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Abstract Split Hopkinson Pressure Bar tests are commonly used to deter-
mine material stress-strain relationship at high deformation rates. Obtaining
this relationship is dependant both on certain assumptions and substantial
post-processing of the data recorded during the test. Measurement uncertainty
rarely appears on the resulting curves. This article introduces a simple method
of estimating the measurement uncertainty associated with SHPB tests.

Keywords Measurement uncertainties, Split Hopkinson Pressure Bars,
Propagation of uncertainty

1 Introduction

Split Hopkinson Pressure Bars (SHPB) are commonly used today to character-
ize materials in the 100 s´1 to 10 000 s´1 strain rate range [1]. The device and
the corresponding treatment of measurements developed substantially during
the second half of the twentieth century [2,3]. The first measuring bars were
metallic, used for the characterization of high impedance materials [4]. Sub-
sequently, the use of polymeric –low impedance– measuring bars and the de-
velopment of the associated post-processing enabled lower impedance samples
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Fig. 1: Example of stress-strain curve obtained with an SHPB device: copper
sample at 1300 s´1

such as polymeric foams to be tested [5]. The SHPB device –initially designed
for compression testing– was then adapted to tension testing, torsion testing
and shear testing. It was also modified to test ceramic materials or concrete
[1]; it has recently been used in the field of biomechanics to test biological
tissues [6,7,8].

Figure 1 illustrates a typical stress-strain curve obtained with an SHPB
setup. As for any experimental data, the graph should display measurement
uncertainty, for each experimental point. In addition, the derivation of the
stress-strain relationship is based on the assumption of stress equilibrium in the
sample, which requires a certain ring-up time. It would therefore be interesting
to plot the point beyond which the sample is at equilibrium on the final stress-
strain plot, especially if pulse shaping techniques [9,10] are not employed.

To the authors’ knowledge, the time from which the sample is at equi-
librium never appears on the SHPB stress-strain curve and the question of
measurement uncertainty on resulting stress-strain curves has not yet been
addressed clearly.

The first part of this article (Section 2) briefly recalls the operating princi-
ple of a Split Hopkinson Pressure Bar apparatus and the underlying equations
for the stress and strain in the sample. Measurement uncertainty is analyzed
according to its three sources in Sections 3 to 5. The first source of uncer-
tainty is the strain-measuring device, which converts the strains in the bars
into amplified electrical signals (strain gauges, excitation device, amplifier,
digital sampling oscilloscope); these recorded voltages are then converted into
strains (Section 3). The second source of uncertainty is the conversion of the
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Fig. 2: Split Hopkinson pressure bar setup

strain in the measuring bars into stress and strain in the sample held between
the bars (Section 4). The third source of uncertainty is the propagation of the
strain signals from the actual strain gauge positions to the bar-sample inter-
faces (Section 5). In the last section, all these measurement uncertainties are
combined, yielding the total uncertainty on the stress-strain curve (Section 6).

2 SHPB setup and input uncertainties

2.1 Operating principle

The classic SHPB setup consists of two long bars (Figure 2), between which the
sample is placed. A compressive strain wave, generated by a striker, propagates
through the input bar, the sample and then the second, or output, bar. Two
conditions are required to avoid superposition of the incident and reflected
waves in the input bar. First, the strain gauges, glued onto the surface of the
bar, must be located half-way along the bar; second, the length of the striker
must also be such that the length of the strain wave is shorter than half the
length of the incident bar. The strain gauge on the input bar measures the
incident εiptq and reflected εrptq strain waves, the strain gauge on the output
bar measures the transmitted strain wave εtptq.

Figure 3 details the main steps to obtain the stress-strain relationship in
the sample (σsptq, the stress in the sample, as a function of εsptq, the strain in
the sample) from the strains measured εiptq, εrptq and εtptq in the middle of
the bars. Obtaining the stress-strain relationship of the sample is not straight-
forward: it requires the measurement of the strain in the two measuring bars
and is dependent on certain assumptions (see [3] for a detailed discussion),
which include the force equilibrium in the sample.

Once the sample reaches stress equilibrium, the strain rate, strain and
stress in the sample are given by

9εsptq “
´2c0
ls

εrptq (1)

εsptq “
´2c0
ls

ż t

0

εrpτqdτ (2)
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Fig. 3: Diagram of information flux for SHPB test processing (physical quan-
tities, electrical quantities, post-processing/numerical data)

σsptq “
AbEb
As

εtptq (3)

where c0 is the wave velocity of the measuring bars, ls is the initial length of
the sample, Eb is the Young modulus of the bars, Ab is the cross section of
the output measuring bar, and As is the initial cross section of the sample.

2.2 Description of our device and associated input uncertainties

The following is a description of the specific SHPB device designed and built
at our laboratory, LBMC UMR_T9406 (Ifsttar/UCBL).

The measuring bars are made of Armco 17-4PH precipitation-hardening
steel with a Poisson’s coefficient of ν “ 0.291 according to the manufacturer.
The uncertainty on ν concerns its last significant digit (0.291) and following
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[11] (Rule 1, page 23), the absolute uncertainty on ν is taken as upνq “ 0.0005.
The bar velocity c0 and Young modulus Eb are supposed to be experimentally
determined to within 0.1%.

u pc0q

c0
“ 0.1% (4)

u pEbq

Eb
“ 0.1% (5)

We adopt here the common notations for measurement uncertainty where upaq
denotes the standard uncertainty in a.

The bars are centerless ground to the nominal diameter of 31.75mm. The
diameter is measured at several points and ranges from 31.71mm to 31.76mm,
so the absolute uncertainty on the diameter is 0.025mm

updbq “ 0.025mm (6)

The gauge signal conditioner is a Dewetron HSI-STG module [12], pow-
ered by a Dewetron DEWE-30-8 chassis. The range of the input voltage is
10mV. The module’s input voltage accuracy is stated as "˘0.05% of reading˘
0.02% of range˘ 10 µV" so

upeHSIptqq “ ˘0.05%ˆ eptq ˘ 0.02% of range˘ 10 µV (7)

where upeHSIptqq is the uncertainty on the voltage eptq due to the signal con-
ditioner. The excitation voltage Vex is set to 5V and the excitation voltage
accuracy is

upVexq “ ˘0.03%ˆ Vex ˘ 1mV (8)
The analog output of the signal conditioner feeds a PicoScope 5442A digital

sampling oscilloscope [13]. This PC oscilloscope allows easy computer record-
ing of the digitalized strain signals. The DC accuracy of the oscilloscope (in
the 20 ˝C to 30 ˝C range) with 14 bits mode and ˘5V full scale is

upePSptqq “ ˘1% of full scale max (9)

which gives the oscilloscope’s contribution to the uncertainty on eptq.
The strain gauges are Micro-Measurements EA-06-062AQ-350/E with a

gauge length of 0.062 in or 1.57mm. Small gauges are employed here to min-
imize the spatial averaging effect due to gauge size. A fuller discussion of the
effect of gauge length on cut-off frequencies can be found in [14]. The gauge
factor κ is given with 0.5% uncertainty on its value

u pκq

κ
“ 0.5% (10)

The sample is made of 2017 aluminum, carefully machined on a lathe; its
length and diameter are known with an accuracy of 0.02mm (typical caliper
graduation)

uplsq “ updsq “ 0.02mm (11)
The sample length is ls “ 17.0mm and the sample diameter is ds “ 22.0mm.

The distance between the gauge and the specimen/bar interface is 1500mm
for both bars, these distances are accurate to within 0.5mm.
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3 Measurement device uncertainty

The first source of uncertainty arises from the measuring device (see Figure 3).
The travelling waves in the SHPB device are measured using strain gauges
glued onto the surface of the input and output bars. These strain gauges are
handled by a gauge signal conditioner which provides an accurate excitation
voltage and amplifies the measured signal. The amplified signal then goes
through a digital sampling oscilloscope and is recorded on a computer.

The measurement uncertainties of the strain gauges, gauge conditioner and
oscilloscope can be found in their respective technical documentation.

Each bar is equipped with four active strain gauges in full-bridge configu-
ration so that only the axial strain is measured. The strain is computed from
the voltage eptq measured across the bridge

εptq “
1

κ

2

p1` νq

eptq

Vex
(12)

where κ is the gauge factor (with a relative uncertainty of 0.5%) and Vex is
the excitation voltage.

The Joint Committee for Guides in Metrology (JCGM) issued a Guide
to the Expression of Uncertainty in Measurement [15], commonly referred to
as GUM, which details the framework for calculating measurement uncer-
tainty. Since the GUM is dense and rather complex, the reader can refer to
the didactic introduction by Kirkup and Frenkel [11]. The strain is measured
through the functional relationship of Equation (12), and the rules for calcu-
lating measurement uncertainty through functional relationship are explained
and summarized in [16].

From Equation (12) and reference [16], the measurement uncertainty on
the measured strains is therefore

„

u pεptqq

εptq

2

“

„

u pκq

κ

2

`

„

u pνq

1` ν

2

`

„

u pVexq

Vex

2

`

„

u peptqq

eptq

2

(13)

Actually, the voltage eptq is not measured directly: it crosses the gauge
module and the digital sampling oscilloscope (DSO) before being recorded.
The uncertainty on the measured voltage eptq therefore depends on the mea-
surement uncertainty of the Dewetron gauge module and the measurement
uncertainty of the DSO. This writes

„

u peptqq

eptq

2

“

„

u peHSIptqq

eHSIptq

2

`

„

u pePSptqq

ePSptq

2

(14)

as the Dewetron gauge module and the oscilloscope can be viewed as two gain
blocks in series (see Figure 3). Equation (14) is numerically evaluated using of
Equations (7) and (9).
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4 Post treatment uncertainty

The stress and strain in the sample are not directly measured during the test
but rather deduced from the waves measured at the middle of the bars. The
post-treatment is based on Equations (2) and (3).

The measuring bars have circular cross sections, so Equation (3) is rewrit-
ten

σsptq “
d2bEb
d2s

εtptq (15)

where db and ds are the output bar diameter and sample diameter, respectively.
The measurement uncertainty on the stress in the sample σsptq is therefore
given by

„

u pσsptqq

σsptq

2

“ 2

„

u pdbq

db

2

` 2

„

u pdsq

ds

2

`

„

u pEbq

Eb

2

`

„

u pεtptqq

εtptq

2

(16)

The measurement uncertainty on the strain in the sample is deduced from
Equation (2)

„

u pεsptqq

εsptq

2

“

„

u pc0q

c0

2

`

„

u plsq

ls

2

`

»

–

u
´

şt

0
εrpτqdτ

¯

şt

0
εrpτqdτ

fi

fl

2

(17)

Since the signals are sampled and the integration is performed numerically,
the integral has to be converted to its discrete time equivalent for numerical
post-processing. Replacing continuous time variable t by discrete time variable
n∆T -where ∆T is the sampling period- in Equation (2) gives

εspn∆T q “
´2c0
ls

n´1
ÿ

i“0

∆Tεrpi∆T q (18)

Let

Rn “
n´1
ÿ

i“0

∆Tεrpi∆T q (19)

Assuming that the sampling period ∆T is constant, and since Rn is a sum,
the squared standard uncertainty in Rn develops as [16]

u2pRnq “ ∆T 2
n´1
ÿ

i“0

u2 pεrpi∆T qq (20)

Using Equation (19) and Equation (20), Equation (17) is transformed into
its discrete form1

„

u pεspn∆T qq

εspn∆T q

2

“

„

u pc0q

c0

2

`

„

u plsq

ls

2

`

řn´1
i“0 u

2 pεrpi∆T qq
´

řn´1
i“0 εrpi∆T q

¯2 (21)

1 The uncertainty on εs is computed for the whole curve and only displayed after the time
where the stress equilibrium in the sample is achieved.
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Fig. 4: Stress strain curve including measurement uncertainties and post-
treatment uncertainties: (a) full curve, (b) detail of graphical representation

Note here that the uncertainty on the time step ∆T is very small -the
technical documents for the digital sampling oscilloscope[13] give a typical
RMS sample jitter of 3 ps- considering the sampling period of 0.2 µs; it is
therefore ignored, which greatly simplifies the last term of Equation (21).

Measurement and post-treatment uncertainties are combined in Figure 4,
where the uncertainty is shown from the time the sample is at equilibrium.
The numerical values employed to produce the graph are given in Section 2.2.
A rectangle represents the measurement uncertainty at each sample point,
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Fig. 5: (a) Time-history curves of stress and strain in the sample (green curve)
with measurement and post-treatment uncertainties (red corridor) starting
from time of sample equilibrium. (b) Associated relative uncertainty.
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Figure 4b highlights the first points for which the measurement uncertainty is
plotted and Figure 5 illustrates the underlying stress and strain time-history
signals with the associated measurement and post-treatment uncertainties.
Since the sampling rate is very high -5MS/s, about 1500 points on this specific
stress-strain curve- the points are very close and this rectangle method gives
a good approximation of the curve envelope.

5 Signal shifting uncertainty

Plotting the stress-strain curve of the sample requires knowledge of the inci-
dent, transmitted and reflected waves at the bar-sample interfaces. However,
the strain gauges are commonly located in the middle of the measuring bars to
avoid superposition of the incident and reflected waves and to ensure uniform
stress across the measuring section of the bar. The signals -measured far from
the interfaces- are therefore propagated toward the interface with the sample.

The strain signal acquired on the input bar (incident and reflected waves)
is measured by a strain gauge located at a distance lgi from the bar-sample
interface. According to 1D wave propagation theory, propagating the signal
from the gauge to the interface amounts to applying a temporal shift to the
signal

tgi “
lgi
c0

(22)

The measurement uncertainty on this shift is therefore
„

u ptgiq

tgi

2

“

„

u plgiq

lgi

2

`

„

u pc0q

c0

2

(23)

The same equation holds for the output bar (transmitted signal)

„

u ptigq

tig

2

“

„

u pligq

lig

2

`

„

u pc0q

c0

2

(24)

where lig is the distance between the strain gauge and the sample face on the
output bar.

The strain in the sample εsptq is computed from the reflected wave εrptq in
the input bar (see Equation (2)) and the stress in the sample σsptq is deduced
from the transmitted wave εtptq in the output bar (see Equation (3)). The
uncertainty on the position of the stress-strain curve in the stress-strain plane
hence combines the temporal uncertainties on propagation in both bars. Given
∆t “ uptgiq ` uptigq, this means that the strain in the sample and the stress
in the sample can be moved temporally closer to ∆t or farther away from
∆t. Figure 6a illustrates the uncertainty on the position of the stress-strain
curve induced by the propagation uncertainty. Let ∆σs and ∆εs represent the
uncertainty on σs and εs due to signal shifting; Figure 6b shows the time series
of the relative uncertainties ∆σs{σs and ∆εs{εs.
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The simple approach developed here for propagation uncertainty is based
on 1D wave propagation theory. Generally, measured signals are corrected to
take into account dispersion effects, which affect the shape of the waves. Ban-
croft [17] details the velocity of longitudinal waves in cylindrical bars and a
summary of dispersion correction is contained in [3]. The forward or back-
ward propagation of the signals requires the use of the Fourier transform to
take into account the wavelength dependent-phase velocity [18]. Introducing
measurement uncertainty into the dispersion correction would be complicated,
whereas this simple 1D non-dispersive wave propagation approach provides a
rough estimate of propagation uncertainty.

6 Final stress-strain curve with measurement uncertainties

The equations in Sections 3 and 4 yield the measurement uncertainties on εsptq
and σsptq, assuming there are no additional uncertainties when the measured
signals are propagated toward the sample faces. This measurement uncertainty
-measurement and post-treatment- is plotted on each of the two extreme curves
of Figure 6a, providing an estimate of total measurement uncertainty in Fig-
ure 7.

The measurement uncertainty on the stress-strain curve is represented by
a single polygonal envelope. This polygonal envelope is the result of the union
of all the uncertainty rectangles at each point of the two extreme curves of
Figure 6a. The geometric union operation was performed using Angus John-
son’s Clipper Library, an efficient open source library for clipping polygons.
Each rectangle depicts the uncertainty of the associated point: the width of
the rectangle is the strain uncertainty and the height of the rectangle is the
stress uncertainty.

The measurement uncertainty is neither constant nor proportional to the
signal amplitude because the resulting curve is a parametric plot and because
the uncertainty on the measured voltages includes both constant error and pro-
portional error (see Equation (7) for example). Quantifying the measurement
uncertainty for the whole curve with a single value is therefore not possible.
The uncertainty on the strain is however visually constant on the plateau of
the stress-strain curve.

When the strain in the sample reaches 0.04, the stress in the sample is
335MPa and the envelope of the curve ranges from 319MPa to 346MPa. This
13.5MPa uncertainty is equivalent to ˘4.0% error on the stress.

Uncertainties on the stress and on the strain are composed of many terms:
see for example Equations (16) and (13) for the uncertainty on the stress in the
sample. Table 1 lists all contributions to measurement device uncertainty and
post-treatment uncertainty rupσsq{σss2. The highest contribution is from the
uncertainty on voltage measurement from the digital sampling oscilloscope
(see Equation 9), which could be reduced by using a higher-quality device.
However, the signal shifting operation remains another important source of
uncertainty: the order of magnitude of the relative uncertainty on the curve
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Fig. 6: Uncertainty on the position of the stress-strain curve caused by un-
certainty on the propagation times of the measured signals: (a) full curve, (b)
time series of the relative uncertainty due to signal shifting
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Fig. 7: Stress-strain curve with measurement, post-treatment and signal shift-
ing uncertainty: (a) full curve, (b) detail

position due to signal shifting alone is 10´2 for stress and between 10´2 and
10´3 for strain (see Figure 6b). And it should be borne in mind that not taking
into account the dispersion correction for the measured strains causes signal
shifting to be underestimated.
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Equation Calculation Value
”

upσsptqq
σsptq

ı2

- 3.67ˆ 10´4 (min.)

“

”

upκq
κ

ı2

0.0052 2.5ˆ 10´5

`

”

upνq
1`ν

ı2

p0.0005{1.291q2 1.50ˆ 10´7

`

”

upVexq

Vex

ı2

pp0.0003ˆ 5` 0.001q{5q2 2.50ˆ 10´7

`

”

upeHSIptqq
eHSIptq

ı2

see Equation 7 2.89ˆ 10´6 (min.)

`

”

upePSptqq
ePSptq

ı2

see Equation 9 3.36ˆ 10´4 (min.)

`2
”

updbq
db

ı2

2ˆ p0.025{31.75q2 1.24ˆ 10´6

`2
”

updsq
ds

ı2

2ˆ p0.02{22q2 1.65ˆ 10´6

`

”

upEbq

Eb

ı2

p0.001q2 1.0ˆ 10´6

Table 1: Decomposition of relative uncertainty on stress: numerical values of
the terms of Equations (16) and (13).

7 Conclusion

The measurement uncertainty on stress-strain curves obtained from SHPB
tests is, to the authors’ knowledge, very rarely assessed. This article intro-
duces a method providing a rough estimate of measurement uncertainty. The
uncertainty computed here is most likely underestimated, as this first approx-
imation ignores the uncertainty introduced by the dispersion correction of the
measured signals. Results are also based on the assumption that the SHPB
setup is employed correctly (no bar or sample misalignment, controlled inter-
face friction, etc. [3]).

The measurement uncertainty estimated by this method is, however, visible
on the resulting stress-strain curve: the relative error on the stress in the sample
is about 4%. Such uncertainties can be expected to appear in all experimental
work with SHPB, particularly since there is no international standard SHPB
setup and each device has its own particular characteristics.
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