead of routing) is therefore consid-
ered. The global architecture, presented in Section III, includes
a supervisor to solve the different conflicts between AGVs.
The second objective of this supervisor is to detect possible
collisions between AGVs to provide them with anticipation,
leading to more appropriate scheduling and better global
performances. Due to decentralization, the AGV trajectories
are updated gradually over time in two steps (see Section IV).
The first step generates a presumed trajectory representing the
intention of the AGV. The second step involves exchanges of
intentions with neighboring AGVs to plan the final trajectory
which ensures decentralized collision avoidance. Numerical
and experimental results are provided in Section V to prove
the effectiveness of the proposed approach. Moreover, com-
parisons with [19] and obstacle avoidance routines are inves-
tigated.

II. PROBLEM SETUP

Let us consider an AGV-based FMS with Nc resources
(workstation, machine...), Nl products, and Ni AGVs (denoted
hereinafter by "agent" for convenience) (Nc, Nl, Ni ∈ N∗).
The notations (adapted from [4]) are given in Tab. I.

Hereinafter, the following assumptions are made. Each
agent transports only one product from one resource to another
until the product is completed without following any imposed
routes. Each product, specified by the M.O.R.M. level, is only
transported by one agent. All resources, represented here as
machines performing operations on products, are motionless.

TABLE I: Notation for variables and parameters

A: Set of AGVs (agents) A = {1, ...Ni}
R: Set of resources (machines) R = {1, ..., Nc}
J : Set of products J = {1, ..., Nl}
Ol: Set of sequential operations Ol = {onl} on product l
onl: The nth operation on product l ∈ J
Rnl: Set of resources which can perform operation n
ctnlb: Completion time of operation n at ressource b ∈ Rnl

optnl: Processing time of operation n of product l
oddnl: Due date of operation n of product l

pb: Position (xb, yb)
T of resource b ∈ R

Tc: Update period of the motion planner
τk: Update time τk = τ0 + k · Tc, k ∈ N, τ0 is initial time
wb: Actual waiting time in the queue at resource b

wpib: Additional waiting time due to agents moving towards resource
b

schi: Binary variable set to 1 if agent i may schedule at the update
time τk , 0 otherwise

q∗ib(t, τk): Initial guess trajectory of agent i at update time τk towards
resource b ∈ Rnl

q̃ib(t, τk): Presumed trajectory of agent i at update time τk towards resource
b

qi(t, τk): Final planned trajectory of agent i at update time τk
pi: Actual position of agent i (i.e. at update time τk)
vi: Actual velocity of agent i

crik: Resource chosen by agent i at update time τk
Ti,init: Initial time when agent i starts from a resource
TT ∗

ibk: Transportation time corresponding to q∗ib(t, τk)
T̃ T ik: Transportation time corresponding to q̃i(t, τk)
TTik: Transportation time corresponding to qi(t, τk)

Tik,fin: Final time when agent i plan to arrive at a resource
Rcom: Broadcasting range of all agents i ∈ A
dsafe: Safety distance between agents to avoid collision
Ni: Actual set of neighbours of agent i
IPi: Actual individual performance of agent i
HPi: Actual priority set of agent i
CF i: Actual conflict set of agent i, CF i = {Cijb}
Cijb: Conflict of agent i with agent j when ressource b is chosen

Once an operation has been completed by a resource, the
agents leave via the output area of this resource. Conversely,
the agents arrive via the input area of a resource, which
corresponds to its working storage (waiting queue). The input
and output areas of resources are in different positions to
prevent collisions between incoming and outgoing agents. The
resource queuing capacities are assumed to be infinite and
resource breakdowns are not studied in this paper. When
an agent i ∈ A is available, the M.O.R.M. level assigns a
product l ∈ J to this agent. The M.O.R.M. level provides
the production specifications (for which the calculation is not
addressed in this paper) for each ongoing operation onl ∈ Ol
on assigned products. These specifications are not modified
over the considered time interval and include a set of resources
Rnl on which the ongoing operation n can be performed as
well as a due date oddnl by which this operation must be
completed. The M.O.R.M level also provides the waiting time
wb of each resource b ∈ R, which corresponds to the time
period between when the agent arrives at the resource and
when the resource starts processing the operation. All agents
are identical in terms of physical behavior, device, and size.
Figure 2 illustrates some variables and assumptions. The agent
dynamics are described as ∀i ∈ A

·
pi(t) = vi(t), qi ∈ R2, vi ∈ R2 (1)
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Fig. 2: Variables and assumptions considered for the proposed
problem in an illustrative FMS.

The velocity of each agent i is bounded as follows:

‖vi(t)‖ ≤ vmax, vmax ∈ R (2)

Each agent i knows its initial position pi(Ti,init) = pi,init and
the final position of each possible resource pb (b ∈ Rnl). The
position pb depends on the operation onl. Similarly to [19],
a coordinated motion planning problem is considered, where
besides avoiding collisions, agents need to cooperate and make
decisions in order to reach their chosen resources b ∈ Rnl. For
each agent i, the actual set of neighbors Ni, at update time
τk, is defined as:

Ni = {j ∈ A, ‖pi − pj‖ < Rcom} (3)

In this paper, only the completion of one operation by an AGV
is considered. For each AGV, the objective is to select the
best resource in terms of completion time and to compute the
optimal trajectory taking into account agent behavior (1)-(2),
collision avoidance and manufacturing constraints according
to the M.O.R.M. level. For each trajectory q∗i (t, τk), q̃i(t, τk)
or qi(t, τk), the first argument denotes time, and the second
one specifies at which update time τk the trajectory is planned.

III. PROPOSED ARCHITECTURE FOR AN AGV-BASED
FLEXIBLE MANUFACTURING SYSTEM

To solve the introduced problem, an architecture (shown in
Fig. 3) is proposed and combines a navigation scheme for each
agent and a supervisor. The M.O.R.M. level provides manu-
facturing information at each update for both the supervisor
and the agents.

Here, the supervisor algorithm and the navigation scheme
are applied gradually over time with respect to the update
period Tc, which corresponds to a fixed time interval between
two updates. At each update time τk, the supervisor applies its
algorithm to provide each AGV with the required information,
including any conflicts detected. The navigation algorithm

then starts in a decentralized way, and each AGV updates its
trajectory iteratively and in parallel.

Fig. 3: Navigation scheme and its interactions with the
M.O.R.M. level and the supervision layer.

A. Supervisor design

To apply its navigation scheme at update time τk, each
AGV needs the information relating to conflict solving. This
information comes from the supervisor and its algorithm is
divided into two parts: priority computation and conflict man-
agement. The priority is computed according to the individual
performance IPi of each agent i ∈ A, defined as follows:

IPi =

{
Indi , if Indi ∈ [0 1]
1 , otherwise (4)

where Indi =
τk − Ti,init + ‖pi−pb‖vmax

oddnl − Ti,init − optnl − wb
. If Indi ∈ [0 1],

IPi characterizes the ratio between the estimated travel time
(assuming a straight path) and the maximum transportation
time permitted by the M.O.R.M specifications. If Indi /∈ [0 1],
the specifications cannot be satisfied for resource b, chosen
after the last update. In this case, the agent has the highest
priority, i.e. IPi = 1, allowing it to schedule its product as
soon as possible. Using this index, one can define the priority
policy, where for an agent i, the set of agents with higher
priority is:

HPi = {j ∈ Ni, IPi ≤ IPj} (5)

This priority policy changes dynamically, allowing coordi-
nation between agents according to the actual situation in the
FMS. Indeed, an agent may have a higher priority according
to IPi. These values change according to the AGV fleet
decisions made after the last updates (e.g. when an agent i
reduces its velocity to avoid collisions or when the waiting
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Fig. 4: Conflict management algorithm by the supervisor.

time for resource b increases). The priority policy is then
used by the conflict management block. Its role is to solve
scheduling conflicts and resource deadlocks as well as to detect
the collision conflicts, as shown in Fig. 4. When the algorithm
ends, the supervisor provides agents with the binary variable
schi and the set of detected conflicts CF i.

Scheduling conflict: This conflict occurs when two or
more neighboring agents schedule their product (select the
destination) at the same update time. Indeed, if this occurs, the
collision conflicts cannot be easily solved in a decentralized
way due to the unknown resource chosen by these agents.
In this case, the supervisor checks the number of updates
since the last scheduling to decide which agent will select its
resource at the actual update time. If several agents have the
same number of updates, the priority set (5) is used to make
a decision. This decision is given to each agent by means of
the variable schi where schi = 1 means that the scheduling
is allowed for agent i at update time τk, otherwise schi = 0.
Therefore, each agent does not schedule at each update time
τk and must wait a certain number of updates before the next
scheduling.

Sequential resolution: In order to detect collision conflicts,
the supervisor algorithm requires a sequential resolution de-
pending on the priority mechanism. The agents are sorted
according to the index IPi, from the highest to the lowest
values, and so it is possible to start (resp. end) with the agent
with the highest (resp. lowest) priority. The resolution thus
allows each agent to only consider others with higher priority
for which conflicts have been solved. When schi = 1, the
resolution is achieved for each possible resource b ∈ Rnl. A
presumed resource c̃rik is chosen by computing a heuristic
estimation of the completion time according to the conflicts
detected along the straight trajectory to each resource. This
choice of resource is used to solve resource deadlocks for
subsequent agents with lower priority.

Resource deadlock solving: This conflict arises when some
neighboring agents head towards the same resource and may,
therefore, arrive at the same resource at the same time. This
block allows the initial guess trajectories used for collision
conflict detection to be generated. At the update time τk,
the initial guess trajectory is the best straight trajectory, i.e.
the one minimizing the transportation time TT ∗ibk. It satisfies

the velocity constraint ‖q̇∗ib(t, τk)‖ ≤ vmax and the following
terminal constraints:

q∗ib(τk, τk) = pi (6)
q̇∗ib(τk, τk) = vi (7)

q∗ib(τk + TT ∗ibk, τk) = pb (8)
q̇∗ib(τk + TT ∗ibk, τk) = 0 (9)

In the case of a resource deadlock, the following constraints,
imposing an arrival order at the resource, are added to the
transportation time of the initial guess:

TT ∗ibk > TT ∗jbk, ∀j ∈ {HPi : b = c̃rjk} (10)

Collision conflict detection: The initial guess trajectories
are used to detect collision conflicts of agent i with all other
agents with a higher priority, i.e. ∀j ∈ A, IPi ≤ IPj .
Detection is carried out even when agents do not communicate
with each other so they can pre-empt collisions. If the distance
between the initial guess trajectories is lower than the safety
distance dsafe, a new conflict Cijb = (j, b, Iij , cdij) is created
where j is the agent to avoid when resource b is chosen. Iij is
the conflict time interval and cdij is the degree of the conflict,
which represents the number of agents with higher priority
involved in the conflict created. When all conflicts are created,
they are gathered in the conflict set CF i, given to agent i.

B. Navigation scheme

The objective of the navigation scheme, for each agent,
is to compute the best resource b ∈ Rnl and to generate
a collision-free trajectory to the best resource. The best re-
source b is chosen by minimizing the completion time ctnlb
comprising the transportation time TTik to the resource, the
resource waiting time wb and the processing time optnl. Thus,
minimizing the completion time means that the objective is
to complete the operation at the earliest date, which is a
common production objective [4]. Other cost functions will
be investigated in further studies (see for instance [5]). The
navigation scheme of each agent combines several processes:
• The motion planner with scheduling function computes

both the optimal collision-free trajectory at each update
time and the best resource in terms of completion time.
The planner strategy is divided into two steps. The first
step uses global information, provided by the supervisor,
to compute a presumed trajectory representing the agent’s
intentions. The second step uses these intentions to com-
pute the final planned trajectory by taking local collision
constraints into account.

• The tracking strategy, not detailed in this paper, allows
short-term objectives to be fulfilled despite the presence
of external disturbances and inherent discrepancies be-
tween the model and the real AGV [17].

• The communication policy allows the required pre-
sumed trajectories to be transmitted and received between
agents. Each agent only receives the presumed trajectories
of neighbors with a higher priority.

When an agent arrives at a resource, the waiting time for this
resource is updated.
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IV. MOTION PLANNER WITH SCHEDULING FUNCTION

The proposed motion planning problem is expressed as
a constrained optimization one. A decentralized approach,
allowing the decomposition of the overall motion planning
problem into simpler optimization subproblems is proposed
for parallel resolution. Each simpler problem is implemented
in each agent i. At each update time τk, the agents sequentially
compute an optimal planned trajectory satisfying agent behav-
ior (1)–(2), manufacturing constraints described by the product
specifications, and the collision avoidance constraint. Agents
only handle partial information, limiting the computational
complexity of their subproblems.

A. Global algorithm

As shown in Fig. 5, the proposed algorithm is divided into
two steps where a trajectory is planned at each step.

Fig. 5: Strategy of motion planner with resource selector.

Step 1: This step ensures the generation of a presumed tra-
jectory by avoiding conflicts detected by the supervisor. These
conflicts are represented by partial initial guess trajectories of
other agents with higher priorities. In this step, scheduling may
be applied by some agents i according to the variable schi
provided by the supervisor. When scheduling is allowed for
agent i, a presumed trajectory q̃ib(t, τk) is computed for each
resource b ∈ Rnl. The presumed trajectories are computed
using an optimization algorithm, denoted by OPT1 (see Fig.
5). For each presumed trajectory, a completion time ctnlb is
computed as:

ctnlb = τk + T̃ T ik + wb + wpib + optnl, b ∈ Rnl (11)

where T̃ T ik is the transportation time of the presumed tra-
jectory, wb is the waiting time in the queue at resource b,
and optnlb is the operation processing time. Variable wpib is
a fictive waiting time representing the additional time agent i

must wait for other agents j ∈ HPi moving towards the same
resource and it is estimated as follows:

wpib =
∑

j∈HPi:crjk=b

optnj lj (12)

where optnj lj is the processing time of neighbor j transporting
its product lj for operation nj . Neighbors j ∈ HPi do not
schedule product at the same update time τk since schi =
1⇒ schj = 0⇒ crjk = crj(k−1). The resource is chosen by
minimizing this completion time i.e. crik = argmin

b
ctnlb. If

scheduling is not allowed for agent i (schi = 0), only one pre-
sumed trajectory to the resource selected at the last update is
computed. However, conflict avoidance only considers partial
trajectories, so some collisions may still occur. Once step 1 is
completed, all the agents exchange their presumed trajectories
with their neighbors.

Step 2: This step allows the presumed trajectory to be
adjusted to ensure collision avoidance by means of an op-
timization problem, denoted by OPT2 (see Fig. 5). Using
the presumed trajectories of neighbors j ∈ HPi, a planned
collision-free trajectory for each agent is computed. Decen-
tralized collision avoidance is guaranteed using an additional
constraint ensuring a small deviation from the presumed
trajectory.

B. Optimization problems

The two optimization problems introduced OPT1 and OPT2

are described here for an update time τk. These two optimiza-
tion problems are continuous since they deal with continuous
variables and parameters.

OPT1: For each agent i ∈ A, let us consider the following
optimization problem which consists in determining the pre-
sumed trajectory q̃ib(t, τk) at the update time τk to a resource
b:

min
q̃ib(t,τk),T̃ T ik

∫ τk+T̃ T ik

τk

‖q̃ib(t, τk)− q∗ib(t, τk)‖ dt (13)

The following constraints must be satisfied, ∀t ∈ [τk, τk +

T̃ T ik] and ∀b ∈ Rnl:∥∥∥ ˙̃qib(t, τk)∥∥∥ ≤ vmax (14)

q̃ib(τk, τk) = pi (15)
˙̃qib(τk, τk) = vi (16)

q̃ib(T̃i,fin, τk) = pb (17)
˙̃qib(T̃i,fin, τk) = 0 (18)

ctnlb ≤ oddnl (19)
‖q̃ib(t, τk)− q∗jc(t, τk)‖ > cdij · dsafe (20)
∀(j, b, Iij , cdij) ∈ CF i, ∀t ∈ Iij

The objective function (13) allows the presumed trajectory
to be as close as possible to the initial guess trajectory.
Constraint (14) satisfies the agent velocity bound. The terminal
conditions are described by constraints (15)-(18). Constraint
(19) allows the production specifications to be considered in
terms of operation due date. Conflict avoidance is performed
using constraint (20) where c = c̃rjk is the estimated chosen
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resource of agent j. The conflict degree cdij allows the size of
the conflict area to be tuned according to the number of agents
involved. Thus, when two or more agents avoid a collision
conflict in the same area, they avoid this area differently due
to their respective degrees of conflict.

OPT2: After solving OPT1, for each agent i ∈ A, a
second optimization problem consisting in planning the final
collision–free trajectory qi(t, τk) at the update time τk, is
defined:

min
qi(t,τk),Tik,fin

TTik (21)

Since the resource was chosen at step 1, the objective is only
to minimize the transportation time TTik in order to arrive at
the earliest date while respecting constraints similar to (14)–
(19). Conflict constraint (20) is replaced by the two following
coupled constraints, ensuring local collision avoidance, ∀t ∈
[τk, τk + TTik] and ∀j ∈ HPi:

‖qi(t, τk)− q̃i(t, τk)‖ ≤ ξ + f(t) (22)
‖qi(t, τk)− q̃j(t, τk)‖ > dsafe + ξ (23)

Constraint (22) ensures that each agent i stays within the vicin-
ity ξ of their presumed trajectory. A function f(t) is added
to relax the constraint such as f(t) = 0,∀t ∈ [τk, τk + Tp]
and f(t) > 0,∀t > τk + TP . If this constraint is not relaxed,
the optimization solver may fail to find a solution for OPT2

due to collision avoidance. With constraint (23), each agent
avoids neighbors j ∈ HPi according to both the safety
distance dsafe and the neighborhood ξ. The two coupled
constraints (22) and (23) ensure that collisions are avoided
over t ∈ [τk, τk+Tp], since trajectories are updated by agents
at each τk and Tp > Tc = τk+1 − τk.

V. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, the numerical results for the proposed
approach are presented with different scenarios. The first
scenario is devoted to a simple application of the approach
and shows the superiority of the scheme in terms of trajectory
generation. The second scenario includes obstacle avoidance.
The third scenario is more complex in order to get closer
to manufacturing workshops and evaluates the global perfor-
mance of the strategy. The last scenario provides proof of
concept with robots. For each scenario, the update period was
set to Tc = 0.5s and the maximum allowed speed of agents to
vmax = 1.5m/s. All agents tracked their planned trajectory
perfectly, which was carried out using a robust sliding mode
controller [22].

In order to solve the optimization problems OPT1 and
OPT2, spline curves were adopted in this paper to specify
the trajectories. This transforms the trajectory generation prob-
lem into a parameter optimization one. As motion planning
problems are NP-hard [23], a particle swarm optimization
(PSO) algorithm [18] was applied to compute the B-spline
coefficients.

A. Navigation-oriented scenario

The results of the proposed strategy were compared with
[19] using a scenario with 4 AGVs and 3 resources. The

initial parameters of the AGVs and resources can be found
in [19]. Figure 6 shows the trajectories of all the agents in
each scheme. The trajectory of agent 3 is a straight line (initial
guess) due to the priority policy. Agent 4, which starts moving
towards resource 2, selects resource 3 at τk = 2s due to its
lower priority. Even if agents 1 and 4 are moving towards the
same resource R3, agent 4 arrives at its destination before a
collision occurs.

Fig. 6: Comparison of agent trajectories

From Fig. 6, one can see that the proposed strategy provides
better agent trajectories than [19] since they are closer to the
straight lines q∗i (t) (using the ‖ · ‖ norm). This is mainly due
to supervisor conflict detection, which anticipates collisions so
the agents are ready to avoid a collision before communicating
with others. This example illustrates the capability of the
supervisor to be proactive in agent motion planning and assist
in selecting the appropriate resource.

B. Obstacle avoidance routine

In real FMS, the environment may include several obstacles.
To avoid these obstacles, the following constraint was included
in optimization problem OPT1 for each obstacle o centered
on the position po with a radius ro:

‖q̃ib(t, τk)− po‖ > ro + dsafe/2 + ξ (24)

Obstacle avoidance is ensured since the agent must stay
within the vicinity ξ for the second step with constraint (22).
Figure 7 shows that obstacles are avoided with this additional
constraint. The radius of each obstacle is augmented by the
size of robots.

Although the agents avoid obstacles in a decentralized way,
their completion performances may decline as an agent may
choose a destination with lots of obstacles along the trajectory.
These obstacles may be detected by the supervisor. However,
coupling between the detection and the generation of initial
guess trajectories is still an open problem due to the need for
more than one straight line trajectory per resource.

C. Performance-oriented scenario

Here, the capability of the proposed strategy to deal with
more complex situations, closer to real industrial systems,
is evaluated. The FMS configuration (i.e. resource positions,
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Fig. 7: Scenario with several obstacles

navigation area...) is the same as the one indicated in Fig. 2.
Using this configuration, different cases were tested 10 times
to assess the performance according to the number of agents in
the working area. For each case, the initial specifications (e.g.
processing time optnl, due date oddnl, . . .) were generated
randomly.

TABLE II: Resource specifications of scenario 2

Resource Agent starting position Agent ending position
R1

[
16 30

]
T

[
13 30

]
T

R2

[
03 19

]
T

[
03 16

]
T

R3

[
27 19

]
T

[
27 16

]
T

R4

[
03 06

]
T

[
03 03

]
T

R5

[
27 07

]
T

[
27 04

]
T

The global performances were evaluated with the variable
P% = 1/Ni ·

∑Ni

i=1 Pi% where Ni is the number of agents
and Pi% is the local agent performance defined as:

Pi% = 100 · oddnl − ctnlb
oddnl − ctnlb

(25)

ctnlb refers to the initial completion time and is computed
when the agent starts from the resource as ctnlb = Ti,init +
minb(TT ib)+optnl. TT ib corresponds to the minimum trans-
portation time to resource b. The agent performance is the
best (resp. worst) when Pi% = 100 ⇔ ctnlb = ctnlb (resp.
Pi% = 0 ⇔ ctnlb = oddnl). Table III shows the perfor-
mances with different numbers of agents. The maximum (resp.
minimum) corresponds to the best (resp. worst) performance
among the 10 tests.

TABLE III: Evaluation of global performances

Number Global performance P% Computational cost
of agents Min Mean Max Step 1 Step 2

5 96.5 97.9 99.3 1.49 s (3) 1.12 s (2)
10 86.5 91.3 95.4 1.82 s (3) 1.18 s (2)
15 76.8 81.6 85.3 2.56 s (5) 1.30 s (3)
20 71.9 79.6 81.9 2.64 s (6) 1.38 s (4)
25 58.6 64.2 69.8 2.66 s (6) 1.41 s (4)

The right part of Table III shows the maximum compu-
tational costs for the 10 tests. The numbers in parentheses
are the number of conflicts (step 1) and the number of
neighboring agents (step 2). These numbers tend to reach a
maximum value (when the agent number is greater than 20)
due to agent coordination. Indeed, at step 1 the agents deviate
from straight line trajectories according to their degree of
conflict thus reducing the number of conflicts for the next
updates. At step 2, since the degree of conflict is different
from step 1, the number of neighbors is limited. Step 1
is computationally more expensive than step 2 due to the
scheduling function which requires a trajectory to be generated
per possible resource. Moreover, the computational times are
greater than the update period Tc = 0.5. Nevertheless, they
result from Matlab programming and can be greatly reduced
using C++ programming (see [24]).

With 5 agents, the global performance was close to the best
one. When the number of agents increased, the performance
worsened due to the greater number of conflicts and the longer
resource waiting times. An example with 13 agents for this
scenario is shown in the following video1. This was compared
with [19] (where P% = 69.24), described in this video, to
show the superiority of the proposed strategy (where P% =
77.80). This superiority comes mainly from the supervisor as it
provides anticipation for the scheduling. Moreover, the agents
do not stop during navigation, even when they update their
schedule.

D. Proof of concept

To highlight the feasibility of the collision–free trajectories
generated by each agent, a team of LEGO Mindstorms robots
with tracks instead of wheels (Fig 8) was used to demonstrate
the proof of concept. An experimental scenario was designed
with four robots, used to represent the agents (AGVs) and three
virtual resources. The robot communication range and the
safety distance were set to Rcom = 0.4m and dsafe = 0.2m,
respectively. The maximum velocity of the robots allowed was
vmax = 0.15m/s. The results for this scenario are given in
Tab. IV where the differences between the simulation and the
real cases are highlighted.

TABLE IV: Results of the proof of concept

Final time Final time Completion Operation
(simulation) (real) time due date

AGV 1 25.44s 25.92s 31.6s 76.1s

AGV 2 17.76s 18.07s 22.38s 30.8s

AGV 3 13.14s 13.33s 18.33s 23.8s

AGV 4 21.02s 21.68s 26.36s 60.2

The planned trajectories, allowing AGVs to reach the opti-
mal resources, were computed for each robot. Figure 8 shows
six snapshots of our experiments. One can see in Fig. 8 (a)
and (f) the initial and final configurations of the robots. For
this proof of concept, the overall explanations are provided in
the following video2.

1Video available online: https://youtu.be/XL4yfJcy9KA
2Video available online: https://youtu.be/jlMfQso7ye4
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(a) At the beginning (b) After 5s. (c) After 10s.

(d) After 15s. (e) After 20s. (f) At the end.

Fig. 8: Four Lego Mindstorms robots moving towards re-
sources while avoiding collisions between each other.

This proof of concept illustrates the ability of the motion
planner to plan feasible trajectories. Indeed, there is little
difference between the simulation results and the real results
and no collisions occurred during the navigation of the robots.
Moreover, the reactivity of the proposed approach was proven
since agent 4 updated its resource during navigation.

VI. CONCLUSION

A new navigation approach for AGVs in FMS has been
proposed. The motion planner proposed includes a scheduling
function minimizing the operation completion time. Each
AGV finds its most appropriate resource to perform an ongoing
operation while generating a collision free-trajectory in two
steps. The first step generates a presumed trajectory according
to the global conflict information while the second step uses
these intentions locally to compute a collision-free trajectory.
A supervisor was designed to assist agents with conflict
solving and provide them with global conflict information. The
numerical results and the proof of concept have highlighted the
pertinence of the proposed strategy. The results have shown
the reactivity induced by the scheduling aspect of the motion
planner and the proactivity of the supervisor. In further studies,
the focus will be on the completion of all operations where
other aspects will be addressed such as obstacles, energy,
and other objective criteria (e.g. earliness/tardiness, mean flow
time).
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