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Abstract

Clouds are key components in Earth’s functioning. In addition of acting as obstacles to light

radiations and chemical reactors, they are possible atmospheric oases for airborne microor-

ganisms, providing water, nutrients and paths to the ground. Microbial activity was previ-

ously detected in clouds, but the microbial community that is active in situ remains unknown.

Here, microbial communities in cloud water collected at puy de Dôme Mountain’s meteoro-

logical station (1465 m altitude, France) were fixed upon sampling and examined by high-

throughput sequencing from DNA and RNA extracts, so as to identify active species among

community members. Communities consisted of ~103−104 bacteria and archaea mL-1 and

~102−103 eukaryote cells mL-1. They appeared extremely rich, with more than 28 000 dis-

tinct species detected in bacteria and 2 600 in eukaryotes. Proteobacteria and Bacteroi-

detes largely dominated in bacteria, while eukaryotes were essentially distributed among

Fungi, Stramenopiles and Alveolata. Within these complex communities, the active mem-

bers of cloud microbiota were identified as Alpha- (Sphingomonadales, Rhodospirillales and

Rhizobiales), Beta- (Burkholderiales) and Gamma-Proteobacteria (Pseudomonadales).

These groups of bacteria usually classified as epiphytic are probably the best candidates

for interfering with abiotic chemical processes in clouds, and the most prone to successful

aerial dispersion.

1. Introduction

The atmospheric envelope is a fundamental component of Earth’s functioning. Apart from

holding huge energy exchanges, it transports, transforms and redistributes material at a large

scale; it also participates to the spreading of microorganisms over the globe (e.g., [1–5]). Out-

door, the air is dotted with microorganisms (virus, bacteria, archaea, and eukaryotes) originat-

ing from surface habitats like vegetation, soil, water, or Humans/animals among natural

sources [6–8], at concentrations varying from ~102 to ~106 cells m-3 (e.g., [9,10]. Some of them

are regarded with attention for potential health hazards to Humans, animals and plants [11].
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Surface ecosystems, also, are exposed to the continuous flow of diverse microbial incomers

deposited from the atmosphere, bringing competitors, genetic material, and early colonizers in

emerging habitats (e.g., [3,12]. Yet, environmental fitness tends to decrease with increasing

distance from the source as habitats diverge [13], while, in addition, atmospheric transport

exposes cells to harsh environmental conditions [14,15]. Hence, for microorganisms unable to

produce resistance forms (spores), maintaining metabolic activity appears decisive for survival

and possibility of successful establishment in the receptacle environment (e.g. [16].

Within the atmospheric system, clouds are genuine atmospheric interfaces with the ground:

they physically connect high altitudes with the surface by being to a large extent at the origin of

wet deposition of aerosols, including microorganisms [1,17,18]. Cloud water is a complex mix-

ture of soluble gas and particles dissolved into millions of micron-sized water droplets, and

forming very reactive and dynamic systems (e.g., [19]. As non-soluble biological particles,

some microorganisms can physically impact clouds by acting as embryos for the formation of

water droplets and ice crystals [20,21], with subsequent impacts on hydrological cycles [22–

26]. Observations of microbiological features in fog and clouds raised the possibility that these

also represent habitats for microorganisms [27–29], where they would actively take part in the

chemical reactivity through metabolic activity and nutrient utilization [30–34]. So far these

active « inhabitants » of clouds remain largely unknown. Microbiological studies in the atmo-

sphere, including precipitation and deposition dust, essentially focused on the biodiversity,

pathogens, emission sources and environmental drivers [3,6,7,10,35]. A predominance of

Gram-negative bacteria (Alpha-, Beta- and Gamma-Proteobacteria, Bacteroidetes) is often

observed, and attributed to inputs from soil and plants, with high temporal and spatial vari-

ability [3,6]. Current knowledge about the microorganisms living in clouds is essentially based

on cultures approaches, so limited to a small fraction (< 1%) of the whole community. These

indicated the presence bacteria and fungi, with prevailing groups, in Proteobacteria notably,

and others appearing only once in a while [8,36–38]. Interrogations concerning the actual in
situ functioning of microbial communities in clouds remain, starting with the identification of

active members. Yet, these are probably better equipped than others (or better fitted) for sur-

viving in the atmosphere and clouds [14,15,39], interfering with abiotic atmospheric processes,

and they likely represent the potential successful colonizers of distant habitats. Here, using

molecular methods, we investigate the structure of cloud water microbial communities and

clarify our current vision of clouds as habitats by identifying active members. This consortium

of active microorganisms finally revealed provides crucial information for further research on

the interactions existing between microbial communities and abiotic processes in clouds, as

well as important insights into the aerial dispersion of microorganisms.

2. Material and methods

2.1. Sample collection

Three cloud water samples were collected during the fall 2013 from the atmospheric station at

the summit of puy de Dôme Mountain (1465 m a.s.l., 45.772˚ N, 2.9655˚ E, France). Specific

permission was not required since the station is operated by OPGC (Observatory of the Globe

of Clermont-ferrand), who collaborated this study. The field study carried out did not involve

any endangered of protected species. Samples were collected at an air flow rate of 108 m3 h-1

using a cloud droplet impactor similar as in [24,30,40]. It has been slightly modified for allow-

ing immediate fixation of the biological content (DNA and RNA) upon collection using a fixa-

tive agent: the water collected was transferred continuously, by gravity through autoclaved

silicone tubing, to a sterile glass bottle containing 200 mL of a saturated ammonium sulphate

solution used as surrogate for commercial fixative agent (i.e. RNA Later). This later was
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prepared under sterile conditions from fresh powders dissolved into sterile deionized water,

then stored in sterile bottles. When samples froze upon impaction in the sampler, the ice col-

lected was immediately melted into 200 mL of cold fixative solution. Before each sampling

occasion, the presence of contaminants along the sampling apparatus and in the fixative solu-

tion was controlled by pooring 200 mL of sterile water into the sampler. The resulting 400 mL

control sample was then processed and analyzed in parallel. Samples and controls mixed with

the fixative solution were processed immediately after sampling using the microbiology facility

of the puy de Dôme’s atmospheric observatory. These were filtered on 0.22 μm porosity filters

(MoBio 14880-50-WF), within a vertical laminar flow hood previously exposed to UV light for

15 minutes, the filters cut in halves with a sterile scalpel, and each half was finally transferred

into bead-beating tubes of the MoBio Power Water kits for DNA or RNA extraction, and

stored at -80˚C until being further processed, within a week. Samples for routine analyses (cell

counts and chemical analyses, see below) were collected during the course of sampling by tem-

porarily exchanging the collection bottle containing the fixative solution for an empty, sterile,

glass bottle, until enough volume (~10–15 mL) was collected (~30 min).

2.2. Cell counts and chemical analyses

Cloud water samples collected in the absence of fixative solution were used for chemical and

microbiological characterization. Ion analysis was realized within a month by ion chromatog-

raphy on Dionex DX320 for anions (column AS11, eluant KOH) and Dionex ICS1500 for cat-

ions (column CS16, eluant hydroxymethanesulfonate) on samples kept at -25˚C, similarly as

in [41]. Cell counts were performed by flow cytometry (BD FacsCalibur, Becton Dickinson,

Franklin Lakes, NJ) on 450 μL triplicates added with 50 μL 5% glutaraldehyde (0.5% final con-

centration; Sigma-Aldrich G7651) stored for< 1week at 4˚C. For analysis, samples were

mixed with 1 vol. of 0.02 μm filtered Tris-EDTA pH 8.0 (40 mM Tris-Base, 1 mM EDTA, ace-

tic acid to pH 8.0) and stained with SYBRGreen I (Molecular Probes Inc., Eugene, OR) from a

100X solution. Counts were performed for 3 minutes or 100,000 events at a flow rate of ~80 μL

min-1 (precisely further determined by weighting). Prokaryotes and eukaryotes were distin-

guished from background particles based on fluorescence and side scattering light intensities

(λexc = 488nm; λem = 530nm).

2.3. Meteorological data and backward trajectory plots

Meteorological variables were monitored continuously by the atmospheric observatory of the

puy de Dôme’s summit at 5 min intervals. Details on the instrumentation can be found at

http://wwwobs.univ-bpclermont.fr/SO/mesures/instru.php. Twenty-four hours backward tra-

jectory plots of the air masses sampled were computed for the puy de Dôme’s site (45.772 N,

2.9655 E; 1465 m above sea level) using the NOAA HYSPLIT trajectory model (HYbrid Sin-

gle-Particle Lagrangian Integrated Trajectory; [42] using GDAS (1degree) meteorological data

archive and default parameters for this site.

2.4. Nucleic acids extraction, amplification and sequencing

DNA and RNA were extracted separately from dedicated filter halves using MoBio Power-

Water isolation kits for DNA and for RNA, respectively, following manufacturer’s recommen-

dations and including a DNase treatment step on RNA extracts. The absence (RNA fractions)

or presence (DNA fractions) of DNA in the extracts was verified by PCR targeting the 16S

rRNA gene of bacteria using the universal primers 1492r and 27f and similar PCR conditions

as in [40]. From RNA extracts, cDNA were obtained using Superscript VILO cDNA synthesis

kit (Invitrogen). Ribosomal RNA and RNA genes were then amplified and barcoded by PCR

Active microorganisms in clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0182869 August 8, 2017 3 / 22

http://wwwobs.univ-bpclermont.fr/SO/mesures/instru.php
https://doi.org/10.1371/journal.pone.0182869


from DNA extracts and cDNA products using primer couples targeting either the V4 region of

the 16S subunit of prokaryotes (primers 515F and 806R [43], or the V7 region of the 18S sub-

unit of eukaryotes (primers 960F-1200R [44]; S1 Table). The “Marine” cloud was not pro-

cessed for RNA due to issues related to storage of the corresponding extract. PCR were

performed in total volumes of 30 μL, containing 3 μL of 10X NH4 reaction buffer, and final

concentrations of 2 mM MgCl2, 0.75 units of of Eurobio Taq II DNA polymerase (Eurobio,

5U/μL), 0.2 mM each dNTP, 0.5 mg mL-1 BSA, and 0.2 μM of each primer. The amplification

conditions consisted of an initial denaturation at 94˚C for 5 min followed by 30 cycles of 1

min. at 94˚C, 45 s. at 58˚C (16S) or at 55˚C (18S) and 45 s. at 72˚C, ended by a final elongation

step of 7 min. at 72˚C. Amplicons length was verified by agarose gel electrophoresis then puri-

fied using MinElute Gel Extraction kits (Qiagen) before quantification by fluorescence using

Quant-it PicoGreen (Molecular Probes Inc., Eugene, OR). Finally, an equimolar pool of 14

PCR products was prepared (total amount of 510 ng of DNA (17 ng DNA μL-1 in 30 μL molec-

ular biology grade H2O). Further sample processing and sequencing was realized by Genosc-

reen (Lille, France). Briefly, DNA libraries were generated by adaptator ligation (section

“Perform End Repair and Size Selection”, Illumina reagent kit V3), and controlled on Agilent

High Sensitivity microarray. Sequencing (2×300 bp paired-end on Illumina MiSeq platform)

yielded a total of 43 763 524 reads (13 129 Mb), 75.7% of which had a quality score Q30.

2.5. Sequence processing

A total of ~11.7 million reads were obtained from MiSeq sequencing. Prokaryotes, including

Bacteria and Archaea, contributed ~6.6 millions reads in DNA and ~1.5 million reads in RNA

(abbreviated into 16SDNA and 16SRNA, respectively), and eukaryotes ~2.5 millions reads in

DNA and ~1.1 million reads in RNA (18SDNA and 18SRNA, respectively). These were assem-

bled with the vsearch tool (https://github.com/torognes/vsearch) and cleaning procedures con-

sisted in the elimination of sequences < 200 bp, presenting a mismatch in the forward or

reverse primer, having ambiguous bases “N”, PHRED quality score< 25. The putative chimae-

ras were detected by vsearch. The remaining rRNA 16S (prokaryotes) and 18S (eukaryotes)

sequences were clustered into “molecular species” (Operational Taxonomy Units, OTUs) at a

97% and 95% similarity threshold (OTU0.03 and OTU0.05, respectively), according to [45] and

[46] with vsearch (option cluster_small sorted by length). The representative sequence for

each OTU was inserted into phylogenetic trees for taxonomic annotation. The seed OTUs

were finally affiliated by similarity and phylogeny from reference sequences extracted from the

SSURef SILVA database [47], according to the following criteria: length > 1 200 bp, quality

score >75% and a pintail value > 50. After comparing the OTUs with the reference sequences

using a similarity approach (vsearch tool), trees including OTUs with their closest references

were built with FastTree [48]. The different taxonomic affiliations obtained were checked for

inconsistency. This process was implemented using the pipeline PANAM (Phylogenetic Anal-

ysis of Next-generation AMplicons https://github.com/panammeb/) and is described in more

detail in [49,50].

The resulting OTUs were subjected to additional conservative filtering intended to remove

potential sequencing artefacts (OTUs represented by less than 3 reads), contaminants (OTUs

detected in the control samples) and phantom OTUs (OTUs detected in RNA and not in the

DNA fraction of the corresponding sample), totals of 761 729 and 140 645 reads and 48 202

and 37 504 reads remained in the DNA and RNA fractions for prokaryotes and eukaryotes,

respectively. The corresponding sequence files were deposited to NCBI’s Sequence Read

Archive (SRA BioProject ID PRJNA380262). Data were and normalized (proportions) rather

than rarefied to prevent loss of information and possible resulting biases [51]. Results obtained
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on datasets rarefied at different depth are summarized in S8 Fig for allowing comparison with

other studies.

2.6. Data analyses

Data analyses were performed using the R environment version 3.2.2 [52], implemented with

the Phyloseq package (version 1.18.1; [53]) for calculating Shannon-Wiener indexes and Abun-

dance-based Coverage Estimators (ACE); Phyloseq was also employed for rarefying the data-

sets to depths similar as data found in the literature for richness comparison. Gini’s coefficient

was calculated using the ineq package (version 0.2.13; [54]). Rarefaction curves were plotted

using the ggplot2 package (version 2.2.0; [55]) from community analyses made with the vegan
package (version 2.4.1; [56]); Venn diagrams were made using Venny 2.1.0 [57].

3. Results

3.1. Samples characteristics

The basic biological, chemical and meteorological features of the cloud water samples investi-

gated are shown in Table 1; these were usual for clouds collected at the Puy de Dôme Mountain’s

atmospheric observatory [40,58]. Based on geographical origin (S1 Fig), pH, and major ions

composition, when available, these were classified into “Polluted”, “Continental” or “Marine”

type events (S2 Fig)[58]. These categories comprise 9%, 26% and 52% of the clouds observed at

puy de Dôme, respectively [58]. Total cell concentration was within the range typically observed

in cloud water at this sampling site, with (2.05 to 9.49) ×103 Bacteria and Archaea mL-1 and (0.4

to 8.7) ×102 eukaryotic cells mL-1, equivalent to (0.4 to 2.5) ×103 and 8 to cells 270 cells m-3 of

cloudy air, respectively, depending on the sample (Table 1). Bacteria largely dominated the com-

munity, both in abundance (cell counts and read number) and richness (OTUs number): they

represented ~90% of the DNA reads while eukaryotes contributed ~8%.and Archaea ~2%.

3.2. The cloud water microbiota: An extremely rich and imbalanced

community

A total of 28,143 OTUs were detected in prokaryotes (28,058 in Bacteria and 85 in Archaea) and

2,612 OTUs in eukaryotes. Each sample contained a fraction of the total richness, with ca. 7,800

to 20,500 OTUs0.03 in prokaryotes and ca. 1,900 to 2,100 OTUs0.03 in eukaryotes (Table 2). Inflex-

ions in the rarefaction plots of the different sets of sequences (S3 Fig) indicated that the actual

microbial communities targeted were well captured (coverage of 72% to 98%). The correspond-

ing abundance-based coverage estimators (ACE) specified the presence of between ~10,800 and

~21,000 prokaryotic OTUs0.03 per sample and ~2,400 eukaryotic OTUs0.05 (Table 2). The results

concerning specifically the composition of prokaryote, eukaryote, then active communities are

presented below.

3.2.1 Prokaryote community. In total, 30 different phyla were detected (of which 1 in

Archaea), distributed over 60 classes, 113 orders, 190 families and 286 genera. A complete list of the

abundance and taxonomic affiliation of prokaryotic OTUs is presented in S1 File. In all samples, the

community was largely dominated by 4 bacterial phyla, which represented 75% to 79% of the reads

in DNA datasets and 85 to 88% in RNA (Fig 1A): Proteobacteria (28 to 51% of the DNA reads, in

particular the Gamma- (6–21%), Alpha- (2–21%) and Beta- (3–12%) classes; Fig 1B), Bacteroidetes

(5–30%), Firmicutes (5–18%) and Actinobacteria (6–13%). These phyla are almost systematically

reported dominant in outdoor airborne bacterial communities studies (e.g. [3,6,8,59–62]).

A total of 1,593 OTUs distributed over 103 genera were common to all samples (S4A Fig).

These represented 64% to 96% of the reads identified down to this taxonomic level, and 15%-
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31% of the total 16SDNA reads in each sample. Their relative contribution to the whole com-

munity structure in the different samples is shown as a heat-map in S5A Fig. Dominant genera

comprised notably: Rickettsia, Sphingomonas, Methylobacterium and Acidiphilium in Alpha-

Proteobacteria; Pseudomonas, Enhydrobacter, Moraxella and Psychrobacter in Gamma-Proteo-

bacteria; Capnocytophaga in Bacteroidetes; Corynebacterium, Arthrobacter and Streptomyces in

Actinobacteria; Dolosigranulum, Clostridium in Firmicutes.

The samples had clear distinct patterns: ~70% of the total OTU richness observed in prokary-

otes was contributed by the “Polluted” type sample, with most of them being characteristic, i.e.

exclusive of this sample (15,152 OTUs representing 72% of the reads of this sample). Compara-

tively, other samples had 2,600 to 3,000 characteristic OTUs which represented 8–12% of the

reads. The “Polluted” type cloud was characterized by relatively high abundance of Dolosigranu-
lum, Corynebacterium, Moraxella and Campylobacter bacteria. The “Marine” type cloud was

dominated by Proteobacteria affiliated with Bdellovibrio, Pseudomonas, Methylobacterium, Sphin-
gomonas and Rickettsia; these were also well represented in the “Continental” type cloud, along

with some Firmicutes and Actinobacteria (Clostridium, Streptococcus and Corynebacterium).

3.2.2 Eukaryote community. Eukaryotic OTUs were distributed over 12 phyla, with 66

orders identified. A complete list of the abundance and taxonomic affiliation of eukaryotic

OTUs can be found in S2 File. A large proportion of reads (~50%) remained unaffiliated at the

phylum level, both in DNA and RNA. The reads taxonomically identified in the DNA fraction

were evenly distributed among Fungi, Stramenopiles and Alveolata (12% to 18%), while Viri-

diplantae represented ~3% (Fig 2A). Basidiomycota and Ascomycota largely dominated in

Fungi (Fig 2B). By far, most identified Basidiomycota were members of the classes Agaromy-

cetes (52% to 73%, with Polyporales and Agaricales the dominant families), Tremellomycetes

(20% to 33%) and Microbotryomycetes (0.2% to 11%). In the phylum Ascomycota, among

those identified to the class level, Sordariomycetes (12% to 22%) and Dothideomycetes (12%

Table 2. Prokaryotic and eukaryotic communities’ richness and distribution.

Polluted type cloud Continental type cloud Marine type cloud

DNA RNA DNA RNA DNA

Bacteria and Archaea

Processed read number 496,197 59,449 115,515 81,196 150,017

Total species richness*

Observed 20,432 3,428 7,793 5,622 8,970

Estimated (ACE) 20,954 4,710 10,802 6,468 11,148

Community distribution

Shannon’s H 9.1 6.3 7.2 7.3 7.4

Gini coefficient 0.74 0.98 0.95 0.95 0.94

Eukaryotes

Processed read number 18,562 12,831 13,978 24,673 15,662

Total species richness**

Observed 2,061 1,527 1,901 1,692 1,877

Estimated (ACE) 2,461 1,845 2,400 1,834 2,439

Community distribution

Shannon’s H 6.58 6.28 6.48 6.32 6.26

Gini coefficient 0.75 0.81 0.77 0.81 0.79

*OTUs clustered at 97% sequence similarity.

**OTUs clustered at 95% sequence similarity.

https://doi.org/10.1371/journal.pone.0182869.t002
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to 15%) dominated; other classes (Eurotiomycetes, Lecanoromycetes, Leotiomycetes, Orbilio-

mycetes and Saccharomycetes) represented < 5% of the reads.

A total of 1,209 eukaryotic OTUs were shared between the samples (S4B Fig). These were

distributed over 39 orders, gathering 15.2% to 16.6% of the total reads of the samples and 91%

to 97% of those identified at this taxonomic depth. Their relative abundance in the eukaryotic

communities of each sample is shown as a heat-map in S5B Fig. Dominant shared orders in all

samples included notably Bicoseocida, Polyporales, Charales and Euplotida.

3.3. Active community

The active community, as detected in RNA extracts, was a fraction of the total community.

This included 26.4% of the total richness observed in prokaryotes (7,438 OTUs0.03) and 82%

(2,612 OTUs0.05) in eukaryotes. The samples were globally less distinct in their RNA fraction

than they were in their DNA fraction (S6 Fig). A total of 1,612 prokaryotic OTUs were shared

between the RNA fractions of 2 samples analyzed. These were distributed over 97 identified

genera gathering in total 32% to 34% of the 16SRNA reads, of which a few dominant genera

contributed each around 1%: Rickettsia, Spirosoma, Enhydrobacter, Corynebacterium, Acidiphi-
lium, Sphingomonas, Pseudomonas and Methylobacterium. In eukaryotes, most RNA reads

(18% to 27%) were attributed to Fungi, whereas Stramenopiles and Alveolata each were repre-

sented by ~10%, and Viridiplantae by ~6%. A the order level, dominant Fungi included Mag-

naporthales and Pleosporales in Ascomycota, Polyporales and Sporidiobolales in

Basidiomycota), SAR (Bicosoecida) and others such as Syndiniales, a group of dinoflagellates.

Figs 3 and 4 compile overall most represented bacterial genera and eukaryotic orders, respec-

tively, in corresponding DNA and RNA datasets. The relative abundance of RNA, respect to

DNA, in an OTU (abbreviated into RNA:DNA ratio for clarity) is often used for estimating its rel-

ative level of metabolic activity, with higher ratios linked with potentially higher metabolic activity

[63,64]. RNA:DNA ratio ranged between 0 and 210 in eukaryotes, and from 0 to, exceptionally,

11,760 in prokaryotes in an OTU affiliated to Spirosoma (Bacteroidetes). Low abundance groups

tended to exhibit high ratios, in prokaryotes and in a lesser extent also in eukaryotes (see S7 Fig),

as observed by others in atmospheric samples [65], but by far, most RNA:DNA ratios were bet-

ween 0.1 and 10. Alpha- and Gamma-Proteobacteria clearly dominated in bacterial taxas with

ratio> 1 (i.e. potentially metabolically active taxa). Notably Rickettsia, Sphingomonas, Methylobac-
terium, Enhydrobacter, Pseudomonas, and Acidiphilium genera were highly represented and were

probably the most active taxas. In bacteria, these included notably Spirosoma, Deinococcus (Deino-

coccus-Thermus), Janthinobacterium (Beta-Proteobacteria), Frigoribacterium and Curtobacterium
(Actinobacteria). Conversely, some bacteria were found abundant but exhibited very low or no

activity based on RNA:DNA ratio. These comprised essentially Gram-positive bacteria: Actino-

bacteria (Corynebacterium, Actinomyces) and Firmicutes (Dolosigranulum, Staphylococcus), and

also members of Proteobacteria (Bdellovibrio, Burkholderia), Bacteroidetes (Capnocytophaga) and

others like Nitrospira. In eukaryotes the orders Magnaporthales, Syndiniales, Pleosporales, Poly-

porales, Bicosoecida and Sporidiobolales in particular were markedly abundant in both the DNA

and RNA datasets.

4. Discussion

4.1. Clouds are extremely rich and diverse mosaics of multiple sources

ecosystems

In this work, we aimed at drawing a picture of the structure of cloudborne microbial commu-

nities, including active groups and rare taxa. The detection of eventual environmental drivers
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such as meteorological variables to the microbial communities observed was beyond the scope

of this study. Thus, we chose to orient our investigations toward large sample volumes, associ-

ated with deep sequencing. Consistently, species richness reaches here an unprecedented value

in atmospheric samples, with ~11,000 to ~21,000 distinct OTUs estimated in prokaryotes and

~2,400 in eukaryotes. Such high richness are uncommon and in general rather reported in

Fig 1. Prokaryotic total (DNA fraction) and active (RNA fraction) community composition in the cloud

water samples at the phylum level (A),and relative distributions of Proteobacteria orders (B).

https://doi.org/10.1371/journal.pone.0182869.g001
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soils (e.g., [66,67]. In the atmosphere, although much less is known, it is often described as a

highly diverse environment (e.g., [7,8,60,68–70]. The high richness observed in our samples

can be related to the large sample volumes considered. It is clear that scale problems arise

when estimating community richness in open ecological systems [71,72], especially in dynamic

environments like the atmosphere where the biomass is low. Comparatively, DNA analyses

Fig 2. Eukaryotic total (DNA fraction) and active (RNA fraction) community composition in the cloud water samples

at the kingdom level (A), and relative distributions of Fungal classes (B).

https://doi.org/10.1371/journal.pone.0182869.g002

Active microorganisms in clouds

PLOS ONE | https://doi.org/10.1371/journal.pone.0182869 August 8, 2017 10 / 22

https://doi.org/10.1371/journal.pone.0182869.g002
https://doi.org/10.1371/journal.pone.0182869


were carried out in reference studies from 2.7 to 144 m3 of air at mid-altitude sites (ca. 1,500 to

3,000 m asl.; [35,65], and ~6 m3 of air in the free troposphere (i.e. ~3×104 bacterial cells per

sample; [10]). Volumes similar as in our study were notably used for assessing fungal [73] and

prokaryotic diversity [4] in aerosols at global scale: up to 1,100 species of fungi and 2,900 spe-

cies of prokaryotes per sample were observed. Recently [62] detected up to 1,910 species in

cloud water volumes of 100 mL, on data rarefied to 9,100 sequences. A richness equivalent was

observed in our study when rarefying data to a comparable depth (S8 Fig). Finally, bacterial

species richness similar as our findings was reported from large rain samples (7–22 liters),

with 13,083 OTUs0.03 [74], in [61].

The structure of the communities was investigated through ecological indexes (Table 2).

Shannon’s H indexes ranging from 6.3 to 9.1 demonstrated extreme biodiversity, in a large part

contributed to by the numerous rare species. Indeed, the communities, in particular prokary-

otes, were highly uneven with a low proportion of abundant species and many rare, as shown

by OTU rank-abundance plots (S3C and S3D Fig), Lorenz curves (S9 Fig) and corresponding

Gini’s coefficients close to 1 (0 being a perfect equality in OTU abundance distribution and 1

Fig 3. Representation of the major prokaryotic genera identified in DNA and RNA datasets. Dashed and dotted lines depict RNA:DNA ratios

of 0.1, 1 and 10. The top 20 genera based on their average position rank over the 3 cloud samples are shown, as well as some selected for high

representation in RNA datasets (43 distinct genera in total). POLL: “Polluted” type cloud; CONT: “Continental” type cloud.

https://doi.org/10.1371/journal.pone.0182869.g003
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being perfect inequality, i.e. a very contrasted abundance distribution between OTUs). Illustrat-

ing this, despite conservative sequence filtering, the 1% most abundant OTUs represented

around ~20% of the reads in eukaryotes and ~35% in prokaryotes, respectively, and the top half

OTUs more than 90%. This high unevenness suggests that the global functioning of the com-

munity is fragile (not robust), sensitive to stress [75], and so, likely to be variable in space and

time. If an abundant group was to be lost from the community, i.e. a group that is likely to con-

tribute significantly to the structure and global functioning of the system, there would be a high

probability to lose or reduce also the functions associated with it. This ecological theory, that

functional stability implies even structure, derives from established ecosystems and it is applied

here for apprehending the functioning of cloud’s microbial communities in the frame of clouds

as microbial habitats hypothesis; it is possible though that this is not applicable to environments

acting mainly as transport areas, where microbial establishment is by essence not possible, like

clouds.

Any microbe inhabiting a surface environment has a probability to get aerosolized, though

more or less promptly depending on its physiological characteristics (e.g.,[76] and other

Fig 4. Representation of the major eukaryotic orders identified in DNA and RNA datasets. Dashed and dotted lines depict RNA:DNA ratios of

0.1, 1 and 10. The top 20 genera based on their average position rank over the 3 cloud samples are shown, as well as some selected for high

representation in RNA datasets (24 distinct orders in total). POLL: “Polluted” type cloud; CONT: “Continental” type cloud.

https://doi.org/10.1371/journal.pone.0182869.g004
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environmental variables linked with its habitat, like exposure to mechanical disturbances by

wind or rainfall for instance [77–79]. The community observed likely resulted from the mixing

of microbial inputs from myriads of different sources, albeit not confidently quantifiable here.

The high unevenness observed could suggest by itself that there is a marked influence of some

specific environments over others; this assumes temporal stability on sources and equivalent

strengths among sources and microorganisms, and this is probably not the case (e.g., [67,80,81].

Rather, the variability between the samples indicated that the sources themselves are large and

rich, so a variety of possible children communities can emerge from it [82].

As needles in a haystack of complex communities, the presence of more or less specific trac-

ers can inform about emission sources. It is widely observed, and our samples are no exception,

that airborne microorganisms outdoors most likely originate from soil, vegetation, surface

waters and animals among natural sources; Humans and activities such as composting can also

create bioaerosols in high number (e.g., [35,76,79,83,84]). Proteobacteria and Bacteroidetes

dominated the communities observed, with also a good representation of Actinobacteria and

Firmicutes, as usually in airborne microbial communities [6,8,10,59,60,85]. Prokaryotic endo-

symbionts or parasites of eukaryotes (Rickettsia, Wolbachia)[86,87] were present in high pro-

portion. To our knowledge, this is the first report of such abundance of these organisms in

atmospheric samples. Their presence is not surprising as they probably originated from the

numerous plant, insect, arthropod and other animal fragments contained among aerosols [88].

Rickettsia are ultra-small bacteria thought to be at the origin of mitochondria in eukaryotes

(endosymbiotic theory) [89]. The abundance of Pseudomonads and Sphingomonads attested of

important inputs from vegetation in all samples (e.g., [90,91]), whereas others like Streptomyces
rather refer to soils. These apart, Bdellovibrio, a genus of Delta-Proteobacteria found in water

environments, dominated in the “Marine” type cloud was, and taxa generally affiliated with

soils, decomposing organic material, animals, and humans, like Dolosigranulum, Corynebacte-
rium, Moraxella, Campylobacter and Capnocytophaga (e.g., [92]) were abundant in the “Pol-

luted” type cloud. Wei et al. studied polluted and non-polluted fog events in China and also

observed a prevalence of potential Human pathogens in the polluted air masses [61].

In eukaryotes, Basidiomycota tended to dominate over Ascomycota, as a result from continen-

tal inputs [11,73,93]. The relative dominance of Basidiomycota over Ascomycota in the air was

revealed recently by culture-independent methods [11,93]. More precisely, Basidiomycota tend to

dominate in continental air masses, whereas Ascomycota prevail in marine air masses [73].

Despite sampling site’s remoteness from ocean, samples kept a marine biological signature

detectable on the taxonomic affiliation of some abundant groups of microorganisms, as also

observed for chemical composition: marine or water-related taxa, in prokaryotes (Bdellovibrio,

Delta-Proteobacteria) and in eukaryotes [green, brown and red algae (Charales, Ectocarpales,

Hildenbrandiales, Fucales, Cladophorales), diatoms (Fragilariales, Thalassiosirales, Hemiaulales),

fungi and protozoans affiliated with water environments (Syndiniales, Saprolegniales, Conioscy-

phales)]. Saprophytic fungi affiliated with vegetation, soils and decomposing litters were also par-

ticularly abundant: Polyporales, Sporidiobolales, Agaricales, Pleosporales, and others.

Although it is not statistically verifiable, we observed that the prokaryotic community, and

in a lesser extent the eukaryotic community, were richer (ACE estimator), more diverse (Shan-

non’s index), and less uneven (Gini’s coefficient) in the “Polluted” type cloud than in non-pol-

luted “Continental” or “Marine” type clouds (Table 2). A relationship between Human

activities and microbial communities structure in clouds was reported in China [61], with

higher diversity in non-polluted clouds. Another study rather pointed out an impact of day

and night on the composition of bacterial communities in clouds; a higher representation of

Alpha-Proteobacteria during the night, notably, was reported [62], but the reasons for such

trend are not clear.
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4.2. Clouds are environments open to all, but where only some can

thrive: active groups

Among the high diversity of cloud microbial communities, some were capable of maintaining met-

abolic activity in cloud despite probable stressful conditions. According to criteria of abundance in

both DNA and RNA fractions, RNA:DNA ratio (Fig 3), frequency of recovery in cultures in earlier

studies [40], and other hints from previous reports [10,65], and at the exception of eukaryotic endo-

symbionts (Rickettsia), these probable main bacterial “inhabitants” of clouds can be named: Alpha-

and Gamma-Proteobacteria, in particular Sphingomonas (order Sphingomonadales), Methylobac-
terium (Rhizobiales), Acidiphilium (Rhodospirillales), Pseudomonas (Pseudomonadales), Comamo-
nas (Burkholderiales) and, to a lesser extent, Enhydrobacter and Psychrobacter (Pseudomonadales).

Among more discrete genera, Curtobacterium, Deinococcus, Spirosoma, Rhizobium and Janthino-
bacterium notably can also be cited here, along with, in other phyla, Arthrobacter, Staphylococcus.
All these have physiological properties compatible with their maintenance in the high atmosphere

and clouds, and they probably interact with their cloud water environment with potential impacts

on chemistry. Many of these are epiphytic taxa commonly recovered viable from air and clouds

[8,9,17,29,84,94–96]. On the other hand, tracers of polluted air masses could reside amongst the

most abundant species in DNA, like Dolosigranulum or Capnocytophaga.

Many of the microorganisms identified relate to vegetation: epiphytic, parasitic and endo-

symbiontes. Plant leaves, like clouds, are subjected to frequent temperature and humidity

shifts, high levels of UV light, etc. It is possible that these bacteria acquired physiological traits

compatible with survival in clouds from this lifestyle. Pseudomonas and Sphingomonas species

are versatile bacteria abundant in the environment, particularly on vegetation (e.g., [80]). Pseu-
domonas are among the bacteria the most frequently recovered by culture (i.e. viable) from

clouds and atmospheric samples [17,27,40], where their presence is particularly interesting for

many reasons: plant pathogenicity and epidemiology, degradation of organic compounds in

clouds [97,98]; production of siderophores and interactions with iron and radical chemistry

[99]; production and release of surfactants, which could facilitate the formation of cloud water

droplets [21,68]; ice nucleation, which in clouds can trigger precipitation (hypothesized as

“bioprecipitation”) (e.g.[96]). Sphingomonas are pigmented oligotrophic bacteria, frequently

described as psychrotolerant bacteria recovered from polar environments and air samples

[36,100,101]. Many of them are studied for their intrinsic resistance to numerous antibiotics

[102], and for their capacity to degrade xenobiotics [103], alike Comamonas [104]. Methylobac-
terium are methylotrophic bacteria, i.e. they can develop on one-carbon compounds such as

methanol, formaldehyde or formate [105,106], which are abundant in the atmosphere and in

cloud water [41,98]. Some species can use compounds shown to be responsible for ozone

depletion in the stratosphere, such as chloromethane [107]. The presence and potential activity

of methanotrophic bacteria in the air was shown previously [32]. Acidiphilium have high

capacities of interaction with iron [108,109] and so is a good candidate for interfering with

cloud water oxidant capacity [33]; it remains yet rarely isolated by culture. Enhydrobacter have

gas-vacuole helping floatation in aquatic environments [110], and it is possible that this

favored its aerosolization from waters bodies (e.g., 104). Finally, Deinococcus and Spirosoma
are known for their high resistance to DNA-damages such as those caused by UV light

[111,112], so their presence among the common core of the community is no surprise. Spiro-
soma species have been described from Arctic and Mountain regions [112,113].

In eukaryotes, endosymbiontes and parasites flagellate protists (Syndiniales and Bicosoecida)

dominated in DNA, but active groups included mainly plant pathogens and saprophytic fungi

from terrestrial or aquatic origins known for aerial dispersion [114–116] in Ascomycota (Pleos-

porales, Magnaporthales, Xylariales and Conioscyphales), and Basidiomycota (Pucciniales,
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Hymenochaeales and Sporodiobolales) (Fig 4). Ascomycota were previously reported dominant

in the active fraction of airborne fungi [93], and in Basidiomycota, Sporodiobolales includes

yeasts frequently isolated from cloud water samples at the same site, Rhodotorula and Sporobolo-
myces [40], However, if RNA:DNA ratio gives hints about potentially active eukaryotes, ribo-

some gene number is intrinsically more variable than it is in prokaryotes [117]; so estimating

their actual relative activity in cloud water will necessitate more investigations.

Our investigations revealed an incredible richness in the atmosphere, originating from a

variety of different sources and meeting in clouds. High inequities suggested high sensibility to

perturbations, including potentially stress caused by Human activities. Frequent species proba-

bly composed most of the biomass, but the vast majority of the diversity was contributed by

rare species. This feature, common in the environment (e.g., [118], funded the “everything is

everywhere” concept (e.g., [119]. There is no “global atmosphere” with a specific community

structure and functioning, but rather a multitude of different regional to local atmospheres dis-

tributed over the globe, as moving airborne imprints of surface ecosystems. On top of this,

some atmospheric corridors connecting distant regions together and defining some extent of

bio-geographical distribution of microorganisms on the planet have been identified [5,73,118].

Airborne communities are sorts of blurred airborne imprints of surface ecosystems gather-

ing and overlapping with each other in clouds A set of microorganisms able to maintain meta-

bolic activity in clouds was identified among complex communities. In previous studies, many

of these active taxa were frequently recovered by culture from cloud water samples [29,40].

These represent the microorganisms the most prone to interfere with their cloud chemical

environment. They are also potential competitors brought to surface receptacle ecosystems by

atmospheric deposition, and the early colonizers of emerging environments. Their identifica-

tion certainly helps understanding the atmosphere as a habitat; it will also allow focusing

researches for evaluating microbial impact on cloud physical and chemical processes, but their

actual functioning, the “what do they do?” question remains to be answered.
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S4 Fig. Venn diagrams depicting similarities and singularities of the 3 samples at the OTU0.03

level for prokaryotes (A) and OTU0.05 for eukaryotes (B).
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(TIF)

S6 Fig. Bray-Curtis similarity matrices between the different sets of sequence of prokaryotes

(A) and eukaryotes (B).
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S7 Fig. Relative OTU representation in extracts of RNA respect to DNA in corresponding

datasets, showing a trend of higher RNA.DNA ratios in rare OTUs.
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rarefactions depths.

(TIF)

S9 Fig. Lorentz curves of the different sets of sequences.

(TIF)
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bial communities in forest soil are largely different and highly stratified during decomposition. ISME J.

2012; 6: 248–258. https://doi.org/10.1038/ismej.2011.95 PMID: 21776033

64. Zhang Y, Zhao Z, Dai M, Jiao N, Herndl GJ. Drivers shaping the diversity and biogeography of total

and active bacterial communities in the South China Sea. Mol Ecol. 2014; 23: 2260–2274. https://doi.

org/10.1111/mec.12739 PMID: 24684298

65. Klein AM, Bohannan BJM, Jaffe DA, Levin DA, Green JL. Molecular Evidence for Metabolically Active

Bacteria in the Atmosphere. Front Microbiol. 2016; 772. https://doi.org/10.3389/fmicb.2016.00772

PMID: 27252689

66. Youssef NH, Elshahed MS. Species richness in soil bacterial communities: A proposed approach to

overcome sample size bias. Journal of Microbiological Methods. 2008; 75: 86–91. https://doi.org/10.

1016/j.mimet.2008.05.009 PMID: 18585806

67. Kivlin SN, Hawkes CV. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and

Function in a Neotropical Rainforest. PLOS ONE. 2016; 11: e0159131. https://doi.org/10.1371/

journal.pone.0159131 PMID: 27391450

68. Ahern HE, Walsh KA, Hill TCJ, Moffett BF. Fluorescent pseudomonads isolated from Hebridean cloud

and rain water produce biosurfactants but do not cause ice nucleation. Biogeosciences. 2007; 4: 115–

124.

69. Zweifel UL, Hagström Å, Holmfeldt K, Thyrhaug R, Geels C, Frohn LM, et al. High bacterial 16S rRNA

gene diversity above the atmospheric boundary layer. Aerobiologia. 2012; 28: 481–498. https://doi.

org/10.1007/s10453-012-9250-6

70. Kourtev PS, Hill KA, Shepson PB, Konopka A. Atmospheric cloud water contains a diverse bacterial

community. Atmospheric Environment. 2011; 45: 5399–5405. https://doi.org/10.1016/j.atmosenv.

2011.06.041

71. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM. Counting the Uncountable: Statistical

Approaches to Estimating Microbial Diversity. Appl Environ Microbiol. 2001; 67: 4399–4406. https://

doi.org/10.1128/AEM.67.10.4399-4406.2001 PMID: 11571135

72. O’Brien SL, Gibbons SM, Owens SM, Hampton-Marcell J, Johnston ER, Jastrow JD, et al. Spatial

scale drives patterns in soil bacterial diversity. Environ Microbiol. 2016; 18: 2039–2051. https://doi.org/

10.1111/1462-2920.13231 PMID: 26914164
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